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A PROPOSAL FOR A USER-LEVEL, MESSAGE PASSING INTERFACE

IN A DISTRIBUTED MEMORY ENVIRONMENT

Jack J. Dongarra

Rolf Hempel

Anthony J. G. Hey

David W. Walker

Abstract

ThispaperdescribesMessagePassingInterfaceI (MPII),a proposedlibraryinter-

facestandardforsupportingpoint-to-pointmessagepassing.The intendedstandardwill

be providedwithFortran77 and C interfaces,and willform thebasisofa standard

highlevelcommunicationenvironmentfeaturingcollectivecommunicationand datadis-

tributiontransformations.The standardproposedhereprovidesblocking,nonblocking,

andsynchronizedmessagepassingbetweenpairsofprocesses,withmessageselectivityby

sourceprocessand messagetype.Provisionismade fornoncontiguousmessages.Context

controlprovidesa convenientmeansofavoidingmessageselectivityconflictsbetweendif-

ferentphases of an application. The ability to form and manipulate process groups permits
, task parallelism to be exploited, and is a useful abstraction in controlling certain types of

collective communication.

- iii-



_. Introduction

This paper documents a proposal, initially made in November 1992, for a standard for perform-

ing point-to-point message passing between pairs of processes in a MIMD distributed memory
0

computing system. Some modifications were made in January 1993, particularly in the ap-

proach to process groups, following input from a number of colleagues. An effort is currently

underway to develop a more comprehensive standard for message-passing on distributed mem-

ory systems by July 1993. This effort involves a team of about 60 people made up of hardware

and software vendors, and researchers from universities and government laboratories.

A small set of typed message passing routines form the core of the standard, and are aug-

mented by support for features such as noncontiguous messages, communication contexts, and

process groups. The proposed standard, called Message Passing Interface 1 (MPI1), includes

only message passing between distinct pairs of processes, and thus does not address collective

communication of any type, including broadcasts and reduction operations. We expect these

types of communication will be included in the final version of the MPI standard. Other impor-

tant standardization issues not addressed in detail include support for virtual communication

channels, active messages, heterogeneous computing, performance tracing, and parallel 1/O.

Thus, while MPI1 does not at this stage provide the flexibility and range of functionality that

one would expect from a complete message passing environment, we regard it as forming the

o core of such an environment. In designing MPI1 we have tried to avoid imposing constraints

that would hinder the future extensions necessary to address the issues mentioned above.

, The main advantages of establishing a message passing standard are portability and ease-

of-use. In a distributed memory communication environment in which the higher level routines

and/or abstractions are built upon lower level message passing routines the benefits of standard-

ization are particularly apparent. Furthermore, the definition of a message passing standard,

such as that proposed here, provides vendors with a clearly defined base set of routines that they

can implement efficiently, or in some cases provide hardware support for, thereby enhancing

scalability.

In designing MPI1 we have sought to make use of the most attractive features of a number

of existing message passing systems, rather than selecting one of them and adopting it as the

standard. Thus, MPI1 has been strongly influenced by work at the IBM T. J. Watson Research

Center by Bala, Kipnis, Snir and colleagues [2,3], Intel's NX/2 [lS], Express [17], nCUBE's

Vertex [15], and PARMACS [11,13]. Other important contributions have come from Zipcode

[19,20], Chimp [6,7], PVM [8,21], and PICL [9].

One of the objectives of this paper is to promote a discussion within the concurrent com-

puting research community of the issues that must be addressed in establishing a practical,
Q

portable, and flexible standard for message passing. This cooperative process began with a

workshop on standards for message passing held in April 1992 [22], and continued with a sec-

ond meeting in November 1992 when an organizational structure for developing a standard
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message passing interface was created. We believe the draft of MPI1 proposed here provides

a good, concrete basis for continued discussion, and that. it will contribute over the next few

months to the development of an intermediate level message passing standard.

In Section 2 the rationale for an intermediate level standard is given. Section 3 presents the
I

programming model assumed, and describes the main features of MPI1. Section 4 discusses

the main decisions and compromises made in designing MPI1. Some important unresolved

issues that must be addressed before MPI1 can be regarded as complete are presented in

Section 5. These include support for application topologies and heterogeneous computing, and

a more general approach to process groups. Finally, Section 6 presents concluding remarks,

and solicits the involvement of the research community in the development of a standard for

a comprehensive message passing interface. Detailed specifications of the MPI1 routines are

given in Appendix A in the form of manual pages.

2. General Overview

It is possible to consider defining a message passing standard at a number of levels. At the

lowest level, closest to the hardware, might be syntactically simple routines for moving pack-

ets along wires. Above this channel-addressed level might be a process-addressed level (where '"

there may be more than one process on each physical processor), such as that defined by NX or

Vertex on the iPSC and nCUBE machines, the commercially-available Express communication
e

environment, or the PARMACS message passing macros. Higher-level abstractions, for exam-

ple, Linda [4,10], MetaMP [16], or Shared Objects [1,14], would lie above this level. Each level

could be built using the level beneath, provided that the overhead in doing this was sufficiently

low that the cumulative overhead incurred at the higher levels was small. These successive

software levels form a series of layers, that with some stretch of the imagination resemble the

multiple skins of an onion, with the hardware being at the center. We, therefore, call this the

"Onion Skin Model" of the distributed communication environment. In deciding at which level

to try to impose a standard it should be aoted that different people might favor different types

of standard. For example, a non-expert user would prefer to use high-level abstractions, such

as virtual shared memory, so that details of the message passing are hidden. On the other

hand, a compiler writer would like to produce a portable parallel compiler, and would like to

use small, fast messages such as might be provided by a low-level standard. Finally, an ex-

pert application developer might be prepared to sacrifice some ease-of-use for additional speed,

and so would prefer a intermediate level standard that provides a set of efficient primitives for

point-to-point message passing. The standard proposed here is intended for use by such an

application developer.

If the Onion Skin model is valid, then it makes sense to impose a standard that is also layered.

However, the hardware of different distributed memory computing systems is sufficiently varied

that it is difficult to impose a low-level standard that is efficient on ali machines. 'i'herefore,
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it is more appropriate to define a standard at an intermediate level, and to implement this

• as efficiently as possible on each machine. There is still the possibility of defining higher-level

standards on top of this intermediate level. Thus, the intermediate-level standard will be open

• and extendable. It is the standardization of this intermediate level of point-to-point message

passing between pairs of processes that is the focus of this paper.

3. Features of the Standard

Our programming model assumes some set of processes that communicate by point-to-point

-.. message passing. With each process is associated some memory directly accessible only by

that process - there is no shared memory. In MPI1 it is assumed that processes are single

threaded, though we expect the final MPI standard to permit multithreaded processes. Al-

though the message passing paradigm is usually associated with distributed memory systems,

it is not necessary to make any strong assumptions about the underlying hardware. The pro-

posed message passing standard could also be implemented on shared memory machines and

uniprocessor workstations. Note that the standard does not address the issue of how the pro-

cesses are assigned to physical processing nodes. In general, this issue requires the development

of machine-dependent static and dynamic ]oad balancers, and lies outside the scope of the

proposed standard.

MPI1 provides some support for task parallelism. To this end each process is assumed to

be a member of one or more process groups, each of which is identified by a unique process

• Group ID number, or GID. The processes in a group can cooperate to perform tasks com-

pletely independently of other processes, and in this sense each group can behave like a distinct

virtual machine. The concept of process groups is also important when designing collective

communication routines.

3.1. Basic Message Passing Routines

We now introduce the basic message passing routines that form the core of the proposed stan-

dard. These routines permit point-to-point message passing between pairs of processes, with

message selectivity based explicitly on message type and source process, and implicitly on

communication context. Communication contexts are explained in more detail in Section 3.3.

MPI1 provides three modes for sending and receiving messages: blocking, nonblocking, and

synchronized. These different communication modes are explained below. The mode is passed

as an argument to the send or receive routine. A nonblocking or blocking send routine may

be matched by a nonblocking or blocking receive routine in any combination. However, a

synchronized send must be matched by a synchronized receive.
m

Noncontiguous messages are handled by providing three variants of the send and receive

routines. The first variant assumes contiguous messages, and MPI1 provides the routines

MPI_CSEND and MPI_CI_ECV for such messages. The second deals with messages that are
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gathered from, or scattered to, a buffer with constant stride. This type of routine may be used

when communicating rows of a distributed matrix that is stored by columns. The routines

MPI_SSEND and MPI_SRECV are used in this case. The third variant deals with messages

that are gathered from, or scattered to, a buffer in an arbitrary way. MPI1 provides the

routines MPI_GSEND and MPI_GRECV for this purpose. This last case provides a mechanism

for doing point-to-point scatter/gather operations between pairs of processes. The data blocks

comprising the message may be of differing sizes and lie at arbitrary locations in the buffer

gathered from or scattered to. The scatter/gather operations are controlled by a pair of arrays.

The first of these arrays contains pointers into a buffer that indicates where the data for the

message is coming from, or going to. The second array indicates how many data items are

to be extracted from, or stored to, each location pointed to. For example, suppose in some

spatially decomposed particle simulation we build a list of the particles that must be migrated to

another process in each time step. This list is a set of indices into the data structure containing

the particle information. The Fortran language requires that the scatter/gather locations be

specified by an indirection vector that applies to a .specific buffer. The C language permits

pointer manipulation, so the memory location from which data are gathered, or to which data

are scattered, can be more naturally expressed as an array of pointers. This is one of the few

significant syntactic differences between the C and Fortran versions of MPI1. We expect the

final version of the MPI standard will specify the scattering and gathering of data with an

"iovec" data structure, as is used by the readv and writev routines of the Posix standard. "

3.1.1. Receiving messages

The receipt of a message is said to be blocking if the receiving process suspends execution until

all of the message has been received, i.e., until it has been placed in an application buffer on

the receiving process. If a process attempts to perform a blocking receive that is not matched

by a corresponding loosely synchronous send, execution will be suspended indefinitely on that

process, resulting in full or partial deadlock.

A nonblocking receive takes piace in two phases. First, a receive is posted on the receiving

process, that is, the application provides a buffer that is to be used to store a specified incoming

message. After this the receiving process can then continue to do useful work. However,

at this stage receipt of the message is not guaranteed, and the data in the message should

not yet be used by the receiving process. The nonblocking receive must be completed in a

second phase that either calls the routine MPI_WAIT that blocks until the message is received,

or periodically calls the routine MPI_STATS that checks on whether the message has been

received into an application buffer. Between these periodic checks useful work can continue to

be done by the receiving process, and once receipt is confirmed the message may be processed.

Using the blocking mechanism (MPI_WAIT) to complete a nonblocking receive is usually done

immediately before the message is to be used on the receiving process, thereby allowing the
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maximum potential for overlap of computation and communication. This approach is common

• when the amount of work that could be done between posting the receive and actually using

the received data can be quantified at compile time. In more dynamic situations there may

be an almost arbitrary amount of work that a process could do until an anticipated message

arrives. In such cases it is common to periodically check for message receipt using MPI_STATS.

At the application level, a blocking receive is conceptually the same as a nonblocking receive

in which no useful work is done between the two phases, i.e., a call to an MPI1 receive routine

in nonblocking mode immediately followed by a call to MPI_WAIT.

When a message is received in synchronized mode, the receiving process sends an acknowl-

edgment to the sending process once the message has been completely received and placed in

an application buffer. In the absence of hardware failures, and provided valid arguments are

passed to the send and receive routines, message receipt is guaranteed.

3.1.2. Sending messages

The sending of a message is said to be blocking if the sending process suspends execution until

ali of the message has been sent, i.e., until the application buffer containing the message on

the sending process is available for reuse. When this has occurred we say that "the message

has cleared the buffer." It is not guaranteed that the message will actually be delivered to

the destination process, and unless the application performs some additional handshaking, the

sending process cannot know if the message was delivered.

A nonblocking send takes place in two phases. In the first phase the user calls an MPI1
IL

send routine in nonblocking mode which initiates transmission of a specified message buffer to

the destination process, and then returns. The sending process can then continue to do useful

work, but during this time it is not guaranteed that the message has cleared the buffer, and

it is a programming error to change it in any way. The nonblocking send must be completed

in a second phase that either calls the routine MPI_WAIT that blocks until the message has

been sent, or periodically calls the routine MPI_STATS that checks on whether the message

has been sent or not. Between these periodic checks useful work can continue to be done by

the sending process, and once the mcssage has been sent the message buffer may then be safely

modified. The routine MPI_STATS may be used to check for completion of a nonblocking send

when there is an arbitrary amount of work that can be done between initiating and completing

the send operation. A blocking send is conceptually the same as a nonblocking send in which no

useful work is done between the two phases, i.e., a call to an MPI1 send routine in nonblocking

• mode immediately followed by a call to MPI_WAIT.

When a message is sent in synchronized mode, execution is suspended on the sending process

. until an acknowledgment has been received from the destination process indicating that message

receipt has completed. For a message sent in synchronized mode the message is not buffered

by the system, and upon delivery to the the destination process it is placed directly into the
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supplied application buffer.

3.1.3. Other message passing utilities

On systems that provide buffering for messages (see Section 3.1.4) it is sometimes necessary

for a process to check whether it has any pending messages satisfying given selection criteria.

MPII provides the routine MPI_PROBE for this purpose. A pending message is one that

was sent in blocking or nonblocking mode, but for which a corresponding receive has not yet

been posted on the destination process. Such messages may be buffered by the system on

the destination process, thus MPI_PROBE queries the contents of the system message buffers.

Note that MPI_PROBE differs from MPI_STATS which checks for delivery of a message into

an application buffer.

Either, or both, of the type and source message selection criteria specified in an MPI1 receive

routine, or the routine MPI_PROBE can have wildcard values. A wildcard value for the type

or source indicates that this criterion is to be ignored in selecting messages on a destination

process, so it is possible to select messages regardless of type and/or source. After it has been

ascertained by a process that it has received a wildcarded message, or that it has such a message

pending, the actual length, type, and/or source of the message can be determined by calling

MPI_INFOL, MPI_INFOT, and MPI_INFOS, respectively.

The routine MPI_CANCEL can be used to cancel a specified nonblocking send or receive

operation initiated previously. After returning from MPI_CANCEL the nonblocking operation

is no longer active, and the status of the nonblocking operation is left indeterminate.
l

3.1.4. Buffering of messages by the system

In describing MPII's message passing routines, we have tried to avoid making any unnecessary

assumptions about the underlying communication mechanism. In this section we will touch on

some implementation issues that affect application portability, and whether message delivery

is guaranteed.

In general, a communication system has some buffering capacity, as would usually be the case

if the underlying communication mechanism was asynchronous. In such cases, when a message

sent in blocking or nonblocking mode arrives at a destination process it is placed directly in an

application buffer if a corresponding receive has already been posted; otherwise, it is placed in

a system buffer. Messages in a system buffer are referred to as "pending messages," and remain

in a system buffer until a corresponding receive is posted, at which point they are moved to an

application buffer, and effectively deleted from the system buffer. Since the system can only

provide a finite amount of buffer space for pending messages, an asynchronous communication

mechanism must deal with the possibility that an incoming message would cause :_ system .

buffer to overflow. A simple recourse in such a situation is to discard the message, and flag an

error condition on the receiving process. It should be noted that this would not be detected as
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an error by the sending process.

• MPI can also be implemented on top of a synchronous communication system with no

buffering capacity. In this case there are no system buffers, so the possibility of one overflowing

does not arise. On such systems, a message buffer remains volatile on the sending processP

until a corresponding receive is posted on the destination process, at which point the message

is delivered. Since messages are not buffered, the routine MPI_PROBE always indicates that

there no pending messages.

To write applications that are portable between machines with different underlying com-

munication mechanisms, and between machines whose communication systems have differing

(and usually unknown) buffering capacities, reliance on system buffering should be avoided [5].

Although a synchronous communication system can guarantee message delivery (in the

absence of hardware failures and software bugs), it is more difficult for an asynchronous system

to do so. Thus, requiring guaranteed message delivery as part of a message passing standard

may not be appropriate.

3.2. Process Groups

3.2.1. Creating and Managing Process Groups

Process groups provide a means of handling task parallelism, as well as controlling which pro-

. cesses cooperate in collective communication tasks, such as broadcast and reduction operations.

MPI1 does not include collective communication routines, however, the support provided for

. process groups in MPI1 is intended to be fully consistent with the use of process groups in

collective communications, a standard for which we expect to be defined subsequently. Thus,

within the context of MPI1 process groups are provided solely as a means of supporting task

parallelism, in which different process groups work on different tasks.

A process group is identified by a unique process group ID, or GID, which is an integer

greater than zero. When a parallel program starts up, the processes allocated to an application

belong to the predefined group with GID = ALL, where ALL is some integer assigned by the

system. MPI1 provides two basic methods for creating a new group or groups. A new group can

be created by each process in the group synchronously calling the routine MPI_DEFNG, which

takes as its arguments the number of processes in the new group, and a list of the processes

making up the group. A second routine, MPI_PARTG, is provided that allows a group to be

partitioned into distinct subgroups based on the value of a specified key.

Information about group membership can be obtained using the routines MPI_GETID and

MPIANFOG. Given a process group with n members, the processes in the group are uniquely

labeled 0, 1,..., n-1. These labels may be regarded as process ID numbers that are specific to a
t

particular group, and will be referred to as Group Context Process ID numbers, or GCPIDs. A

process has a different GCPID for each group of which it is a member. The routine MPI_GETID

returns the GCPID of the calling process in a given group, or -1 if the process in not in the
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group. The routine MPI_INFOG can be used to determine which processes belong to a specified

group of which the calling process is a member.

System memory is required to store information about the configuration of ali currently

defined groups. In order to make efficient, use of this memory groups that are no longer needed

by an application can be discarded, thereby freeing some memory for reuse. MPI provides the

routine MPI_FREEG to discard a specified group. The routine MPI_FREEG must be called

synchronously by ali processes in the discarded group.

Finally, the routine MPI_SYNCG imposes a barrier synchronization on a specified group of

processes.

All processes that are involved in an operation to produce, discard, or synchronize a group

must perform the operation loosely synchronously, or full or partial deadlock may result.

3.2.2. Task parallelism

The routines discussed in Section 3.2.1 are concerned with creating, discarding, sychronizing,

and inquiring about process groups. The use of groups to manage task parallelism will now be

discussed. We consider three types of task parallelism, corresponding to the SIMD, SPMD, and

MIMD programming models, each of which subsumes the former. In SIMD task parallelism

each group of processes executes the same instructions on different data. For example, suppose

we have two groups of processes of the same size, and want to find the fast Fourier transform

(FFT) of two vectors of the same length. Then, one FFT can be done by one group and

the other FFT by the second group, and processes in each group with the same GCPIDs will

execute the same instructions. In SPMD task parallelism each process executes the same code,

but different groups may execute different instructions. The groups are not required to be of

the same size, but must be distinct. Finally, in MIMD task parallelism different executable

programs are loaded into each group. It should be noted that, MIMD task parallelism can

be mimicked by SPMD task parallelism by having each group execute different branches of a

conditional statement within a single executable program. As currently defined MPI1 supports

SPMD task parallelism, but not MIMD task parallelism.

Two routines specifically for using groups to manage the SPMD style of task parallelism

will now be introduced. MPI_PUSHG establishes an environment in which a specified group of

processes is treated as if it were the only processes in use by the application, i.e., it establishes

a process group contezt MPI_POPG re-establishes the process group context in effect prior to

the corresponding preceding call to MPI_PUSHG. The use of these routines is, perhaps, best

demonstrated with an example. Suppose we have a piece of software that performs some task in

parallel on n processes, where n is an input parameter passed to the software. In executing the

parallel software, communication between the processes is based on the assumption that they

are numbered 0, 1,..., n - 1. However, the actual PIDs of the processes in the group executing

the software, in general, will not be labeled in this way since we are able to construct groups
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PID GID GCPID
0 1 0

• 1 1 1
2 1 2

3 1 3
" 4 2 0

5 2 1
6 2 2
7 2 3

Table 1" Mapping of group context. PIDs to PIDs

with arbitrary membership. However, the GCPIDs of the processes do run from 0 to n- 1, so

whenever the software refers to a source or destination process in the range 0 to n- 1 this must

be interpreted as a GCPID, which is then mapped to the corresponding PID. Thus, between a

call to MPI_PUSHG and the corresponding subsequent call to MPI_POPG any reference to a

process ID number is interpreted as a GCPID and is automatically mapped to the appropriate

process ID number. For example, suppose the ALL group consists of 8 processes with process

ID numbers 0, 1,..., 7. Now suppose further that these processes have been partitioned so that

the first four form one group with GID=I, and the others form a second group with GID=2,

and that the contexts for these groups have been established by calls to MPI_PUSHG. Then

the GCPID associated with each process is as given in Table 1. Now, for example, if in the

- second group process 1 is required to send a message to process 3, the process ID numbers are

interpreted so the communication actually takes place between processes 5 and 7. In this way

• a piece of software designed to execute on n processes with PIDs 0 through n - 1 will perform

correctly within any group context.

After a call to MPI_PUSHG the predefined group ALL refers to the group whose context

has just been established, and not to the original set of processes. The group can then be

partitioned, and subgroups can be used to form new groups, by calling the routines MPI_PARTG

and MPI_DEFNG. No reference may be made to any process or group outside the current group

context. Group contexts may be nested.

A process must not be involved in any outstanding nonblocking communications within the

current communication context (see Section 3.3) when calling MPI_PUSItG or MPI_POPG. All

processes that are involved in an operation that. changes the group context must perform the

operation loosely synchronously, or fllll or partial deadlock may result.

3.2.3. Examples of the use of subgroups

To further clarify the use of subgroups in managing task parallelism we shall consider now some

, specific examples that use the MPI routines introduced in Sections 3.2.1 and 3.2.2. The first

example is the solution of the shallow water equations on a sphere by the spectral transform

method [23,25]. An important cornputational kernel of this application is the spectral transfor-

mation of a state variable defined oil a rectangular longitude/latitude grid into a set of spectral
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ROWGRP = MPI_PARTG (ALL, MY_ROW)

COLGRP= MPI_PARTG (ALL, MY_COL)

Figure 1: Creation of row and column groups. Here MY_ROWand MY_COLare the position of a
process in the logical P × Q process mesh.

INFO = MPI_PUSHG (ROWGRP)

do lD FFTs over longitude

INFO = MPI_POPG ( )

INFO = MPI_PUSHG (COLGRP)

do summation over latitude

INFO = MPI_OPG ( )

Figure 2: Pseudocode outline showing the use of process groups in the shallow water equation
application.

coefficients. The spectral transform is evaluated in two phases. In the first phase a fast Fourier

transform (FFT) is performed along each line of constant latitude in the grid. In the second

phase the spectral transform is completed by taking a weighted integral over latitude of the

Fourier coefficients. Numerically this is performed by weighted summation.

Suppose that the longitude/latitude grid is distributed in blocks over a two-dimensional,

logical mesh of P × Q processes. Currently MPI1 does not provide a mechanism for establishing

process topologies of this type, however, a proposal for extending MPI1 to do this has been -

suggested by Hempel [12]. The processes in each row of the process mesh cooperate to evaluate

the FFTs along a set of latitude lines. Then, the processes in each column cooperate to evaluate

the spectral coefficients for a set of wavenumbers. The two phases of the spectral transform

algorithm can be managed by partitioning the processes into row groups and column groups

by making two calls to the routine MPI_PARTG, as shown in Figure 1.

The calls to MPI_PARTG are made once at the start of the application. Thereafter, the

spectral transform of a state variable can be found by first establic_hing a process group context

for the rows, and doing the FFTs over longitude for each latitude using a generic parallel

FFT routine that assumes processes are numbered 0,1,...,Q- 1. Then, a process group

context for the columns is established, and the summation over latitude for each wavenumber

is performed using a parallel routine that assumes processes are numbered 0, 1,..., P- 1. Thus,

the pseudocode for the spectral transform algorithm is as as shown in Figure 2.

A second example of an application that might make use of process groups is an event-

based circuit simulation Code [24]. We are grateful to K. Yelick of the University of California,

Berkeley, for suggesting this example. The circuit is decomposed into loosely coupled subcircuits

with different computational loads. Each subcircuit is assigned to a process group, where the

appropriate size of each group is determined by the computational load associated with the
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subcircuit. Thus, the groups are of different sizes. The subcircuits communicate whenever

• there is a significant change in voltage, however, once the input voltages for a time step are

known the linear system associated with each subcircuit can be solved independently using

• LU factorization. Suppose, for example, the circuit may be split, into three subcircuits with

computational loads for the LU factorization in the ratio 1:9:16. Then, we might assign one

process to the first subcircuit, 9 processes to the second, and 16 processes to the third, as shown

schematically in Figure 3. In the parallel LU solver each group of processes needs to be arranged

as a two-dimensional mesh, so as in the shallow water equation example, it is necessary to be

able to specify a topology for a group of processes. Given an initial set of processes, these call

be divided into process groups by calling MPI_PARTG or MPI_DEFNG. Each process then

establishes a group context prior to performing the LU solve phase in order to determine with

which processes it must cooperate to solve the linear system for the subcircuit to which it is

assigned. Each group calls the same parallel LU solve routine, which in its simplest form has as

its arguments the coefficient matrix, the righthand side vector, the size of the matrix, and the

number of processes, P and Q, in each direction of the logical process mesh. Thus, the code

would look something like the following,

LUGRP = NPI_PARTG (ALL, KEY)

" INFO = MPI_PUSHG (LUGRP)

CALL LU_SOLVE (COEFFS, RHS, M, P, Q)

• INFO = NPI_POPG ( )

Note that the parallel LU solver may itself use row and column oriented subgroups. These

would be set up within the parallel LU solve routine.

3.3. Communication Contexts

It is sometimes necessary to ensure that different streams of communication do not interfere

with one another. For example, in an application with two distinct phases, each involving

nonblocking communication, there is the possibility that one phase may intercept messages in-

tended for the other phase. This situation can arise if the message selectivity criteria of the two

phases overlap, as may be the case when using a "canned" concurrent software library in which

the selectivity criteria, in general, are unknown. Communication contexts, first used in the

. Zipcode message passing system [19,20], provide a means of disambiguating such situations.

In effect, a communication context provides a third selectivity criterion, in addition to type

, and source process, that may be used to control the receipt of messages. A communication

context is uniquely labeled by a strictly positive integer called the Communication Context ID,

or CCID. In MPI1 a communication context may be created by a call to MPI_NEWC, and a

list of the current valid contexts may be obtained by calling MPI_INFOC. After invoking a pre-
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Figure 3: The division of processes into three groups of 1 x 1, 3 x 3, and 4 x 4 processes. Each
group is assigned to a subcircuit, and independently performs a parallel LU solve. The arrows
indicate the need for intermittent communication between the groups.

viously created communication context by calling MPI_PUSHC, ali messages subsequently sent

are tagged with that context, and only those messages so tagged may be received. The current

communication context is terminated by a call to MPI_POPC, which restores the communica-

tion context in effect prior to the preceding call to MPI_PUSHC. Communication contexts may

be nested.

As an example, suppose we want to evaluate D = AB + CT, where A, B, C, and D are ali

matrices. Then we might proceed as follows:

1. Initiate a nonblocking tram_pose of C

2. Call a concurrent library routine to find AB

3. Block until transpose of C is complete

4. Add CT to AB to form D

Here the task of transposing matrix C, which requires interprocess communication, is over-

lapped with the distinct task of evaluating the matrix product AB, which also requires com-

munication. If the message selectivity criteria within the two tasks are not unique there is

the possibility that one task will receive messages intended for the other task. Note that this

example assumes a sophisticated communication processor that not only knows what messages

need to be sent for the transpose, but also interleaves them with those of the matrix commu-

nication. Potential message conflicts can be avoided by establishing different contexts for the

matrix multiplication and matrix transpose tasks. The MPI1 code fragment for this example

would be as shown in Figure 4.
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icc - MPI._EWC ( )

BEGIN_TRANSPOSE (C)

I0K = MPI_PUSHC (ICC)

CALL MATMUL (D, A, B)

I0K = MPI_POPC ( )

END_TRANSPOSE (C)

D=D+C

Figure4:Code fragmentillustratingtheuseofcommunicationcontexts

In theaboveexample,thecommunicationcontext,ICC isfirstcreatedbycallingMPI_NEWC.

The transpositionofmatrixC istheninitiated,withthecommunicationcontextforthisop-

erationbeing the default context. Next, the routine MPI_PUSHC is called to establish the

communication context with CCID number ICC. When MATMUL is then called only messages

labeled with this communication context will be visible to the application, thereby, insulating

the messages associated with the matrix multiplication from those of the matrix transposition.

When MATMUL returns, the routine MPI_POPC is called to restore the default communica-

tion context. The routine END_TRANSPOSE blocks, if necessary, until the transposition is

completed. If the communication associated with the transpose has already completed follow-

ing the return from MPI_POPC, then END_TRANSPOSE just copies C from a system to an

application buffer.

Upon entering a program, or establishing a process group context by a call to MPI_PUSHG
w

(see Section 3.2.2), a unique default communication context is established. A default commu-

nication context cannot be discarded, so a call to MPI_POPC when the current communica-

tion context is the default has no effect. When exiting a process group context by a call to

MPI_POPG the communication context in effect prior to the preceding call to MPI_PUSHG is

restored. Communication and process group contexts may be nested, but not misaligned.

3.4. Buffer Packing

As discussed in Section 3.1, point-to-point scatter/gather types of communication, in which

data are gathered from a message buffer on the sending process, and subsequently scattered

into a buffer on the receiving process, may be performed using different variants of the send

and receive routines. Sometimes it may be necessary to gather/scatter data between multiple

buffers that may be of differing data types. In the Fortran language this cannot be done by a

• single call to the MPI1 send/receive routines.

In this section we introduce routines that (1) gather data from a buffer and pack it con-

' tiguously into another buffer, and (2) scatter data into a buffer from a contiguous buffer. In ali

cases the buffers are on the same process, and no interprocess communication is required. These

routines allow complex messages to be packed into a contiguous buffer on the sending process.
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This message can then be sent to the destination process using the routines MPI_CSEND and

MPI_CRECV, where it can then be unpacked.

Two sets of pack/unpack routines are provided, and their syntax is very similar to that of

the corresponding noncontiguous send/receive routines. The first pair of routines, MPI_SPACK

and MPI_SUNPACK, handles the case in which data blocks of constant size are respectively

gathered from, or scattered to, a buffer with constant stride. The second pair of routines,

MPI_GPACK and MPI_GUNPACK, handles the case in which the data blocks may be of

differing sizes and lie at arbitrary locations in the buffer gathered from, or scattered to.

3.5. Utilities

We expect the final version of MPI will include a set of routines for performing a variety of

environmental management and inquiry functions. These routines, might for example, provide

information on the machine the calling process is running on, the size of the system buffers

available for interprocess communication, and other useful details. We also expect MPI to

include routines for determining the date and time, and for finding the CPU time and elapsed

wallclock time for a process. If a Posix standard exists for a routine then MPI should conform

to it.

In general, the definition of these environmental and utility routines is deferred to later

versions of MPI. The only utility routines provided in MPI1 are for error handling. Most of
ii

the routines in MPI1 return a value of-1 to indicate that an error has occurred. The nature

and/or cause of the error can be determined by calling the routine MPI_ERROR. This returns

an integer that indicates the error type applying to the most recent call to an MPI1 routine.

Among the types of error that would be indicated by a call to MPI_ERROR are the use of an

invalid PID, GCPID, CCID, or MSGID; the loss of a message on a process due to a system buffer

overflow; the use of an invalid block length or stride in one of the message packing routines; and

so on. If the integer returned by MPI_ERROR is passed to the routine MPI_ETEXT, a string

is returned giving a short description of the error which can then be output by the application.

This way of handling errors is essentially the same as that used by PARMACS [13].

4. Discussion and Rationale

In this section we discuss the reasoning behind some of the decisions made in designing MPI1.

In the design of this interface, one of the main concerns was to keep both the calling sequences

simple and the range of options limited, while at the same time maintaining sufficient function-

ality. This clearly implies a compromise, and a good decision is vital if MPI1 is to be accepted

as a useful standard.

In order to avoid potential programming errors, values of scalar variables are not returned

through argument lists. In MPI1, routines are written as function calls rather than subroutine

calls, which provides a mechanism for returning scalars. One consequence of this is that in order
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to determine tile source, length, and/or type when a wildcarded message has been received in

. nonblocking mode, or is known to be pending following a call to MPI_PROBE, it is necessary

to call the information routines MPI_INF, MPI_INFOL, and/or MPI_INFOT.

It is not assumed in MPI1 that messages sent from one process to another are received

in the order in which they were sent since some systems may use a non-deterministic routing

scheme to avoid contention for communication links. Of course, even in such cases the correct

order of messages could be recovered by the receiving process if each message was labeled by

the sending process with a sequence number. Whether or not messages from one process to

another arrive in the correct order has no impact on the definition of a standard, though clearly

the assumption is vital to the correct functioning of many parallel algorithms.

MPI1 defines three modes for send and receiving messages, namely the blocking, nonblock-

ing, and synchronized modes. We believe that these are the most widely used types of point-

to-point communication operations, and in order to avoid too many varieties of send routine,

some potentially useful functionality has been excluded from MPI1. For example, MPI1 does

not include forced communication of the sort provided in Intel's NX/2 through the use of "force

types." In forced communication, if a message sent in nonblocking mode is delivered to a pro-

cess, and an application buffer has not already been made available for it by previously posting

a receive, then the message is simply discarded, rather than being placed in a system buffer on

the destination process. This functionality could be provided in MPI1 by reserving a certain

" range of types for forced communication, just as in NX/2. The justification for using forced

communication is that it avoids some overhead, and thus is often faster. The main disadvantage

" is that it is the responsibility of the application to ensure that a receive is always posted prior

to delivery of a forced message, otherwise the message will be lost.

In handling communication contexts MPI1 uses an approach that is independent of the

message type selectivity mechanism. A different approach would be for each phase of an

application to initially register the range of types it will use, and for a central message type

registry to check for overlaps between the ranges claimed by different phases. An overlap

would indicate to the application the potential for communication conflicts. The best approach

is unclear. The first, option would be more natural to the user, while for the second option

communication context control functions would be easier to port onto most current parallel

systems without major changes to the runtime systems. Thus, the question is how much MPI1

should be influenced by the presently available systems.

5. Outstanding Issueso

In this section we outline a few of the issues that need to be addressed by MPI1, and some

' features that should be considered for inclusion in future versions of MPI1.

A number of extensions to the support provided by MPI1 for process groups are possible. For

example, currently in MPI1 the union of groups cannot be formed, :nor is it possible for single
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processes to join or leave a group. Abstractions for permitting process groups to communicate

with each other are another possible extension. MPI1 does not allow processes to be created

or destroyed, or for different executable codes to be loaded into different processes, as would be

required in order to support the MIMD style of task parallelism. 'l'he need for ali these possible

enhancements must be given careful consideration.

In MPI1 no explicit mechanism is provided to allow a process to inquire about the existence

and membership of groups of which it is not a member. In a more general system it would be

possible for a process to access information about any group. One way of doing this would be to

have some processes dedicated to storing data about the current valid groups, and responding

to requests for this information. Whenever, a group is created, discarded, or modified the

processes involved must synchronize with one or more of the "group database" processes and

inform them of the changes. Clearly, if there are too few such processes bottlenecks may develop

in accessing their data; if there are too many then memory and compute power are wasted.

In the current version of MPI1 a process group is formed by a collection of processes without.

any additional structure. Typical applications, on the other hand, have much more internal

structure. For example, the solution of a partial differential equation on a 3D grid is usually

performed by processes which are arranged in a corresponding structure. If the programming

interface does not provide functions for defining that structure, the user must program the

relationship of the logical position of a process and its identifier himself. Also, this information

is not available for automatic tools which map neighboring processes onto neighboring hardware

processors. Therefore, a mechanism such as that suggested by Hempel [12] for defining, and

inquiring about, logical process topologies would be a useful addition to the message passing

standard.

Another important consideration when extending MPI1 to handle heterogeneous distributed

computing is the fact that different machines not only have different data formats, but also

prefer different packet sizes. It would therefore appear that a table is needed that not only

maps a PID number to an Internet address and process ID on the destination machine, but

which also includes the target machine's preferred packet size.

6. Conclusions

We do not claim to provide the definitive answer to everyone's communication needs. Indeed,

our insistence on simplicity precludes that. However, we believe the MPI1 routines proposed

here will be useful as a basis for further discussion in the development of a standard for message

passing in distributed memory environments. An MPI standards committee was formally insti-

tuted in November 1992, with the objective of providing a forum for discussion and of defining

a standard message passing interface by July 1993. This committee is similar in structure and

organization to that which developed the High Performance Fortran standard. Members of the

distributed memory computing community who wish to become involved in the standardization
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process should send email to walker@msr.epm.ornl.gov by May 1, 1993.
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Appendix A

In this appendix we give Fortran specifications for the MPI1 routines. The C language specifica-

tions are not given explicitly, but are very similar, except for the routines dealing with arbitrary

• scatter/gather operations (MPI_GSEND, MPI_GRECV, MPI_GPACK and MPI_GUNPACK).

In the synopses of the Fortran specifications of some of the routines, message buffers are referred

to as integer arrays; however, real arrays can also be passed to these routines.

The appendix is consists of the following five sections.

1. Point-to-point message passing routines,

2. Support for process groups,

3. Support for buffer copying,

4. Support for communication contexts,

5. Utilities.
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A.1 Point-to-Point Message Passing Routines

In this section we provide specifications for the following point-to-point message passing and

related routines.

• MPI_CANCEL Cancel nonblocking send or receive

• MPI_CRECV Receive contiguous message

• MPI_CSEND Send contiguous message

• MPI_GR.ECV Receive into buffer with arbitrary scatter

• MPI_GSEND Send from buffer with arbitrary gather

• MPI_.INFOL Get length of pending or received message

• MPI..INPOS Get source of pending or received message

• MPI..INFOT Get type of pending or received message

• MPI_PROBE Check pending messages

• MPI_SI:tECV Receive into buffer with constant stride

• MPI_SSEND Send from buffer with constant, stride

• MPI_STATS Check status of nonblocking send or receive

• MPI_WAIT Block until send or receive has completed

Message selectivity (within a communication context) is by source process and message

type, either of which may have the "wildcard" value of -1, indicating that any source and/or

type is acceptable.

Nonblocking sends and receives return a message ID that is unique within the current group

context. All other sends and receives return the number of bytes actually sent or received, or

-1 if an error occurred.
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NAME

" MPI_CANCEL Cancel a previously initiated nonblocking send or receive

SYNOPSIS

integer function MPI_CANCEL (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION

MPI_CANCEL cancels a previously issued nonblocking send or receive specified by the

message identifier, msgid. Upon return the nonblocking send or receive is no longer active,

and may or may not have completed.

RETURN VALUE

MPI_CANCEL returns 0, or-1 if an error occurs.
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NAME

MPI_CRECV Receive a message contiguously into a buffer. p

SYNOPSIS

integer function MPI_CRECV (mode, buf, source, type, maxlen)

integer mode

integer buf(.)

integer source

integer type

integer maxlen

INPUT ARGUMENTS

mode the mode of the receive (blocking, nonblocking, or synchronized)

source the ID number of the process sending the message

type the message type, or type mask

maxlen the maximum length of the message in bytes

OUTPUT ARGUMENTS

buf the application buffer into which the message is received.

DESCRIPTION

If mode has the system-defined value MPI_BLOCKING then the calling process blocks

until a message of a specified type is received from a specified source into the application

buffer bu_. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI_NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPI_SYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, bur, and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

For ali modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than ma.xlen bytes are truncated

to maxlen bytes.

For all modes, the message received is stored contiguously in the buffer bur.

J

RETURN VALUE

Upon successful completion, if mode is MPI_BLOCKING or MPI_SYNCHRONIZED then

MPI_CRECV returns the length of the message received in bytes. This will exceed

maxlen bytes if the message was truncated. If modo is MPI_NONBLOCKING then

MPI_CRECV returns the message ID number associated with the receive operation.
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A value of -1 is returned if an error occurs.

11
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NAME

MPI_CSEND Send a message contiguously from a buffer. ¢.

SYNOPSIS

integer function MPI_CSEND (mode, buf, dest, type, len)

integer mode

integer buf(.)

integer dest

integer type

integer len

INPUT ARGUMENTS

mode the mode of the send operation

buf the buffer containing the message to be sent

dest the ID number of the process to which the message is sent

type the message type

len the length of the message in bytes

DESCRIPTIGN

If mode has the system-defined value MPI_BLOCKING then MPI_CSEND sends a mes-

sage of type type to process dest, and blocks until the message buffer, bur, is available

for reuse.

if mode has the system-defined value MPI_NONBLOCKING then MPI_CSEND initiates

transmission of a message of type type to process dest, and immediately returns. The

message buffer, bur, should not be changed until the message is guaranteed to have

been sent, i.e., to have "cleared _he buffer", by a call to MPI_WAIT, or by a call to

MPI_STATS returning a nonnegative integer.

If mode has the system-defined value MPI_SYNCHRONIZED then MPI_CSEND sends

a message of type type to process dest, and blocks until an acknowledgment is received

from the destination process to indicate that message receipt has completed. The send

must be matched by a corresponding receive, also done in synchronized mode.

For ali modes, the message consists of the len contiguous bytes in the buffer bur.

RETURN VALUE

If mode is MPI_BLOCV_ING or MPI_SYNCHRONIZED then MPI_CSEND returns the

number of bytes sent, If mode is MPLNONBLOCKING then MPI_CSEND returns the

message ID number associated with the send operation. A value of-1 is returned if an

error occurs.
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NAME

• MPI_GRECV Receive a message and scatter it arbitrarily into a buffer.

SYNOPSIS

integer function MPI_GRECV (mode, buf, source, type, nlist, ilist, nblks)

integer mode

integer buf(.)

integer source

integer type

integer nlist(,)

integer ilist(,)

integer nblks

INPUT ARGUMENTS

mode the mode of the receive (blocking, nonblocking, or synchronized)

source the ID number of the process sending the message

type the message type, or type mask

nlist list of the number of bytes in each data block

ilist list of the location in bur at which each data block starts

nblks maximum number of data blocks to be scattered

OUTPUT ARGUMENTS

buf the application buffer into which the message is scattered

DESCRIPTION

If mode has the system-defined value MPI_BLOCKING then the calling process blocks

until a message of a specified type is received from a specified source into the application

buffer bur. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI_NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPI_SYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, bur, and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

• For ali modes, if source is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

' to maxlen bytes.

For ali modes, the way in which the data received are stored in the buffer bur is controlled

by the arrays nlist and ilist. The data received are treated as a succession of data
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blocks, with the ith block being of size nlist(i) bytes. This is stored in the buffer bur

so that the start of the block is at ilist(i) bytes from the start of bur. The maximum

number of data blocks received is nblks. It is assumed that ali indices and numbering

of data items begin at 0. It is the responsibility of the user to ensure that bur is large

enough to hold the data scattered into it.

RETURN VALUE

Upon successful completion, if mode is MPI_BLOCKING or MPI_SYNCHRONIZED then

MPI_GRECV returns the total number of bytes received. If mode is MPI_NONBLOCK-

ING then MPI_GRECV returns the message ID number associated with the receive

operation. A value of-1 is returned if an error occurs.
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NAME

, MPI_GSEND Send a message gathered arbitrarily from a buffer.

SYNOPSIS

' integer function MPI_GSEND (mode, buf, dest, type, nlist, ilist, nblks)

integer mode

integer buf(,)

integer dest

integer type

integer nlist(,)

integer ilist(,)

integer nblks

INPUT ARGUMENTS

mode the mode of the send (blocking, nonblocking, or synchronized)

buf the buffer containing the message to be sent

dest the ID number of the process to which the message is sent

type the message type

nlist list of the number of bytes in each data block

ilist list of the location in bur at which each data block starts

" nblks number of data blocks to be gathered

. DESCRIPTION

If mode has the system-defined value MPI_BLOCKING then MPI_GSEND sends a

message of type type to process dest, and blocks until the message buffer, bur, is available

for reuse.

If mode has the system-defined value MPI_NONBLOCKING then MPI_GSEND initiates

transmission of a message of type type to process dest, and immediately returns. The

message buffer, bur, should not be changed until the message is guaranteed to have

been sent, i.e., to have "cleared the buffer", by a call to MPI_W AIT, or by a call to

MPI_STATS returning a nonnegative integer.

If mode has the system-defined value MPI_SYNCHRONIZED then MPI_GSEND sends

a message of type type to process dest,and blocks until an acknowledgment is received

from the destination process to indicate that message receipt has completed.

For all modes, the way in which the message sent is gathered from the buffer bur is

controlled by the arrays nlist and ilist. The data are gathered in blocks, with the ith

block being of size nlist(i) bytes. This is gathered from the buffer bur starting at the

location ilist (i) bytes from the start of bur. The total number of data blocks gathered

is nblks. It is assumed that ali indices and numbering of data items begin at 0.
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RETURN VAL_JE

If mode is MPI_BLOCKING or MPI_SYNCHRONIZED then MPI_GSEND returns the

number of bytes sent. If mode is MPI_NONBLOCKING then MPI_GSEND returns the

message ID number associated with the send operation. A value of-1 is returned if an
t

error occurs.
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NAME

• MPI..INFOL Determine the length of a pending or received message.

SYNOPSIS

integer function MPI_INFOL ()

ARGUMENTS

None

DESCRIPTION

MPI..INFOL determines the length in bytes of a pending or received message, lt only

returns a valid result if used directly after a call to a receive routine in blocking or

synchronized mode, or directly after a call to MPI_STATS or MPI_PROBE that has

returned a nonnegative integer.

RETURN VALUE

Directly after a call to a receive routine in blocking or synchronized mode, a call to

MPI_WAIT, or a call to to MPI_STATS that returns a nonnegative integer, the rou-

tine MPI_INFOL returns the length in bytes of the message just received. If called

directly after MPI..PROBE has returned a nonnegative number, MPI_.INFOL returns

the length in bytes of the pending message. If there are no pending messages -1 is re-

turned.
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NAME

MPI_INFOS Determine the source process of a pending or received message.

SYNOPSIS

integer function MPI_INFOS ()

ARGUMENTS

None

DESCRIPTION

MPI_INFOS determines the source process of a pending or received message, lt only

returns a valid result if used directly after a call to a receive routine in blocking or

synchronized mode, or directly after a call to MPI_STATS or MPI_PROBE that, has

returned a nonnegative integer.

RETURN VALUE

Directly after a call to a receive routine in blocking or synchronized mode, a call to

MPI_WAIT, or a call to to MPI_STATS that returns a nonnegative integer, the routine

MPI_INFOS returns the ID number of the process that sent the message just received. If

called directly after MPI_PROBE has returned a nonnegative number, MPI_INFOS

returns the ID number of the process that sent the pending message. Ii' there are no

pending messages-1 is returned.
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NAME

. MPI..tNFOT Determine the type of a pending or received message.

SYNOPSIS

integer function MPI_INFOT ()

ARGUMENTS

None

DESCRIPTION

MPI_.tNFOT determines the type of a pending or received message. MPI_INFOT

only returns a valid result if used directly after a call to a receive routine in blocking

or synchronized mode, or MPI_WAIT, or directly after a call to MPI_PROBE or

MPI_STATS that has returned a nonnegative integer.

RETURN VALUE

Directly after a call to a receive routine in blocking or synchronized mode, MP]'._WAIT,

or a call to MPI_STATS that returns a nonnegative integer, MPI_INFOT returns the

type of the message just received. If called directly after MPI_PROBE has returned a

nonnegative number, MPI_INFOT returns the type of the pending message. If there

are no pending messages -1 is returned.
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NAME

MPI.PROBE Check for pending messages.

SYNOPSIS

integer function MPI_PROBE (source, type)

integer source

integer type

INPUT ARGUMENTS

source the ID number of the process sending the message.

type the message type, or type mask.

DESCRIPTION

MPI_.PROBE checks if there is a message from a specified source and of a specified type

awaiting receipt. That is, if there is a such a message stored in a system buffer for which a

receive has not yet been posted. If source is -1 then this argument is ignored. Similarly,

if type is -1.then this argument is ignored. Only messages sent using the routines sent in

blocking or nonblocking mode may be buffered by the system on the receiving process,

so it only makes sense to use MPI..PROBE to probe such messages.

RETURN VALUE
q

If a message satisfying the selectivity criteria is awaiting receipt MPI_PROBE returns

the length of the message in bytes. Otherwise, -1 is returned.
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NAME

- MPI_SRECV Receive a message and scatter it with constant stride into a buffer.

SYNOPSIS

integer function MPI_SRECV (mode, buf, source, type, lenblk, stride, nblks)

integer mode

integer buf(.)

integer source

integer type

integer lenblk

integer stride

integer nblks

INPUT ARGUMENTS

mode the mode of the receive (blocking, nonblocking, or synchronized)

source the ID number of the process sending the message

type the message type, or type mask

lenblk the size in bytes of each data block

stride the number of bytes between the start of each data block

nblks maximum number of data blocks to be scattered

OUTPUT ARGUMENTS

- buf the application buffer into which the message is scattered

DESCRIPTION

If mode has the system-defined value MPI_BLOCKING then the calling process l:',ocks

until a message of a specified type is received from a specified source into the application

buffer bur. Deadlock will occur if no corresponding message is sent loosely synchronously

by the source process.

If mode has the system-defined value MPI_NONBLOCKING then the calling process posts

a receive for a message of a specified type from a specified source, and immediately returns.

If mode has the system-defined value MPI_SYNCHRONIZED then the calling process

blocks until the specified message has been received into the application buffer, bur, and

then sends an acknowledgment to the source process before returning. The receive must

be matched by a corresponding send, also done in synchronized mode.

" For all modes, if so_u_ce is -1 then selectivity by source is ignored. Similarly, if type is

-1 then selectivity by type is ignored. Messages longer than maxlen bytes are truncated

• to maxlen bytes.

For ali modes, the data received are treated as a succession of data blocks, each of length

lonblk bytes. Data blocks are placed in the buffer bur so that the start of successive
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blocks are separated by stride bytes. The maximum number of data blocks received is

nblks. It is the responsibility of the user to ensure that bur is large enough to hold the

data scattered into it.

RETURN VALUE

Upon successful completion, if mode is MPI_BLOCKING or MPI_SYNCHRONIZED then

MPI_SRECV returns the length of the message received in bytes. If mode is MPI_NON-

BLOCKING then MPI_SRECV returns the message ID number associated with the

receive operation. A value of -1 is returned if an error occurs.
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NAME

. MPI_SSEND Send a message gathered with constant stride from a buffer.

SYNOPSIS

integer function MPI_SSEND (mode, buf, dest, type, lenblk, stride, nblks)

integer mode

integer buf(.)

integer dest

integer type

integer lenblk

integer stride

integer nblks

INPUT ARGUMENTS

mode the mode of the send (blocking, nonblocking, or synchronized)

buf the buffer containing the message to be sent

dest the lD number of the process to which the message is sent

type the message type

lenblk the size in bytes of each data block

stride the number of bytes between the start of each data block

nblks number of data blocks to be gathered

- DESCRIPTION

If mode has the system-defined value MPI_BLOCKING then MPI_SSEND sends a mes-

sage of type type to process dest, and blocks until the message buffer, bur, is available

for reuse.

If mode has the system-defined value MPI_NONBLOCKING then MPI_SSEND initiates

transmission of a message of type type to process dest, and immediately returns. The

message buffer, bur, should not be changed until the message is guaranteed to have

been sent, i.e., to have "cleared the buffer", by a call to MPI_WAIT, or by a call to

MPI_STATS returning a nonnegative integer.

If mode has the system-defined value MPI_SYNCHRONIZED then MPI_SSEND sends

a message of type type to process dest, and blocks until an acknowledgment is received

from the destination process to indicate that message receipt has completed.

For ali modes, the data sent are gathered from the buffer bur in blocks, each of length

lonblk bytes. The start of successive data blocks are separated by stride bytes in the

buffer bur. The total number of data blocks gathered is nblks.

RETURN VALUE

If _aodo is MPI_BLOCKING or MPI_SYNCHRONIZED then MPI_SSEND returns the
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number ofbytessent.Ifmode isMPI_NONBLOCKING thenMPI_SSEND returnsthe

messageID number associatedwiththesendoperation.A valueof-I isreturnedifan

erroroccurs.
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NAME

• MPI_STATS Check the status of a nonblocking send or receive operation.

SYNOPSIS

integer function MPI_STATS (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION

If the message identifier, msg±d, refers to a message being sent in nonblocking mode,

then MPI_STATS checks if the message has cleared the message buffer yet. If it has,

then the message buffer is available for reuse. If the message identifier, msg±d, refers t,_ a

message being received in nonblocking mode, then MPI_STATS checks if message receipt

has been completed yet, i.e., if the incoming message has been placed in an application

buffer. If it has, then the data received into the buffer is availabl( _ for use.

RETURN VALUE

MPI_STATS returns the number of bytes sent or received if the nonblocking send or

receive operation has completed. Otherwise, -1 is returned.
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NAME

MPI_WAIT Block until a nonblocking send or receive operation has completed.

SYNOPSIS

integer function MPI_WAIT (msgid)

integer msgid

INPUT ARGUMENTS

msgid message identifier returned by a call to a nonblocking send or receive

DESCRIPTION

If the message identifier, msg±d, refers to a message being sent in nonblocking mode, then

MPI_WAIT blocks until the message has cleared the message buffer. Upon return from

such a call to MPI_WAIT the message buffer is available for reuse, but receipt of the

message by the destination process is not guaranteed. If the message identifier, mze;±d.

refers to a message being received in nonblocking mode, then MPI_WAIT blocks until

message receipt has been completed. The data received into the message buffer is then

available for use.

RETURN VALUE

On successful completion MPI_WAIT returns the number of bytes sent or received.

OtheI wise, -1 is returned.
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A.2 Support for Process Groups

In this s_ction specifications for the following routines for supporting process groups are given.

• MPI_DEFNG Create a group from a list of processes

• MPI_FREEG Discard a group

• MPI_GETID Determine GCPID of calling process in a group

• MPI_.INFOG Determine processes in a group

• MPI_.PARTG Partition a group

• MPI_POPG Restore previous group context

• MPI..PUSHG Establish new group context

• MPI_SYNCG Synchronize a group of processes
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NAME

MPI_DEFNG Define a group of processes.

SYNOPSIS

integer function MPI_DEFNG (nprocs, plist)

integer nprocs

integer plist(,)

INPUT ARGUMENTS

nprocs the number of processes in the new group

plist a list of nproes process ID numbers

DESCRIPTION

MPI_DEFNG creates a new group consisting of the nproes processes whose ID numbers

are listed in the array pligt. The new group can subsequently be partitioned by calls to

MPI__PARTG. MPI..DEFNG must be called synchronously by ali tile processes listed

in plist.

RETURN VALUE

On successful completion MPI._DEFNG returns the unique group ID number of the

newly formed group. If an error occurs a value of -1 is returned.
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NAME

• MPI_FREEG Discard a specified group.

SYNOPSIS

integer function MPI_FREEG (gid)

integer gid

INPUT ARGUMENTS

gid the group ID number of the group to be discarded

DESCRIPTION

MPI_FREEG may be used to free memory that stores information about groups that are

no longer needed. The group g±d is discarded, and may not be referred to subsequently.

MPI_FREEG must be called synchronously by ali processes in the group gtd.

RETURN VALUE

On successful completion MPI_FREEG returns 0. Otherwise -1 is returned.
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NAME

MPI_GETID Determine the group context PID of tile calling process for a spec-

ified group ID number.

SYNOPSIS

integer function MPI_GETID (gid)

integer gid

INPUT ARGUMENTS

gid the group ID for which the group context PID is required

DESCRIPTION

MPI_GETID determines the group context PID of the calling process within the group

g±d. A value of -1 is returned if the calling process is not in the group girl.

RETURN VALUE

MPI_GETID returns the group context PID of the calling process within the group gid.

A value of-1 is returned if the calling process is not in the group girl.
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NAME

, MPIINFOG Determine the number of processes in a group, and return a list, of

the PID numbers of the group members.

" SYNOPSIS

integer function MPI_INFOG (gid, maxlis, plist)

integer gid

integer maxlis

integer plist(,)

INPUT ARGUMENTS

gid a group ID number

maxlis the maximum size of the array plist

OUTPUT ARGUMENTS

plist a list of the PID numbers of the processes in group girl

DESCRIPTION

MPIJNFOG determines the number of processes the group girl, and returns a list of

the PID numbers of the group members in the array plist. The calling process must be

a member of the group gid. If there are more than maxlis processes in group girl, only

the PID numbers of maxlis of them are returned in plist.

" RETURN VALUE

On successful completion MPI_INFOG returns the number of processes in the group

gid, or -1 if an error occurs.
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NAME

MPI_PARTG Partition a group into subgroups.

SYNOPSIS

integer function MPI_PARTG (gid, key)

integer gid

integer key

INPUT ARGUMENTS

gid the ID number of the group to be partitioned

key the key whose value determines the partitioning

DESCRIPTION

MPI_.PARTG partitions the group girl into subgroups according to the value of key.

Ali processes for which key has the same value form a distinct subgroup. MPI_PARTG

must be called synchronously by ali processes in the group girl.

RETURN VALUE

On successful completion MPI._PARTG returns the unique GID number of the subgroup

to which the calling process belongs. Otherwise, -1 is returned.
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NAME

' MPI_POPG Re-establish former process group context.

SYNOPSIS

integer function MPI_POPG ( )

ARGUMENTS

None

DESCRIPTION

MPI_POPG re-establishes the process group context that was in effect before the preced-

ing call to MPI_PUSHG. MPI_POPG must be called synchronously by ali processes

in the group whose context was established by the preceding call to MPI_PUSHG. The

calling process must not be involved in any nonblocking communication within the current

communication context when calling MPI_POPG.

RETURN VALUE

On successful completion MPI_POPG returns the process group ID number of the group

whose context is re-established. Otherwise, -1 is returned.
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NAME

MPI_PUSHG Establish a new group context.

SYNOPSIS

integer function MPI_PUSHG (gid)

integer gid

INPUT ARGUMENTS

gid the group ID number of the context to be established

DESCRIPTION

A call to MPI_PUSHG establishes an environment in which it appears to the processes

in the group gid that they are the only processes in use by the application. This environ- ._

ment is called the process group context of girl. The effect of a call to MPI_PUSHG

is nullified by the next subsequent call to MPI_POPG, which re-establishes the pro-

cess group context that was in effect before the call to MPI..PUSHG. If the group gid

contains n processes, then within the group context of girl each process is labeled by a

unique integer between 0 and n - 1, referred to as its group context PID. Processes may

only be referenced by their group context PIDs, which are automatically mapped to the

corresponding process ID numbers by the system. It is an error to refer to any process ID

number outside the range 0 to n - 1, and the processes in group gid may not communi-

cate with processes outside the group. Groups created outside the current group context

by calls to MPI_DEFNG, or MPI_PARTG may not be referenced. Groups created

within the current group context may not be referenced after exiting the context by call-

ing MPI_POPG. Within a group context the group ALL refers to just the processes

in the current group context. Group contexts may be nested. MPI_.PUSHG must be

called synchronously by ali processes in the group gid. Tile calling process must not be

involved in any nonblocking communication within the current communication context

when calling MPI_PUSHG.

RETURN VALUE

On successful completion MPI..PUSHG returns the number of processes in the group

girl. Otherwise -1 is returned.
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NAME

, MPI_SYNCG Synchronize processes.

SYNOPSIS

integer function MPI_SYNCG (gid)

integer gid

ARGUMENTS

gid a process group ID

DESCRIPTION

MPI_SYNCG performs a barrier synchronization involving ali processes in the group

gtd, of which the calling process must be a member.

RETURN VALUE

On successful completion MPI_SYNCG returns 0. Otherwise, -1 is returned.
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A.3 Support for Buffer Copying

In this section specifications for the following routines for packing data into and out of message

buffers are given.

• MPI_SPACK Gather data with constant stride

• MPI_SUNPACK Scatter data with constant stride

• MPI_GPACK General-purpose gather routine

• MPI_GUNPACK General-purpose scatter routine
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NAME

MPI_SPACK Pack data blocks into a buffer with constant stride.

SYNOPSIS

integer function MPI_SPACK (bur, lenblk, stride, nblk, msg)

integer bur(,)

integer lenblk

integer stride

integer nblk

integer msg(.)

INPUT ARGUMENTS

buf buffer from which data are to be gathered

lenblk size of each data block in bytes

stride number of bytes between successive blocks in buffer bur

nblk number of data blocks to be gathered

OUTPUT ARGUMENTS

msg buffer in which the gathered data is packed

DESCRIPTION
J

MPI_SPACK gathers data from the buffer bur and packs it contiguously into the buffer

msg. In bur the data blocks consist of lenblk bytes, with the starts of successive blocks

being separated by a constant stride bytes. The number of blocks gathered in nblk.

The most common use of MPI_SPACK is to fill a message buffer for subsequent com-

munication.

RETURN VALUE

Upon successful completion MPI_SPACK returns the total length of the message in

bytes. Otherwise, -1 is returned.
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NAME

MPI_SUNPACK Unpack data blocks from a buffer with constant stride.

SYNOPSIS

integer function MPI_SUNPACK (bur, lenblk, stride, nblk, msg)

integer buf(*)

integer lenblk

integer stride

integer nblk

integer msg(*)

INPUT ARGUMENTS

lenblk size of each data block in bytes

stride number of bytes between successive blocks irl buffer bur

nblk number of data blocks to be scattered

msg buffer in which the data to be scattered are packed

OUTPUT ARGUMENTS

buf buffer to which data are to be scattered

DESCRIPTION

MPI_SUNPACK unpacks contiguous data from the buffer msg and scatters it with

constant stride into the buffer bal. Successive contiguous blocks of lenblk bytes are
q

extracted from msg and copied to bur so that the first such block is aligned with the start

of bur, and the start of successive blocks is separated by stride bytes. A total of nblk

data blocks are unpacked. The most common use of MPI_SUNPACK is to unpack data

received from another process. It is the responsibility of the user to ensure that bur is

large enough to hold the data unpacked into it.

RETURN VALUE

Upon successful completion MPI_SUNPACK returns the total length of the message

in bytes. Otherwise, -1 is returned.
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NAME

• MPI_GPACK General routine for packing data blocks into a buffer.

SYNOPSIS
1

integer function MPI_GPACK (buf, nlist, ilist, nblk, msg)

integer bur(,)

integer nlist(,)

integer ilist(,)

integer nblk

integer msg(,)

INPUT ARGUMENTS

buf buffer from which data are to be gathered

nlist list of the number of bytes in each block

ilist list of the location in bur at which each data block starts

nblk number of data blocks to be gathered

OUTPUT ARGUMENTS

msg buffer into which the gathered data are packed

DESCRIPTION

MPI_GPACK extracts nblk data blocks from the buffer bur and packs them contigu-

ously into the buff-r tasg according to the information in the arrays nlist and ilist.

The ith data block extracted consists of the contiguous nlist(±) bytes starting at the

location ilist(i) bytes from the start of bur. lt is assumed that ali indices and number-

ing of data items begin at 0. The most common use of MPI_GPACK is to fill a message

buffer for subsequent communication.

RETURN VALUE

Upon successful completion MPI_GPACK returns the total length of the message in

bytes. Otherwise,-1 is returned.
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NAME

MPI_GUNPACK General routine for unpacking data blocks from a buffer. .

SYNOPSIS

integer function MPI_GUNPACK (bur, nJist, ilist, nblk, msg)

integer buf(*)

integer nlist(,)

integer ilist(,)

integer nblk

integer msg(,)

INPUT ARGUMENTS

. msg buffer from which the data to be scattered are unpacked

nlist list of the number of byte:_ in each block

ilist list of the location in bur at which each data block starts

nblk number of data blocks to be scattered

OUTPUT ARGUMENTS

buf buffer into which data are to be scattered

DESCRIPTION

MPI_GUNPACK takes nblk successive contiguous data blocks from the buffer msg and

unpacks them into the butler bur according to the information in the arrays nlist and

iliat. The ith data block unpacked consists of nlist (i) contiguous bytes, and is copied

to the bur so that the start of the block is aligned with the location ilist(i) bytes from

the start of bur. It is assumed that ali indices and numbering of data items begin at

0. The most common use of MPI_GUNPACK is to unpack a message received from

another process. It is the responsibility of the; user to ensure that bur is large enough to

hold the data unpacked into it.

RETURN VALUE

Upon successful completion MPI_GUNPACK returns the total length of the message

in bytes. Otherwise,-1 is returned.
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A.4 Support for Communication Contexts

In this section specifications for the following routines for managing communication contexts

, arc given,

• MPI_INFOC Get information on valid communication contexts

• MPI.aNEWC Create a new communication context

• MPI_POPC Restore a communication context

• MPI_PUSHC Establish a new communication context
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NAME

MPIINFOC Get information about valid communication contexts

SYNOPSIS

integer function MPI_INFOC (maxlis, ilist)

integer maxlis

integer ilist(,)

INPUT ARGUMENTS

maxlis maximum number of communication context ID numbers in the

array ilist

OUTPUT ARGUMENTS

ilist a list of communication context ID numbers

DESCRIPTION

MPI INFOC determines the number of communication contexts that have been created

for the current process group context, and returns a list of the corresponding communi-

cation context ID numbers in the array ilist. The first entry in ±list is always the

ID number of the default communication context. It' the number of ID numbers exceeds

maxlis, then only maxlis are returned in the array ilist.
b

RETURN VALUE

On successful completion MPI_INFOC returns the number of communication contexts.

Otherwise, -1 is returned.
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NAME

MPI_NEWC Create a new communication context.

SYNOPSIS

integer function MPI_NEWC ( )

ARGUMENTS

None

DESCRIPTION

MPI..NEWC creates a new communication context within the scope of the current

process group context.

RETURN VALUE

On successful completion MPI_NEWC returns the unique ID number of the new com-

munication context. Otherwise -1 is returned.
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NAME

MPI_POPC Re-establish former communication context.

SYNOPSIS

integer function MPI_POPC ( )

ARGUMENTS

None

DESCRIPTION

MPI..POPC re-establishes the communication context that was in effect before the pre-

ceding call to MPI__PUSHC.

RETURN VALUE

On successful completion MPI_POPC returns the ID number of the communication

context that is re-established. Otherwise, -1 is returned.
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NAME

- MPI_PUSHC Establish a new communication context.

SYNOPSIS

integer function MPI_PUSHC (ccid)

integer ccid

INPUT ARGUMENTS

ccid the ID number of the communication context, to be establishcd

DESCRIPTION

MPI_PUSHC sets the current communication context to that, given by the communi-

cation context ID number, ceid. This communication context stays in effect until the

subsequent corresponding call to MPI_POPC, or until the next call to MPI_POPG,

which destroys ali the communication contexts of the process group context being exited.

MPI_PUSHC must be called by ali processes in the current process group context.

RETURN VALUE

On successful completion MPI_PUSHC returns 0. Otherwise -1 is returned.
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A.5 Utilities

4

In this section specifications for the following utility routines are given,

• MPI_ERROR Determine the current MPI error status

• MPI_ETEXT Get text string corresponding to error status
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NAME

, MPI_ERROR Determine error status following a call to MPI1

SYNOPSIS

integer function MPI_ERROR ( )

ARGUMENTS

None

DESCRIPTION

MPI_ERROR returns an integer giving the error status of the preceding call to an MPll

routine.

RETURN VALUE

The meaning of the error status returned by MPI_ERROR is given iii the table below.

Additional entries may be added later.

Error status Meaning
0 No error
1 Invalid PID used
2 Invalid GID used
3 Invalid MSGID used
4 Invalid CCID used

" 5 Invalid GCPID used

6 Invalid message buffer size
7 Invalid stride in MPI_SPACK/MPI.SUNPACK

" 8 Invalid block size in pack/unpack routine
9 Invalid data item size in pack/unpack routine
10 System buffer overflow
11 Too many communication contexts

12 Too many group contexts
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NAME

MPI..ETEXT Give string describing the error status

SYNOPSIS

character*80 function MPI_ETEXT (ierrno)

integer ierrno

INPUT ARGUMENTS

ierrno The error status

DESCRIPTION

MPLETEXT gives a brief description of the error corresponding to the value of the

error status integer ierrno.

RETURN VALUE

MPI_ETEXT returns a string describing the error status.

\
\

\
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