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ABSTRACT

The concept of “progressive Lattice Sampling” as a basis
for generating successive finite element response
surfaces that are increasingly effective in matching
actual response functions is investigated here. The goal is
optimal response-surface generation, which achieves an
adequate representation of system behavior over the
relevant parameter space of a problem with a minimum
of computational and user effort. Such is important in
global optimization and in estimation of system
probabilistic response, which are both made much more
viable by replacing large complex computer models of
system  behavior by fast-running accurate
approximations. This paper outlines the methodology for
Finite-Element / Lattice-Sampling (FE/LS) response
surface generation and examines the effectiveness of
progressively refined FE/LS response surfaces in
“decoupled” Monte Carlo analysis of several model
problems. The proposed method is in all cases more
efficient (generally orders of magnitude more efficient)
than direct Monte Carlo evaluation, with no appreciable
loss of accuracy. Thus, when arriving at probabilities or
distributions by Monte Carlo, it appears to be more
efficient to expend computer-model function evaluations
on building a FE/LS response surface than to expend
them in direct Monte Carlo sampling. Furthermore, the
marginal efficiency of the FE/LS decoupled Monte Carlo
approach increases as the size of the computer model
increases, which is a very favorable property.

1. Finite Element Response Surfaces based on
Global Lattice Sampling

The simple formulation underlying Finite-Element /
Lattice-Sampling (FE/LS) response surfaces is biefly
sketched here. Reference [1] contains more detailed
information. Figure 1 shows unit squares representing an
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appropriately mapped 2-D parameter space where the
mapped parameters both vary between 0 and 1, inclusive.
Various discretizations of the parameter space into finite
elements are shown. Each discretization Level is
associated with an increasing number of node or sample
points where a test is to be run or a function evaluation
(FEV) of a model is to be performed. The number and
location of sample points determine the number and
character of finite elements covering the parameter
space.

Level 1 € a bilinear global approximation based on 4
sample points (evaluations of the analytic
function) at the 4 corners of the domain

Level 2 @ one sample point is added to the center of
the parameter space, which is then subdi-
vided into 4 triangles as shown, the associ-
ated global response-surface representation
being comprised of 4 linear triangular finite

elements supported by the 5 sample points

Level 3 V¥ 4 sample points are added and the global
response surface is reconstituted as one
Lagrangian 9-node biquadratic quadrilater-

al finite element

Level 4 M 4 more sample points are added for a total
of 13, and the global response surface is re-
discretized into one Lagrangian 9-node bi-
quadratic quadrilateral finite element and 4
linear-to-quadratic transition triangles at

the four corners of the domain

Level 5 A 12 sample points are added and the global
response surface is subdivided into four
Lagrangian biquadratic elements supported

by a rectangular grid of 25 points

Level 6 O 16 sample points are added for a total of 41,
and the global response surface is subdivid-
ed into four Lagrangian biquadratic quads.,
4 quadratic triangles, and 4 linear-to-qua-
dratic transition triangles at the four corners

of the domain
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The Levels are built by adding new sample points to
the sample points of the previous Levels so that
progressive global refinement of the parameter space
occurs with a minimum of new samples. Of course, other
“Lattice” type schemes are possible, including classical
experimental design, which is also presently being
investigated. One of the nice features of Lattice-type
schemes is that they are conceptually simple and seem to
be straightforwardly extendable to arbitrary dimensions.
Other advantages of the approach are elaborated in [2].

2. Multimodal Test Function and Successive FE/
LS Approximations

In the context of reliability or failure probability
problems, a multimodal function of the random or
uncertain variables might arise, for example, in an
application involving relative times of failure of system
components that either catalize or retard potentially
catastrophic events in a nuclear power plant. Figure 2
shows various representations of an analytic multimodal
surface defined by the equation

response(pl,pZ):[O.Sr +035 sin(2.4nﬁ)][ 1.55in(1.30)]

on the domain 0< pl, p2<1

where r = J(p1)2+(p2)2, 0 = atan(i—f).

Figure 2 shows a plot of the analytic function along
with representations corresponding to the 6 levels of
parameter space resolution depicted in Figure 1. The
plots are drawn from point-to-point linear interpolation
off a 21x21 grid of samples evaluated with the various
finite element approximations. After about Level 5 (25
samples) the finite element approximations appear to
match the topology of the exact surface very well. Thus,
the “convergence rate” vs. number of analytic function
evaluations would appear to be fairly high even for this
highly varying surface. A quantitative assessment of
convergence rate is made in the next section. In using the
response surface in nondeterministic analysis or global
optimization it would seem to make sense to switch from
further global refinement to more localized refinement
after about Level 6 so that probabilities or local optima
could be most efficiently converged upon with the fewest
number of added samples.

3. Performance of FE/LS Response Surfaces on
Model Probability Quantification Problems

For Monte Carlo (MC) probabilistic analysis, the
4 prediction of physical response of deterministic

(nonstochastic) systems can be decoupled from
probabilistic Monte Carlo sampling via intermediate
“surrogate” models, such as the FE/LS global response-
surface models in Figure 1, that may run orders of
magnitude faster than full computational physics
models. Such an approach is here coined a “decoupled”
Monte Carlo approach because the Monte Carlo analysis
is decoupled from the running of the full computer model
through use of the surrogate model. Because of the
numerical noise associated with complex physics
simulations (see e.g. [3] and [4]), surrogate models can
also be much more effective in reliability-based
approaches[5] to nondeterministic analysis if they meet
certain differentiability (smoothness) criteria that can
make the optimization process in these approaches more
affordable (see [3]). The following is an assessment of
direct and decoupled Monte Carlo analysis applied to
several probability quantification test problems.

Exact and Approximate “Failure Regions”
Corresponding to Various Response Thresholds

Figures 3 - 6 show the exact and approximate
parameter  regions (shaded) where parameter
combinations result in responses that exceed the
respective threshold levels 0.2, 0.5, 1.0, and 1.5. These
thresholds could be viewed as failure thresholds, above
which the system response (say that the response
quantity is shear stress) indicates potential failure of the
system. The shaded regions are therefore referred to as
“failure regions” in the parameter space.

The test function and response thresholds prescribed
here are particularly “good” because they test a large and
diverse set of attributes of both Monte Carlo sampling
and Lattice sampling. In the upcoming quantitative
analysis it is found that the data spans a large range of
probabilities, on the orders 10'4, 10'2, 10‘1, and 1. Thus,
a large portion of the parameter space is being
investigated in this regard.

As Figure 3 shows, the 0.2 threshold generates a
failure region with very high-order geometry that
standard reliability-type methods[3] (which can be
applied to ascertain probability at this threshold level)
cannot approximate very effectively. The Finite-Element
/ Lattice-Sampling (FE/LS) methodology requires at
least 13 function evaluations (Level 4) before the
approximation begins to adequately resemble the actual
failure region.

The 0.5 threshold creates two separate failure regions
(see Figure 4), one of which is a semi-circular-like
failure “island” of high-order geometry. Because of the
disjoint regions and complexity of the geometry,
reliability-type methods are not practical for assessing
probability at the 0.5 threshold level. The FE/LS




methodology requires about 25 FEVs (Level 5) before
the approximate failure region appears to adequately
resemble the exact one.

The 1.0 and 1.5 thresholds in Figures 5 and 6 yield
failure regions that are much more accommodating to
reliability methods. The boundaries between ‘failure’
and ‘no failure’ are seemingly adequately approximated
as linear (FORM(51) or quadratic (SORM[6]) curves. As
established quantitatively below, the FE/LS approach
requires a Level 4 approximation (13 FEVs) before
convergence for the 1.0 threshold, though the 9 FEV
Level 3 approximation does an adequate job. Though the
1.5 threshold creates a failure region that would seem
from Figure 6 to be approximated adequately with 13
FEVs in Level 4, analysis reveals that for the low
probability of failure associated with this region even the
Level 6 representation with 41 FEVs does not appear to
be sufficient. Of course, problems like this will require a
transition from global refinement (like the FE/LS
procedure described here) to a more local method like
might be found in adaptive finite element meshing.
Algorithms are presently being devised and tested at
Sandia for global and local refinement and their
integration into efficient and versatile hybrid algorithms.

Model Joint Probabili Function (JPDF

The joint probability density function (JPDF) used in
the following is depicted in Figure 7. It is a truncated 2-
D standard-normal JPDF of independent normally
distributed uncertain parameters p/ and p2 with means
0.5 and truncation limits 0 and 1. The standard deviations
G are set such that truncation of the individual
distributions occurs at £30, i.e. 6=0.5/3, so that the
effect of truncation is relatively small.

Densi

Figure 8 shows convergence behavior for means and
standard deviations for pI and p2 populations ranging
from 102 to 10° samples as generated by the LHS[7]
code. The means of both parameters appear to converge
to their terminal values within about 100 samples, while
the standard deviations stabilize within 1000 samples.
(We found that double precision has to be used in the
SUN SPARCstation10 LHS computations in order to
establish convergence, as the single precision results
showed a suspicious divergent character for population
sizes 10° and greater.) The population sizes used here
extend to 10% because it was found that the probabilities
computed for some of the following test problems
converge much more slowly than the mean and standard
deviations do. Presently at Sandia the convergence rates
of moments and probabilities of such distributions are
being explored in connection with automated
convergence assessment, incremental sampling, and

adaptive termination of Monte Carlo sampling when
convergence within user-prescribed tolerances occurs.

Failure Probability Calculation Method

In the following, failure probabilities are estimated
by evaluating a particular exact or approximate response
function shown in Figure 2 at all (p],p2) parameter sets
in a given population of Latin Hypercube[7] samples.
The resulting response values are then examined to
determine the number of responses at or above the
threshold value. This number is then divided by the total
number of samples in the population to arrive at a failure
probability for the given threshold level and population
size.

Assessment of Convergence Behavior for Direct and
Decoupled Monte Carlo Sampling

In the following we will talk about both “level-wise”
convergence and Monte Carlo convergence. ‘Level-wise
convergence’ refers to the convergence of a probability
result as the number of FEVs increase through the
various FE/LS approximation Levels (while the number
of Monte Carlo samples of each response surface is the
same). ‘Monte Carlo convergence’ refers to the
convergence of a probability result as the number of MC
samples of a given exact or approximate response surface
increases.

For the four thresholds in Figures 3 - 6, failure
probabilities from decoupled (i.e. using the various
approximation Levels 1 - 6) and direct (i.e. using the
exact function) Monte Carlo sampling are listed in
Tables 1- 4 and plotted in Figures 9 - 12. All results were
triple-checked for accuracy. The abscissa values 1 - 7 in
the data represent the various levels of FE/LS response
surface approximations, with Level 7 corresponding to
the exact function itself.

Figure 9 shows the convergence behavior for the 0.2
threshold. The very prominent level-wise “adjustment”
that occurs in going from level 3 to 4 at all population
sizes corresponds to the markedly lower shaded areas in
Levels 2 and 3 of Figure 3. Level 1, though also having a
grossly different configuration from the exact region, is
fairly close in overall area, and the distribution of the
area benefits by coincidence from the circular symmetry -
of the JPDF. A general (non-axisymmetric) distribution
combined with the Level 1 approximation would
certainly not yield such close values to the exact. The
large undulation in the Lattice Sampling convergence
plot is representative of the oscillatory convergence
behavior normally exhibited by sampling methods. One
thousand LHS samples appear to be enough for MC
convergence of the exact result (Level 7), though results
at some of the lower levels of approximation take an




Table 1 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples of exact function (Level

7) and successive FE/LS Levels. (Threshold = 0.2)

Number of Latin Hypercube Monte Carlo Samples
10? 10 10* 10° 106

1 0.97000 0.97600 0.98000 0.97936 0.97899

é 2 0.96000 0.95500 0.95580 0.95602 0.95608
-g 3 0.95000 0.94600 0.94190 0.94093 0.94171
% 4 0.99000 0.98300 0.98110 0.98091 0.98112
‘:<<3 5 0.98000 0.98600 0.98440 0.98461 0.98445
% 6 0.98000 0.98600 0.98380 0.98383 0.98388
7 (exact) 0.98000 0.98600 0.98460 0.98448 0.98439

Table 2 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples of exact function (Level

7) and successive FE/LS Levels. (Threshold = 0.5)

Number of Latin Hypercube Monte Carlo Samples
107 10 10* 10° 10°

1 0.70000 0.71700 0.71070 0.71179 0.71374

é 2 0.45000 0.45000 0.44290 0.44439 0.44574
-g 3 0.46000 0.47200 0.47910 0.47671 0.47708
% 4 0.53000 0.47600 0.49570 0.49278 0.49371
% 5 0.46000 0.42400 0.46790 0.46721 0.46592
% 6 0.45000 0.42400 0.44850 0.44715 0.44587
7 (exact) 0.44000 0.42900 0.45090 0.45058 0.44921

order of magnitude more samples for convergence. The
level-wise convergence for the structured Lattice
Sampling scheme appears to occur by Level 5 (25
samples) for all LHS populations.

Figure 10 shows the convergence behavior for the 0.5
threshold. A trend of oscillatory level-wise convergence
is observed, with the Level 6 results based on 41 FEVs
being essentially converged to the probabilities from the
exact function. The FE/LS method takes more FEVs to
satisfactorily capture the complexity and multiplicity of
the failure regions for this case (see Figure 4) vs. the
simpler single region for the 0.2 threshold (see Figure 3).
For each of the global response surfaces (Levels 1 - 6) the

LHS sampling converges in about 10,000 samples,
demonstrating slight oscillatory convergence to that
point, It may be remarked that the number of LHS
samples required before convergence is established is
generally an order or magnitude greater than for the 0.2
threshold. This is probably partially a result of the
complexity and multiplicity of the failure regions and of
the fact that the total probability has decreased from an
order of 1.0 for the 0.2 threshold to the order of 0.1 for
this threshold.

Figure 11 shows the convergence behavior for the 1.0

threshold. For the relatively simple failure region shown
in Figure 5 it takes only about 16 FEVs (Level 4) for




Table 3 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples of exact function (Level

7) and successive FE/LS Levels. (Threshold = 1.0)

Number of Latin Hypercube Monte Carlo Samples
10 103 10* 10° 10°

1 9.0000e-02 6.1000e-02 6.9300e-02 6.9950e-02 7.0624e-02

é 2 4.0000e-02 4.9000e-02 4.7900e-02 4,9560e-02 4.9359¢-02
-g 3 3.0000e-02 1.6000e-02 1.4000e-03 1.4210e-02 1.3946e-02
% 4 2.0000e-02 1.2000e-02 9.3000e-03 8.2900e-03 8.1160e-03
‘?3 5 2.0000e-02 1.2000e-02 8.2000e-03 7.5800e-03 7.3930e-03
% 6 2.0000e-02 1.2000e-02 8.1000e-03 7.3900e-03 7.2140e-03
7 (exact) 2.0000e-02 1.2000e-02 8.7000e-03 7.7600e-03 7.5600e-03

Table 4 Probability of failure for various numbers of Latin Hypercube Monte Carlo samples of exact function (Level

7) and successive FE/LS Levels. (Threshold = 1.5)

Number of Latin Hypercube Monte Carlo Samples
10? 103 10* 10° 10°

1 0.0000 0.0000 1.0000e-03 5.1000e-04 5.3700e-04

é 2 0.0000 0.0000 1.0000e-03 5.5000e-04 5.4400e-04
>E—< 3 0.0000 0.0000 1.0000e-04 1.0000e-04 1.0000e-04
g_— 4 0.0000 0.0000 1.0000e-04 1.6000e-04 1.5600e-04
% 5 0.0000 0.0000 1.0000e-04 2.2000e-04 1.9400e-04
% 6 0.0000 0.0000 1.0000e-04 2.1000e-04 2.2800e-04
7 (exact) 0.0000 0.0000 2.0000e-04 2.3000e-04 2.5200e-04

probabilities of the various populations to converge
level-wise. Though the failure region is much simpler to
resolve than for the 0.5 threshold above, 10,000 LHS
samples are still required before MC convergence
occurs. This is presumably because, though the failure
region is easier to resolve in this case, the probability
level drops to the order of 0.01.

Figure 12 shows the convergence behavior for the 1.5
threshold. For the very simple triangular failure region
shown in Figure 6 the results are not yet quite converged
even by Level 6 for most MC populations. Though the
triangular failure region is seemingly very easy to
resolve, even very small changes in the approximation

can affect the number of LHS samples falling inside the
region, and since the total number of samples falling in
the region is relatively small (probability is on the order
of 0.0001 for this case), a small difference in the number
of samples falling inside it can have a large relative
effect. The effect is particularly accute at the lower levels
of approximation, where small inaccuracies in the size of
the region (see Figure 6) contribute to relatively large
percentage changes in its size and therefore in the
number of samples falling within its boundaries. The
convergence of LHS sampling is also not as fast for this
case as for the other cases. The results using the exact
function (Level 7) do not seem to have converged even




with 10° samples, though some of the other Levels look
converged at this number of samples. The reason for the
slow Monte Carlo convergence is of course the very low
probabilities involved.

Efficiency Comparison of Direct and Decoupled
Monte Carlo Sampling

Toward a valid comparison of the convergence rates
of direct and decoupled LHS Monte Carlo approaches,
the following reasoning was used to establish a basis for
comparison. Over the convergence plots Figures 9 - 12, a
population size of 10,000 samples in all cases gives
nearly the same probabilities as those obtained with
1,000,000 samples. Therefore, for convenience, 10% is
taken as the convergence limit of population size for
these problems. Assuming that each sample takes 1
second of CPU time (which is actually about 2 orders of
magnitude longer than we experienced running the FE/
LS INTERP research code on these 2-random-variable
problems), we arrive at a total execution time of 2.78
hours. Now, let us also assume that we have a large finite
element model that takes an average of 2.78 CPU hours
for each function evaluation in our problem. Therefore,
to achieve a Level 1 decoupled Monte Carlo (10,000
sample) estimation of failure probability, we add the time
required for the 4 FEVs in Level 1 to an equivalent 1 FEV
of CPU time required to sample the Level 1 response
surface 10,000 times via the INTERP code. Thus, the

total equivalent CPU time for the analysis is 5 FEVs. We
can then compare the results of 5 FEVs used in this
manner to the results of using 5 FEVs in a direct Monte
Carlo evaluation of probability. Likewise, a Level 6
analysis requires 41 + 1 = 42 FEV, which we can
compare against direct Monte Carlo evaluation with 42
samples. Now, if the finite element model only takes an
average of 1 CPU minute to run, a similar accounting
shows that a Level 1 evaluation requires 4 + 167 = 171
FEVs, while a Level 6 evaluation requires 41 + 167 =208
FEVs.

We see that for decoupled Monte Carlo analysis at a
given FE/LS approximation Level, the equivalent
number of direct MC samples decreases as the CPU time
of the involved model increases, e.g. from 171 to 5 and
from 208 to 42 when model FEV increases from 1 CPU
minute to 2.78 CPU hr. Therefore, everything else being
equal, relative to direct Monte Carlo analysis the
marginal efficiency of the Finite-Element / Lattice-
Sampling  decoupled Monte Carlo (FELSDMC)
approach increases as the size of the finite element model
increases, which is a very favorable indicator for the
FELSDMC method.

The absolute efficiencies of the direct and decoupled
LHS Monte Carlo approaches can be compared for the
parameters of the present problems by examining
Figures 13 - 16. The abscissa in the plots are mapped in
Table 5 to equivalent numbers of FEVs. The circles on

Table 5 Mapping of abscissa in Figures 13 - 16 to equivalent numbers of function evaluations

Equivalent Number of FEVs
DMCEFELS w/ direct LHS DMCEFELS w/ direct LHS
10* 1-sec. MC (2.78 hr. CPU 10* 1-sec. MC (Imin. CPU
samples model) samples model)
1 5 5 5 171
2 6 6 6 172
) 3 10 10 10 176
&
» 4 14 14 14 180
5 26 26 26 192
6 42 42 42 208

the plots mark data generated by the FELSDMC method.
The triangles on the plots mark data generated by direct
Monte Carlo sampling where it is assumed that the
model takes 60 times as long to run as the response
surface approximation does. The X’s on the plots mark

data generated by direct Monte Carlo sampling with a
model assumed to take even 60 times longer still. In all
cases (for all functions and threshold or probability
levels), the FELSDMC method converges fastest toward
the “exact” result obtained from 10,000 samples of the




analytic function. The next fastest convergence rate
occurs for direct MC sampling where FEVs are assumed
to take 1 CPU minute (relative to 1 CPU second assumed
per run of the INTERP code). Despite the slower
convergence, the equivalent computational costs shown
in Table 5 are from 5 to 43 times the cost of the
decoupled Monte Carlo approach. The slowest
convergence occurs under the assumption that FEVs take
2.78 CPU hours each, in which case the direct Monte
Carlo equivalent costs shown in the table are from 2% to
25% more than decoupled MC even though convergence
is much slower. The data also suggests that the
convergence advantages of the FELSDMC method
become more pronounced as the magnitude of the
probability being resolved decreases. This is to be
expected for the smooth, non-stochastic, low-order
functions tested here.

4. Conclusion

Data presented here and elsewhere for other model
problems[1] indicates that geometry and topology
convergence in the Finite-Element / Lattice-Sampling
scheme (i.e. level-wise convergence) occurs with orders
of magnitude less samples than it takes for LHS Monte
Carlo sampling to converge to a probability estimate. In
all cases the Level 6 results based on 41 samples
approximate the “exact” results of Level 7 extremely
closely. That is, running any nondeterministic analysis
method off of the Level 6 response surfaces would yield
essentially the same results as running the method off the
exact function itself. In fact, when a complex finite
element model is used as the “exact” function, running
derivative-based optimization and reliability methods off
the actual model might actually be worse than running
off an appropriate FE/LS representation because of
stochastic numerical noise associated with large
mechanics simulations (see e.g. [3] and [4]).

Certainly, the indications here are that, assuming it
takes orders of magnitude more CPU time to run a
simulation with the phenomenological model than to run
the FE/LS surrogate model (which will usually be the
case), the decoupled Monte Carlo approach with Finite-
Element Lattice-Sampling response surfaces can require
orders of magnitude less computer time overall than
direct Monte Carlo analysis with the phenomenological
model itself - with no appreciable loss of accuracy.
Furthermore, the marginal efficiency of the FELSDMC
approach increases as the size of the computational
model increases.

Therefore, the cumulative experience to date
suggests that when estimating probability with a Monte

Carlo approach, it is much more efficient to expend
computer model function evaluations on building FE/LS
response surfaces that to expend them in a direct Monte
Carlo simulation.
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Figure 1: 2-D Lattice Sampling Levels and associated discretization of the parameter space.
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Figure 4: Parameter space “failure regions” (shaded) for exact and approximate response surfaces and a response
exceedence threshold of 0.5.
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exceedence threshold of 1.5.
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probability density
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Figure 7: Joint Probability Density Function describing the random variables in the problem: normally distributed

parameters p] and p2 with means 0.5, std. deviations 0.167, and trunctation of the unit square parameter
space at 30 above and below the means.
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Figure 8: Convergence behavior of means and standard deviations of LHS-generated populations from the above

JPDF for 100 to 1,000,000 samples in decades
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probability

Figure 9: Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice sampling for a
threshold of 0.2.

probability

Figure 10: Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice sampling for a
threshold of 0.5.
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Figure 11: Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice sampling for a threshold
of 1.0.
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Figure 12: Convergence behavior for LHS Monte Carlo sampling and Progressive Lattice sampling for a
threshold of 1.5.
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0.2. 0.5.
Accuracy of Various Direct and Decoupled LHSMC Schemes Accuracy of Various Direct and Decoupled LHSMC Schemes
Function 1, threshold = 1.0, e4 LHS samples Function 1, threshold = 1.5, e4 LHS samples
007 . : ; : @ ; : : .
_ L A O
----------- —O10 .4 FFLSDMC samp!es, 1 CPU sec/sample-----~ G—0 10"4 FELSDNC samples, 1 GPU sec./sampl
%—-X equiv. direct MC sampling, 278 CPUhr/FEV| | L deeeaooao T 070 AP he FEV|- -~ -~
L ) ’ =X equiv. direct MC sampling, 2.78 CPU hr/FEV
005 b\ A—Aequiv. direct MC sampling, 1 CPUmInFEV | |A—A equiv, direct MC sampling, 1 CPU min JFEV
. ——= 10"*4 MC samples (FEVs) of exact function 0.0007 f--{-------- ——- 10**4 MC samples {FEVs) of exact function |-~~~
Z - N U
3 5
a2 a2
g S 00005 | --m-mmmmmmm o m s
o o
T T
e L . e R P L e R T TR P TR :
g g
3 =
3 T <
6] Q
00001 ------=- \\> o 6 o 9
# * 3 *
_0.01 1 1 1 1 _0'0(x)1 L 1 1 i
1 2 3 4 5 6 1 2 3 4 5 6
Sampling Stage Sampling Stage
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and decoupled Monte Carlo Latin
Hypercube Sampling for a threshold of
1.0.
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