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Method of Lines Solution

*

of the Korteweg-de Vries Equation

W. E. Schiesser
Superconducting Super Collider Labora’cory‘L
2550 Beckleymeade Avenue
Dallas, TX 75237

and

Lehigh University
111 Research Drive
Bethlehem, PA 18015

Abstract

The Korteweg-de Vries equation (KdVE) is a classical nonlinear partial differential equation (PDE) originally
formulated to model shallow water flow. In addition to the applications in hydrodynamics, the KdVE has
been studied to elucidate interesting mathematical properties. In particular, the KdVE balances front
sharpening and dispersion to produce solitons, i.e., traveling waves that do not change shape or speed. In
this paper, we compute a solution of the KAVE by the method of lines (MOL) and compare this numerical
solution with the analytical solution of the KdVE. In a second numerical solution, we demonstrate how
solitons of the KdVE traveling at different velocities can merge and emerge. The numerical procedure
described in the paper demonstrates the ease with which the MOL can be applied to the solution of PDEs
using established numerical approximations implemented in library routines.

*To appear in RECENT TRENDS AND APPLICATIONS IN THE NUMERICAL SOLUTION OF OR-
DINARY DIFFERENTIAL EQUATIONS, special issue of Computers and Mathematics with Applications.

1'Opera,ted by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract
No. DE-AC35-89ER40486.




1 The KAdVE

The classical KAVE is [Strang (1986)]

us + 6UU:¢ + Ugzz = O, (1)

where subscripts in ¢ and & denote partial derivatives with respect to these independent variables, e.g.,
Uy = OufOt, ugpy = 0%u/823; t is an initial value variable and z is a boundary value variable. Therefore,
eq. (1) requires one initial condition and three boundary conditions.

Eq. (1) has the exact solution

u(.i,t) =f(z—ct)= %c sechz{%\/E(z —ct)}, (2)

which is the equation for a soliton traveling from left to right with velocity ¢ and height Zc.

We take as the initial condition for eq. (1)

u(z,0) = f(z) = e sech*{3V/a(z)}, 3)

which follows directly from eq. (2) with ¢t = 0.

The boundary conditions required by eq. (1) are not used in the calculation of the numerical solution.
Rather, we choose an interval in z that is essentially infinite (but, of course, is finite when used in the
computer code). Specifically, we use in place of the infinite interval —oo < z < oo the finite interval
—30 < z < 70. Since the computed solitons do not closely approach these finite boundaries, i.e., £ = —30
and z = 70, the imposition of boundary conditions is not required. (Thus, we have the somewhat unexpected
situation that a numerical solution is easier to compute for an infinite interval than for a finite interval.)

2 MOL Solution of the KdV

The essential features of a MOL solution of egs. (1) and (3) are [Schiesser (1991)]:

1. The discretization of the spatial derivatives, u; and uggs, in eq. (1).

2. The integration of the temporal derivative, u;, in eq. (1), which requires the integration of a system
of ordinary differential equations (ODEs) in ¢ as a result of the spatial discretization of feature 1.

We focus attention on feature 1, and accomplish feature 2 with an established ODE integrator, RKF45
[Forsythe, et al (1977)].

The derivative u, is computed by finite differences in two ways [Schiesser (1991)]: (1) five-point biased up-
wind approximations implemented in library subroutine DSS020 and (2) five-point centered approximations




implemented in library subroutine DSS004. The derivative u;,, is computed from a seven-point centered
approximation reported by Fornberg (1992), which is implemented in subroutine UXXX7C.

A subroutine for calculating the MOL ODE temporal derivatives is listed in Program 1:
SUBROUTINE DERV

IMPLICIT DOUBLE PRECISION (A-KE,0-Z)
PARAMETER (NG=400)

COMMON/T/ T, NSTOP, NORUN
1 /Y/  U(0:NG)
2 /F/ UT(0:KG)
3 /S/ UX(0:NG),UXXX(0:NG), X(0:NG)
4 /c/ XL, XR, c, SRC
5 /1/ IP
C..
C... U
c... X
IF(NORUN.EQ.1)CALL DSS020(XL,XR,NG+1,U,UX,1.0D0)
IF(NORUN.EQ.2)CALL DSS004(XL,XR,NG+1,U,UX)
c...
c... U
C... Xxx
CALL UXXX7C(XL,XR,NG+1,U,UXXX)
c...
C... ODES
D0 10 I=0,NG
c...
c... PDE

UT(I)=-6.0D0*U(I)*UX(I)~UXXX(I)
10 CONTINUE
RETURN
END

Program 1: Subroutine DERV for the Calculation of the Temporal Derivatives of Eq. (1)

The following points can be noted about subroutine DERV (reading from top to bottom):

1. The number of spatial intervals in z, NG, is 400.

u is in array U(0:NG) in COMMON/Y/.

. 4 is in array UT(0:NG) in COMMON/F/.

. Ug and Yz, are in arrays UX(0:NG) and UXXX(0:NG), respectively, in COMMON/S/.

. uz is computed by a call to DSS020 for the first solution (NORUN = 1) or a call to DSS004 for the
second solution (NORUN = 2).

c...
c... U



c... X
IF(NORUN.EQ.1)CALL DSS020(XL,XR,NG+1,U,UX,1.0D0)
IF(NORUN.EQ.2)CALL DSS004(XL,XR,NG+1,U,UX)

The details of these routines are given elsewhere [Schiesser (1991)].

6. upy, is then computed by a call to UXXXT7C.

C...
c... U
Cc... XXX
CALL UXXX7C(XL,XR,NG+1,U,UXXX)

Subroutine UXXXT7C is listed in Appendix A to illustrate: (a) the use of a tabulated finite difference
in a MOL differentiation routine; in this case, a seven-point finite difference for u,z, given by Fornberg
(1992), and (b) the programming for an infinite interval in z that does not require the imposition of
specific boundary conditions.

7. uq is calculated in DO loop 10.

cC...
C... ODES
DO 10 I=0,NG
C...
c... PDE

UT(I)=-6.0D0*U(I)*UX(I)-UXXX(I)
10 CONTINUE

This coding illustrates one of the positive features of the MOL, the close resemblance between the
PDE(s), in this case eq. (1), and the coding. Also, the coding is very compact considering the
complexity and nonlinearity of the PDE.

8. The 401 ODE temporal derivatives are sent to the ODE integrator, RKF45, through COMMON/F/,
and the 401-dependent variables are returned to DERV through COMMON/Y/ for use in the pro-
gramming of the MOL approximation of the PDE.

The numerical and analytical solutions are printed and plotted in an output routine. The plotted output is
given in Figure 1 for ¢ = 1 (unit velocity) and NORUN = 1, which shows the solitons traveling left to right for
t = 0 (centered at = 0),5,10,...35 (centered at z = 35). This comparison of the solutions is particularly
interesting at the peak of the solitons (for £ = ct in eq. (2)), which, from eq. (2), has the value 1. This
comparison is given in Table 1, which lists the numerical and analytical solutions at £ — ¢t = —0.25,0,0.25
for ¢t = 0 and 30.

DSS020 (NORUN = 1)

» I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF

119 0.00 -0.25 -0.280 0.49227 0.49227 0.000D+00
1200 0.00 0.00 0.000 0.50000 0.50000 0.000D+00
121 0.00 0.25 0.250 0.49227 0.49227 0.000D+00




CONSERVATION OF MASS =  2,0000
CONSERVATION OF ENERGY = 0.3333
WHITHAM CONSERVATION = 0.4000
I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF

239 30.00 28.75 -0.250 0.49245 0.49227 0.186D-03
240 30.00 30.00 0.000 0.49923 0.50000 -0.765D-03
241 30.00 30.25 0.250 0.49054 0.49227 -0.172D-02

CONSERVATION OF MASS = 1.9990
CONSERVATION OF ENERGY = 0.3323
WHITHAM CONSERVATION = 0.3979
DSS004 (NORUN = 2)
I T X(I) X(I)-T ABS(UN) ABS(UE) DIFF

119 0.00 -0.26 -0.250 0.49227 0.49227 0.000D+00
120 0.00 0.00 0.000 0.50000 0.50000 0.000D+00
121 0.00 0.26 0.250 0.49227 0.49227 0.000D+00

CONSERVATION OF MASS =  2.0000
CONSERVATION OF ENERGY = 0.3333
WHITHAM CONSERVATION =  0.4000
I T XD X(I)-T ABS(UN) ABS(UE) DIFF

239 30.00 28.75 -0.250 0.49230 0.49227 0.325D-04
240 30.00 30.00 0.000 0.50020 0.50000 0.196D-03
241 30.00 30.25 0.250 0.49212 0.49227 -0.148D-03

CONSERVATION OF MASS =  2.0000
CONSERVATION OF ENERGY = 0.3333
WHITHAM CONSERVATION = 0.3999

Table 1: Comparison of the Numerical and Analytical Solutions to Eq. (1) near z = ct.
We can note the following points about the output in Table 1:

1. At t =0, the solution is 0.50000 at £ = 0, as expected (in accordance with eq. (2)). This peak value
is then maintained by the solution when z = ¢t in accordance with eq. (2), e.g., for e = 1,2z = ¢ = 30,
the analytical solution is again 0.50000.

2. The solutions of eq. (1) satisfy an infinity of conservation principles. Here we illustrate the calculation
of three:

(a) Conservation of mass, defined as

'ul(t) = /°° u(z, t)dz; (4)

=00




(b) Conservation of energy, defined as

. 1
uz(t) = / —u?(z,t)dz; %)
—oo 2
(c) Conservation proposed by Whitham [Strang (1986)], defined as
ua(t) = / 2u3(z,t) — ui(z,t)dz. (6)
-0

Integrals u1(t), ua(t), and ug(t) were evaluated numerically by Simpson’s rule. From the numerical
output, we see u3(0) = 2, uz(0) = %, and ua(0) = 0.4

In using the five-point biased upwind approximations in DSS020, errors accumulated with increasing
t so that the three integrals of eqs. (4), (5), and (6) were correct to approximately three figures at
t = 30, i.e., u1(30) = 1.990, u2(30) = 0.3323, and u3(30) = 0.3979.

In using the five-point centered approximations in DSS004, errors accumulated with increasing ¢ so that
the three integrals of egs. (4), (5), and (6) were correct to four figures at ¢ = 30, i.e., u1(30) = 2.000,
u2(30) = 0.3333, and u3(30) = 0.3999.

Thus, the centered approximations in this case performed better than the biased upwind approxima--
tions, even though the solution of eq. (1) appears to be “strongly convective” as suggested by Figure 1,
and therefore one would expect that some upwinding would lead to better results.

3. The better performance of the centered approximations is also evident in the numerical solutions. For
the biased upwind approximations, the differences between the numerical solution, u,(z,t), and the
analytical solution, u.(z,?), that is A(z,1) = ua(z,t) — u.(z,1), are

Biased upwind (DSS020):

A(29.75,30) = 0.000186
A(30.00,30) = —0.000765
A(30.25,30) = —0.00172

Centered (DSS004):

A(29.75,30) = 0.0000325
A(30.00,30) = 0.000196
A(30.25,30) = —0.000148.

The centered approximations gave substantially smaller errors than the biased upwind approximations.

A second MOL solution was computed for an initial condition consisting of the sum of two “sech” pulses,
i.e., pulses of the form given by eq. (3): (a) a pulse centered at £ = —15 with ¢ = 2 and (b) a pulse centered
at z = 15 with ¢ = 0.5, as plotted in Fig. 2a. The left pulse has a higher velocity (and therefore also height)
so that it overtakes and merges with the right pulse, as indicated in Figs. 2b and 2c. The faster pulse then
emerges to the right of the slower pulse, as indicated in Figs. 2d and 2e. Eventually, the two original pulses
(at t = 0) reappear, e.g., at ¢ = 35, as indicated in Fig. 2f, and continue to travel with their original shape.




3 Summary

The MOL has been used to compute a solution to the KAVE with modest programming. Different approxi-
mations could easily be used by switching between library routines (i.e., DSS020 vs. DSS004). The temporal
integration of the 401 ODEs was easily accomplished with a library explicit integrator, RKF45 (although
the use of an implicit integrator might generally be required if the ODEs are stiff). Based on this experience
and that of many previous studies, we can recommend the MOL as a convenient method for the numerical
integration of PDEs.

A complete, documented Fortran code for the solution of the KAVE, including all of the library routines
discussed in this paper, is available on request from the author on a DOS-formatted 1.4-mb, 3.5-in. diskette.
This code can be used to investigate variants of the KdVE, e.g.,

Uy + 6u" s + Ugpr = 0, (7)

which undergoes substantial changes in the solution for n > 4 [Taha, et al. (1993)]. Also, the code can be
modified for the solution of other PDEs.

4 Bibliography

Fornberg, B., (1992),“Fast Generation of Weights in Finite Difference Formulas,” in Recent Developments
in Numerical Methods and Software for ODEs/DAEs/PDEs, G. D. Byrne and W. E. Schiesser (eds.), World
Scientific, River Edge, NJ, Fig. 3, p. 114.

Forsythe, G. E., M. A. Malcolm, and C. B. Moler, (1977), Computer Methods for Mathematical Computations,
Prentice-Hall, Englewood Cliffs, NJ.

Schiesser, W. E., (1991), The Numerical Method of Lines Integration of Partial Differential Equations,
Academic Press, San Diego.

Strang, G., (1986), Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, MA, pp. 599
602.

Taha, T., and J. Liaw, (1993), “A Parallel-vector Algorithm for an Investigation of a Self-focusing Singularity
of Higher KAV Equations,” to appear in Journal of High Speed Computing.

5 Appendix A - Subroutine UXXX7C

Subroutine UXXXT7C is listed below to illustrate how existing approximations for spatial derivatives can be
used within the MOL.

SUBROUTINE UXXX7C(XL,XU,N,U,UXXX)

c..

C. DOUBLE PRECISION CODING IS USED
IMPLICIT DOUBLE PRECISION (A~H,0-Z)

c..

c. VARIABLE DIMENSION ARRAYS




DIMENSION U(N), UXXX(N)

c...
C... GRID SPACING, 1/(8*(DX#**3))
. DX=(XU~XL)/DFLOAT(N-1)
R8DX=1,0D0/(8.0D0*(DX**3))
C...
3 C... COMPUTE THIRD SPATIAL DERIVATIVE
DO 1 I=1,N
c...
C... AT THE LEFT END, UXXX = 0
IF(I.LT.4)THEN
UXXX(I)=0.0D0
c...
c... AT THE RIGHT END, UXXX = 0
ELSE
+ IF(I.GT.(N-3))THEN
UXXX(I)=0.0D0
C..
c.. INTERIOR POINTS (SEVEN POINT CENTERED APPROXIMATION; SEE FORNBERG,
C.. B, "FAST GENERATION OF WEIGHTS IN FINITE DIFFERENCE FORMULAS", IN
c.. RECENT DEVELOPMENTS IN NUMERICAL METHODS AND SOFTWARE FOR ODES/
c.. DAES/PDES, G. D. GYRNE AND W. E. SCHIESSER (EDS.), WORLD SCIENT-
c.. IFIC, RIVER EDGE, NJ, 1992, FIG. 3, P114.
ELSE
UXXX (I)=R8DX*
1 (  1.D+00 *U(I-3)
2 -8.D+400 *U(I-2)
3 +13.D+00 *U(I-1)
4 +0.D+00 *U(I )
5 -13.D+00 *U(I+1)
6 +8.D+00 *U(I+2)
6 ~1.D+00 *U(I+3))
EED IF
c..
C... NEXT GRID POINT
1 CONTINUE
RETURN
EXND




Fig. 1: MOL Solution to Eq. (1) with Initial Condition Eq. (3)
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: Two-pulse Initial Condition for Eq. (1)

: Two-pulse Solution at ¢ = 10

Two-pulse Solution at ¢t =15

: Two-pulse Solution at ¢t = 20

Two-pulse Solution at ¢t = 25

Two-pulse Solution at ¢ = 35
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