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ABSTRACT

The tomographic method used for deriving soft x-ray local emissi- ities on TFTR, using
one horizontal array of 60 soft x-ray detectors, is described. This me +od, which is based
on inversion of Fourier components and subsequent reconstruction, has been applied to the
study of a sawtooth crash. A flattering in the soft x-ray profile, which we interpret as an m=1
island, is clearly visible during the precursor phase and its location and width correlate well
with those from electron temperature profiles reconstructed from electron cyclotron emission
measurements [G. Kuo-Petravic, PPPL-2556]. The limitations of the Fourier method, due
notably to the aperiodic nature of the signals in the fast crash phase and the aifficulty of

obtaining accurately the higher Fourier harmonics, are discussed.
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1. INTRODUCTION

The technique of tomographic reconstruction from line integral variables to local vari-
ables has been applied to a wide range of problems using all conceivable kinds of beams
whose absorption or emission by an object enables us to obtain valuable local information
without disturbing the object itself. Qver the past 10 years this technique has been applied
to the emissivity of soft x-rays from tokamak plasmas {1-3]. Measurements of soft x-rays in
tokamaks have indicated that emission follows closely the concours of magnetic surfaces. Be-
cause the tomographic technique is intrinsically capable of high spatial and time resolution,
we have here a very important tool for following the perturbations of the plasma which are
caused by various magnetohydrodynamic instabilities. In particular, we shall concentrate on
the sawtooth instability, which is a common feature of ohmically and neutral-beam-heated
tokamaks. ‘The sawtooth oscillations are a series of m = 0,n = 0 relaxations which flatten
the central electron temperature, T, profile. The relaxations are usually preceded by an
m = 1,n = 1 mode called the precursor, where m and n are poloidal and toroidal mode
numbers, respectively. Tomographic reconstruction of the m = I,n = | precursor mode
followed by the crash and successor modes is des¢ribed here in order to better understand

the mechanism causing the sawtooth oscillations.



2. EXPERIMENTAL SETUP

A soft x-ray pinhole camera with a horizontal view was installed on TFTR. The spatial
separation of the diodes is approximately 2.5 cm. A total of 60 horizontal diodes with fast
(up to 500 kHz)} and slow digitization is available. These diodes allow the detection of x-rays
in the range 0.5 to 30 keV. Figure 1 shows the Jayout of the detector system. A sampling
rate of 100 kHz was usually used for the sawtooth whick had m = 1,n = 1 frequencies of
=10 kHz.

A data processing and tomographic reconstruction program TOMO, was written to run
on the VAX at PPPL. For a given shot on the TFTR, a data file containing 60 channels of
8192 digitized data is made. Figure 2 shows a sample of the traces for 18 diodes viewing
the central region of the plasma above and below the midplane. After checking for time
synchronization and correcting for the gain and offset of all the charnels, adjustment is
made for any remaining intrinsic disparity in the interval of sawtooth activity. If we choose
an interval, as shown in Fig. 2, which lies exclusively within the precursor of a sawtooth
burst and which is long compared to the m = 1,n = | oscillation period, we can time
average the signals from each channel and display this against the impact radius or chord,
p, as shown in Fig. 3. The data show some variations which must be attributed to some
remaining systematic calibration error or detector variations, for example, the nonuniform
thickness of the beryllium filters in front of the diodes. To correct for this, we fit a cubic
spline to the experimental points subject to a least squares criterion. We then renormalize

the data points by the smoothed values given by the spline.



3. RECONSTRUCTION METHOD

By virtue of the symmetries in the tokamak configuration, we have a doubly periodic
system in the toroidal and poloidal angles. The detectors are all in a poloidal plane at
a given toroidal location. The geometry of the reconstruction is shown in Fig. 4, where
p is the impact radius and ¢ the chord angle. These two parameters uniquely define the
detector view. The purpose of the reconstruction is to find poloidal variations of the plasma
emissivity g(r,8) ,where r is the minor radius and 6 the poloidal angle, given the integrated
emissivities along the lines of sight of the detectors, f{p,#). At the time this work was
initiated there existed already a computer code for inversion at PPPL written by Sauthoff et
al. [4]. This code had been tested extensively using computer generated line integrals from
some assumed source emissivity. Therefore, after the data processing part of the x-ray data
was completed in collaboration with A.W. Morris, we were able to test the following three

inversion meihods on real TFTR. data. These three methods are very briefly described here:

(i) “SMALL M"— [5] is suitable for m < 2 oniy. This method differentiates the integral
of Eq. (4), hence, it is highly sensitive to noise in the data. However, it has the advantage
that it satisfies causality conditions, for when differentiating it only uses information from
the annulus outside the position of interest. The basic limitation is its inability to adequately

address constraints for higher m’s near the center.

(1i)“CORMACK LOW M”—(5] This technique ses series expansion and is related to

(i) in that 1t uses information only from the exterior of the positions of interest, but it uses



Tschebycheff polynomial kernals. The approach is applicable to higher m's, but is subject

to noise at the center due to similar constraints as (i) above.

(iii) “ZER.TICKE”—(5] This technique, again due to Cormack[6], expands the lin~
integral function fn(p) in a set of basis functions in an effort to reduce noise susceptibility by
building in compliance with the modal constraints. The penalty is the violation of causality,

in that information from regions interior to the point of interest is used.

Both methods i) and ii) have been found to be excessively noisy. Ouly (iii), which
performs a least squares fit on the input data, produces smoother results. [t is precisely
because of this that one shouid be very careful with the outputs of this inversion method, and
examination of the data at all intermediate stages is advisable. In our particular application,
the study of the sawtooth instability, it has been found that all the gross features may be
described by the rapid rotation of a single hotspot. It is, therefore, not surprising that
method (iii), whicb is based on poloidal harmonic expansion, proves to be most suitable
since this comes closest to describing the physics of the problem. From now on we shall

restrict our discussion to Cormack’s method with Zernicke polynomials only.

For the sake of completeness we shall briefly reproduce here the results of Cormack|[6]

for the localised emissivity function g(r,8) given the line integral functions f(p, ¢).

f(n.¢) = /]( RLCES (1)

where df is an element of length along the chord. Since there is no plasma outside a certain

radiug, we can define a unit radius outside which there is no source of radiation and expand



in Fourier series:

o(r,0) = > _[g5,(r) cos(md) + gi,{r) sin(m8)), (2)
m=0
and
flp,¢) = Z[f‘ )cos(mg) + f2,(p)sin(me)]. (3)
m=0

Cormack showed that it follows ‘rom these expansions that:

| T 2
f(p) = 2/,, #——“’f,—? dp, (4)
and the solution is:
capoy _ L d frrfep)Talp/r).
=23 [ b )

where T,,(z) = cos(mcos~™! z) is the Tschebycheff polynomial of the first kind of degree m
in .

Cormack showed that if we choose a particular set of basis functions:

foilp) = Sln[(m + 2 + 1) cos™(p)], (6)

2
(m+20+1)

where m and { are non-negative iniegers and 0 < p < 1 in this interval, the functions form

an orthogonal and complete set. Furthermore, if we inzert

forp) = ZZa *sin[(m + 2{ + 1) cos~'(p)] (7

into Eq.(5), we obtain the solution

L
g’ (r) =) ali(m+ 21 + 1) Ri(r), (8)

(=0



where L+1 is the total number of terms in the expansion, aj} are the same expansion
coefficients which appeared in Eq.(7) and R,,(r) is the Zernicke polynomial
!

o (=1) (m4 2 — s)! R
le(T) = ; s! (rrL +1- 3)’ (I __ s), . (9)

The complete local emissivity function g(r,#) can then be found by substitution of
Eq.(8) into Eq.(2). Not only is this solution simple and elegant, but the use of the poloidal
harmoni< expansion has reduced the problem to a one-dimensional fit in p space. In general,
we seek a fit to the data points f(p, ¢):

M L

f(p§) =2 ) [t cos(me) + ajpsin(m)]sinf(m + 20 + D eos™ g (10)

m=0 [=0

]

~1 can now be found by a least squares procedure which

The unknown roeflicients ¢
requires tha inversion of an N x L matrix, where N is the number of diodes. It is important
to choose a good matrix inversion method, for the discretization of the problem as well as the
inherent noise present in the system cax result in considerable deviations from the original
orthogonal basis functions. This can happen ai any particular combination of N and L. The
net result is that the basis functions become to some degree not linearly independent, the
matrix becomes singular and large error amplification sets in. After examining a few matrix
inversion packages provided by the online Math libraries, we have finally chosen the Singular
Value Decomposition (5VD) [7} method for the inversion of the least squares fit matrix. An
outstanding feature of the SVD method is that the statistical errors inherent in the data
can be incorporated into the matrix inversion process such that the final result takes them
into account and is more accurate as a result. In the SVD method, the input matrix A is
decomposed into three matrices ¥, I/, and V. The matrix £ is diagonal with non-negative

7



diagonal entries which are called the singular values of A, During the inversion process, the
singular values of the matrix appear explicitly. Small singular values may appear indicating
that the basis functions are not linearly independent at the data points. When this happens,
we choose to ignore this singular value if it is < 10y, where 7 is the relative error of the
data points and o, is the maximum singular value. 'n so doing we have actually improved
theseffective condition number, which is the ratio of the maximum to the minimum singular
values, and minimized error amplification.

In our present systemn with the horizontal camera alone, the chord angles, ¢, covercd by
the diodes above and below the midplane span the range 68° < ¢ < 89° and -89° < ¢ <
—68° only. This is barely sufficient to distinguish an m = | mode and certainly is capable
of none higher. We, therefore, have to invoke some additional mechanism to interpret the
data. Fortunately, there is good evidence to suggest that the rotating “hotspot” model works
reasonably well[7]. As a first approximation, therefore, we can relate the observed oscillations
in time to variations in poloidal angle of the hotspot as it spins around. Instead of calculating
directly the instantaneous spatial variations of emissivity, which would be passible if more
than one array of detectors were available, we calculate here the time variations of emissivity
in terms of a Fourier mode and its harmonics. It is important here to distinguish between
the poloidal mode number m and the harmonics number h. The mode number is given by

the number of hotspots:



1 hotspot 2 hotspot

mode m=1 mode m=2

In our analysis we treat one full oscillation period, T, of the signal, ¢,(¢) , at a time

and form the Fourier integrals:

T/2
gy (w) = ./1'12 ep(t) cos h(wt — @)dt, (11)
and
T2
gp(w) = -/—le ep(t) sin h(wt — ¢)dt, (12)

where w =27 /T and & = 0,1,2,... is the harmonic number.

The cosine and sine components &°(w, p) and 3°(w, p) and their harmonics are separately
input to the inversion package. The outputs are the Fourier components of the local emis-
sivities E°(w,r) and E*(w,r) at frequency w. To get back the local emissivity in physical
space :

E(r,t) = Z [(E*(w,r) + E*(w,r))(coswt — i sinwt). (13)

—w, 0w

E(r,t) = Eg + 2Ef(w)) coswt + 2B (w ) sinwyt + - - -
(14)
= Eo+ 2E cos(wit — ¢} +- -

with Ey = ((E{)? + (E1)*)Y/? and tang, = E}/E;, where E; and E; are them =1, h =0

and m = 1, h = 1 local emissivities, respectively.



4. RESULTS

Before proceeding to the analysis of data, we have to make some parameter tests. The
most important is the convergence test to find the value of [, the number of basis functions
required to reach convergence. General arguments would suggest L = N for it is necessary
to preserve any genuine fluctuations in signal at a scale length of approximately !/N. [n
practice, however, we need L to be smaller because the higher { terms in Eq.(7) tend to create
noise at the large radius end owing to the non-exact cancellation of terms. Also, it should be
borne in mind that a least squares method is guaranteed to give a smoothly varying profile
however jagged the line integral input. For this reasonm, it is necessary to examine both
the input and the ouiput of the inversion process while varying all the parameters at one’s
disposal, such as the number of basis functions, L, the relative error of the data, 7, in the
matrix inversion,and so on. In Fig. 5 we show an input data set consisting of m = 1,4 = 0
Fourier integrals over one period of oscillation of the line integral data and this is fitted with
L=6, 15, and 21 terms. It may be seen that the fit with L=6 does not reflect the change of
curvature near the origin in the input while with 15 and 21 terms similar fits are obtained.
The outputs of the three fits are shown in Fig. 5b. We ccnclude, therefore, that reasonable
convergence may be obtained with 15 < L < 21. Since we have a least squares method, the
input data with statistical fluctuations are effectively replaced by a smoothed set resembling
one of the fits of Fig. 5a. In other words, the output of the inversion we get (Fig. 6b)is
the same as if our input data were smooth (Fig. 62). This property is highly advantageous

when the input is noisy.
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As with any tomographic experiment, the first task after calibration is to simulate
nurnerically the object of study under a set of simplifying assumptions. This tests not only
code integrity, but also the geometry of the setup and finally the inversion method. In our
case the detectors are sufficiently far away that the solid angle effects can be neglected. It
is then easy to compute the line integral intensities of a rotating source with a given mode
number m. Figure 7 shows the comparison of Jocal emissivities given by the source and by
inversion from computed line integrals for both the m = 1,hA =1 and m = 2,h = 1 cases.
Such curves help us distinguish between m = | and m = 2 modes by the behavior near the
center. Eventually study of the simulated emissions can even lead to a way of distinguishing
structures with or without magnetic islands.

To obtain the Fourier integrals, we need to analyse the wave train cycle by cycle if
the zeros of the oscillation can be determined. A cursory glance at Fig. 2 shows that the
region near the ¢ = 1 surface, where ¢ is the safety factor, suffers the least change in the
steady-state value during the crash as matter is expelled from the inside to the outside of
the ¢ = 1 surface. Figure 8a shows such a typical waveform, Here we can discern the end of
the precursor phase leading to a sharp peak at the start of the crash phase and finally the
beginning of the successor phase. To eliminate the steady-state portion of the waveform, we
process the signal through a numerical low pass filter which replaces each point by a weighted
average of a specific number of its neighbors on either side: this is shown by the solid curve.
Figure 8b shows the residue when the time-averaged points are subtracted from the original
signal. From this we derive eight oscillation periods(windows) which are analysed separately.

[n Fig. 9 we show the 2 = 1, & = 0 outputs of the inversion for all the windows. For h =0

1



the Fourier integration of Eqs. (11) and (12) amounts to an average over one period of the
steady level in the window for the cosine part and zero for the sine part., After the h = 0
portion has been subtracted from the signal, we form the & = 1 cosine and sine integrals.
These measure that part of the perturbation which corresponds to an oscillation of frequency
wy = 27/T. Three distinct types of oscillations may be discerned:

(a) Precursor phase, windows (i), (ii), and {iii): This phase exhibits an almost steady-state
oscillation over as long as 100 msec with the frequency decreasing slightly with time.
These distributions are also the most reproducible from window to window. The & =1
distributjon shows a confinement of the “hotspot” in the range of 5 < r < 25 cm,
peaking at r = 7 cm.

(b) Crash phase, windows (iv):

In window (iv} the A = 0 distribution is no longer that of the precursor type for there
is hollowness in the center. The k = 1 distribution is characterised by a broadening of the
peak showing movement of matter out to larger radii. We conclude that the crash takes
place over a time of half-rotational period or less, that is < 50pusec.

(¢) Successor phase, windows (v), (vi), (vii), and (viii):

The average emissivity as given by the A = 0 distribution is still showing hollowness

and the A = 1 distribution is double peaked.

In Figs. 10 and 11 we show the outputs form = 1,h = 1 and m = 1, h = 2, respectively,
for all windows. Combining the harmonic components according to Eq. (14), we get the
total local emissivities E which are shown as contours and as 3-D plots in Fig. 12 and

Fig. 13, respectively. An m=1 rotating island is ciearly discernible in the precursor phase.

12



We are able to compare the position and the width of this island with that from electron
temperature measurements from electron cyclotron emission (ECE), which viewed the same
poloidal plane and the same sawtooth sequence [8]. Both the island location as well as island

width agree to within 3%.

5. CONCLUSIONS

Since the precursor oscillations occur with great regularity, it is reasonable 1o expect
the Fourier method to work rather well at least in this regime. The fact that we have
good agreement between the soft x-ray and the ECE measurements is very reassuring for it
validates both methods of analysis. Although purists would argue that there is no a priori
reason why the location of an m = 1 island in soft x-ray emissivity should coincide with
that of electron temperature and that cases have been seen in TFTR where the two differ by
10 or 20% [9], this is still a small difference. Uantil these cases are studied one can say that
the two methods are at least accurate to this extent. While the Fourier inversion method
works well for the precursor phase, the crash phase is much harder to treat for there are
rapid changes on a time scale shorter than the rotation period. The hotspot follows a rapid
helical motion with varying radii and the signal deviates far from a sinusoidal form showing
the presence of high harmonics. Uunder these conditions it is difficult even to decide on the
period because the phenomenon is strictly aperiodic. Therefere, the use of a Fourier method,
which assumes the existence of periodic boundaries, is strictly invalid. Because of the small
number of data points, the Fourier iniegrals become inaccurate for any h higher than 2.
The crash phase is, therefore, poorly represented by this method. The oscillations in the

13



successor show reasonable periodicity though the signals are smaller in intensity. We expect

our results to be reasonably accurate in this phase again.
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FIGURE CAPTIONS

Figure 1. Horizontal x-ray imaging system on TFTR.

Figure 2. Raw data from 20 diodes above and below the midplane in the time range 4.837-4.84
seconda.

Figure 3. Time-averaged signals of diodes in the range 4.8-4.83 seconds as a function of chord p.
This time range shows only precursor sawtooth oscillations and is used for calibration
of the diodes.

Figure 4. Geometry of the inversion theory defining the chord or impact parameter p and the
angle between the chord and the x-axis ¢. These two parameters uniquely define the
line of view I{p, ).

Figure 5.

{a) Least squares fits with £ = 6,15,21 on an input data set.
{b} Example of a convergence test. Several local emissivity curves are shown which differ
in the number of terms L used in the basis function expansion of Eq.{7).

Figure 6.

(a) An artificially smoothed input data set derived from Fig. 5a.
(b) Output of (a) with L = 15.

Figure 7. Local emissivity curves from simulated rotating m = 1,h = 1 and m = 2,h = | sources
and computed values from inversion using simulated line integrals.

Figure 8.

(a) Signal from a diode(H-06) viewing mostly near the ¢ = 1 surface and a smoothed curve

averaged from neighboring 8 points.
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(b) Signal after subtraction of steady-state values, that is, difference of the 2 curves in
Fig.9a.
Figure 9. The m = 1, h = 0 local emissivity Fy for all windows.
Figure 10. The m = 1, A = 1 local emissivity E, for all windows.
Figure 11. The m = 1,k = 2 local emissivity E; for all windows.
Figure 12. The contour plots for E(r,t) for all windows.

Figure 13. Ths 3-D plots for E(r,¢) for all windows.
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