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ABSTRACT 

The tomographic method used for deriving soft x-ray local emissi ities on TFTR, using 

one horizontal array of 60 soft x-ray detectors, is described. This me iod, which is based 

on inversion of Fourier components and subsequent reconstruction, has been applied to the 

study of a sawtooth crash. A flattering in the soft x-ray profile, which we interpret as an m = l 

island, is clearly visible during the precursor phase and its location and width correlate well 

with those from electron temperature profiles reconstructed from electron cyclotron emission 

measurements [G. Kuo-Petravic, PPPL-2556]. The limitations of the Fourier method, due 

notably to the aperiodic nature of the signals in the fast crash phase and the difficulty of 

obtaining accurately the higher Fourier harmonics, are discussed. 
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1. INTRODUCTION 

The technique of tomographic reconstruction from line integral variables to local vari­

ables has been applied to a wide range of problems using all conceivable kinds of beams 

whose absorption or emission by an object enables us to obtain valuable local information 

without disturbing the object itself. Over the past 10 years this technique has been applied 

to the emissivity of soft x-rays from tokamak plasmas [1-3]. Measurements of soft x-rays in 

tokamaks have indicated that emission follows closely the contours of magnetic surfaces. Be­

cause the tomographic technique is intrinsically capable of high spatial and time resolution, 

we have here a. very important tool for following the perturbations of the plasma which are 

caused by various magnetohydrodynamic instabilities. In particular, we shall concentrate on 

the sawtooth instability, which is a common feature of ohmically and neutral-beam-heated 

tokamaks. The sawtooth oscillations are a series of m = 0, n = 0 relaxations which flatten 

the central electron temperature, Tc, profile. The relaxations are usually preceded by an 

m = l ,n = 1 mode called the precursor, where m and n are poloidal and toroidal mode 

numbers, respectively. Tomographic reconstruction of the m =s l ,n = 1 precursor mode 

followed by the crash and successor modes is described here in order to better understand 

the mechanism causing the sawtooth oscillations. 

2 



2. EXPERIMENTAL SETUP 

A soft x-ray pinhole camera with a horizontal view was installed on TFTR. The spatial 

separation of the diodes is approximately 2.5 cm. A total of 60 horizontal diodes with fast 

(up to 500 kHz) and slow digitization is available. These diodes allow the detection of x-rays 

in the range 0.5 to 30 keV. Figure 1 shows the layout of the detector system. A sampling 

rate of 100 kHz was usually used for the sawtooth which had m = l ,n = 1 frequencies of 

«10 kHz. 

A data processing and tomographic reconstruction program TOMO, was written to run 

on the VAX at PPPL. For a given shot on the TFTR, a data file containing 60 channels of 

8192 digitized data is made. Figure 2 shows a sample of the traces for 18 diodes viewing 

the central region of the plasma above and belovr the midplane. After checking for time 

synchronization and correcting for the gain and offset of all the ch&imels, adjustment is 

made for any remaining intrinsic disparity in the interval of sawtooth activity. If we choose 

an interval, as shown in Fig. 2, which lies exclusively within the precursor of a sawtooth 

burst and which is long comDared to the m = l ,n = 1 oscillation period, we can time 

average the signals from each channel and display this against the impact radius or chord, 

p, as shown in Fig. 3. The data show some variations which must be attributed to some 

remaining systematic calibration error or detector variations, for example, the nonuniform 

thickness of the beryllium filters in front of the diodes. To correct for this, we fit a cubic 

spline to the experimental points subject to a least squares criterion. We then renormalize 

the data points by the smoothed values given by the spline. 
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3. RECONSTRUCTION METHOD 

By virtue of the symmetries in the tokamak configuration, we have a doubly periodic 

system in the toroidal and poloidal angles. The detectors are all in a poloidal plane at 

a given toroidal location. The geometry of the reconstruction is shown in Fig. 4, where 

p is the impact radius and 0 the chord angle. These two parameters uniquely define the 

detector view. The purpose of the reconstruction is to find poloidal variations of the plasma 

emissivity g(r,8) ,where r is the minor radius and 8 the poloidal angle, given the integrated 

emissivities along the lines of sight of the detectors, /{p, Q). At the time this work was 

initiated there existed already a computer code for inversion at PPPL written by Sauthoff et 

al. [4]. This code had been tested extensively using computer generated line integrals from 

some assumed source emissivity. Therefore, after the data processing part of the x-ray data 

was completed in collaboration with A.W. Morris, we were able to test the following three 

inversion methods on real TFTR. data. These three methods are very briefly described here: 

(i) "SMALL M"— [5] is suitable for m < 2 only. This method differentiates the integral 

of Eq. (4), hence, it is highly sensitive to noise in the data. However, it has the advantage 

that it satisfies causality conditions, for when differentiating it only uses information from 

the annulus outside the position of interest. The basic limitation is its inability to adequately 

address constraints for higher m's near the center. 

(ii)"CORMACK LOW M"—[5] This technique ies series expansion and is related to 

(i) in that it uses information only from the exteror of the positions of interest, but it uses 
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Tschebycheff polynomial kernals. The approach is applicable to higher m's, but is subject 

to noise at the center due to similar constraints as (i) above. 

(iii) "ZERJICKE"—[5] This technique, again due to Cormack[6], expands the linr-

integral function fm{p) in a set of basis functions in an effort to reduce noise susceptibility by 

building in compliance with the modal constraints. The penalty is the violation of causality, 

in that information from regions interior to the point of interest is used. 

Both methods i) and ii) have been found to be excessively noisy. Only (iii), which 

performs a least squares fit on the input data, produces smoother results. It is precisely 

because of this that one should be very careful with the outputs of this inversion method, and 

examination of the data at all intermediate stages is advisable. In our particular application, 

I the study of the sawtooth instability, it has been found that all the gross features may be 

described by the rapid rotation of a single hotspot. !t is, therefore, not surprising that 

method (iii), which is based on poloidal harmonic expansion, proves to be most suitable 

since this comes closest to describing the physics of the problem. From now on we shall 

restrict our discussion to Cormack's method with Zernicke polynomials only. 

For the sake of completeness we shall briefly reproduce here the results of Cormack[6] 

for the localised emissivity function g(r, 0} given the line integral functions f(p, <j>). 

f(p,<t>)= [ g(r,$)dl, (1) 

Jib,*) 

where dl is an element of length along the chord. Since there is no plasma outside a certain 

radius, we can define a unit radius outside which there is no source of radiation and expand 
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in Fourier series: 

ffM) = ! > » ( » * ) «»(m0) +5mWsm(m&)], (2) 

and 
oo 

/ (P . *) = £ L £ ( P ) cos{m0) + /A(p) sin(m*)]. (3) 
tn=0 

Cormack showed that it follows from these expansions that: 

r c , M _ o / ' g y ( r ) r w ( p / r ) r 
f m i p ) J, "(H-p=)V2 * ' ( 4 ) 

and the solution is: 

ff»(r) = ~ * i (p»-r»)»/'p ^ ( 5 ) 

where T"m(x) = cos(mcos - 1 x) is the Tschebycheff polynomial of the first kind of degree m 

in i . 

Cormack showed that if we choose a particular set of basis functions: 

* » ' M = r», .L 9f ^ n s i n t ( m + 2 / + 1 ) C 0 S " 1 ( P ) ] - (6> 
(m + it 4- 1J 

where m and / are non-negative integers and 0 < p < 1 in this interval, the functions form 

an orthogonal and complete set. Furthermore, if we insert 

L 

/£*(p) = 2 ^ a ^ s i n [ ( r n + 2 / + D c o s - ' W ] (7) 

/=o 

into Eq.(5), we obtain the solution 

L 

& ,(r) = 5>emil™ + 2* + l)ftB,('-). (8) 1=0 
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where L+l is the total number of terms in the expansion, a^"( are the same expansion 

coefficients which appeared in Eq.(7) and ftmj(r) is the Zernicke polynomial 

* ™ ' ( r ) - 2 - sHm + l-s)HI-s)l • ( 9 ) 

The complete local emissivity function g(r,d) can then be found by substitution of 

Eq.(8) into Eq.(2). Not only is this solution simple and elegant, but the use of the poloidal 

harmonic expansion has reduced the problem to a one-dimensional fit in p space. In general, 

we seek a fit to the data points f(p, 4>): 

M L 

f[p, <t>)=2^2 £ [ « £ , cos(m<A) + a3

ml sin(m^)] sin[(m + 2/ + 1) cos" 1 p). (10) 
m=0 (=0 

The unknown coefficients a^° can now be found by a least squares procedure which 

requires tba inversion of an N x L matrix, where N is the number of diodes. It is important 

to choose a good matrix inversion method, for the discretization of the problem as well as the 

inherent noise present in the system cas result in considerable deviations from the original 

orthogonal basis functions. This can happen at any particular combination of N and L. The 

net result is that the basis functions become to some degree not linearly independent, the 

matrix becomes singular and large error amplification sets in. After examining a few matrix 

inversion packages provided by the online Math libraries, we have finally chosen the Singular 

Value Decomposition (SVD) [7] method for the inversion of the least squares fit matrix. An 

outstanding feature of the SVD method is that the statistical errors inherent in the data 

can be incorporated into the matrix inversion process such that the final result takes them 

into account and is more accurate as a result. In the SVD method, the input matrix A is 

decomposed into three matrices E, U, and V. The matrix E is diagonal with non-negative 
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diagonal entries which are called the singular values of A. During the inversion process, the 

singular values of the matrix appear explicitly. Small singular values may appear indicating 

that the basis functions are not linearly independent at the data points. When this happens, 

we choose to ignore this singular value if it is < TC^, where r is the relative error of the 

data points and &\ is the maximum singular value. In so doing we have actually improved 

the^effective condition number, which is the ratio of the maximum to the minimum singular 

values, and minimized error amplification. 

In our present system with the horizontal camera alone, the chord angles, 4>, covered by 

the diodes above and below the midplane span the range 68° < <j) < 89° and —89° < 4> < 

—68° only. This is barely sufficient to distinguish an m =s 1 mode and certainly is capable 

of none higher. We, therefore, have to invoke some additional mechanism to interpret the 

data. Fortunately, there is good evidence to suggest that the rotating "hotspot" model works I 

reasonably well(7]. As a first approximation, therefore, we can relate the observed oscillations 
t 

in time to variations in poloidal angle of the hotspot as it spins around. Instead of calculating 

directly the instantaneous spatial variations of emissivity, which would be possible if more 

than one array of detectors were available, we calculate here the time variations of emissivity 

in terms of a Fourier mode and its harmonics. Tt is important here to distinguish between 

the poloidal mode number m and the harmonics number h. The mode number is given by 

the number of hotspots: 
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1 hotspot / \ 2 hotspot 

mode m=l \ J mode m=2 

In our analysis we treat one full oscillation period, T, of the signal, ep(t) , at a tir 

and form the Fourier integrals: 

fT/2 
lcJu)= / ep[t) cos k{ut-4)dt, (11) 

J-T/2 

and 
fT/t 

« J M = / eP{t)smh{u>t-<j>)dt, ( 1 2 ) 
J-T/2 

where w = 27T/JT and A = 0,1,2,.. . is the harmonic number. 

The cosine and sine components ec(u>, p) and e'(ui, p) and their harmonics are separately 

input to the inversion package. The outputs are the Fourier components of the local emis-

sivities Ec[u,r) and E'(u,r) at frequency u. To get back the local emissivity in physical 

space : 

E(r,t)= J2[{Ec{oj,r) + E'{w,r)](cosu>t-i sinwt). (13) 

E(ry t) = EQ + 2£J(w,) cos W l < + 2£1*(w1) sin w,* + • • • 
(14) 

= £0 + 2£i cos(wit - ^ ) + . . . 

with Ei = ( (£f) 2 + ( £ ' ) 2 ) 1 / 2 and * W i = £*/£f, where E0 and £ , are the m = 1, A = 0 

and m = I, h = I local emissivities, respectively. 



4. RESULTS 

Before proceeding to the analysis of data, we have to make some parameter tests. The 

most important is the convergence test to find the value of L, the number of basis functions 

required to reach convergence. General arguments would suggest L w N for it is necessary 

to preserve any genuine fluctuations in signal at a scale length of approximately 1/iV. [n 

practice, however, we need L to be smaller because the higher / terms in Eq.(7) tend to create 

noise at the large radius end owing to the non-exact cancellation of terms. Also, it should be 

borne in mind that a least squares method is guaranteed to give a smoothly varying profile 

however jagged the line integral input. For this reason, it is necessary to examine both 

the input and the output of the inversion process while varying all the parameters at one's 

disposal, such as the number of basis functions, L, the relative error of the data, T, in the 

matrix inversion,and so on. In Fig. 5 we show an input d=\ta set consisting of m =• l,h = 0 

Fourier integrals over one period of oscillation of the line integral data and this is fitted with 

L—6, 15, and 21 terms. It may be seen that the fit with L=6 does not reflect the change of 

curvature near the origin in the input while with 15 and 21 terms similar fits are obtained. 

The outputs of the three fits are shown in Fig. 5b. We conclude, therefore, that reasonable 

convergence may be obtained with 15 < L < 21. Since we have a least squares method, the 

input data with statistical fluctuations are effectively replaced by a smoothed set resembling 

one of the fits of Fig. 5a. In other words, the output of the inversion we get (Fig. 6b)is 

the same as if our input data were smooth (Fig. 6a). This property is highly advantageous 

when the input is noisy. 
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As with any tomographic experiment, the first task after calibration is to simulate 

numerically the object of study under a set of simplifying assumptions. This tests not only 

code integrity, but also the geometry of the setup and finally the inversion method. In our 

case the detectors are sufficiently far away that the solid angle effects can be neglected. It 

is then easy to compute the line integral intensities of a rotating source with a given mode 

number m. Figure 7 shows the comparison of local emissivities given by the source and by 

inversion from computed line integrals for both the m = 1,/t = 1 and m = 2,h = 1 cases. 

Such curves help us distinguish between m = 1 and m = 2 modes by the behavior near the 

center. Eventually study of the simulated emissions can even lead to a way of distinguishing 

structures with or without magnetic islands. 

To obtain the Fourier integrals, we need to analyse the wave train cycle by cycle if 

the zeros of the oscillation can be determined. A cursory glance at Fig. 2 shows that the 

region near the q — 1 surface, where q is the safety factor, suffers the least change in the 

steady-state value during the crash as matter is expelled from the inside to the outside of 

the 9 = 1 surface. Figure 8a shows such a typical waveform. Here we can discern the end of 

the precursor phase leading to a sharp peak at the start of the crash phase and finally the 

beginning of the successor phase. To eliminate the steady-state portion of the waveform, we 

process the signal through a numerical low pass filter which replaces each point by a weighted 

average of a specific number of its neighbors on either side: this is shown by the solid curve. 

Figure 8b shows the residue when the time-averaged points are subtracted from the original 

signal. From this we derive eight oscillation periods(windows) which are analysed separately. 

In Fig. 9 we show the m = 1, k = 0 outputs of the inversion for all the windows. For h = 0 
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the Fourier integration of Eqs. (11) and (12) amounts to an average over one period of the 

steady level in the window for the cosine part and zero for the sine part. After the h = 0 

portion has been subtracted from the signal, we form the k = 1 cosine and sine integrals. 

These measure that part of the perturbation which corresponds to an oscillation of irequency 

u.'i = 1~fT. Three distinct types of oscillations may be discerned: 

(a) Precursor phase, windows (i), (ii), and (iii): This phase exhibits an almost steady-state 

oscillation over as long as 100 msec with the frequency decreasing slightly with time. 

These distributions are also the most reproducible from window to window. The k = 1 

distribution shows a confinement of the ahotspot" in the range of 5 < r < 25 cm, 

peaking at r « 7 cm. 

(b) Crash phase, windows (iv): 

In window (iv) the h = 0 distribution is no longer that of the precursor type for there * 

is hollown'^ss in the center. The h = 1 distribution is characterised by a broadening of the 

peak showing movement of matter out to larger radii. We conclude that the crash takes 

place over a time of half-rotational period or less, that is < 50/isec. 

(c) Successor phase, windows (v), (vi), (vii), and (viii): 

The average emissivity as given by the A = 0 distribution is still showing hollowness 

aud the h = 1 distribution is double peaked. 

In Figs. 10 and 11 we show the outputs for m = 1, h = 1 and m = 1, h = 2, respectively, 

for all windows. Combining the harmonic components according to Eq. (14), we get the 

total local emissivities E which are shown as contours and as 3-D plots in Fig. 12 and 

Fig. 13, respectively. An m = l rotating island is clearly discernible in the precursor phase. 
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We are able to compare the position and the width of this island with that from electron 

temperature measurements from electron cyclotron emission (ECE), which viewed the same 

poloidal plane and the same sawtooth sequence [8]. Both the island location as well as island 

width agree to within o%. 

5. CONCLUSION'S 

Since the precursor oscillations occur with great regularity, it is reasonable to expect 

the Fourier method to work rather well at least in this regime. The fact that we have 

good agreement between the soft x-ray and the ECE measurements is very reassuring for it 

validates both methods of analysis. Although purists would argue that there is no a priori 

reason why the location of an m = 1 island in soft x-ray emissivity should coincide with 

that of electron temperature and that cases have been seen in TFTR where the two differ by 

10 or 20% [9], this is still a small difference. Until these cases are studied one can say that 

the two methods are at least accurate to this extent. While the Fourier inversion method 

works well for the precursor phase, the crash phase is much harder to treat for there are 

rapid changes on a time scale shorter than the rotation period. The hotspot follows a rapid 

helical motion with varying radii and the signal deviates far from a sinusoidal form showing 

the presence of high harmonics. Under these conditions it is difficult even to decide on the 

period because the phenomenon is strictly aperiodic. Therefore, the use of a Fourier method, 

which assumes the existence of periodic boundaries, is strictly invalid. Because of the small 

number of data points, the Fourier integrals become inaccurate for any h higher than 2. 

The crash phase is, therefore, poorly represented by this method. The oscillations in the 
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successor show reasonable periodicity though the signals are smaller in intensity. We expect 

our results to be reasonably accurate in this phase again. 
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FIGURE CAPTIONS 

Figure 1. Horizontal x-ray imaging system on TFTR. 

Figure 2. Raw data from 20 diodes above and below the midplane in the time range 4.837-4.84 

seconds. 

Figure 3. Time-averaged signals of diodes in the range 4.8-4.83 seconds as a function of chord p. 

This time range shows only precursor sawtooth oscillations and is used for calibration 

of the diodes. 

Figure 4. Geometry of the inversion theory defining the chord or impact parameter p and the 

angle between the chord and the x-axis <j>. These two parameters uniquely define the 

line of view I(p, <j>). 

Figure 5. 

(a) Least squares fits with L = 6,15,21 on an input data set. 

(b) Example of a convergence test. Several local emissivjty curves are shown which differ 

in the number of terms L used in the basis function expansion of Eq.{7) 

Figure 6. 

(a) An artificially smoothed input data set derived from Fig. 5a. 

(b) Output of (a) with L = 15. 

Figure 7. Local emissivity curves from simulated rotating m = l,h = 1 and m = 2,h = 1 sources 

and computed values from inversion using simulated line integrals. 

Figure 8. 

(a) Signal from a diode(H-06) viewing mostly near the q = 1 surface and a smoothed curve 

averaged from neighboring 8 points. 
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(b) Signal after subtraction of steady-state values, that is, difference of the 2 curves in 

Fig.9a. 

Figure 9. The m = 1, h = 0 local emissivity E0 for all windows. 

Figure 10. The m = 1, h = 1 local emissivity Et for all windows. 

Figure 11. The m = 1, h = 2 local emissivity Ej for all windows. 

Figure 12. The contour plots for £(r , () for all windows. 

Figure 13. Ths 3-D plots for E(r,t) for all windows. 
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