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Abstract

The subject of this paper is the development of
mathematical foundations for a theory of simulation.
Sequentially updated cellular automata (sCA) over ar-
bitrary graphs are employed as a paradigmatic frame-
work. In the development of the theory, we focus
on the properties of causal dependencies among lo-
cal mappings in a simulation. The main object of
study is the mapping between a graph representing
the dependencies among entities of a simulation and a
graph representing the equivalence classes of systems
obtained by all possible updates.

1 Introduction

Computer simulations are “composition engines”,
that compose the actions of “entities” or “actors” with
respect to a certain support-structure and are typically
used for prediction and analysis. Consequently, a key
question for a “theory of simulation” is to analyze how
this composition is actually works, meaning: how does
it depend on the actors/agents and on the actual de-
pendency structure among them? Sequential depen-
dencies, for example, are an issue in non-cooperative
game theory [16]. Accordingly the primary focus of
a theory of simulation is on the properties that result
from composition of causal local interactions among
individual entities. In order to assure generality, given
a collection of local mappings and an update schedule,
by hypothesis we assume entities to exist inherently—
whether or not the mappings are specifically associ-
ated with software agent/actors, sites in a lattice, or
otherwise. Accordingly, we make no essential refer-
ence in the theory to any particular method of local

representation in a simulation. For mathematical con-
venience and without loss of generality relative to sim-
ulation viewed as ordered composition of local maps,
in this paper we utilize sequential updates of cellular
automata (sCA) [21] over graphs as a paradigmatic
framework for locality and sequentiality. We actually
define a sCA over a graph (c.f. [23] for a similar ap-
proach that considers CA over Cayley graphs), X, by
associating to each vertex %, a state z; € {0,1} and a
local map f; defined on the states of the i-neighbors
and z;, and which returns the state y;. Application
of local maps f;, in a particular order then induces
a sequential CA (sCA) over a graph. This setting al-
lows us to express the locality by adjacency in X and
sequentiality by the different orders in which the ver-
tices can be updated. For example, update sequences
can be introduced for standard (i.e., a CA updated
in parallel according to a nearest neighbor rule and
closed boundary conditions) CA [18, 7, 1]. This yields
an sCA over Circ, (the circle graph on n vertices). In
fact, every CA (over Circ,) can be derived from a sCA
over 2n vertices.

The line of thought of the paper as it relates to sim-
ulation is as follows. First basic terminology and the
ansatz are introduced. Then the dependency graph
and its local mappings are introduced. The depen-
dency graph induces another graph (an update graph)
wherein vertices are permutations of mapping update
orders, and components imply functionally equiva-
lent update orders. Relationships between these two
graphs are proven where the dependency graph is
viewed as a random graph (a probability space) that
induces a random update graph. Hamiltonian paths
in one graph imply isolated points in the other, and a
single threshold function exists for the occurrence of
both a Hamiltonian path and connectivity in the de-
pendency graph (15, 5, 4, 3, 12]. This corresponds to
the occurrence of isolated points in the update graph.



The interpretation relevant to simulation is that if the
local mappings have more than very sparse dependen-
cies in an update time interval, then, with probability
one, unique update sequences, nearly a notion of a
specific script, will be necessary to produce a given
dynamical system. The number of components in the
update graph is studied which obviously corresponds
to the number of dynamical systems that a collection
of co-dependent mappings can generate. The existence
and the length of a path in the random update graph
U(G p) between two update orderings, e.g., update
schedules, is analyzed. In fact, this equivalence can be
tested in polynomial time. Further, the average size
of a U(G, p)-component is computed. The relevance
to simulation is that given two update orders, one can
determine if they are in the same component; that
is, if they produce the same dynamical system. We
emphasize that this determination is made based on
analysis of the structure of of the causal dependencies
among local mappings and not by measurements in the

state space of those mappings or their composition. .

Last, the update is viewed from a categorical point of
view rather than as a random variable. These results
address the essential foundational issues of computer
simulation, generation of system dynamics by compo-
sition of local maps and congruence of simulations, in
a very general way and points to strategies for devel-
opment of the theory. Full proofs of all results can be
found in [9].

2 Terminology

Let X be a finite undirected graph with vertex set
vX and edge set eX. Two adjacent vertices P,Q
are called extremities of an edge y and a subgraph
Y < X is called induced, if P,P' € vY are ad-
jacent in Y if and only if P, P' are adjacent in X.
A pathin X is a multi-set (Q1,41,Q2,---,Yn, Qn+1),
where @; € vX, y; € eX, @; and Q;, are extrem-
ities of y;. The length of a path is the number of
edges in the multi-set (Q1,¥1,Q2,.-.,Yn, @n+1); the
distance dx (P, Q) between X-vertices P, () is the min-
imal length of a X-path connecting P, Q or oo if there
is no such path. Suppose |{Q1,...,@xr}| = n; the path
(Ql;ylv Q21 ey Qﬂ) Yn, Ql) corresponds up to isomor-
phism to a graph, which we refer to as Circ,,, the circle
graph on n vertices. A graph X is called connected if
any two vertices occur in an X-path. X-subgraphs
induced by maximal connected subsets of vertices are
called components. Let Y be a subgraph of X; the set
of X \ Y-vertices that are adjacent to some vertices of
Y, is called the Y-vertez-boundary, dxY. We denote

the ball of radius k in X by
Bi(i,X) ={jldx(i,5) < k}. (2.1)

A random graph [14, 15, 5, 2] is a finite probabil-
ity space consisting of subgraphs of a base graph X.
E.g. take X = K,,, the complete graph over n ver-
tices, and consider subgraphs ¥ < X with the un-
derlying probability p,,(Y) = ple¥I[1 — p](;)—|ey|_
We denote the random graph ({Y < Ky}, ptnp) by
Ghr,p. Its elements are obtained by selecting each K-
edge with independent probability p. Let pn,q. :
N — [0,1] be probabilities. A threshold function of
a property (#) of a random graph is a probability
pr such that: for n tending to co, the probability of
the set of subgraphs having (#) fulfills a 1-0-law: for
Hmn-—)oo(‘]n/pn) = 0 : lim; 00 ﬂq,.{H t: (#)} =0
and for limpoo(Pn/gn) = 0 : limy oo pg, {H

(#)} = 1. A n-cube QF is a graph whose vertices are
n-tuples (z1,...,Zn), z; € {0,1} and two vertices are
adjacent if they differ in exactly one coordinate. We
will abbreviate almost surely by a.s. and write for func-
tions f : N R, g: N R f=0(g) iff limp,00 £

exists and lim,_;0 gg% = ¢ > 0, in particular f ~ g

for limpoo 0% = 1 and f = o(g) iff limp oo Z{2}
exists and limy,—yo0 ﬁ% = (. Further we make use of
the following result on sums of independent random
variables, Z, = Y}, z;, where each z; has values in
{0,1} [8, 2]. Then, V¢ > 03c; > 0:

pnf|Zn - E[Z,:]| > cHZ,]} < e O], (2.2)

Let S, be the symmetric group over n letters. We
write (1,2,...,n — 1,n) as id and set

VreSy: Inv(r)=[(,k)|i<k An() > n(k)}|
(2.3)

that is Inv(r) is the number of inversions of the per-
mutation 7. For a pair (i, k) with w(i) > (k) we say
(4,k) is an inversion-pair (i.p.) of  [13].

3 Sequential cellular automata over
graphs

A cellular automaton (CA) [21, 18] of size n (with
closed boundary conditions, i.e. cell ¢ depends on i — k
mod n,...,i+k mod n) is a dynamical system

9:F} - F;, gl(z1,...,za)] = (¥1,---,¥n) (3.1)



where Fy is a n-dimensional vector space over F,. The
map g is induced by parallel application of a local rule
f, that is, a mapping

FiFM W, f(@ickzn,- - Titk=n) = Ui.
(3.2)

Here, local means that the coordinate y; depends only
ON Ti—k=n,...,Tit+k=n for small k. In particular, the
locality of a nearest neighbor CA corresponds to the
adjacency relation of the circle graph Circ, with ver-
tex set {1,...,n} and k = 1. Next we define se-
quential CAs over regular graphs. In certain analogy
with a classic CA with nearest neighbor rule, where
X = Circ,, a sequential CA (sCA) is a quadruple
(X7 Fs, (fi,X):n)) where

¢ X is a regular graph with vX = {1,...,n} and
vertex degree m

e [y is the set of states of an X-vertex
o fix isalocal map: f; x :Fyt S5 K
fix(@is s i) =9 01 <dz,enyim <dmia

ix € B1(i,X) where i1,...i,,41 are X-vertices
and B1(7,X) is defined by (2.1)

e 7 is a permutation, or ordering O(7) according to
which the local maps f; x are applied.

The mapping (z;,,...,%i,,,) > ;i is referred to as
the update of ;. The local maps f; x induce maps
F; x : F3 — F3 in a natural way:

E,X((z_‘l)J) = (21, ey Ti1,Y5,Tit1,--- ,Z") . (33)

where y; = fi(zi,...,%i,,,). The induced maps
F; x : 73 = F3, F; x : F§ — F} allow the formation of
products F; x o Fj x. Now, choosing an ordering © of
the X-vertices a complete update of vX corresponds
to a product

[[Fox: B —E, S, (34)
i=1

Suppose now we have a subgraph Y < X such that
vY = vX. Although Y is not regular we can define
maps f;y, Fiy analogous to f; x, F; x if

L4 fi,Y :]FgH—l '—)F25 fi,Y($i1,---,mim+1) =Y,
11 <182y..,0m <im41, 4k € B1(4,X), and

¢ fiy does not depend on X \ Y-neighbors.

Note that in the extreme case eY = §), the maps f; y
only depend on the vertex 4 itself. In complete anal-
ogy to (3.3) we then induce the maps F;y and the
time evolution of Y-vertices is obtained by iterating
H;;l Fryy 1 ¥ — Fy, @ € S,. Each factor Fr(;) vy
is a mapping that updates the state of vertex (i) as
a function on all #(7) neighbors in Y and that leaves
all other Y-vertex states invariant.

Let us next assume that ¥ < X and F§ =
{Fy,...,Fay} are fixed. Then it is natural to ask
which permutations leave a given product [}, Fr(i)
invariant.

Given two permutations w,n' € Sy, it is important to
note that the equality

n n
1Ew=]Fo (3.5)

is due to either (a) symmetries of the maps F; or (b)
the structure of X. In this paper we will not address
(a), instead we will elaborate (b) in some more detail.
First ¥ {7r(i), ﬂ(])} € e[Y] HF"(j),y, F,r(,-),y

Fr(i)y © Fri)y # Fr(i),y © Fr(j),y (3.6)
and second V Fy( )y, Frayy : {7(3),7(5)} € e[Y]
Fr(i),y © Fri)y = Fri),y © Fr(j),y - 3.7

Taking an abstraction of this situation we may then
replace a product []7., Fr@i),y by the corresponding
permutation w. Moreover, we can introduce a neigh-
borhood relation by saying that two permutations
® = (i1,...,4n) and o' = (i},...,4},) are adjacent iff
there exist two consecutive indices ix,ir,; such that
ik = k41, tk+1 = i and §; = i}, otherwise. This ap-
proach leads to the definition of the update graph U(Y)
whose components imply certain equivalence classes of
sCA over Y. We will formally define update graphs in
the next section.

4 Update graphs

In this section (see [9] for proofs) we establish a
mapping U, that assigns to an arbitrary graph Y
with v¥" = {1,...,n} an update graph, U(Y), whose
vertices are permutations, (i1,...,%5), ix € N,. It
is straightforward to show that every tramsposition
of consecutive vertices iy, ix1 with {ir,ix41} & eV
leaves the product of arbitrary local maps [[;., Fiy
invariant.



Proposition 1 Let Y be a subgraph of a regular
graph X with vY¥ = {1,...,n} and © = (i1,...,in),
o = (i,...,i) two permutations of its vertex
set. Suppose there exists a sequence of transpositions

(Sk,St,°++ ,8n), where s = (j,j+1) and m+1 =

|(sk, 815+, 8n)|, such that
sgm = (i1, - ,ik+1,ik,"',in)=7rl
8[7!'1 = ('&i, )i}-l—l’i}, )z};) =x?
spm™ = (1,;7" . ,ihm+1’i;‘",... ’izt) = ,

with {ix,ix41}, {iL, i1 }se -, (iR} € eV Then

we have . "
H Frmy = H Fen)y -
r=1

r=1

Accordingly, our construction is an adequate frame-
work in which to study the equivalence class problem
for sCAs. We next give the formal definition of update
graphs U(Y) for arbitrary graphs Y:

Definition 1 Let Y be a graph withvY = {1,...,n}.
The update graph U(Y') over Y has vertex set Sy, and
two vertices (i1,...,in), (h1,-...,hn) are adjacent iff

37 €N, ('I:j,ij_}.l) = (hj+1,hj), tn = hm, else
Aij i1} & eY.

For a graph Y we refer to the graph having vY
as vertex set and an empty edge set as Yp. Ob-
viously, U(Yy) is a n — 1 regular graph with di-
ameter (3) and we have U(Y) < U(Yg). Further,
let Y < X be a subgraph of a regular graph X,
and let C,(.l), ® be two U (Y)-components, then
there exists a Y-edge {i,k} such that 8V -vertices
can be written as m; = (...,4,...,k,...) and C,(.z)-
vertices 72 = (..., k,...,%,...) respectively. Accord-
ing to (3.6) there exist local maps Fy,;, Fy,x such that
Fyy o Fyy # Fpy o Fyy. If, for example, all maps
F,y are bijective we conclude from this

n

n
H Fotmy #
r=1

F7I’2(T),Y *
1

r=

That is, for any two U(Y)-components, ctV , 5;2),

there exist local maps such that induced sCA over Y
w.r.t. C,(,l), 6'1(.2)—vertices are different.

Lemma 1 Let Y be o graph and U(Y) be the update
graph, defined as above. Then, U : {Y < X} —
{U(X) < U(X2)} is injective.

The assignment Y + U(Y) allows us to study the
relation between actual dependencies of a family of
local maps and the corresponding induced dynamics,
without exhaustively enumerating rule space.

A natural and general framework for this question is
to assume that X = K,,, the complete graph over n
vertices, and to consider the random graph Gnrp. U
can be viewed as a random variable over G, ,, which
induces a random graph U(G, ) as follows

U:Gnp»{UM}p), YUEY), (41)

where py(U(Y)) = pnp(Y). According to lemma 1
pu is well defined.

Proposition 2 The following assertions hold

forp=0
forp=1

In0{U(Gn) is connected } =1.
Hn,1 {eU(Gn,1) =2} =1.

These observations lead to the question: what is the
evolution of U(Y') as p increases from 0 to 1? For this
purpose it is useful to recall an important theorem on
Hamiltonian paths in G, p, which was a long stand-
ing open problem of ErdSs and Rényi [14, 15], solved
by Bollobés [4, 3] and independently by Komlés and
Szemerédi [12].

Theorem 1 Suppose p = ﬂﬂ)i“?(lﬂﬂl& with ¢ €
R, then

Hm pnp{Gnp is Hamiltonion } =e° . (4.2)

n—00

As we will see later, ’—“LL) is the threshold function for
the emergence of a Hamiltonian path and connectivity
of G, p [10, 14, 15]. Theorem 1 in particular implies
that p = %ﬂ is a threshold function for the existence

of isolated vertices in U(Ghn ).

Corollary 1 Let p = E(ML"S"(LQB—C with ¢ € Ry,
then

Ji{%o“n,p{U(Gn,p) has an isolated vertex } = e™®

(4.3)

Now we turn to the component-structure of U(Gp, p)
asptendsto 1. Again, we can report a duality between
the random graphs G, , and U(Gp, p). In this context
it is worth recalling the main epochs in the evolution
of Gnp [10, 14, 15, 5].



Theorem 2 Suppose p = £ with c € Ry, then for

c<1, nl_u)lgo Unp{all components < O(ln(n))} =1,
c=1, lim pn {3 a component > O(n?) }=1,
n—oo

c>1 lim pnp{ 3 a component > 0(n) } =1.
1-—3>00
Forp:-c-l-";(l’-Z with ce Ry
lim pin p{Gnp is connected } = ° .  (4.4)
n—oo
We can now state first properties of U:

Theorem 3 For the random graph Gpp let U(Gr p)
be the induced random graph. ThenV0 < a < 1:

n!

U(Gpp)has a component of size > 5 a.s.
2

2[1+a]p(
(4.5)

In particular, for p= o(lig—'l) and 0 < € < 1 we have

U(Ghn,p) has a giant component > [n!]'™¢ a.s. (4.6)

Proposition 3 Let the random graphs Gp, and
U(Ghn,p) be given. Then we have

pnp{m,id € U(Gnp) are connected } = (1 — p)™(™
4.7

Note that the random variable Inv : S, = Z is in

the limit Gaussian distributed with E[Inv] = 1(';—_%2

and V[Inv] ~ 2 [13]. In view of Proposition 3
this observation could allow us to derive results on
U(Gn,p)-components for p = %ﬂ and beyond. A
first result in this context analyzes the random vari-
able Cia : U(Gn,p) — %

Cia(U(Y)) = |{n | ,id are connected }|. (4.8)

Proposition 4 Let the rendom graphs G,, and
U(Ghr,p) be given. Then we have

ECia)=p " [[1-(1-p7T.  (49)
i=1

In particular we have for p = 1, E(Cia) = 1 and for
D= 0, ]E(Cid) =nl

We finally give a categorical interpretation of U:

Proposition 5 Let Y be a graph and Y° be the graph
with v¥° = {1,...,n} and eY® = eK, \ eY. Let
¢ be a surjective graph morphism, then we have the
commutative diagram

Yf —U(h)

e

Yy ————-U(Y2)
and for surjective graph morphisms ¢,v holds

U(goy) = U(g)oU(¥) (4.10)

5 Discussion

An abstraction of computer simulations viewed as
compositions of local mappings that produce global
system dynamics has been developed. This perspec-
tive allows analysis without detailed formal reference
to particular local mappings beyond the fact that they
can depend on each other. We employ sequential cellu-
lar automata (sCA) over random graphs as a paradig-
matic framework for elements of a theory of simulation
and show that dynamical systems generated by simula-
tions can be classified by equivalence classes on update
sequences. Simulation is only beginning to be seen as
an area to be developed formally in computer science,
but due to the widespread use of computer simulation,
the need for development of theoretical foundations is
recognized. The main aspects of a theory of simulation
we are concerned with here are locality and sequential-
ity. Our analysis has focused on the relation between
the basic dependency graph Y, whose vertices are up-
dated by local maps (local here being defined by the
adjacency in Y'), and its update graph U(Y) whose
components imply certain equivalence classes of sCA
over Y. What distinguishes the approach we take here
from what we see occurring in the literature might be
summarized by our specific intent to exclude any detail
from consideration of the local rules aside from depen-
dencies, the use of random graphs to broadly charac-
terize properties of simulation, the focus on generation
of dynamics as primary, and the derivation of mimicry
from the basic generative considerations. Mathemati-
cally, a rather different, but related view can be found
in Z. Réka [23], which reveals interesting insights con-
cerning simulations between CA on different Cayley
graphs. The conceptual similarity between Réka’s ap-
proach and ours consists of a recognition of the im-



portance that structural properties of the represen-
tation are influential to the generated dynamics and
that equivalent systems can be generated over differ-
ent structures under certain conditions. However, our
setting is not restricted to Cayley graphs over finite
groups and their morphisms.

We have discussed in detail how our approach re-
lates to [11, 6, 19, 22]. Moreover, it may be of in-
terest that the mathematical properties observed in
this analysis of simulation are related to random graph
models of sequence to structure mappings in bio-
molecules [17], and topics in theory of parallel com-
puting [20]. In particular our theory has interesting
implications for gene-regulatory networks, modeled by
random Boolean networks. Our results show to what
extend a specific order matters, according to which
certain genes are activated.
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