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VARIED APPLICATIONS OF A NEW MAXIMUM-LIKELIHOOD CODE
WITH COMPLETE COVARIANCE CAPABILITY

F. Schmittroth
Hanford Engineering Development Laboratory
' Richland, Washington, USA

ABSTRACT

Applications of a new data-adjustment code are given.
The method is based on a maximum-1ikelihood extension of gen-
eralized least-squares methods that.allow complete covari-
ance descriptions for the input data and the fimal adjusted
data evaluations. The maximum-1ikelihood approach is used
with a generalized log-normal distribution that provides a
way to treat problems with large uncertainties and that
circumvents the problem of negative values that can occur
for phys1ca11y positive quant1t1es

The computer code, FERRET, is written to emable the user
to apply it to a large variety of problems by madifying only
the input subroutine. The following applicatioms are dis-
cussed: A 75-group a priori damage function is adjusted by
as much as a factor of two using 14 integral measurements in
different reactor spectra. Reactor spectra and dosimeter
cross sections are simultaneously adjusted based on both
integral measurements and experimental proton-recoil spectra.
The $imultaneous use of measured reaction rates, measured
worths, microscopic measurements, and theoretical models are
.used to evaluate dosimeter and fission-product €ross sections.
Applications. in the data reduction of neutron cross section
measurements and in the evaluation of reactor after heat are
a]so considered.

INTRODUCTION

In recent years, the methods of generalized ]easﬂ:-squares]'6 have
been successfully applied to a variety of data-adjus@ment and unfolding
problems; not only in the fields of reactar physics amd nuclear data,
but in fields as diverse as aerospace and communications. In this study,
we discuss a useful extension of these ideas and present several examples
that illustrate the method. Brief consideration is also g1ven to the
computer-code implementation of the method.
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The term, generalijzed least-squares, connotes two important exten-
sions of the usual least-squares in- the present context: the use of
complete covariance matrices rather than diagonal matrices to describe
both input and output information, and the use of a priori information
. to obtain solutions for what are otherwise underdetermined problems.

METHOD

" Review of Least—Squéres

A detailed description of the method will be given elsewhere.
Here, we present important features that distinguish it from earlier
work and enough detail to discuss subsequent examples.

The usual least-squares equations may be obtained by minimizing1
‘ ._ Nt e :
Sg = Loy-a(w)]™ Mg [gp-g(w)] (1)

where g - is a vector of measured values, and where w is a vector of
least-squares parameters that are to be determined. The vector function
g(w) may be linearized as g(w) % g(w*) + v g-(w-w*) if g is not already
linear. The covariance matrix M_ describes the known uncertainties and
correlations in the measured datd S

A prigrg"know1edge'of the parameters w can be included by
minimizing¢~ . ‘ :

. " (2)

= Cov (9493

5=ng30 ' _ (3)

rather than Sg alone where '
- t u-1 o fay
Sy = (wy-w) " M (wy-w) . (4)

The a priori values are denoted by the vector w_. The uncertainties and
correlations in the values w_ are also considerfd as a priori knowledge
and are described by the coviriance matrix Mwo' With the definitions,

f o =g.-9* | ‘ (5a)
X = wew* ' (5b)
X = wo-w* | (5¢)
Mxo = Mwo 4 (5d)
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the solution to the minimization problem is given by6

- _ t -1
X=Xy = Mo A* D (f-Axo) ~ (6)

.where
- A t
D=A Mxo A” + Mf ‘ (7)

and where ; denotes the "best" estimate of the parameters x = w-w*. The
uncertainties and correlations in this estimate are described by the
- covariance matrix Mx which can be calculated from

- t o-1
Mx - Mxo = Mxo A*D " A MXo . | | (8)
‘As- is well known, the least-squares method is equivalent to a maximum-]
1ikelihood approach that makes the assumption of normal distributions.
It is also well known that the least-squares equations can be derived
without the assumption of norTality from the principle of a "minimum-
variance unbiased estimator”. : ‘

Description of A Priori Information
-'and its Inclusion in a Maximum-Likelihood Approach

The description and use of a priori information plays an important
role in the present method. As mentioned earlier, a priori knowledge -
includes covariance information, M -, as well as a priori values, w_.

A common reason for using a prioriwgata is to provide a unique solufion
to the least-squares equations in a situation that would be mathemati-
cally underdetermined otherwise. However, mathematically overdetermined
problems do not negate the practical use of a priori knowledge.

A particular type of a priori information led us to consider a
maximum-1ikelihood approach in contrast to.a least-squares approach.
Many physical values, especially in reactor physics and nuclear data,
are a priori positive. In fact, their physical character frequently
dictates that they be described (e.g. plotted) logarithmically. For
instance, one might be able to estimate a particular nuclear cross
section to within a factor of 2. The a priori value might be 10, for
example, with upper and lower bounds of 2x10=20 and 10/2=5, respec-
tively. The factor of 2 uncertainty might itself be quite uncertain;
and yet, one might be very certain that the value sought was not a
factor of 100 smaller. The least-squares equations do not allow the
accurate description of this type of a priori knowledge. The problem
is evident in Eq. (4) if one considers a diagonal covariance matrix
M. .. The value S_ is a sum of squared residuals and gives a measure of
_twg'deviation of w from the a priori values w_.. Clearly, S0 is a
symmetric function of w about the values w afd does not adequately
represent the asymmetric limits discussed Sbove. In fact, for large
uncertainties as described by Mw , the value of S_ may not even strongly
dictate against negative values Por W, even thougﬂ it may be a priori
known with complete assurance that w cannot be negative.
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An obvious solution is to replace S_ by a term that explicitly
accounts for a logarithmic description of the a-priori information.
Very simple treatments have been considered previously. Specifically,
we replace So by

. t -1
S = (zofz) Mo (zo-z) R _ (9)
where N | o
z = 1n(w) (10a)
z,=n(w) ., (10b)

so that the minimization of S in Eq. (4) requires that In(w) be close
to In{w_) in lieu of the requirement that w be close to w_. Negative
values for w are completely ruled out. The covariance mafrix M__ in
Eq. (9) is related to M by z0

(Mwo)ij _ e(Mzo

<W.><W.>
w,' W:j

ij 1. (11)

- Analytic solutions that correspond to Eqs. (6), (7), and (8) are
no longer possible. However, Egq. (6) can be used in an iterative -
fashion to find the desired minimum of '

S = Sg + So g
. In Tine with a logarithmic picture, it is desirable to express.
uncertainties. (covariances) in fractional form as alluded to- in:
Eq. (11). At-the same time, we take a step toward a:-more practical
description of the needed covariance matrices. One can show that Mwo
can be rewritten as E » :

M ),
—_Wo'yy - 2
W< > (1+c )(]'*'Y‘ir‘jpij

)y -1 - (12)
‘where ¢ is a fractional normalization uhcertainty (c=1 implies a 100%
uncertainty completely correlated for all values {w.}). The values
{r.}denote any additional point by point fractional uncertainty, and

p.. is a matrix that describes any further correlations. From Egs. (11)
afd (12), we now find :

M, = In(1+c7) + In(l+ror) | (13)
Even for relatively large uncertainties, one can usually use
M, RPN rer . - (14)

In any event, M o can be completely specified in terms of fractional as
opposed to absoflte uncertainties. : :
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A completely rigorous replacement for Eq. (8) is not available.
A solution that one can show works well in many cases is given by
Eq. (8) with M__ replaced by M__and with A appropriately redefined
to reflect thexehange from absbfute to relative values. For small
uncertainties, the method is equivalent to the usual least-squares
treatment.

APPLICATIONS

The FERRET Code

}he formalism sketched above was implemented in the FERRET computer
code.” Additional features include maximum use of partitioning to
eliminate unneeded subspaces in covariance matrices and to allow se-
quential use of independent data subsets. Also, indexing techniques
were used that make maximum use of available core memory. A secondary
advantage of the indexing method is a computational module that can
handle vastly different types of probiems by simply modifying the input
subroutine. - Practical experience has demonstrated the algorithms to

be reasonably fast and efficient. The examples discussed below were
all easily treated with less than 38K with running times on the order .
of a minute or less on a CDC 6600 computer. - A ' '

Before proceeding to specific examples, we want to discuss a-

" further parameterization used in the description of the a priori covar-
~iance matrix. The computational module of the code does not impose any

restrictions on the allowable covariance matrices. However,. in
practice we have relied on an intuitive parameterization of the covar-
iance matrices for the measured and a priori data. Equations (12-14)
already display one step toward this parameterization. - As discussed
above, the covariance matrices are separated into two components: an. .
overall fractional normalization uncertainty, c, and a second term,
r.r.p.., that describes any additional uncertainties and correlations.
I ﬂréetice, the correlation matrix p.., has been used primarily to
describe short-range6corre1ations, andJwe have further parameterized
it by a form such as '

o35 = (1-0)8;5 + oe (15)

'where o denotes the strength of short-range correlations and y denotes

their range. For example, completely uncorrelated data or a priori
values are described by 8=0 so that p..=di.. The values {ri} are the
point-by-point fractional uncertaintidd, 9 '

It is important Lo emphasize the role of the correlation matrix
p.. for the a priori covariance matrices. A priori knowledge consists
oFmore than preliminary estimates W, of least-squares parameters. For
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highly underdetermined problems, stiffness or smoothness constraints can
be crucial in obtaining final solutions with uncertainties small enough

to be of practical value. Any unfolding code must apply some constraint
of this nature to obtain useful solutions for this type of problem:(e.g., .
minimization of second derivative terms). Note that p.. does not nec-
essarily dictate smoothness, only a particular degree 3¢ correlation

- among neighboring points. An advantage of .using covariance matrices to ..

obtain unique solutions is that final uncertainties are obtained that
describe the uniqueness of these solutions. If insufficient data or

a priori information are supplied, the problem will be apparent from
large final uncertainties. The user must then seek additional physical
information such as new data values or stronger a priori correlations.

75-Group‘Damage Function Analysis

The first example is a 75-group damage function unfolding problem
chosen for its large uncertainties and adjustments. The damage Di in
a neutron flux ¢; is assumed to be given by

75

D, =

i %ig %Dg o (16)

g=1
where {o }-are the multigroup values of the damage function oD(E) being .
sought. SThis equation is linearized by the expansion : '
o pn AMgle) (o) _ (o) (o) (o) o an
01. ¥ D’i + . q)_ig (ng 9Dg ) + g (4»]-9-4)1-9 ) . (17)

The flux spectra ¢. are assumed to have small uncertéinties'and are ..
adjusted simu]tane&us]y with the damage function cD(E). ' .

This example included 14 "measured" damage values corresponding to

14 separate spectra and which were computed trom a so-called "exact"
‘damage function. These 14 values were then used to adjust an a priori

damage function which can then be compared with the "exact" solution.
Figure 1.shows the results for the damage function oD(E).

A principle feature to be noted is the outstanding agreement
between the adjusted function and the exact function.for neutron ener-
gies between about 30 keV and 1 MeV where the fast spectra have a
strong response. Thermal spectra were included among the 14 fluxes
but Figure 1 centers on the higher energies. The agreement is parti-
cularly good in light of adjustments of nearly a decade. In regions
of lower sensitivity as near the edges of Figure 1, there is little
adjustment of the a priori values, a desirable feature.

Very briefly, a few of the covariance parameters used are as
follows. The 14 damage values were assumed to have an uncértainty
of 15% independent of each other. The uncertainties on the multigroup
fluxes-were typically 10-15% for the better known energy groups. No
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normalization uncertainty was assumed, and neighboring groups were taken
to be partially correlated over about *2 groups (c=0, r %.10-.15, 6=0.5,
v=2). . A priori uncertainties for the damage funct1on wgre taken.to be.
much 1arger, 1000% normalization uncertainty and 300% group-by-group
uncertainties (c=10, r_=3); although somewhat stronger short-range
correlations were assuﬂed (6=0.9, y=5). One effect of the short-range
correlations is readily discernible at the high energy-end of Figure 1
where the adjusted damage function departs in a gradua] way from the
exact va]ue

A number of features of the final uncertainties (not illustrated)
should be mentioned. Typical uncertainties calculated for the individual
groups of the final adjusted damage function are on the order of 300%
in those regions of low sensitivity to the integral damage values. This
value simply reflects the original 300% a priori group-by-group uncer-
tainty. Of course, even a single integral damage value. would suffice
to eliminate the 1000% a priori normalization uncertainty. The energy
ranges of high sensitivity to integral values are sharply delineated by
about an additional factor-of-3 reduction of the final group damage-
function uncertainties to about 100%, a value still large in the face
of the striking agreement shown in Figure 1. In part, the good agree-:
ment in Figure 1 is an artifact of an artificial problem (e.g. in
reality, exact damage values cannot be known) and illustrates the
" potential danger in using such comparisons as a means for testing the
accuracy of the final solution.. However, although the present algorithm
gives reliable uncertainties for more constrained systems or where the
uncertainties are smaller, there are indications it overestimates the -
final uncertainties in loose systems such as the present example.. Even
so, one can show by-direct-calculation that all the correlations in the
- final damage function induced by the integral values are present to the
following extent. If one computes the uncertainty in a particular
damage value from the adjusted covariance matrix, uncerta1nt1es as’

. small as the original "measured" uncertainties are obtained.. :

' FastéNeutron Spectrum Analysis

A second example we consider is the unfolding or adjustment of
fast-neutron spectra based on dosimeter and proton recoil measurements,
This example is similar in form to the previous example. It does show,
- however; how-many-channel data (in this case proton-recoil data) can
be easily included in the few-channel problem. Dosimeter reaction
rates are related to multigroup fluxes and cross sections by

R; = . ¢g 9ig (18)

where i specifies the various dosimeter foils. As an aside, we note
that thé present code can include multiple spectra (e.g. from different
locations within a reactor) at the same time as multiple foils.
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This example is based on 12 actual dosimeter measurements in the
Engineering Mockup Critical (EMC) as well as proton recoil measurements."
It was reported on earlier? but without the proton-recoil measurements
which are included directly in the analysis. here, The 12 dosimeters -
include resonance detectors, threshold detectors, and broad range detec-
tors. Dosimeter cross sections are based on ENDF/B-IV, The reported
reaction rate measurements were typically 3-6% uncertain. The calcula-
tion used to generate an a priori flux was assumed to have a normaliza-
tion uncertainty of 100c=50% and additional group-by-group uncertainties
of 100r_=30% with short-range correlations specified by ¢=0,5 and y=5,
Cross sdction uncertainties were evaluated and typically were much
smaller, The analysis was carried out in 42 energy groups and proton-
recoil measurements were.inciuded for the high-energy groups 4-22,-
Proton-recoil uncertainties were taken to be 5% with an additional 10%
overall normalization uncertainty,

Results for the neutron flux are shown in Figure 2, Rather than
pursue a detailed discussion, we draw attention.to one particular feature .
of this example. Prior to inclusion of the proton recoil results, the
neutron flux along with the multigroup representations of the 12 cross
section sets were adjusted based solely on the dosimeter reaction rates,
As shown by the dotted line in Figure 2, there was a rather noticeable
upward adjustment of the neutron flux near 20 keV, Moreover, this
adjustment was not confirmed by comparisons with proton-recoil measure-
ments. Therefore, the proton-recoil measurements were included in the -
same analysis to provide a more direct constraint on the adjusted flux,.
As seen from the dashed Tine in Figure 2, the comparatively small

" uncertainties for the proton-recoil measurements effectively eliminate

the previously noted upward flux adjustment, Instead the nuclear cross
sections are adjusted, in particular 455c(n,y) which ‘has a response in
this energy region. Figure 3 shows that the scandium cross section. had
been adjusted upward a 1little prior to the inclusion of the proton-
recoil data, But with the proton-recoil data, the adjustment is greater,

‘more than 9% in spite of .assigned uncertainties of only 6% for the . -

a priori cross section in this energy range. There is a strong impli-
cation that the scandium cross section should be reexamined.. :

Multichannel Unfolding

The FERRET code was used to reduce -data-on recent D-Li neutron
yield studies. The data reduction required the subtraction of a back- "
ground measurement from a foreground measurement and accounted for
detector response broadening, Also, although the problem was not
underdetermined as in the previous examples, important a priori infor-
mation was included: a presumed smoothness was specified by the use
of a priori short-range correlations, and conservation of energy
dictated that the neutron yield was rigorously zero above a known
energy. -The problem is summarized by Figure 4 which shows both the
experimental neutron-yield measurements and the reduced data as a
function of the neutron energy. The fluctuations seen in the measure-
ments are due to counting statistics. Relative channel 30 corresponds
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Neutron Yield Data Reduction
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to 50 MeV neutrons, and represents the highest energy for which neutrons
are emitted. 1 .

A particular advantage of the present method is apparent in Figure
5 which shows a sharp rise in the reduced-yield uncertainties above
channel 25. As the foreground values become smaller at the higher
energies (channels), one obtains the increased error associated with
the background subtraction as the background becomes increasingly
important.

Cross Section Evaluation

Figure 6 summarizes the results of an evaluation for the neutron-
capture cross section for the fission-product 109Ag. Space precludes
a detailed discussion. An important feature of this example is the
simultaneous use of different types of -integral measurements along with
direct microscopic data to obtain a final evaluation. In addition to
the m1crosco?1c data shown, integral worth measurements from several
STEK coresZ:10 and a react1o? rate measurement from the Coupled Fast
Reactor Measurement Faci]ity (CFRMF) were included. Another feature
is the use of a pointwise representation for the cross section in
contrast to the muitigroup-like representations used in the earlier
examples. It is interesting to note that the integra] measurements, in
a sense, rule in favor of the Weston microscopic measurements. The
d1fferent microscopic measurements had comparable uncertainties. A

“final point concerns the character of the uncertainties. By their-

nature, neutron-capture measurements are often subject. to overall nor- .

.malization errors. This important correlation must be included if a
- measurement with a relatively large number of data points is not to be

unduly weighted. The statistical weighting of the single degree-of-
freedom associated with normalization generates less weight than a set
of statistically-independent values.

The uncertainties are shown in Figure 6b. -For low energies, the
reductions in the uncertainties for the adjusted values are due to
integral measurements. At the highest energies, the uncertainty reduc-
tion to 12% arises from the elimination of a 40% a priori normalization
error assumed above 1 keV.

SUMMARY

The examples discussed illustrate the diversity of problems that
can be treated by the present method. Their common link is the need to
simultaneously consider integral and differential data in a.common eval-
uation, In common with a generalized least-squares approach, final
uncertainties and covariances are generated that describe the accuracy -
of the final results. Particular attention was devoted to the problem
of large a priori uncertainties for physical quantities known to be
positive. '
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