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THE GEOMETRIC PHASE IN QUANTUM PHYSICS*

A. BOHM

The Physics Department
• The University of Texas

Austin, Texas 78712-108I, USA

, 1. Introduction

The geometrical phase has been ignored in quantum physics for half a century. It
had not been forgotten, but it had been shown by V. Fock in 19281) that the extra phase
factor which occurs for time-dependent Hamiltonians can be chosen to unity. Though
Fock's proof was limited to non-cyclic evolution, this phase choice was generally used
until around 1980 when, Mead et al. and Berry reconsidered cyclic evolutions.

Cyclic evolutions can occur if one considers a quantum physical system in a peri-
odically changing environment. This environment can be classical (magnetic moment
in a precessing external magnetic field) or quantal ( a fast moving electron in the slowly
changing quantal environment given by the collective motion of the molecule as _ whole).
The importance of the quantum geometric phase and the gauge potential connected with
it was discovered in 1978 in molecular physics by Mead et al2) based upon some earlier
observations by Herzberg and Longuet-Higgins. 4) The motion of the molecule is natu-
rally divided into two "parts", the fast motion of the electrons and the slow collective
vibrations and rotations of the molecule as a whole. 3) In the past this problem was
treated in the following way: One first investigated the motion of the fast variables
considering the slow variables as fixed parameters. After the dynamics of the fast vari-
ables has been solved for all values of these fixed parameters, one turns to the dynamics
of the slow variables. In this treatment the division into the slow and the fast mov-

ing parts is trivial. These are the ideas that underly the molecular Born-Oppenheimer
approximation. 5 If one does not consider the nuclear coordinates R as fixed parameters
but as quantum observables whose (eigen)-values change (e.g. rotate) in time, then the
gauge potential emerges naturally from the Born-Oppenheimer method. 3)

Conceptually simpler is the discussion of Hamiltonians which depend upon slowly
changing parameters. This was done in 1983 in a beautiful paper by M.V. Berry 6) for
any quantum system in a slowly changing ("adiabatic") classical environment. Inde-
pendently he arrived at the same ("Berry") gauge potentials and ("Berry") phase that
were derived from the Born-Oppenheimer method by Mead. T)

It is easy to show in general that exact adiabatic cyclic evolutions do not exist; s) the
Berry phase (and the Berry potential) is only an approximation of the geometric phase
of real cyclic evolutions. This quantum geometric phase was introduced by Anandan
and Aharonov in 1987. 9)

The geometric phase has observable consequences in many problems of physics
" and chemistry, l°) This is one reason why it has become an important subject. But

the geometric phase is also one of the beautiful examples of what Wigner called "the
unreasonable effectiveness of mathematics in natural sciences." Immediately after Berry#

* Lecturesat the NATO-ASI on RecentProblems in MathematicalPhysics, Salamanca,Spain,June#
1992. ""_



introduced his phase Simon 11) noticed that it is the holonomy of fibre bundle and that
the gauge potential is the connection of this bundle. And it was this relation to the
beautiful mathematics of fibre bundles which caused the geometric phase to become
a fashion in mathematical physics. When fibre bundles were created and when the
mathematics of the mliversal classifying bundles was developed, one had no idea that
this could have anything to do with a quantum mechanical phase factor which could
be measured in an interference experiment. The Stiefel connection of the universal
classifying bundle was the "natural" mathematical object to define. It is incredible that
this mathematical entity is exactly the vector potential whose integral over a closed
path of states gives the Anandan-Aharonov 9) phase with the Berry _) potential as its
limiting case and that this connection is related to the vector potential which would be
discovered by Mead 2) in the molecular structure.

In addition to its usefulness for physical applications and its attractiveness for the
mathematical formulation, the geometric phase also teaches us something new about
the meaning of understanding in science.

Understanding means the separation of complicated physical systems into simpler
subsystems, the parts. In classical physics, separation into parts usually means reduction
to the simpler objects, the constituents. In quantum mechanics the "parts" are described
by subspaces of the Hilbert space 12) though these subspaces do not have to represent
constituents (they may, e.g., represent collective vibrations or rotations as in the Born-
Oppenheimer method), s) The dissection of complicated quantum systems results in the
trivial direct product of the states for the subsystems and the combinaton of two parts is
given by the direct product of the Hilbert spaces for the parts (if the parts are (identical)
particles the many body Hilbert space is the (symmetrized or antisymmetrized) tensor
product of the one-particle Hilbert spaces).

In contrast to this quantum mechanical hypothesis, the geometrical phase -- if
it is non-trivial -- shows that a part of the complicated physical system is not what
one trivially expects. The fast motion effects the slow moving part and modifies its
dynamics such that the many body Hilbert space is not always the tensor product of
the parts.

In this review we shall discuss only quantum systems in a classical time-dependent
environment. Quantum systems in a changing quantal environment, that appear in the
dissection of complicated quantum systems into their parts are discussed in a number of
publications.2) 3) With a few exceptions 13) they are restricted to molecular physics. 14)

Our presentation in sections 2 and 3 does not make use of differential geometric
notions, like fibre bundles, but it uses some of its nomenclature. Section 2 is restricted
to the adiabatic approximation and discusses the general abelian case. In section 3 we
discuss the standard example in detail but in greater generality than usual. We start
with the adiabatic approximation in section 3.2 and then introduce the geometric phase
for non-adiabatic change of the environment (Anandan-Aharonov phase). * In section
4 we discuss general cyclic (non-adiabatic) evolution. We introduce the mathematics of
fibre bundles and use some of its results to describe the relation between the adiabatic

Berry phase and the geometric phase for general cyclic evolution of a pure state. In this

* Sections 2 and 3 are based on Chapter XXII of the 3rd edition of the book in
reference 14, which contains details of the calculations.
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review we restrict ourselves to the abelian, U(1) phase. These results generalize in a

j straightforward way s) to states with H-fold degeneracy (using a U(Af) phase15)). Some
features of these concepts also extend to cyclic evolutions of states described by density
operators. 16)

I
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2. Quantal Phase Factors for Adiabatic Changes
The observables of a quantum system which is not isolated from its environment

are described by operators that depend upon parameters R = (x,y...). We assume
that the parameter space is a differentiable manifold and the observables, in particular
the Hamiltonian h(R), are nice (continuous, infinitely differentiable) and single-valued

• functions on the parameter space M. These parameters R (which we also write as R
if we want to suggest that it is a three-vector) describe the classical environment in
which the quantum physical system is immersed. If the physical system is in a quantal
environment then the parameters are (generalized) eigenvalues of the observables of
the quantal environment (like e.g. the position operator of the internuclear axis of a
diatomic molecule).

An exara_le of a quantum physical system whose Hamiltonian depends upon en-
vironmental parameters is a (quantum) magnetic moment m in a rotating (classical)
magnetic field B of constant magnitude B _ lbl. The parameter dependent Hamilto-
nian is given according to (IX.3.1) 1) by

H = Ho- m. B = Ho- Bg2-_ccR'J = Ho + bR.J (2.1)

Here H0 is the Hamiltonian without the magnetic field, which we shall ignore. The
quantum system's magnetic moment is given in terms of its angular momentum operator
J according to (IX.3.18) 1) by

e

m -- &_mcgJ , (2.2)

/_(t) -- B/B is the unit vector pointing in the direction of the magnetic field, and

b = -Bg(_m_ ) is a constant. The parameter dependent term of the Hamiltonian is
h(l_) - bl_-J and the parameter space of the environment is the unit sphere (1_; I1_ -

1}. We can use as the parameters the polar angles R -- (_, ¢) of the unit vectors 1_.
The evolution of states of the quantum system in the external environment is

described by the Schr6dinger equation

.d_p(t)
=

(if the state is pure and described by a vector _(t), and for general states described by
the statistical operator W(t) the evolution is given by the Schr6dinger-von Neumann
equation

dW(t)
i d---'_ = lh(R), W(t)] (2.3b)

This is the generalization of a basic postulate of quantum mechanics for conservative
systems. 2) The evolution of states of the non-conservative system is determined by the
dynamical equation (2.3) and by the environmental process, i.e., by the way in which

" the environmental parameters R change. For a given physical situation, the way in
which the parameters change, i.e., the path in the environment's parameter space, must

• be specified. In specifying the environmental process it is usually convenient to give
the environmental parameters a time parameterization R(t) = (x(t),y(t),...). One
then obtains from h(R) a time-dependent Hamiltonian h(t) = h(R(t)). In our example
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(2.1) the environmental processes are described by how the direction 1_ of the magnetic

field changes. The direction of the magnetic field may changfl periodically; e.g., it may
perform rotations in the 1-2 plane with angular velocity w, R(t) = el coswt - e2 sinwt,
or it may run through other closed paths C in the parameter space. In this case the
Hamiltonian h(t) = h(R(t)) returns to its original form as time progresses from t = 0
to the period t = T = 2_r/w.

We postulate that the space of physical states does not only contain the solutions
of (2.3) for one given fixed value of the parameter R or for one given environmental
process t _ R(t) but for all values R E parameter space M. This means that there
is one space of physical states 7_ for all values of R. For any given value of R, one
may choose an orthonormal basis of eigenvectors In; R) of the parameter dependent
Hamiltonian h(R),*

h(R)ln; R.) = E_,(R)In; R),

(m; RIn; R) = 6m,,_, (2.4)

and write the Hamiltonian according to its spectral resolution (I.4.10d): 1)

h(R) = _ E,_(R)In;R)<n;R [. (2.5)
n

Given any environmental process along with a time parameterization R(t) one obtains
from the parameter dependent Hamiltonian h(R) in (2.5) a time-dependent Hamiltonian
h(t) = h(R(t)) along with its spectral resolution (of 1.4.10d):

h(R(t)) = _ E,_(R(t))ln;R(t))(n; R(t)l. (2.6)

The projection operators

h,_(R(t))- In; a(t))(n; a(t)[

change in general with time.
We have assumed that the observables are single-valued as functions of R over the

whole parameter space of the environment. Single-valuedness of the observables means
that if the same value of R occurs more than once (i.e., at different times) during a
process, then the observables are the same at each occurence. In particular, if the
environmental process is closed, i.e., if the environmental parameters R(t) traverse a
closed path C and return, after some period T, to their original values,

C" R(0) --. R(t)--. R(T) = R(0), (2.7)

* We assume here, for simplicity, that the spectrum of h(R) is discrete. If in addition to h(R) other
observables Ai(R), i = 1, ..., N - 1 are needed to form a c.s.c.o, for any given value of R, then
their eigenvalues ai(R) will also be needed to label the basisvectors In; R) = [n, al,..', aN-l; lt).



then the Hamiltonian and also its eigenvalues and projection operators, which are
uniquely defined by (2.5), are the same at R(T) as they are at R(0)"

h(R(T)) -- h(R(0)), (2.8)

E_(R(T)) = E,(R(0)), (2.9)
d

In; R.(T))<n; R(T)I = In; R(0)><n; R(0)I. (2.10)

, Though the observables are single-valued functions of R the basis vectors n; R) them-
selves will in general not be single-valued functions of R over the whole parameter
space. Usually it is necessary to use different parameterization over different patches of
the parameter space. For the example h(R) = bR(8, _). J this means that the vectors
in, R(_, qo)}are different functions of the polar angles (0, _) for different patches of the
unit sphere, as explained in detail in section 3, (cf. equations (3.11) and (3.19)). Thus
in general (2.10) will not imply

In;R(T)} = in;R(0)> for R(T) = R(0) (2.11)

but only

In;R(T)> =e_¢"ln;R(O)> for R(T)= R(0) (2.1la)

where e_¢" is a phase factor, because the In; R} are determined by (2.4) only up to
a phase factor. We can define a new system of eigenvector In; R) by making phase
transformations (also called gauge transformations as shall be explained below),

In; R> --, in; R)' = e_¢_(a)[n; R), (2.12)

where the (,, (R) are arbitrary real phase, angles. Any such basis constitutes just as valid
a basis of eigenvectors of the Hamiltonian as the In; R}.

We will restric_ ourselves to transformations for which the phase factors e i¢-(R(t))
axe single-valued functions. Only these are called gauge transformations.

In general, if we go from one patch O1, C M of the parameter space into a neigh-
boring patch O2 c M with a different parameterization, then eigenvectors of h(R) in
the overlap region R E O1 _O2 are related by the gauge transformation (2.12). We will
assume however that the closed path C of (2.7) can always be placed into one single
patch O C M and the basis vectors can be chosen to be single-valued functions. We
shall then choose for the basis vectors single-valued functions over parameter space so
that (2.11) is fiRfilled. The gauge transformation (2. L2) will transform single-valued
basis vectors into vectors which are also single valued.

So far we considered the observables (the [n;R(t)) axe also observables), which
change in time due to the change of the enviromnental parameters. We now want to
consider the states W(t), or the pure states ]_b(t)}(_(t)] (which can also be described
by the state vector _(t)). The states evolve in time due to the Schr6dinger or von

• Neumann equation (2.3).
The time evolution can also be described by an operator U'(t) (which is unitary

• duc to the hermiticity of h(R(t)) = h(t))

¢(t) = Ut(t)_(0), (2.13)

......... _ ._ _ .=u_wn==m= , , , mni_mummummmunmnj,nnnuinmmmn$=
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which fulfills as a consequence of (2.3) the integral equation

/0'Ut(t) = I - i h(t')Ut(t')dt '. (2.14)

An expression for Ut(t) in terms of h(t) is then given by successively substituting the '
right-hand side of (2.14) for the U t (t) that appears in the integrand:

lj_ot (1)2_0t jfot'ut(t) = I + - dt'h(t') + - dr' dt"h(t')h(t")vt(t '')z i

,. 1/o* /o*= -z dt'h(t') + z dt' dt"h(t')h(t") +... (2.15)

/o"*+ _ dtl dt2.., dt, h(tl)h(t2).., h(t,_) +....

Note that the operators appearing in the integrands have decreasing time arguments
reading from left to right, t > t' >_ t" ___0; t _>tl _>t2 _> ... > t,_ > 0, and that their
order is important since they do not in general commute:

[h(t),h(t')] _ 0 for t' ¢ t. (2.16)

For the case that h(t) commutes at different times,

[h(t),h(t')] = 0 for all t,t', (2.17)

the order of the operators in (2.15) is not important and it can be shown (Problem 2.1)*

U*(t) = _ _. dtl.., dt,_h(tl).., h(t,_) = e . f£ at'h(t'). (2.18)
n---O

According to (II.4.45a), 1) (2.17) means that the projection operators
A,_(R(t)) = In; R(t))(n; R(t)l commute:

[h,,(R(t)), i,,,(R(t'))] = 0 for aU n, n' and t, t'. (2.19)

Together with the assumed continuity of the A,_(R(t)) this means that the projection
operators and eigenspaces of h(t) axe in fact time-independent with only the eigen-
values E,_(t) depending upon time. The projection operators may then be written as
A,_(R(t)) - An -In)(ni with time-independent vectors In). The resulting spectral res-
olution (2.6) of h(t) may then be used in (2.18) to give the following spectral resolution
ofu*(t).

ut(t) = Z e. fo I. (2.20)

* Problem 2.1. Show that (2.18) is obtained from (2.15) if (2.17) holds (cf. e.g. rcfcrcncc 3).

|IlllIIIIIllI1 IIIIIIIIIllIIlIInl11111IIIlIIIIIIIIIIIIlllIIIIIIllIII11IIIIIIIIIIIllIIIIII III11IIIIIIIIIII IIIIIIIIIIIIIillll



(If the eigenvalues are also independent of time, i.e., if the Hamiltonian is time-indepen-
dent, h(t) - h, then (2.19) goes into the standard expression for conservative systems

(XII.I.16) I) ut(t) = e_,_h). But for general time-dependent Hamiltonians, if (2.16)
holds, (2.14) cannot be integrated. (Formally one obtains the time-ordered product of
the expression on the right-hand side of (2.18) 3) but this is not of much practical value).

" We now solve (2.3) under various approximations. We use the initial condition that
at t -- 0 the state is an eigenstate of h(R(O)) with energy E,_(R(O)) which means

= In; R(0))(n; R(0)[ or _b(0) =[n; R(0)) (2.21)

The second form of this initial condition follows after fixing an arbitrary phase factor
to unity. First we consider R - "fixed" parameter (This is the assumption that has
been used for the old Born-Oppenheimer approximation in molecu'lax physics). Then
the solution of (2.3) with (2.21) is

,/.,(t) = e-iE"(R)tln; R) = e-iE"(a)t_b(O) (2.22)

Essentially the same result we obtain if R(t) changes, but only in such a way that (2.17)
is fulfilled. Then (2.20) with the initial condition (2.21) gives immediately:

' -_foa_'E.(a(_'))_b(t) = e-' fo dt'F_"(R(L'))[n; R(0)) = e ¢(0) (2.23)

We now consider the less drastic a_umption, called the adiabatic approximation. 4 For
a Hamiltonian h(R(t)) whose parameter change in time the interaction with the en-

vironment can cause the physical system to jump from the n-th eigenstate at t = 0
into all other eigenstates [m,I:t(t)>(m,R(t)[,m # n at a later time t. A very particulax
situation arises if this is not the case and if the state remains an eigenstate of h(R(t))
at all time t with the same energy quantum number n. This means that [_b(t)}(¢(t)[
changes in such a way that at all times t

adiabatic

[lb(t)> (_b(t)[ £ [n; R(t)> (n; R(t)[ = A,(R(t)) (2.24)

This time-development is called adiabatic time-development. It represents an approxi-
mation not a limiting case. States which do not change in time, i.e. for which

[_b(t)><¢(t)[ = [_P(0)>(_b(0)[ for allt, (2.25)

are called stationary states. Clearly the solutions (2.22) and (2.23) describe stationary
states:

[_b(t))(¢(t)[ = [n;R(O)>(n;R(O)[ (2.26)

One can show that stationary states of conservative systems are always energy eigen-
. states, cf. (XIT..1.41)(XII.1.44). 1 For general time-dependent Hamiltonians this is not

the case. The _ssumption of adiabaticity (2.24) is a generalization of the assumption
that the state is stationary (2.25). Because A,,(R(t)) changes in time, the adiabatic

' state W(t) = lC(t)) (¢(t)[ of (2.24) changes in time, whereas the stationary state (2.25)
does not change. The state (2.24) will always be the n-rh eigenstate of h(R(t)) but its
eigenvalue E,(R(t)) may change in time; and even if that happens to be not the case
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than n; R(t))(n; R(t)l can still change. The path t _ I¢(t))(tb(t)l of (2.24) describes a
curve in the set of projection operators ]tb(t))(_p(t)l whereas the path of (2.25) consists
of one point.

The set of one-dimensional projection operators W(t) = I_p(t))(¢(t)l of the Hilbert
space 7-/ is denoted by 7_(7_). It is the projective space of (pure) physical states. The
adiabaticity assumption (2.24) then means that if R(t) traverses through a path in
the parameter space M then the pure state _P(t))(tb(t)l traverses through a path of
Hamiltonian eigenstates t _ A,_(R(t)) in/'(7-/). In particular if R(t) traverses through
the closed path C of (2.7) in the parameter space M then because of (2.10) the pure
Hamiltonian eigenstate traverses through a closed path

adiabatic

C' A,_(R(0))= W(O) _ W(t) --, W(T) £ A,,(R(T))- A,_(R(0)) (2.27)

If the eigenprojectors traverse a closed path C in 7_(7"/) then the eigenvectors In; R(t))
traverse a closed path in 7-/

Iu; R(O)) _ In; R(t)) ---, In; R(T)) -- In; R(O)) , (2.28)

because these basis vectors had been chosen to be single-valued functions in the patch
that contained the closed curve C of (2.7).

That W(t) = [_(t))(¢(t)[ traverses a closed path in the state space "P(7_) does not
necessarily mean that the normalized state vector _(t), which fulfills the SchrSdinger
equation (2.3) also traverse a closed path in 7-/. In general the path

C • t_(t) 0_<t___T ; (¢(t),¢(t))=l (2.29)

is not closed in 7-/but fulfills

_p(T) = e-'_*tb(0), (2.30)

For the case of a time-independent Hamiltonian (2.22) or for (2.23), the phase factor is:

e-iaq, _ ¢-iE,_T or e_ia_ _ e-_ fo at'E_(,') (2.31)

which is called the dynamical phase factor.
We will instantly show that in case of a time-dependent Hamiltonian h(R(t)) there

is in general an additional phase factor which is called geometric phase for Berry phase
(We shall in general use the term Berry phase for the geometrical phase obtained in
the adiabatic approximation (2.24) only). But before we derive the geometric phase we
want to discuss the meaning of the adiabatic approximation.

The dynamical equation (2.3) and the adiabaticity assumption (2.24) axe two sep-
axate conditions on the state I_(t))(_(t)l and may, therefore, not be compatible with
each other. This is indeed the case, which can immediately be shown by inserting (2.24)

into (2.3b):
dW(t)

i dt = [h(R(t)), W(t)] = [h(R(t)), A_(R(t))] = 0 (2.32)

which means that W(t) does not change in time

W(t) -I_P(t))(tb(t)l = ]_(0))(_(0)J = W(0) (2.33)

, . ii iPipr . , . i, ,a , , lp a
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This means that any adiabatic evolution (2.24) of a state (which obeys (2.3)) must be
a stationary evolution (2.25) and cannot be a non-trivial cyclic evolution

W(O)- W(t)---, W(T)= W(O) (2.34)

_-__,_ . for which W(t) changes in time.
It is, of course, not clear that for a given Hamiltonian h(R(t)) there exist at all a

---_, cyclic solution (2.34) of the dynamical equation (2.3) But it is plausible that for a peri-
-__i m

__ odic Hamiltonian, i.e. a time-dependent Hamiltonian fulfilling (2.8), there exist some (a
__ countable set of) cyclic solutions fulfilling (2.34) (In section 3 we shall demonstrate this

statement by an example). However, e_ we have seen from (2.32), these cyclic solutions

--_::__ cannot be Hamiltonian eigenstates A_(R(t)). Exact adiabatic cyclic evolutions do not
=--- adiabatic

-- exist. The adiabatic equality _ in (2.24) can only be an approximation, not a lim-
iting case (except for T --, oo when the time-development becomes stationary and the
evolution a trivial cyclic evolution (2.25)). Nevertheless we can use the approximation
(2.24) and determine the adiabatic geometrical phase or Berry phase.

To do this we expand _(t) with respect to the basis system In; R(t))"

¢(t)= _-'_c,_(t)lm;R(t))= _o_(t)e.foE"(¢)d¢lm;R(t)). (2.35)
--- W_t Ftlt

- In the second equality we have separated the dynamical phase of the expansion coeffi-

cients cn(t). For the special case (2.24) of the adiabatic approximation the expansion
(2.35) becomes

--="lR

adiabatic t

_ _(t) _= c_(t)ln, R(t)) = e . fo E"(¢)aCan(t)ln , R(t)) (2.36)

where because of (2.21)
an(0) = 1 (2.21')

This is not an equality but an approximate equality which we indicate by the qualifi-
-_ cation "adiabatic" at the equality sign. Inserting (2.36) into the SchrSdinger equation

(2.3) and using (2.4) we obtain after a little calculation

-- d_d #r d In;R(t))),an(t) = _(t) = -an(n; R(t)lk_ _ (2.37)I

_-- This can be integrated:

--= f0 t df_.(t) da. _ (n;R(t)l_ [n;R(t)}dt (2.38)Ja,_(0) an

- " and leads with !2.21 _) to:

= The coefficients c_(t) and an(t) in (2.36) axe phase factors (their absolute value is one),
because ¢(t) is obtained from !h(0) of (2.21) by a unitary time-development (2.13) and

I ii I , , , i , , ' _1 ' I I r7 li , q in I , , i I , _ _ , n , , , I piN I' I
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is therefore a normalized vector. This justifies the definition of "Yn(t)as a real phase
angle by (2.39). Note that %=(t) is only defined up to a multiple of 21r.

The phase angle %_(t) is defined in terms of an integral over a vector valued function

A"(R) - i(n; R IVln; R) (2.40) .

which is called the Mead-Berry vector potential or the Mead-Berry connection. 5 lt is
defined as the scalar product of the eigenvectors of h(t) and its derivative with respect
to the parameter R, _7[n; R>. For the definition (2.40) of A(R) one uses single valued
basis vectors only. As a single-valued In; R) can in general not be found on the whole
parameter space but only on open subsets (patches) the same is true for the A(R). * We
will discuss this problem in detail for the example (2.1) in section 3. Here we will assume
that the curve C lies in one of these patches and that the In; R) are single-valued. The
integral

fo fR(t) 0
d In; R(t))dt = i(n; R(t)l In; R(t))dR i

= i<n;R(t)l  R(o)
(2.41)

R(t) A'_(R) dR_ / A n= fJR(0)R(t)i(n;R(t)ldln; R(t)) = fJR--(0) -

is independent of the parameterization as expressed by the third term of (2.41) as line
integral of a differential along the curve t --, R(t).

For the sake of simplicity we have so far pretended that the environmental param-
eter is a three-vector R, then a differential one-form is defined by

0

A" - i(n; R']_-R-71n; R')dR _ = ATdR _ = i(n; Rildln; R_), (2.42)

where A_ are the components of the three-vector (2.40). In general the parameter space
is (assumed to be) a differentiable manifold and R_; i = 1, 2,... f; are its arbitrary (local)
coordinates. The differentials dR _ are covariant vectors and form a basis dual to the

basis _, of contravariant vectors and A_ - i(n; Rid[n; R) is a differential one-form
independent of the parameterization. 6) The expressions for the phase angle %_(t) thus
apply also to an f-dimensional parameter space in which case the Berry vector potential
A_ is an f-dimensional contravaxiant vector.

Returning to our calculation of ¢(t) we obtain by inserting (2.39) into (2.36) for
the state vector in the adiabatic approximation with initial condition (2.21):

adiabatic

q)(t) £ e_" ft E,(t,)dt,e_.t,,(t)ln; R(t)) (2.43)

In addition to the dynamical phase factor (2.31) one obtains thus the phase factor e i_-(t)
given in terms of the eigenvectors of h(R(t)) by (2.41).

According to (2.12) the In; R(t)) are only determined up to a phase factor. Thus,
the additional phase factor in (2.43) can be transformed away by a phase transformation.

• ltis, therefore,alsocalleda localrepresentativeoftheMead-Berryconnection.



13

From the requirement that the (eigen)vectors _b(t) have the least possible oscillatory be-

havior, Ilaa-_ttll = rain, Fock 7) derived in 1928 the condition (n;tldln;t) = 0 which-
according to (2.41) -- leads to the phase choice of unity for this extra phase factor.
Though Fock did not consider cyclic time change as in (2.7) or (2.27), (2.34) his phase
choice was universally accepted, and the extra phase factor was ignored for half a cen-
tury. In the following we shall first show how % can be eliminated and then discuss
that it can in general not be eliminated for cyclic processes.

' From the definition (2.40) it follows that under a gauge tranformation (2.12) the
Berry vector potential transforms like:

AN(R) _ Am(R) = i(n; RI'(X71n, R)')

= i (n, Rle-i¢"(R)(v ei¢"(R)]n_ R))

= i (n; R[V[n; R) + ie-i¢"(a)(_7 ei¢_(R))
or

A"(R) ---- A"(R)- V¢,(R). (2.44)

Thus

= Rcn)A"(R)dR-. A' (R)dR = "y,,(t)- + = -/(t)
_,,(t) Jn(o) ¢n(o)

(2.45)
We shall now do the calculations that led to (2.43) using the In; R)' in place of the
In; R). Then we obtain (2.43) with the primed quantities on the right hand side. Then
using (2.12) we obtain for the primed quantities:

ei_'_C_)ln, R(t))' = ei_'_C_)ei¢_(aC_))tn;R(t)).

If (,,(R(t)) is an arbitrary single-valued function modulo 21r we can choose it such that
the phase factor ei_'(t)e i¢_(a(_)) becomes unity and we obtain in piace of (2.43).

_(_) __ g i f: E,,(t')dt'lTt, R(_)) • (2.46)

This also fulfills the initial condition (2.21). Since In, R)' is as valid a basis system
(fulfilling (2.4)) as is In, R), we can use it and thus describe the time-developement of
the state vector by (2.46) with the dynamical phase factor only. This is Fock's result, z)

The above arguments made use of the fact that (,_(R(t)) was arbitrary. If after
some period T the environmental parameters return to their original value as for the
closed path C (2.7), then one cannot choose (n(R(T)) freely to remove %,(T).

Since ei¢_(R) is a single-valued function of R we must have for R(T) = R(O)

e i¢'(R(T)) = ei¢_(R(°)) or (,.,(R(T)) = (n(R(0)) 4- 2r. integer. (2.47)
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Therefore according to (2.45)

%,(T) ---,7_(T) - __ Am(n)dl:t = -y,(T) - 21r. integer
dC

(2.4s)F

= J_c A_(R)dR- 27r.
integer

Thus -y,(T)- which is only defined modulo 2_r- is an invariant of the gauge transfor-
mation (2.12) and can therefore not be removed. We therefore have

_(T) = e-' f_ d_E"(_)+_'_"(T)ln;R(T)) (2.49)

with the %,(T) given by the loop integral over the closed path C of (2.7):

/o 0 /o%,(C) _=%_(T) = i(n; RI -'_'_ln; R)dR _ = A"(R)dR modulo 2r. (2.50)

If we insert the initial condition (2.21) and (2.11) into (2.49) we obtain

¢(T) = e-' for dt_;.(,)e,_.(C)¢(0). (2.51)

The phase angle %,(T) is called the Berry phase angle, e _'y'(T) is called the Berry phase
factor.

We have shown that for a closed path the extra phase factor cannot be transformed
away. This does not mean that _(C) could not be zero. Indeed this will turn out to
be the case for many Hamiltonians h(R). In this case the vector potential A'*(R) need
not be zero but will be trivial, which means given by

A'_(R) = V_(R) =-ie-i¢(R)Ve_¢(R), (2.52)

where ¢(R) is a well-defined function of R. Then, according to (2.44), it can be trans-
formed to zero by the gauge transformation with e -i¢(R). The cases that we are inter-
ested in are those for which the Berry phase is different from zero. The Hamiltonian
(2.1) is such a case, as we shall discuss in detail in the next section.

From (2.44) we see that the Berry vector potential transforms under the phase
transformation (2.12) like the vector potential of electrodynamics transforms under a
gauge transformation. The set of phase factors e_¢_(R) form the group U(1), they are
continuous, differentiable, single-valued functions of the parameters R. We therefore
have here a gauge theory with gauge group U(1) and gauge potential A'_(R). This is
the re,on for which we call the phase transformation (2.12) a U(1)-gauge transforma-
tion. Whereas A'_(R) is not an invariant with respect to a gauge transformation but
transforms like (2.44), the Berry phase is gauge invariant. Precisely, the phase factor
e_ (T) is U(1) gauge invariant and the phase angle %_(T) modulo 2_r is U(1) gauge
invariant (it is only defined modulo 21r). If the parameter space is three-dimensional
and the parameter R = R is the three-dimensional coordinate vector then we have
complete analogy with the electromagnetic theory. However, the physical meaning of
these quantities is different, because the gauge potential (2.40) is defined in terms of
the eigenvectors of the Hamiltonian and has nothing to do with electromagnetism. For
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an f-dimensional parameter space we have again a U(1)-gauge theory, but the gauge

transformations and gauge potentials now depend upon an f-dimensional parameter R
and the Ai(R); i = 1, 2,... f, consist of f components. It is called a U(1) gauge theory
over an f-dimensional base (= parameter) space.

In analogy to electrodynamics we can define a gauge field

0 0

F_'_= _-_A_ 0RJ A_' i, j = 1, 2,... li; (2.53a)#

or (if R is a 3-vector),
F '_ = V A A '_. (2.535)

The corresponding 2-form is:

i:3A_ i 1F,_ijdRi A dR j (2.53c)F" = dA '_ = --_.-_dR A dR j = -_

This gauge field F'_ with A '_ given by (2.42) is also called Berry curvature. From (2.44)
it follows immediately that the gauge field - like in every abelian gauge theory - is gauge
invariant:

F '_ ---,F ''_ = V A A '_ = F '_ (2.54)

In formula (2.50) Stokes' theorem may be used to convert the line integral over the closed
path C in the environments parameter space into a surface integal over any surface S
enclosed by the path C. For 3-dimensional R this is:

_.(T)=_..A_(a)at=ff ds(v̂ A-) mod2_, (2._)
S

and for an f-dimensional parameter space

/o ° -/o-IIII .%,(T)-- i(n;R[ _ [n;R) dR _ = dA n= F _ mod2r (2.55')
S S

S is the surface that subtends C and dS denotes the surface element in parameter space.
The direction of dS is normal to the surface S and the line element dR of C is traversed

in the right-hand sense with respect to the normal.
Using (2.42) in (2.55') we can express _(T) also in the form

ff =f n,dl ;al) mod 2_r, (2.56)7,_(T)
_g

$

or for the 3-dimensional case

ff ds.r = ff ds, v Rlvi ;R/).%,(T)
qJJ

S
i

I
i t_I_1 ' ,,, ',',,tri,,n , ,,,*_1 1'
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We have added mod 2r in these equations because 7,, (T) is defined only up to an integer
times 2_r. In these integrals the Berry curvature is:

F" = i (d(n; R[) A din; R> = - Im d (n; Rid[n; R>

In, R> dn' A dR y , (2.57)

or for the three-dimensional case

F _ = -Im(V(n; R[) A Vln; R>. (2.57')

Equation (2.56 _) shows that the Berry phase %,(T) is analogous to the magnetic flux of
the electromagnetic theory.

To see how non-trivial phases arise when two energy levels become degenerate for
some values of the parameter, we express the Berry curvature in terms of the eigenvalues
E,(R). We continue the calculation of F in (2.57). Inserting the complete basis system

1= _ lm;R><,,;RI (2.5s)
m

we obtain

F" = -Im _(V<_; RI)lm;R>̂ <,,;RIVI_;R>
m

= -Im(n; R[V[n; R> A {n; R[V[n; R>

- Im_ <,,;RIVI-,R>̂ <,,;RIVl-;R>.
m_n

The first term is zero because (n; R[V[n; R> is purely imaginary. In the second term we
use

1

(m;RIV[n;R>= (m;R[(Vh(R))[n,R} E_(R)-E,_(R) for n#m (2.59)

which can be easily proven (problem 2.2). * Then we obtain

F'* = -Im _ (n; ai [Vh(R)] lm, R) A (m; ai [rh(R)] in; R> (2.60)
,,#,, [E,(R) - Era(R)] 2 '

and the Berry phase angle is given in tems of this quantity:

7,(C) = _ dS F"(modulo 27r), (2.61)
J_g

S

where S is any surface in the parameter space which subtends the closed curve C (we
write tb2s also as C = OS and call i)S the boundary of S).

The form (2.60) does not contain any phase factor of the basis vectors lm; R).
Whereas (2.40) is only defined for single-valued In, R> and can therefore be defined only

• Problem 2.2. Show that for the eigenvectors In; lt> defined by (2.4) the relation (2.59) holds.
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on a patch where single-valued n; R) exist, the formula (2.60) can also be used for an
area where single-valued In; R) do not exist.

The formula (2.60) also shows that the singularities of F '_ occur at those values of
R = Ro where the eigenvalues are degenerate E,_(R0) -Em (R0).

We conclude this part with the following remark: The Berry phase (2.50) has
been calculated with single-valued basis vectors In; R} fulfilling (2.11). If we use in-
stead vectors fulfilling (2.1la) (which may have their origin in non-single-valued phase

' transformations e i_" (R(T)) ._ ei¢,,, ei{,, (R(O)).

In; R(T)> = ei¢"(R(T))ln; R(T)> = ei¢"ln; R(0)>)

then there will be again an extra phase factor for _(T) which is now given by

-i_j d_IE,_ i .__(T) = e (t)e,._.(C)e,¢.¢(0)

where %,(T) is the phase calculated from (2.50) with the In; R> replaced by the In;'-R>.
This phase angle; calculated with the non-single-valued basis vectors is not the Berry
phase angle; the Berry phase angle is now given by %_+ _,. The Berry phase is thus
only defined by (2.50) if the basis vectors are single valued.

From the above formulas we see that %_(C) is independent of how the closed loop
C is traversed (provided it is such that all our conditions are fiffilled, which means for
the case under consideration, that the loop is traversed slowly enough for the adiabatic
approximation (2.24) to hold). The Berry phase angle "_,_(T) thus does not depend upon
the dynamics of the quantum system or upon the details of the environmental changes.
It only depends upon the path C (with the provision of adiabaticity) and is thus a
quantity determined by the geometry of the parameter space. It is therefore called the
adiabatic geometric phase. Later we will also consider non-adiabatic cyclic evolutions
and shall reserve the name geometric phase for the non-adiabatic generalization of the
Berry phase %,(C).

l_-
J

i

'1 '1! r,
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3. A Spinning Quantum System in an External Magnetic Field
3.1.The Parameterization of the Basis Vectors

Inthislecturewe willdiscussindetaila quantum particlewithmagneticmoment

m =/zsgJ in an external magnetic field, B(t) = BR(t) whose direction R(t) is chang-
ing periodically. In particular we will consider the case in which the magnetic field
direction precesses around the 3-direction. If the direction rotates slowly ("adiabati-
cally") this system provides an application of the general ideas presented in section 2.

. The Schrhdinger equation for a magnetic moment in a precessing magnetic field has
been solved exactly. 1) Therefore we need not restrict ourselves in this example to the
adiabatic approximation and will obtain the non-adiabatic (Aharonov-Anandan) geo-
metric phase. 2) With the help of this example we will then introduce in section 3.4 the
non-adiabatic geometric phase for a general cyclic evolution. 3)

The Hamiltonian is given according to (2.1) by:

h(R(t)) = -Bg 2-_cR(t).J = bl_(t).J (3.1)

where J is the angular momentum operator of the quantum physical system, l_.(t) is
the parameter that describes the changing environment, and b - -Bg2- _ is a constant.
( _2m_ = _B is the Bohr magneton and g is the Landd factor of the quantum paxticle, b
is a frequency and b/(-g) - wL is called the Larmor frequency).

The parameter space of the environment (the set of all R) is the unit sphere in
two-dimensions, 8 2. We parameterize 8 2 by the polax angles (0, _0) according to

(sin Oc°s _°) O-<O<-_r (3.2)
l_ = 1_(0, _o)= sin Osin _o , 0 < _o< 21r"

COS 0

This parameterization associates unique values of the pair (0, _o) to each unit vector 1_.
except for the unit vector

(o)e3 _ 0 (3.3)

i

ofthe northpoleand the unitvector-e3 ofthe southpole.e3 and -e3 axe given,
respectively,by 8 = 0 and 0 - 7rforallvaluesof_ointherange0 <__ < 27r;the value

of_ isnot determinedwhen I_--:i:e3.

I 'lr llqlI I] ' '' ..... 'lP " _ ' 'Iii'' _, pl ....
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The special case in which the magnetic field precesses uniformly about the 3-axis,
is described by

B(t) = B(sin8 coscvt, sinOsinwt, cosO) = BR(8,wt) (3.4)

with B, 8 and w = _/t being constants.

The precession of the magnetic field is shown in Fig. 3.1. For t = 0 the magnetic
field lies in the 1-3 plane

B(0) = B(sinO, 0, cosO) = (Bl2,0, B3) -- BR(8, 0)

Figure 3.1 also shows the angles (8, _) and a new angle _ which we will define later.

e3

B (0).-'" B (t)

J

el

Figure 3.1. A quantal magnetic moment in an external magnetic field precesses uni-
formly around a cone of semiangle 8 with e3. (8, _) are the polar angles for the rotation
of the external magnetic field. (8, _o) axe the "polar angles" for the evolution of the state
of the magnetic moment.

The eigenvectors (2.4) for this example are given by

h(R)lk; R(8(t), _o(t))} = bl_. JIk; RI = bklk; R) (3.5)

II1'



21

They are eigenvectors of the operator l_(t). J. The piace of the energy quantum number
n in (2.4) is taken here by k which is the quantum number for the component of angular
momentum along the changing direction of the external magnetic field.

The eigenvalue Ek(R(t)) = bk of the time-dependent Hamiltonian h(R(t)) is for this
• example a constant, but the eigenvectors In; R(t)> and the eigenprojectors Ak(R(t))=

Ik; R> (k; RI change in time. The eigenvalue k is a constant but its physical interpretation
changes in time, it is the value of the observable l:t(t).J where the direction R(t) changes

• with respect to the laboratory frame (which is the observable given by the direction en).
If the vectors Ik; R> are also eigenvectors of j2, then the possible values of k are

given by

k = -j, or -j+l,..., or +j; where j = integer or half integer (3.6)

and j(j + 1) is the eigenvalue of the angular momentum j2. We assume here that j and

any other additional quantum numbers, which may be connected with the eigenvalues
of the rotationally invariant part H0 of the total Hamiltonian H t°tsl = Ho + h(R), have
fixed values and we suppress them throughout the current discussion as labels of the
vectors Ik; R>.

But it may also be that the Ik; 1_} are not eigenvectors of j2 and thus do not have a
definite value of j associated to them. This kind of vectors will be needed in the example
of a diatomic molecule where k is the eigenvalue of a quantum mechanical observable
X • J. The quantum mechanical observable X is the position operator (direction) of
the internuclear axis of the molecule, which rotates in space. This observable describes
the slowly changing quantal environment for the electron. The electron is the fast
quantum system that follows instantaneously the motion of the molecule as a whole.
The electronic angular momentum is not a good quantum number, because one does
not have spherical symmetry but only axial symmetry about the internuclear axis X.
So the total Hamiltonian commutes with X. J but not with j2 (j being in this case
the electronic angular momentum or electronic spin) and the molecular states are not
j2 eigenstates.

In this case the possible values, that k can take, axe not given by (3.6) and 2k need
not have a priori an integer value. We shall, however, see below that also in this case
one can prove that k must be an integer or half integer. Thus k can be interpreted as
the component of angular momentum along the changing internuclear axis.

The vectors of (3.5) are parameterized by the unit vector 1_, or by the polar angles
(0, _). They can be obtained by applying (0, _)-dependent rotations to an eigenvector
Ik; e_} of the component of angular momentum in the direction of the north pole, J3 =
03" J.

There are many (8, _)-dependent rotations T_(0, _a)ESO(3) which when applied to
e3 give the arbitrary unit vector 1_(8, _). We choose the product of rotation*

n(o,  )e3 = n3( )n2(O)T 3(- )e3 =T 3( )ZC (0)e3= 0)
" = 1_(_, _o) (3.7)

• Problem 3.1. Show that the rotation T_(0, _) defined by (3.7) transforms the vector e3 repre-

sented by (3.3) into the vector R(0, _) represented by (3.2). Use the standard representation matrices
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where _3(--_) does nothing to the unit vector e3 and where 7Z2(8) produces the unit
vector 1_.(8,0) which lies in the 1-3 plane at an angle 8 with respect to the e3-a_s. The
rotation 7Zz(-_a) has been included in the definition of ?Z(8, _) in order for the rotation
7Z(0, _) to be independent of _.

Rotations, like any other continuous transformations, are represented in the space
of quantum physical states by unitary operators (representing the group SU(2)). The
unitary operators that represent the rotations 7Z3(_) and 7Z2(8) axe given by

U3(_) = e -'vg3 = I + _ J3 + -'J3 +"" (3.8/i '

U2(8) = e -_°J_ (3.9)

and an analogous expression holds for rotations about the el-axis. The product of two
or more rotations is represented by the product of the corresponding operators. The
rotation 7Z(8, _) of (3.7) is thus represented by the operator

U(8, _p) "- U3(_p)U2(8)U3(-_) -- e'-i_J3e-igJ2e i_J3. (3.10)

We now choose a fixed normalized eigenvector Ik; e31 of e3. J = R(0, 0). J and
apply to it the unitary operator U(8, _). The resulting vector

Ik; 8 _) ---- U (8, _)lk; e31 = e-i_J_ e-i°J2 e_J3 ]k; e31, (3.11)

is an eigenvector of the operator 1_.(8,_). J with eigenvalue k"

1_(8,_). J Ik;8,_) = k Ik;8, _). (3.12)

To prove (3.121 one has to use the following transformation property of the angular
momentum operators J_ which follow from their commutation relations: 41

e -ioJ2 J3e _OJ2= J3 coso + J1 sinS, (3.13)

e -i_J3 Jle i_J3 = J1 cos_ + J2 sin _. (3.141

e -i_J3 J2e _J_ = J1 (- sin _) + J2 cos_ (3.15)

for and72(8):

_a(_o) = sin_o cos_o 0 , 7Z2(0) = O 1 0
0 0 1 -sinO 0 coso

(Note the change in sign for the angle 8).
Problem 3..f2. Find a rotation7U (0, _) which has the following properties

i. lt transforms e3 into the vector 15_(8,_).
ii. The rotation 7Z_(8 = Tr,_) is independent of _.
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The vector (3.11) is a (continuous, differentiable) vector-vallled function of (0, _). This
vector-valued function gives a unique vector for all 1_except for the south pole 1_ = -e3.
At the south pole, 0 -- Tr, (3.13) becomes

e-i+rJ2J3ei+rJ2 = --/3 (3.16)
which implies

, e-i_rg2e-i_Jae i_rJ2 = e_Ja • (3.17)

and may be used to obtain

[k; "lr_) = e-i_PJse-i_J* ei_°Ja [k; ft3)

= e-i_rJae 2i_Js [k; es)

= e-i_J2e 2ik_ [k; ca). (3.18)

This shows that at the south pole different vectors of the unit ray axe obtained as
vaxies in the range 0 <__ < 2_r. _ also varies in the range 0 _ _ < 2r at the north
pole e3 = R(0, _) but [k; 0, _) is single-valued at the north pole because [k; 0_) does
not depend upon _ as a result of the inclusion of the rotation 7_3(-_o) in the definition
of 7_(0, _). [k; 0, _) is thus a single-valued vector function everywhere on 3 2 except on
the south pole.

A vector-valued function which is well-defined at the south pole but not at the
north pole is obtained by a gauge transformation (2.12)"

Ik; 0, _o)' = e-i2k_[k; 0, _o)= e-_Jae-i°J2e -i_pJ3[k; 0, 0). (3.19)

The new vector [k; 0, _)' differs from [k; 0, _) by the gauge transformation ei¢(°,_) =
e -i2k_'. At the south pole [k; 0, _>Pevaluates to a single vector

Ik; Tr,_)' = e-i'_J2[k; e3) (3.20)

but at the north pole it evaluates to many vectors

[k;0, qo)' = e-2_k_[k; e3) (3.21)

It therefore can be used everywhere on 8 2 except on the north pole. Either vector (3.11)
or (3.19) can be used in the overlap region of the two open patches which consists of S 2
with both poles excluded.

The vector [k; _r, _0)_ is an eigenvector of ,/3 with eigenvalue -k and an eigenvector
of l_(Tr, _) •J = -ca •J = -J3 with eigenvalue k (Problem 3.3). *

We thus see that two different para:,_etrizations of [k; 1_) are needed. Since [k; 0, _)
and [k; 0, _o)_ differ only by the phase factor e -i2kw the projection operators and sub-

. spaces are, however, the same:

= ik;O,o)' (3.22)

• Problem 3.3. Show that thevector (3.20) is an eigcnvectorof Ja with ¢igcnvalue (-k) and an
¢igenvector of h(R(O = Tr,_o)) fulfilling (3.5).
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3.2 Berry Connection and Berry Phase for Adiabatic Evolutions-
Magnetic Monopole Potentials
We now calculate the gauge potential (Mead-Berry connection) for the adiabatic

evolution of the Hamiltonian (3.1). The easiest is to calculate it as the one-form

Ak'k(R, ) k'k , 0
= A, dR = i(k';RJl-_-_ Ik;R3)dR '. (3.23)

i

As the vectors (3.11) and (3.19) axe paxameterized by the angles 0, _ we will use for R _
the polar coordinates: R = (r sin 0 cos _o,r sin 0 sin _o,r cosO).

We axe mainly interested in the diagonal matrix elements A kk = A k but include in
our derivation also the off-diagonal matrix elements without much additional effort.

If dR _ are the cartesian components, then Aik'k are the cartesian components of the
vector

Ak'k(0, _o)= i(k';O_olValk; O_o)

= (k';_aiUt(O'_°) e_r +_°-r "_ + e_'sinO0_o U(O'_°)lk;e3}
^klk _k' _k I

= e_A_ (O,_o) + _oAo k(O,_o) +_,A_ok(O,_o). (3.24)

_, _o, _, axe the unit vectors along the r-, O- and _o-direction respectively and the

standard form for the vector V has been used. _i, ,4o, A_, are the spherical orthonormal
components of A. As Ik; 0, _) - g(o, _)lk; _a) is independent or r

fik'.e --0 (3.25)r

The connection 1-form therefore is

Ak'k(O, _o) -- AordO + A_rsinOdqo
0 O

= i(k'; O,_oI -_ Ik; O,_o)dO+ i(k'; O, _ol_ Ik; O, _o)d_o
k'k

= A_'kdO + A_ d_ (3.26)

where Aok'k Ak'k, .__, are the spherical covariant components of A.
It is easiest to calculate the covaxiant components and then _ if one wants to ---

obtain the spherical orthonormal components from comparison of the first and third
row of (3.26).

We first use the vectors (3.11). In this gauge we obtain

0 0 U(O,_)Ik; _a>- rti0 (3.27)A_ 'k = i(k'; O,_lNIk; 0,_) -- (k%aliU*(0,_)N
and

Ak'k = i(k'O, _1 0 0
_-_lk; O,_o>= (k'; _a iUt(O,_o)-._U(O,_o)Ik;_a>- r sin 0_._(3.28)
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We calculate:

OU (8, %o) = ie_i_j3 eiSj2 ei_ja 09 e_ioj2 ei_j 3
iU t (0, _o) O0 O--Oe-'_'J3

-- e-i_Ja J2ei_J3

= (J2cos_o- J1 sin_o) (3.29)
and

, ou(e, )
iUf(O'_°) O_o = [Vt(O'%°)JaV(O'_°)-Ut(O'_°)V(O'_°)J3]

= [-(J1 cosp+ J2 sin_o) sin0 + Ja(cosO- 1)]. (3.30)

Inserting this :ato (3.27), (3.28) we obtain:

A$'k(O, cp)= (k'; fia[(J2 coscp - J1 sin_o)lk; _3) (3.31)

Ak_(,9,_o) = (k';6a[ [-(Jt cos_o+ J2sin_o)sin0+ Ja(cGs0- 1)] Ik;_3>. (3.32)

For the diagoaal matrix elements, 31 and J2 do not cJntribute so that we obtain

A_(0,_o)= 0, (3.33)

Ak(O, _o)= (k; _31Ja(cosO - 1)lk; e3> = -k(1 - cosO), 0 _ _r. (3.34)

Thus the vector potential A has only a component in the _-dirtztion which is given by:

k(cosO- 1) 0 _ lr. (3.35)Ak(O,_o) = _ rsin0 '

We now calculate the connection using the vector-functions In; 1_)' of (3.19) which are
single-valued everywhere except the north pole. We obtain in a similar way as above

A_'k(O, _o)= (k'; _al(_ cos _ - J1 sin _o)[k;63)', (3.36)

Ak'_(0, _o)= (k'; 63[ [-(J1 cos_ + J2 sin _o)sin0 4- Ja(r_osO- 1) + 2 k] Ik; e3) (3.37)

The diagonal matrix elements are:

A'ok(O,_)=0, (3.3S)
_k

A_ (0, _)= (k; e3[ [Ja(cosO - 1) + 2k] Ik; e3) '= k(cos0 -_- 1), e _ 0 (3.39)

and the vector potential is given by:

A'k(0, _o)= _ k(cos0 -b 1) 0 _ 0 (3.40)r sin O

• According to the general theory of section 2 we expect from (2.44) and (k =- -2k_o:

A 'k - A k = -al(k(0, _o)= d(2k_) = 2kdcp (3.41)

or for the vectors

A 'k --A/_ = -_7(k = 2k 1
r sin 8 e_. (3.42)
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Comparing (3.39) with (3.34) we have indeed A_ - A_ = 2k in agreement with (3.41)
and (3.42).

We now calculate the Berry curvature. According to (2.53c):

Ek =dA k OAk OA_
= 0"7 d_oA dO+ _ dO A d_o (3.43)

where we have already made use of (3.25). Using (3.33) and (3.34) we obtain

F k = -k sin 0 dO A d_ =_Fok_odO A d_. (3.44)

Thus except for the component

F_ = -F_o = -ksin0 (3.45)

allsphericalcovariantcomponentsofF0 arezero.

We now use (2.55)to calculatetheBerryphaseanglefora closedpath C on the
unitsphere£2:

= £ A =ric

mod..
S S S

where S is the surface (any surface) which spans the closed curve C (i.e. for which C
is the boundary, C=OS) and where df_ is the solid angle element (area element of the
unit sphere). We will denote by f_(C) the solid angle that C subtends:

a(c) = fs sinOdO A
d_o. (3.47)

Then (3.46) can be written

"yk(C) = -kf_(C) mod 27r. (3.48)

According to (3.46) S is the surface that lies above C when one traverses the curve C

(the direction in which C is traversed points along the fingers and the normal of S, i.e.
the direction of dO A d_o points along the thumb of the right hand; cf. Fig. 3.2). Now
let us consider the surface S' below C. Then again

S# SI £:_\ S

where the direction of the normal of S' and the direction in which C is traversed are

again given by the right-hand rule. This means that the normal of S' points into the
sphere £2, (C = OS') and the normal of S points out of the sphere £2, (C = OS). In
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the equation (3.49) we denote by $2\S the surface with the same area as S' but whose
normal points out of the sphere S 2. We rewrite (3.4a) in the form:

As the integral of d_ over the whole unit sphere is 4_" and the integral over S is given
, by (3.47)we obtain:

-yk(C)- +k (4_r- _(e)) modulo 27r (3.50)

From this we conclude that k is integer or half integer, because from comparing (:3.50)
and (3.48) it follows

-km(C) = 4rk- kf/(C) mod 2_r (3.51)

which can only be fulfilled if

1 3

k - 0, :i=_ ± 1,±_,=i:2. • •. (3.52)

If the basis vectors (3.11) and (3.19) are also eigenvectors of j2 then the possible
values of k are already obtained from (3.6). But if these vectors are not J2-eigenvectors

as is the case for the molecule- then (3.52) is a new result. 5)

dS = dad
S

C

dS

C
S 2

S l

Figure 3.2. The difference of the line integrals of A and A' can be transformed, using
Stokes' theorem, into an integral over the closed 2-surface S U S'.

1
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So far C could have been any closed path on the unit sphere. For the special path
given by (3.4) and shown in Fig. 3.1.

Cz " R(O(t), _(t)) = R(8 = const., _ = wt) (3.53)

the Berry phase (3.48) is

0"yk(Cz) = -k sin OdOd_a= -k27r(1 - cos 0). (3.54) .

where 8 is the constant angle sl.own in Fig. 3.1. We shall use this expression below
when we consider non-adiabatic cyclic evolution.

If Fo_ - -F_o is the only non-zero spherical covariant component of F then the

only non-zero spherical orthonormal component is F0_ = -P_0. The 2-form F is given
by

F = Fo_dO A d_ = -ksinOdO A d_v = _'o_(rdO)(rsinSd_) = F. dS,

and we immediately read off the value of F0_:

_k k R(0, _) (3.55)._o_=-_ or F= r2fr=-r- _

where fir is the unit vector in the radial direction which we had denoted by R(0, _).
The gauge field (3.55) has a very familiar form, it is the form of the magnetic

field of a monopole. An imaginary electromagnetic system, with the vector potential
given by (3.35) or (3.40) and the magnetic field given by (3.55), had been envisioned
by Dirac more than 50 years ago 6 and has intrigued several generations of theoreticians

and experimentalists. 7 It consists of a charge e and a magnetic monopole with magnetic
monopole strength g with the vector R pointing from g to e. The magnetic field B m°n'

of this charge-monopole system is given by eB m°n' - e _ lk- _ and the electromagnetic
vector potential eA ro°n" is given by (3.35), (3.40)) with k _ -_-_- For this magnetic41r'

monopole the field and the vector potential are supposed to be electromagnetic.
If one such magnetic monopole exists with magnetic charge g, then all electric

charges must be multiples of 2r/g because k is integer or half integer according to
(3.52). This would be a remarkable explanation of one of the basic facts in nature.
Unfortunately, in spite of all efforts, such electromagnetic type of monopoles have never
been found.

The field F of (3.55) and the vector potential A of (3.35) and (3.40) are not elec-
tromagnetic in nature. They have their origin in a quantum system spinning with fixed
angular momentum component k around the axis R(t). The analogy between classi-
cal mechanical systems of this type and the charge-monopole system has been known
for some time. s) The Hamiltonian h(R(t)) of (3.1) also appears for quantum systems
in a quantal environement, e.g. for diatomic molecules, because there is a magnetic
field in the direction of the internuclear axis l_(t) which changes while the molecule as
a whole rotates. As a consequence, the fast (electronic) motion about the body axis
"induces" the gauge potential (3.35), where k is the "fast" angular momentum along
the internuclear axis. So the dynamics of the collective motion contains the monopole

vector potential (3.35). (The canonical momenta: Pi of the collective motion go into the
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gauge-covariant momenta Pi --* Pi - Ai). As a consequence, the effective Hamiltonian
of the slow collective motion (the quantal environment) is governed - in addition to the
radial potential - by the monopole vector potential. 9) But this is not an electromangetic
vector potential because the electromagnetic constant _ is replaced by the motion con-41r

stant k. Thus there "is'" a "motional monopole" in the molecule. But it cannot come
out of it because the monopole is the consequence of the fast (electronic) motion which
is the other part of the molecule, without which it cannot "be".

. The Mead-Berry potential of the molecule can be derived directly from the SchrS-
dinger equation of the molecule if one does not make the drastic assumption of the
Born-Oppenheimer approximation. 9) The same arguments should hold for any other
quantum physical system that can be visualized as a spinning bead which can slide
along a rod that rotates slowly in space.

ii,
i II'", IIT_...... ,, ....... ,,,_,,, ' ' '_ 'lr ...... _'11 '_'ir , iii,,' n ,I
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3.3 The Exact Solution of the SchrSdinger Equation
So far we have not discussed the time evolution of a state vector _b(t) for our

example (3.1), i.e. the solutions of the SchrSdinger equation

•Oq/ = h(t)¢(t) ; h(t) = bIt.(O,wt). J (3.56)

In particulaw we are interested in solutions which describe cyclic evolutions (2.34)"

I¢(T))(_b(T)[ = I¢(0))(¢(0)[. (3.57)

The period T in here could be any time period. In the adiabatic approximation T would
be given by T = 2___IM

It is not clear that solutions of (3.56) exist which fulfill the condition (3.57), however
for a periodic Hamiltonian, like (3.1), we would expect that solutions with the same
period exist. In addition we shall see that other cyclic evolutions exist and that even a
time-independent Hamiltonian can have cyclic states.

We start with the adiabatic approximation and obtain the expression for the state
vector by inserting the results, in particular (3.54) and (3.5) into (2.43)

adiabatic t

W(t) £ e-_b_kd_(_) Ik; O,wt) , w= _, _k(t)--'rk(C)_. (3.58)

This formula is an approximate equality indicated by the suffic "adiabatic" and, in
general, not an equality (except for w = 0 in which case it is the stationary state of a
time independent Hamiltonian).

For the state vector after a period T we obtain from (2.51)"

adiabatic

_b(T) _= e-_2'r-bklMe'_(c)¢(0) ; _b(0) = [k; 0, 0> . (3.59)

These expressions for the state vector are, as we showed in general in section 2, incom-
patible with the SchrSdinger equation (3.56) and can only be approximation.

But as all solutions of (3.56) are known 1) we can see whether there are cyclic
solutions and select those. The exact solution of (3.56) with the initial state ¢(0) is
given by 1)2)

¢(t) = Vt(t)¢(0) =e-itlMJ3e-itfl°'a_b(O) (3.60)

The time evolution thus consists of a rotation of the sate _b(0) about e by fit followed
by a rotation about ez by wt:

The unit vector e is shown in Fig. 3.1 and given by

e = R(O,O) - _e3 = _ cosO- _- e3 + _ sin0el -- cos0ea + sin_el = R(_,0) (3.61)

The new angle 0 is shown in Fig. 3.1, and is defined by equation (3.61).

b aJ b

cos0 = _(cos0- _-) sin_ = _ sin0. (3.62)
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The angular frequency 9/is obtained from the normalization condition e 2 -" 1:

w (-2coso + w (3.63)

These relations between (0, _o) and (0, _) define a map F ' M = S 2 _ S 2, which in
cartesian coordinates corresponding to the global orthonormal basis system (el, e2, e3)

is given by

Fv(zl,z2,x 3) - (xi'z2' (x3 - _)) (3.64)
+ + -

It depends upon the physical parameter

Cd

u = -_ (3.65)

and is given in terms of the local spherical coordinates by

( cosO- u )F_,(R(O, cp)) = Vv(cos0,_) = v/u2 - 2cos0u+ 1 'q° = (cos0,_0) =-R(0,_o) (3.66)

The map F_ is for _ < 1 a homeomorphism of S 2 and consist of a translation in the e3
direction followed by a projection along R onto S 2.

Fv(cos0, _o) is a continuous function over (-1 < coso < 1, 0 _<_o< 21r) as long as
u = _ < 1. If u _> 1 the map Fv becomes discontinuous. We shall therefore restrict
ourselves here to u < 1;1°) the adiabatic approximation is fulfilled for u << 1 which means
that the external angular velocity w for the precession of l_(0,wt) is small compared to
the Larmor frequence b.

The Larmor frequency b is the angular velocity with which the state _b(t) rotates

about the direction of the magnetic field 1_(0, 0) when cd -- _/_ = 0 or u = 0:

--itb_t(O,O).J_b(t) = e _(0) for cd = 0 or u -- 0 (3.67)

This can be seen immediately if one rewrites (3.60) using (3.61) and (3.65):

_b(t) = e -_tb'J3 e-'tb(R(O'O)'a-vJ3)_(O) (3.60')

Equation (3.67) gives the time evolution of a state vector _(0) for the time independent
Hamiltonian:

h = bR(O, 0). J ; 0 = constant (3.68)

In order to select from all the solutions (3.60) those, which describe cyclic evolution,
(3.57), we have to choose in (3.60) for the initial state vector _(0) an eigenvector of the
operator M .

" U t (T) = e -iT_J3e -iTflR(O'O)'J (3.69)

Its eigenvalue e -i=_ will then be the total phase factor in the cyclic evolution (3.57):

U t (T)_(0) = e-'_*¢(0) = $(T) (3.70)

........ r '"11 Irl' "* .... r, ....... II
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If _(0) is eigenvector of Ut(T)) with eigenvalue e -i_ it must also be eigenvector of

U(T) = eiTflR'Je iTwJ3 with eigenvalue e ia. This requires that e -iTwJa and e -iTflR(t},0)'J
commute:

This can be fulfilled under the following two conditions:

2r
CLASS A' wT = 2frn; evolution period" T = -- (3.72)

27r

CLASS B" f_T = 27rn; evolution period" T = --ff (3.73)

For both classes there will be a discrete set of cyclic solutions. A special case is _ = 0
in which case we have a time-independent Hamiltonian (3.68) with evolution (3.67).
The class A cyclic solutions have the same period as the Hamiltonian and the adiabatic
evolution. The Class B cyclic solutions have a period which is given by the intrinsic
properties of the quantum system (the Larmor frequency b modified by the precession
frequency w).

We shall discuss here only the Class A cyclic evolutions because they are directly
connected with the adiabatic cyclic changes.

The Class A cyclic solutions are obtained by finding the eigenvectors of the operator

UtA(T) = e-'2"_J3e -_Ta_L($,°)'J These eigenvectors of Ut(T) must be eigenvectors of

both e -_Tn_(#,°)J and of e -_2_J_. From this it follows immediately that they must be
eigenvectors of the operator:

fib(0, 0) = fZl_(_ 0). J for _ ¢/9 i.e. for w _- 0" (3.74)b

These eigenvectors we call Ck'

flh(O,O)¢k f_kCk ; e. JCk = kek. (3.75)b

From (3.11) and (3.12) with 0 replaced by 0 and qoby 0 it follows that ¢_ is (up to a
phase factor if ¢_ is assumed to be normalized) given by

Ck = Ik; 0, 0) = U(0, 0)lk; e3) = e-i$J2lk; e3). (3.76)

To obtain the eigenvalue of e -_2"_J3we calculate using (3.15) for _ = 27r"

e -i2_rJ3 Ck = e -i2_rJ3 Ik; 0, 0) - c-i2_rd3e -i_J2 Ik; 0, 0)

= e-*°d2e -i2'rJz lk; 0, 0)

= e-i2'_klk; O,0_. (3.77)

The initial state vectors which lead to a cyclic evolution with period T = 2._ are thus
!_belled by the integer or half-integer number k and given by (3.76)"

_b(0) = Ck = Ik; 0, 0) (3.78)
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(after an arbitrary phase factor has been fixed). The total phase of these cyclic evolu-
tions, i.e. the eigenvalues e -is* of (3.70) are also labelled by k and given by

_(T) = Ut(T)_p(0) = e-i'_b(O) = e-i27rke-i27r_k_(0) (3.79)

" Thus the possible initial states of a cyclic evolution are very similar to the initial states of
an adiabatic evolution which are given by the eigenvectors Ik;/9, 0} of h(O) = bR(O, 0). J.

. The initial states of the real cyclic evolution are instead given by the eigenvectors (3.76)
of the operator

fl

h(o, o) - _h(8, 0) - fll_(8, 0). J (3.80)

They are thus state with the component k of angular momentum along the direction
e = 1_(0, 0) rather than along the direction 1_(8, 0) of the initial magnetic field, see
Fig. 3.1. For large values of w,w _ b these two directions can be very different, but for

v = _ --. 0 they become the same.
We now have to determine the analogue of the single-valued eigenvectors Ik; R(t) } =

Ik; 8(t), _o(t)) which are used in the calculation of the Berry connection and Berry phase.
These vectors Ck(t) lie on a curve above the closed curve

C't --, ]_(t)}(_(t)l ; I_b(T)}(_(T)l = [¢(0)}(_b(0)l (3.81)

They must fulfill:

Ck(t) = phase factor. _(t); Ck(T) = Ck(0) (3.82)

There are many such vectors all differing by a phase transformation

Ck(t) ---*¢_(t) = ei¢_(t)¢k(t) , _k(0) = _k(T) mod 27r (3.83)

One, and the by far most obvious choice for ¢_=(t) is

Ck(t) = U(8,wt)lk; e3} = Ik; 0, cot) = e -iwtJa e -'i_ J2 ei,OLklk' e3}. (3.84)

These single-valued basis vectors Ik; 8, _o= wt} are eigenvectors of the operator

fz(O,_o) =_ h(8, _) = -_h(F_(8, _o)) = flR(t_,_o)). J (3.80a)

where Fv is the function (3.66). The operator h(R) = _h(F_(R)) is not the Hamiltonian
but another parameter dependent operator which can as well serve to define a basis
system for the space 7-/. In terms of these known vectors Ik;/_, _o}the cyclic solution of
the SchrSdinger equation (3.56) is given by

" _p(t)= e-'_'keintklk; O,wt} (3.85)

Therewith we have expressed the state vectors for cyclic time evolutions in terms of
the known quantities w, f2 (of (3.63)) and [k,_,wt} (of (3.84). The equation (3.85) is
the _:eneralization of the adiabatic "equality" (3.58) and (3.79) is the generalization of

(3.59). However the phase factor in (3.85) and (3.79) is not in the form of a product

i' ,, nli , ,, , ii I , , , I 1'
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of the dynamical and the geometrial part. In order to obtain that we have to calculate
the dynamical or the geometrical phase factor separately.

3.4 The Dynamical and the Geometrical Phase Factor for Non-Adiabatic
Evolution

The splittingofthephasefactorintoa "dynamicaland a "geometrical"partcanbe
approachfromtwo differentpointsofview.Eitherone givesan argumentwhy a certain
part is geometrical and obtains the dynamical phase as the difference between the total
and geometrical phase, or one defines the dynamical phase and obtains the geometrical
phase as the difference between the total and dynamical phase. We will define here the

,_dy, and obtain the geometrical phase as a derived quantity.dynamical phase _'k

_o_. =_ _ _,. (3.86)
The dynamical phase for general cyclic evolution was defined by Aharonov and Anan-
dan 3 by

a_u'_'- foT(_o(t)lh(t)[¢(t)>dt (3.87)

This is reasonable because one can show that the phase for the evolution of a stationary
state (2.25) is given by (3.87) and because (3.87) goes into the dynamical phase for
adiabatic cyclic evoluton given by (2.31).

It is straightforward to calculate the dynamical phase (3.87) for the Hamiltonian
(3.1):

OLdyn jfo T
k = (_b(t)lh(t)l¢(t))dt

- . cosO)
Using (3.86) we then calculate from (3.79)

( _ b )_o,,,.= k2_(1-cos_)=k2_ 1+ _ - _5cos0. (3.89)

This has the same form as (3.54) for the adiabatic case except that 0 is replaced by
of (3.62).

In the adiabatic approximation, u = _ << 1, we can expand the expressions in
(3.62) and (3.63) with respect to _:

-- _ 1 cos 0 +
b -_

lw lw .

sin0 _ sin0 + _ _ sin20 ; cos0 _ coso + _ _ (cos2O - 1) (3.90)

From this we obtain that the adiabatic approximation of the geometrical phase angle
for general cyclic evolution (3.89) is identical with the Berry phase angle:

--_k"_ge°m_ -2_rk(l- COS 0) = "_kBerry' (3.91)
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These results indicate that (3.86) with (3.87) is the appropriate choice of the geometrical
phase also for the general cyclic evolution.

We now want to show that thi_ phase angle can be obtained in the same way as
Berry's phase for the adiabatic approximation from a gauge potential (connection).

In analogy to (2.40), (2.42) we define the connection one-form by

d

A ¢_ - i(¢k(t)ldlCk(t)> = <k; O,wtldlk; O,oJt) = (k; e31Ut(O, wt)-_ U(O, wt)lk; e3)dt.
(3.92)

Here we have used in place of the single-valued eigenvectors of h(t) in (2.42) the basis
vectors (3.84) which are eigenvectors of another operator h(R) of (3.80a). From the
results (3.30) (with _o= wt) we obtain immediately:

A _ - (k; e31- (J1 cos_o + J2 sincp) sin0+ J3(cos0- 1)lk; e3)d(wt) (3.94)
or

b w

A _ - -k(1 - cos 0)dwt - -k(1 - _ cos0 + -_)d_o(t) (3.95)

The curvature (field strength) that follows from this connection (gauge potential) is

F=dA=-k (1-_c°s0) sin0d0Ad_o

or

Fe_ - -k 1 - -_ cos0 sin0; F - _k (1 - _ cos0) 1_(8, _o). (3.96)

 cos+
This is again the "monopole" type field as in (3.55) but with modified "monopole
strength".

The connection one-form (3.95) has the same form as (3.34) for the adiabatic con-
nection, except that here we have the angle 0 which is not the angle 0 for the direction
of the magnetic field (parameter of the Hamiltonian).

We can now use the analog of the formula (2.54') and (3.46) for the adiabatic
approximation and define a "geometric phase" angle also for general cyclic evolution by

Jc A¢_ = f i<¢k(t)ld]¢k(t)) (3.97)
7k

Then we obtain with (3.95)

7k = -k (1 - cos0)dwt = -k2r(1 - cos0) = -27rk 1 - _ cos0 + _ . (3.98)

This agrees with the result (3.89) obtained from (3.86), (3.87).
With these results we can rewrite the cyclic solution of the SchrSdinger (3.85) in a

form which completely resembles the adiabatic approximation (3.58):

¢(t) = e -_e_tx-¢°s_) e Ik;/_, _o)= e_'_ e-'"_ ]k; 0, _o(t)). (3.99)
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The concepts introduced in this section for the cyclic evolution (3.81) are the
analogs of "he concepts for the adiabatic approximation. The singk._valued basis vec-
tors Ck are the analogs of the Hamiltonian eigenvectors mk;8, _o/. The connections A Ck
of (3.94) are generalizations of the adiabatic connections (2.42). The geometric phase
(3.97) is a generalization of the Berry phase (2.48).

The distinction between (3.99) and (3.58) is that in (3.99) we have an equality
sign. This means that the the state vector _(t) indeed "rotates" along the curve t
Ck(t) described by the curve t ---, (_,wt) in parameter space, whereas the curve t
(8,wt), describes the path of the external magnetic field, not of a state. For slow
enough w (however before w becomes zero which is the stationary state development with
7k = 0) the curve (3.58) is "close enough" to (3.99), in order to provide an acceptable
approximation for the geometric phase. But an exact adiabatic cyclic evolution does
not exist.

As we mentioned above in addition to the cyclic evolutions of a pure state with
period T - _2__(w-precession frequency of the external magnetic field) there exist other

2_ where _l is given by (3.63) and therewith mainlycyclic evolutions with period T - -ff
determined by the Larmor frequency b of the physical state (for w -- 0, which is the
cyclic evolution in a constant magnetic field with time-independent Hamiltonian one:
has exactly [_ - b). We shall not discuss these evolutions here.

The geometrical phase (3.98) is not purely geometrical in the way that (3.91) is,
which only depends upon 8 and is given solely by the path in the parameter space. The
geometrical :phase for general cyclic evolution also contains the parameters w, b of the
Hamiltonian. To fully justify the name geometric phase also for the phase (3.98) of
non-adiabatic cyclic evolution we have to go from the geometry of the parameter space.
to the geometry of the space of physical states :P(7-/).

, , , , ,_r , TI , , i i' , Hi, II ' '
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4. The Anandan-Aharonov Phase for General Cyclic Evolution and its Re-
lation to Berry's Phase m U(1) Bundles Over Parameter Space and Over
the Space of Physical States
In this section we shall uncover the general pattern that underlies the results which

we obtained for the specific example of the time-dependent Hamiltonian (3.1). '
For a time-dependent cyclic Hamiltonian h(t) = h(x(t) with a period T, whose

time dependence may be given by a closed path C in the parameter space M:

C: x(0) --, z(t) _ z(T) - z(O) , (4.1)

There exists a number of cyclic paths

C: W(O) --, W(t) -: I_(t))(_(t)l-_ w(T) = W(O) (¢.2)

in the space of pure physical states P(7_) with the same period T. (There may be in
addition other cylcic paths with different period.) In our example the number of cyclic
path is countable and labelled by the half integer k,

Ck: W(t) = Wk(t)= ICk(t))(¢k(t)[ (4.3)

with Ck(t) given by (3.84).
Associated with the curve C (or curves Ck) in P('H) are three different kind of

curves in the Hilbert space 7-/.
1. The curve

c: ¢(0) -. (4.4)
is the curve of solutions of the Schrbdinger equation with initial condition that leads to
a cyclic solution.
2. The curve

CCl°"a : ¢(x(0)) --, ¢(x(t)) -- ¢(x(T)) --- ¢(x(0)) (4.5)

is a curve of smooth single-valued functions (continuous)y differentiable) of vectors in
7-I -- that have the property W(t) -- I¢(t)>(¢(t)l. These single-valued vector functions
are only determined up to a gauge transformation

¢_(x(t)) --_ ¢'(x(t)) = e<(=(t})¢(x(t)); e '¢(_) = e'¢(°). (4.6)

In our example this closed curve of vectors in the Hilbert space 7_ associated with the
curve Ck in T)(7"() is

C_l°aed • Ik; _, 0> _ Ck(t) = [k; _,_t) --0 [k; 0,_T> = Ik; 0, 0>. (4.7)

where the vectors ¢k(t) are those of (3.84) and the gauge transformation (4.6) is the
one in Eq. (3.83). The curve (4.4) in our example is given by the vectors (3.99).

In addition to the curves C cl°s_a and C in 7t associated with a closed curve of pure
physical states (solutions of the von Neumarm-Schrhdinger Eq. (2.3b)) C in P(7_) we
define 1)
3. The curve

C" (_(0) --(p(t) = e' f: {_(OIh(_')l¢(t'))dt'_l,(t) --* _p(T) (4.8)
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where ¢(t) is solution in (4.4).
/til three curves in 7-/have the property

IV.'(t)>(_,(t)l- I¢(t)>(¢(t)l- I_(_))(_(t)l- W(t) in _'(_). (4.9)

For this reason we call these three curves in _ lifts of the curve C in P(T/), imagining
that t ---,W(t) is a curve in some base space and t --, ¢(t), t _ ¢(t), t _ _(t) are curves
lying above these base space points. This is depicted in Fig. 4.1. The curve C will be

called the dynamical lift. The curve C cl°8_ddefined by (4.8) will be called the closed lift.
The curve C defined by (4.8) will be called the A-A lift. As we mentioned already, the
closed lift is not uniquely determined but only up to a gauge transformation (4.6). The
dynamica] lir' of a given cmve in the space of physical states T_(T/) is also not uniquely
determined as we shall discuss instantly. However, the A-A lift of a given curve C is
uniquely defined, it is identical with the horizontal lift of differential geometry, as we
shall show below.

In our example (3.1) the A-A lift is given by

-_dy. -- eink(1+_c°sti)t¢(t) (4.10)_(t) = e_fo('_(_')l"(_')l'_(")>'_:'_,(t)= e'_ ¢(t)

It is not a closed curve but has the property

dh ' _(0)--. ¢(t)-. _(T)- e'_(0), (4.11)

where "yk(T) = ,_9_o-_-_'k is the geometrical phase (3.89), (3.98).
The relation between the A-A lift, the dynamical lift and the closed lift in our

example is given by:

_k(t) '_'" -"- e _ _p(t)- e_(t)lk;t_,_o(t)> (4.12)

It is a straightforward calculation (Problem 4.1) * to show that the A-A lift

in general fulfills the following equation and initial condition if _(t) fulfills the SchrSdin-
gcr Eq. (2.3)'

deft)
i d"-_ = (h(t)- (_P(t)lh(t)l_P(t)>l)_(t) (4.14a)

¢(0) = _(0) (4.14b)

Taking the scalar product of (4.14) with ¢(t) or _(t) we obtain

' (_(t)l I_(t)) = (W(t)l_l_(t))= 0. (4.15)

• Problem ,, .. Show that the vector ¢(t) defined by (4.13) fulfills the equations (4.14) if _(t)

fulfills the Schr_tinger equation i_ -_ -- h(t)¢(t).

i ii
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This means that the tangent vector _(t) of _(t) is orthogonal (in the Hilbert space
sense) to ¢(t) and to ¢(t).

The dynamical lift C is uniquely determined by the Hamiltonian h(t), but not
uniquely determined by the physical problem. A simple substitution

h(t) _ h'(t) = h(t) - _(t)l with _(t)eB. (4.16)

leads to a new Hamiltonian h_(t) which describes the same physics, lt has the same
(closed) curves of physical states t _ W(t) = l¢(t))(_(t)l in the projective Hilbert space
P(_) as h(t) (Problem 4.2).* But h(t) and h'(t) have different dynamical lifts t _ _(t)
and t --+ _(t) (Problem 4.3)." Also, two Hamiltonians h(t) and h_(t) which have the
same curves of physical states t _ l_(t))(¢(t)l and t _ l¢'(t)) (¢'(t)l differ by a multiple
of the unit operator _(t)I. We are looking for a lift which is unique for a given physical
problem, i.e. a lift that is uniquely associated +o a closed curve t ---, l_(t))(_(t)l in
P(_). Such a lift happens to be the A-A lift C : t _ ¢(t). This can beseen in the

following way: In addition to _(t) defined by (4.13) using h(t) and ¢(t), (where _(t)
is the solution of the Schrbdinger equation (2.3a) with Hamiltonian h(t)), one defines
¢'(t) by

_'(t) = _'fo<¢'(_')lh'C_')'_'(_')>d_'¢'(t) (4.13')
where ¢_(t) is a solution of the SchrSdinger equation with h_(t):

.d_b'(t) = h'(t)¢'(t) (2.3a')d_

Then one can show that ¢'(t) = _(t) (Problem 4.4)."
We will now discuss the generalizations of (4.7), the closed lifts of the curve C. As

seen from (3.97) the ek(t) are the quantities in terms of which the geometric phase can
be calculated if one does not have a solution _p(t) of the SchrSdinger equation. There are
various ways to obtain these single valued vectors ¢(t)e_/. 2 In general they are curves
of local "sections". Sections are defined as continuously differentiable maps of an open

* Problem 4.2. Show that the closed path C : t ---*[¢(t))(_b(t)l in the space of physical states
P(7"/) which is generatedby a Hamiltonianh(t) is not affected by a change of the Hamiltonian
h(t) --_ h'(t) = h(t) - tc(t)1 where _(t)e:IR.

Problem _.3. Show that the dynamical lift of the closzd path C in P(?-/) changes underthe
_bsu_onh(t) --*h'(t) = _(t)l andc_¢_at_theph_ ¢Uff¢_e._bctw_,th_dynamic-,lift_(t)
bc_on_n_toh(t) a_dthedy.amica__i_¢'(t) bc_on_in_toh'(t).

Problem _.4. Show that the horizontal lift C' of a closed path C in P(7-/), defined in terms of
the dynamicallift _,(t) by

is not affected by the substitution

h(t) -_ h'(t) = h(t) - _(t)1.
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area O C P'H into 7-I ' ¢ • O _ 7_. We will assume that our curve C lies in such an
open area O. Then for any closed curve C • t --, W(t) one has the single valued lift

t -- ¢(t) = ¢(W(t)), W(t) =1 ¢(t))(¢(t) I ; ¢(T) = ¢(0) (4.17)

" (determined only up to a gauge transformation (4.6)). The problem is, of course, to
determine a "section" or one of these single-valued lifts for a given time dependent
Hamiltonian. But if one knows ¢ one can use it to calculate the geometric phase.

Since _p(t), _(t) and any ¢(t) are lifts of the same _losed curve W(t), there must
exist a phase factor w(t) such that 1

_(t)=_(t)¢(t). (4.1s)

We now calculate w(t). Taking the derivative of (4.18), we get,

d(b(t) dw(t) dC(t)
dt = d_ ¢(t) +w(t) d"'-_ "

Taking the scalar product of this with _(t), we obtain

w(t) dw(t) dC(t) ' dt )=0

where the last equality holds because of (4.15). Thus

_ dC(t)1 d_(t) -(¢(t), ).
w(t) dt dt

Integrating this we obtain

=e (4.19)
_(o)

This phase factor we call ei_(q and write (4.18) as

_(t) =_(0)_'lo',c,c_'),_,c_'))_'¢(t) - _(0)_,_c*)¢(t). (4.20)

If we choose the arbitrary constant phase w(0) again such that _(0) = _b(0) = ¢(0), i.e.
choose w(0) = 1, then we have

(b(t) = ei_Ct)¢(t) , (4.21)

which is the generalization of (4.12). With the general definition (4.13) of the A-A lift
we then have

' ¢(t) -- e-' fo c¢(t')'hct')¢c¢))d'' e''c0 ¢(t). (4.22)

This is the general relation between the solution of the SchrSdinger equation _b(t)
• and the closed lift ¢(t). The equation (2.43) is the adiabatic approximation of this,

and (4.12) is the special case of this for the spinning quantum system in the precessing
external magnetic field. The adiabatic approximation uses in place of the single-valued

lr,' ,,i,' FI ' ,_1 i_
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the ¢(t) (by solving (2.4)). For the closed path C in 7_(7_) the phase angle is (according
(4.20))

/0 /7(T) = 7(C) = i(¢(t)l-_l¢(t))dt = i(¢1d1¢) mod 27r. (4.23)

In here ¢ is any of the closed lifts of C.
The phase angle 7(T) is independent of the choice of the parameterization (the

speed with which ¢(t) traverses its closed path). It is gauge invariant. It is independent
of the choice of the Hamiltonian as long as these Hamiltonians described the same closed
path C in _(7_). It depends upon the closed curve C. It also depends upon the class of
Hamiltonians that are connected to each other by the transformation (4.16), but only to
the extent that the possible curves C are determined by h(t). It can thus be considered
a "geometric" property of the curve C in the space of physical states 7_(7_). Thus the
name geometric phase.

The one-form, defined in analogy to the adiabatic connection (2.42) and in analogy
to (3.92)

A ¢ = i(¢1d1¢) (4.24)

transforms under a gauge transformation (4.6) as (Problem 4.5):*

A ¢ _ A ¢' = A ¢ - d(. (4.25)

This one-form is called the (non-adiabatic) connection form. The formula (4.24) for
the connection was obtained from the requirement that _(t) was the A-A lift i.e. the
lift fulfilling (4.15) (which in turn followed from its definition (4.13)). This was the
only possible definition of a lift which depends only upon the physics of the problem
(and not upon the arbitrary choice of the Hamiltonian within the class connected by

the transformation (4.16)) and which is uniquely determined by the closed curve C in
the space of physical states. The A-A lift ¢ is therefore uniquely determined by the
requirement that it be a property of the physical quantities W(t) only.

From (4.21) and (4.17) it follows immediately that

(O(T) = eiT(c)(p(O) = e'_(c)¢(O). (4.25)

Using (4.13) one obtains then for the cyclic evolution of a state vector:

¢(T) = e -'/_ for (¢(t)lh(t)l¢(t))dt' ciT(c) _(0). (4.26)

This is the general relation of which (2.51) is the adiabatic approximation.

As the physics is not in ¢ (which depends upon some arbitrary choice of the Hamil-
tonian) but in _ (which is uniquely determined by the physical state I_(t))(_(t)l), the
so-called geometrical phase 7(C) is really the phase that is of physical importance.

A graphical representation of the above described situation for a general cyclic
evolution is shown in Fig. 4.1. It shows a "base space" with a closed curve in it. The
closed curve C represents the cyclic evolution of a pure state W(t), and the base space

* Problem 4.5. Find the transformationof the connection one-form A_ = i(¢[d[¢) when the
section ¢ undergoes thephasetransformation¢(t) ---*¢'(t) = ei¢(t)¢(t).

' |l ir_
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represents the space of physical states P(H). Above the closed curve are shown the
three lifts C cl°s_d, C and C in the Hilbert space 7_ (depicted in the figure by the three-
dimensional space). Also shown is one "fibre" above the base point W(0) (depicted by
the positive z-axis with the z coordinate representing the phase angle modulo 27r or the
element ei¢(°) of the gauge group U(1)). The "fibre" in this case (though it has been
drawn as a straight line) is given by the circle of unit radius S 1 or by the group U(1). We
can attach a copy of this S 1 not only to the point W(0) but to every one-dimensional
projection operator A 6 P(?/). In this way we get a bundle of U(1) fibres attached

. (which means loosely associated) to each point of P(7-/).

|
|
m

m

|
(t)'C

i dyn

Hilbert space

rf) (t).d

(t)" C closed

I

I

' Space of physical
, states (projective
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w ff)=w(o ,

W (T) =I (t) >< (t)l

' =I ~ (t) >< ~ (t)l
I

= I (t) >< (t)I
l

Figure 4.1. Closed path in the space of physical states and its lifts.
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The mathematical structure that we have encountered here is an example of a
principal fibre bundle. The formal definition of a fibre bundle and a principal fibre
bundle will be given in the Appendix. Here we will adapt the mathematical notions
defined and developed in the Appendix to the U(1) bundles underlying the geometric
phase. 3

In general a fibre bundle consists of a total space, E, (topological space or differ-
entiable manifold), a base space M, a fiber space F, a structure group G acting on the
fiber and a projection map 7r

E.F_E-Z-,M

Often, but not always, one denotes the fibre bundle and the total space by the same
letter E. If the structure group G is a Lie group of diffeomorphisms of F with G being
the same manifold as F itself (G acting on itself by left or right translations) then the
bundle is called a principal fiber bundle.

The set of all one-dimensional projection operators of 7/forms the projective space
7_(7-/) = CP °° (If 7_ is finite dimensional, i.e. the N dimensional space C N, then P(7_)
is the projective space cpN-1). The set of all state vectors is the Hilbert space 4)
without the zero vectors 7-/- {0}. If we restrict ourselves to normalized state vectors,
which we can do for unitary time development, then we have to consider only the
unit sphere 8(T/) = 8 _ = {_b 6 7_; [[¢[[ = 1} in 7_ (If 7-/ is N dimensional then
the unit vectors form 82n-1). To each state [_b)(_b[E 7)(7-/) there corresponds a set
of vectors {ei¢_b;_b E 8_; ei¢E U(1) } which have ali the same projection operator:
[ei¢¢)(e'¢¢[ = [¢)(_p[. Therefore we have a map, the projection map

7r ' 8(7"_) ---, _D(7-_) (or Tr" 8 2N-1 _ cpN-1), (4.27)

with the property
Tr(e'er)= = (4.28)

The inverse image r-l(l_b}(_l) is called the fiber over I@}(@l. For any Ix}(xl • 7_(7/)
the fibres lr-l(IX)(X[), 27• (7"/) are essentially the same. They are given by {[x}ei¢,O <_

( < 2r} = Fix), the fiber over IX). The fibres are all homeomorphic (related by a
continuous map whose inverse is also continuous) or diffeomorphic to U(1) = {ei¢},
called the typical fibre. Thus we have

7_(7_) = CP °° (or CP N-l) as the base space M,
8(7/) = S a° (or 8 2N-l) as the total space E,
lr of (4.28) as the projection map Tr,and
U (1) as the fibre F
U (1) also as the structure group G.

The aggregate
1

r/• U(1) ---,8(7-/) _ T'(7-/) (or U(1) _ 8 2N-1 _ CP N-l) (4.29)

is our principal fibre bundle (principal bundle because F = G = U (1).
The projection map 7r leads from a curve t _ p(t) • E in the bundle to a curve

t --, ro(t) = lr(p(t)) in the base space. The curve p(t) is called a lift of the curve ro(t) in
the base space M. Thus the curves (4.4), (4.5) and (4.8) are examples of different lifts
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of the curve (4.2) in CP °°. We mentioned that of these three kind of lifts only the lift
(4.8), which we called the A-A lift, was uniquely defined. We shall now show that this
lift is related to the geometrical notion of parallelism which at first sight has nothing
to do with the definition (4.13) (by Anandan and Aharonov) 1). Indeed it will turn out
that _(t) E 7-/is the point obtained from _(0) = _(0) by "parallel transport" along the
curve C in 7)(_). This is also expressed by saying that the curve C is the "horizontal
lift" of the curve C.

In order to discuss parallelism between a smooth curve in the base space C ' t
Ix(t)}(X(t)l and one of its lifts C ' t --, X(t)) we have to define an additional geometric
structure for the fibre bundle, called a connection on 77. For a given bundle one can
define different connections and get different meanings of parallel transport. For the
U(1)-bundle over the projective space 7_(7"/), 77,the mathematically natural connection
is the Stiefel connection which has been defined in mathematics long before 5) the lift
(4.8) was introduced in quantum physics. 1) That the lift whicah is horizontal with respect
to the Stiefel connection is identical to the A-A lift (4.13), (which provides the quantal
phase factor, (4.25), that can be measured in an interference experiment) is one of the
more remarkable example of the "unreasonable effectiveness of mathematics in natural
science" (Wigner). This was probably the main reason for the popularity which Berry's
phase acquired among mathematical physicists.

In order to define the connection and therewith the horizontal lift for the fibre

bundle E, we consider the tangent space TpE at the point p E E. This tangent space
can be decomposed into two subspaces: The vertrical subspace is defined as the subspace
of those vectors which are tangent to the fibre through p (tangent vectors to all possible
curves along the fibre only). This subspace is denoted by VpE; it is determined by the
fiber. For the principal bundle it is isomorphic to the Lie algebra of the structure group
G (in our case of G - U(1) it is generated by i) and has the dimension of the fibre (-
structure group G).

The horizontal subspace, denoted by HpE, is the space chosen to be the supple-
mentary linear subspace in TpE to VpE:

TvE - VpE +. HpE (4.30)

where .+ is the direct sum of linear spaces. In other words, every r E TpE is given by

r = ver(r) + hor(r) ; ver r 6 VpE, hor r 6 HpE (4.31)

The horizontal subspace is isomorphic to the tangent space T,(v)M on the base space
M at the point to which p projects, Tr(p) .

The assignment to each point p e E of a horizontal subspace HpE of TvE such
that (4.30) and (4.31) is fulfilled, is called a connection.

After the choice of a connection the horizontal lift can be defined: Let t --, ro(t) be
' a curve in M then its horizontal lift p(t) is the curve in E for which lr(p(t)) = ro(t) and

for which all vectors tangent to p(t) are in the horizontal space Hp(t)E.
We will now choose the connection for OtL_ particular bundle 77of (4.29). This

means we have to assign the horizontal subspace H1¢)S(7_ ) to every I@) 6 S(7-/). We
use the scalar product of 7/to make this assignment.



46

In our case _b(t) is in the fiber over Izb(t))(g;(t)lfor every fixed t. The vector d_b(t)
is the tangent vector: _b(t) E T_(t)S(7-l). We now define the horizontal lift of (4.2)'

_b(t) e r-l(l¢(t))(_b(t) ) -- _r-l(W(t)) is a horizontal lift

i.e.

d

d-_(t) e g¢(,)S(7-l) (4.32a)
iii

lC(t)) - = 0 (4.32b)

In other words: the curve t _ _(t) is a horizontal lift of the curve t _ W(t) if thed ^
vector _7_(t) _ _ is orthogonal in the Hilbert space sense to the elements of the fiber.

Note that _(t) are elements of $(_/) C _, and _ are elements of T8(7_). For a
general fiber bundle the elements of TE are not elements of E. But in the particular case
of (4.29) the _(t) (as the derivative of a parameter dependent Hilbert space vector)
is again an element of _' TS(_) C 7-/. Thus (4.32), relating elements of T,S(7_) with
elements of S(7-/) makes sense. The assignment of a horizontal subspace by (4.32) is
called the Stiefel connection. 5)

For a given curve m(t) in the base space and any initial point Po = p(0) in E
(with lr(p0) = m(0)) there exists exactly one horizontal lift p(t). For a closed curve
t ---,ro(t); m(0) = ro(T) = mo, the horizontal lift starting from p(0) will end at a point
p(T) = 7r-l(m0) in the fiber above mo. As every point of the fiber can be reached from
p(0) by a transformation with exactly one element g of the structure group G we must
have that p(T) = p(O)g. The set of ali the g for a given starting point p(0) forms a
subgroup of G which is called the holonomy group of p(0). In some cases, which we
shall restrict ourselves to, the 1:)lonomy group of some point po E E will be identical to
the structure group G. Then (if M is connected) the holonomy group is the same for
all p E E. In this case any two points of E can be joined by a horizontal curve in E.
A connection, for which the holonomy groups of any p E E is the structure group G, is
called irreducible connection.

After this review of general differential geometrical results we will turn to our

specific fiber bundle r/and the closed curve (4.2) in the space of physical states P(7_).
We want to find the horizontal lift t _ _(t) with respect to the Stiefel connection.

According to the general results above ¢(t) is uniquely determined for a given starting

point ¢(0) for which we will usually choose the initial state vector _(0) = _b(0). The
phase factor e_:

¢(T) = e'+¢(O) (4.33)

is then an element of the holonomy group (which here is identical with the structure

group U(1)). The phase factor e_'_is uniquely determined for a given _(0). It is called
the holonomy (anholonomy*) of the closed path (: "-_ = "_(_(0)) = _(C).

Another description of the connection than the assignment (4.32a) of a horizontal

subspace H_(t)S(7-l ) is the description of the connection in terms of a connection-one-
form or the connection coefficients (gauge potential, see appendix). A connection form

iri i,
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is a one-form ,4 with values in the Lie algebra of the structure group G (which is
isomorphic to the vertical subspace VpE) such that the holonomy can be written as

= _:.,4 (#= 7"J `4ifG isnon - Abelian).
(4.34)

where C is the closed path (4.2) in the base space. In order to obtain the connection
one-form `4 that leads by (4.34) to the holonomy in (4.33) we start with a section. A
section of a bundle (Appendix) is a continuous (C °°) map ¢ : M --* E which assigns a
preferred point ¢(m) on the fibre 7r-l(m) to every m E M. Thus the section undoes
in a continuous way what the projection has done: 7rC(m) = m for all m e M. Global
sections (for all m E M) of principal bundles only exist if the bundle is trivial (i.e.
homeomorphic to M x G). For the nontrivial bundle 7/there exist only local sections. A
local section over a patch O C M is a map ¢ : O ---,E such that _r¢(m) = m for m e O.
For rl (like for every principal bundle) there is always a covering {Oa } of M such that
every O_, admits a local section ¢(c,). Given a local section ¢(_), one can define another
section ¢(_)' by

¢(_)'(m) = ¢(_)(m)g(m) (4.35)

where g(m) E G = structure group. This is the general gauge transformation which has
occurred in various specific forms before, cf (4.6), (3.83), (3.19), (2.12). A local section
¢ of O maps a closed path t _ W(t) in CP°° (W(0) = W(T)) into a closed path in

t --* ¢(t) ; ¢(0) = ¢(T). (4.36)

A local section thus provides a closed lift (4.5) of the curve C in 7_(7_).
We now obtain (a local representation of) the connection one-form `4 in terms of

the local section.

We choose a local section ¢ = ¢(W) for the patch that contains the closed path C
of (4.2). The problem in each particular case is, of course, to find such a local section
for a given time-dependent Hamiltonian h(t). (In our example of section 3 we obtained
the section Ik;/}, qo>of (3.84) (local in the northern hemisphere) essentially by solving
the problem explicitly.) With this section we lift the closed path C into a closed path
of this section

CCl°'_d: ¢(t) = ¢(W(t)) ; ¢(T) = ¢(0) (4.37)

As _(t) is the horizontal lift of the same path (4.2) we can express the open path
t --, _(t) in S(_/) in terms of the closed path t --* ¢(t) in S(7_) by

(p(t) = e'S(t)¢(t) (4.38)

where f(t) is a smooth (single-valued) functon. As ¢(T) = ¢(0) we obtain

' = (4.39)

Comparing this with the definition of the holonomy (4.33) we see that

;/= f(T)- f(O) (4.40)
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This we can calculate now by substituting (4.38) into the defining relation (4.32b) of
the horizontal lift and integrating. This yields:

/o /0;_ = i(¢(t)l_tl¢(t))dt = i(¢1d[¢) (4.41) q

Thus the connection one-form given by the assignment of the horizontal subspace (4.32)
is:

A-i(Cldl¢) . (4.42)

This connection one-form is also called the Stiefel connection (of the U(1) bundle 77
over CP g-I or CB°°). The bundle space 5(C N) = 3 2N-1 (for dimension of 7-/ = N)
is called the Stiefel manifold, denoted VI,N(C) "- U(N)/U(N- 1) = 5(cN). It is the
manifold of 1-frames in the space T/ = C V. We will call the bundle (4.29) with the
connection (4.42) the Stiefel bundle. It is the special case, A/" = 1, of a whole class of
Stiefel bundles:

_7]¢" U (AD ---*VAw,N(C) ---*Gr]C,N . (4.43)

Here Grjc,g = U (N) /U (Al) x U (N- A/') is the Grassmanian manifold of H-dimensional
subspaces (or X-dimensional projection operators) in the N-dimensional Hilbert space
7-/ - C N and V]C,N(C) = U(N)/U(N- iV) is the Stiefel manifold of N-frames in
7"l = CN. The structure group of this bundle is U(A/'). We will not explain the cases
A/" > 1 any further here 6 but continue with the case AF = 1.

The Stiefel connection (4.42) or (4.32) is the mathematically natural definition of
a connection for the bundle 77= r/1. This connection is given without any reference to a
Hamiltonian or an equation of motion. For a given closed curve C (C is determined by
the Hamiltonian and the dynamical equation (2.3b)) the holonomy is a purely geometric
property of the Stiefel bundle; the gauge group is the structure group of this bundle.

Comparing (4.41) with (4.23) and (4.33) with (4.25) we see that the Anandan-
Aharanov phase angle "r(C) is identical with the holonomy -_ and the A-A lift _(t) is
identical with the horizontal lift of the Stiefel connection:

_(t) = _(t) ; "y(C)= 5. (4.44)

Also, the non-adiabatic connection form (4.24) is the same as the Stiefel connection,
A - ,4. Of course, this is what we should have expected, because the consequence
(4.15) of the definition (4.13) is identical with the definition (4.32b).

Thus, the Stiefel bundle is the mathematical structure that underlies the theory of
the quantum geometric phase.

We started our investigation (in section 2) with a geometric phase, (2.50), which is
not the holonomy of a closed path C of physical states. Instead we had chosen a closed
path (2.7) = (4.1) in another base space, the parameter space M of the observables.
The bundle that underlies the adiabatic geometric phase (Berry's phase) is therefore a
U(1) fibre bundle over the parameter space M:

,k • U(1) --. ,k --. M (4.45)

=--I1 , lit ,,, , i ..... ,1, ii ,,



49

We shall now discuss the relation between the bundle A, which Simon T recognized as
the mathematics behind Berry's phase factor, and the Stiefel bundle of the Anandan-
Aharonov approach.

As the Berry-Simon and the Anandan-Aharonov approach use different base spaces
we first have to establish a relation between the base space M and the base space

' P(7-/). Then we use the classification theorem for principal fibre bundles to obtain all
the bundles A that relate to the bundle 77in (4.29). The problem is thus to find the
right map:

M --, 7_(7"/)(= CP g-1 for N = finite) . (4.46)

There always exists a smooth map f, which is determined by the Hamiltonian h(x)
and defined by

M B x ---, f,_(x) = An(x) = In;x >< n;xl E CP g-I (4.47)

(for every given value of the energy quantum number n). This smooth map associates
with the closed path C in M a closed curve of (one-dimensional) eigenprojections of
h(z) m

CA: A_(z(0)) _ A,(x(t)) = In;z(t)><n;x(t)] _ A,,(x(T)) = A,,(z(0)) (4.48)

As already mentioned in section 2 (following eq. (2.33)), the closed curve (4.48)
is a path of observables not of physical states. Any path of states t ---, W'(t) with the
initial condition W'(0) = A,_(x(0)) where A,_(x(0)) is an eigenprojector of h(x(O)), is
not closed. Thus the smooth map f,, does not relate closed curves in M to closed curves
of physical states C. Only in the adiabatic approximation (2.24) do the closed curves of
eigenprojectors (4.48) approximate a physical state.

The Berry phase _(C) is according to (2.51) and (2.49) the holonomy of the
closed curves CA of eigenprojectors (4.48). The Berry connection form (2.42) is the
Stiefel connection, however it is not taken on the closed path C of physical states (4.2),
but on the closed path CA of eigenprojectors (4.48) in P(7_) or on the closed path C of
parameters (4.1) in M.

The single-valued eigenvectors In; x(t)> of h(x(t)), (2.4), are sections, however they
are not taken on a closed path above the cyclic path C of physical states (4.2) but they

are taken on a closed path above CA or C in M. For the example (3.1) the sections
Ck(W) are taken above the closed path t ---, 142(t)}(g2(t)l = Ik, O,_o(t))(k;O,_o(t)l and
given by (4.7): Ck(W(t)) = Ik; 0 = const._o = wt>. But the single-valued eigenvectors of
h(R(t)) are taken above the path R(0 = const, _o= wt) of (3.53) and given by (3.11).
These two sets of functions are related by the map (3.64):

w (4.49)= Ik; = Ik;F (O, ; =

The Berry (adiabatic) connection on the path (3.53) in parameter space is given by

' Ak(O, _o)= i<k; _, _oldlk; O, _p>= -k(1 - cosO)d_o(t) (4.50)
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and the Anandan-Aharonov connection on the same path R(O, wt) in parameter space
is

A_(O, _) = i(_kJdldpk) = i < k; Fv(O, _)]dlk; F_(O, _))
b w (4.51)

- -k(1 - _ coso + _)d_

which leads to the two different expressions (3.54) and (3.98) for the adiabatic and exact
geometric phase connected with the same closed path Ci in the parameter space M.

In addition to the U(1)-Stiefel bundle over the space of pure physical states (or of
one-dimensional eigenprojectors 7P(7-l)= CR g-I) we have thus a U(1) bundle over the
parameter manifold M as base space.

The Stiefel bundle (4.29) is the universal classifying U(1)-bundle. 5) The classifica-
tion theorem states that any U (1) principal fibre bundle _ is isomorphic to the pull-back
bundle f*(_) for some continuous function f :M _ P(7_). (Appendix)

The pullback bundle f*(r/) is a new bundle which one can define for each smooth
map f and original bundle _. It has the same fibre F as the original bundle and is
defined in the following way: f*(_) is the subspace of M x 77 = M x £(_) which
consists of the points (x, _b) e M x 7?such that f(x) = 7r(_b). Thus

f*(77) = {(z,_) E M x £(_); A,_(x) = I¢ >< _1} (4.52a)

if we choose for f the map f,_ = A,_ of (4.47) and for the projection the map 7r([¢ >) of
(4.28). The fibre 9rx of f*(r/) is a copy of the fibre 9ry(_) of r/: _'x = _'/(_) which in our
case means that

Y_ = _'A_c_)=_1¢><¢1= {1¢>; I¢>= ¢¢_0}- {¢¢}= U(Z)
lr/

The projection map ofthe pullback bundle f" (vi) , M is defined by,r/: (x,¢) _ x.
If we define f, : f* (V) -* 77by f, : (x, _b) _ _b then the pair of maps (f,, f) is a bundle
morphism between the two bundles f* (V) and 77.This means

f o Tr/= r o f, , (4.53_)

or, in other words the following diagram is commutative:
F

I.
1"(,7)_ _ . ,7

/
M , CP(ee) (4.52b)

I'

The eommutativity of the diagram (4.52b) follows because

$ orf(x,_/)= f(x)= A,,(x)= I¢)(_I
of.(x,_)= 7r(_)= I_)(_I
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Sections pull back, too. Thus if ¢ : P(7-/) --, 77is a section of 77then the pull-back section
¢' M _ f*(rl) is defined by

6(z) - (z,¢(h,)) = (z,¢(f(_)) = In;z> (4.5a)

• The diagram (4.52) with the sections is also commutative in the sense

f, o _ = ¢ o f (4.53_)

This commutativity follows since

f. o $(x) = f.(x, ¢(An)) = ¢(hn) = ¢(f(x))

Two homotopic maps fl :n --, 7_(7-/) and f2 : M --* 7_(7/) (Appendix) lead to
isomorphic bundles f_' (rl) and f_ (rl).

Thus there is a one-to-one correspondence between U(1) bundles over M and the
homotopy classes of maps of f : M --. CP(oo). For every homotopy class If] of maps
there exist one U(1) bundle f*(rl) (up to equivalence) that is determined by this map
[/].

In the construction of the pullback bundle in (4.52) we used the map f of (4.47)
given by the eigenprojectors An of the Hamiltonian. From our example (3.1) we know
that the closed path of eigenprojectors f = Ak(0, _o)-- Ik; 0, to)(k; 0, _ole 7_(_) which is
the image under f of the closed path t _ R(O, wt) in M is not a closed path of physical
states. Thus the I¢)(¢1 and _ in (4.52a) are not solutions of the dynamical equations
(2.3b) and (2.3a) respectively. From the results (2.32) we know tht this is generally true.
The map (4.47) does not map closed paths in M into closed paths of physical states.
We thus have to find in place of the map f another map ] : M --* P(7_) that maps
closed paths in the parameter space M into closed paths of physical states (solutions of
(2.3b)) in ;o(7"/). To find such maps we will use our example (3.1) as a guide. The closed
path of physical states that corresponds to the closed path t _ R(O, wt) in parameter
space is given by

t --. Ik;O,_ot)(k;O,wtt= Ik;F_(O,wt))(k; F_(O,_ot)l
(4.55)

- hk(O,_ot)

where

Ik; O,_o) - e-i_J_e-iOJ'ei_J_lk; ga) = Ik; Fv(O, _o)) (4.56)

are the sections of (3.84). (Fv and 0 are given by (3.66) and (3.62) respectively).
The projection operator Ak(O, wt) is no more an eigenprojector of the time-dependent
Hamiltonian h(R(O, wt)), it is the eigenprojector of an other operator defined by

• [z(O,_o)= h(O, _) = h(F_(O, _o)) = bR(O, _o). f (4.57)

However this projection operator/_k is a cyclically evolving state (solution of the dy-
. naznical equation (2.3)):

itk(O,_ot)= I¢(t))(_O(t)l= w(t)
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where _)(t) is the solution (3.99) of the equation (3.56). Therefore we choose in place of
the map f in the diagram (4.52) the map

]k = fk o Fv" $2 _ R --/_k(R) e CP(ct), u < 1 (4.58)

This map ]k associates with every Ft(8, _) E £2 an eigenstate /_ of the operator

l:t(_,_). J with eigenvalue k (k being the component of angular momentum along
R(_, _) not along the direction of the magnetic field R(_, _a). The restriction u < 1 is
necessary so that F_ and therewith ]k is continuous.

We take this example as our guiding principle for the general case: There ex-
ist classes of time-dependent periodic Hamiltonians for which the dynamical equation
(2.3) has cyclic non-degenerate solutions with the same period as the period _ of the
Hamiltonian. s) {We want to restrict ourselves here to the case of non-dezenerate solu-
tions, in the case of an N-fold degeneracy the U (1) principal bundle has to be replaced
by the Stiefel bundle with structure group U(AD.6)) These classes are characterized by
the existence of a homeomorphism (diffeomorphism)

F'M_M

which has the following properties:
1.) The operator h(x) defined by

h(x) - h(F(x)) has eigenprojectors /_,(x) = A,_(F(x)) (4.59)

For a clo_ed path (4.1) these eigenprojectors are cyclic solutions of (2.3b):
h,_(F(z(t)) = W(t).

2.) F is continuously related to the identity F(x,v) _ x for u _ 0, where v are
parameters of the Hamiltonian h(x(t)) = h_(x(t)) with [h_=o(t),h_=o(t')] = 0 for
t_t'.
In our example (3.1), the parameter is given by _ = ,z/b where w is the precession

frequency and b is the Larmor frequency.
The map

] = f o F" M _ x --/_,(x) e CP(_) = P(7/) (4.60)

where f is given by (4.47), associates to every x _ M an eigenstate h,_(x) e 7_(7/)
of h(x). This map f also associates to a closed curve (4.1) in M a closed curve of
states W(t) = [k(x(t)) in _P(7-/). With thi_ map ] we construct the pullback bundle
over the parameter space using the classifying theorem of U(1) principal fibre bundles.
The classifying theorem of fibre bundles thus becomes the central mathematical tool in
establishing the relation between the Stiefel bundle of the Ananda.n-Ahaxonov approach
and the parameter space U(1) bundle over M in the Berry-Simon approach.
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The U(1) bundle over M, that associates closed paths in M (4.1) with closed paths
of physical sta_.es (4.2) is given by the pullback ]* of (4.60)"

]-
]'(_) =_ ,

0

. _ . ](x) £_(x).
]

M , PT_ (4.61)

Thus for every value n we obtain a map ] and a U(1) bundle over parameter space
To see how Berry connection and Berry phase are obtained, we start with the

universal classifying bundle 77of (4.29). The bundle r/carries as a natural connection
the Stiefel connection. We choose a (local) section It(A)) of 7_(7_) D O _ S(T/) with
the property I¢(/_)}(¢(£)1 =/_,. The Stiefel connection is then (locally) represented by
the U (1)-valued one-form

,4 - i(¢!d1¢) (4.62)

The local section ¢ in the fibre bundle ]" (r/) is given by

- _(x)= ¢(](_)= ¢(/(F(_)))= 1_;F(_)/ (4.63)!
The In; _) = In; F(x)) are eigenvectors of h(x) and are determined up to a gauge
transformation (4.6).

The canonical connection one-form on the bundle _ = ]* (77)is obtained from (4.62):

0 'n, F(x)>dx _' (4.64)| A(_)- ]',4 = <_;F(x)lb-T_,I •
The geometric phase factor (holonomy) is then given by

exp i'7(C) -= exp i _c=lc A = exp(- _c=]c(¢,dl¢l )

=expi /c]'A = exp(- /cIn; F(x), _-_,n; F(x))dx_').
(4.65)

The path in the first two integral is over the closed curve (4.2) in 7_(7"l),C = ]oC. The
path in the second two integr_l C is the closed curve (4.1) in M. In the third equality the
property of the pullba_ was used. This tbrmula (4.65) says that the geometric phase
can be either calculated using the canonical (Stiefel) connection A in the universal
bundle r/or using its pullback ]'A in the induced bundle. This means the geometric

• phase factor e i_(c) (the holonomy) acquired after parallel transport with respect to the
Stiefel connection along the closed curve C in 7)(7/) is the same as the geometric phase
factor acquired a_er parallel transport with respect to A(x) - ]*A along the closed

' curve C in the parameter space M.
The ex__ression in terms of the integral over C in 7)(7_) = CP(c_) is the standard

expression for the Aharonov-Anandan phase. Thus tl_._Aharonov-Anandon connections
and therewith the geometric phase can also be obtained from the eigenvectors of the
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Hamiltonian, if F is known. However this phase was introduced originally not through
the Stiefel connection but as the difference between the total phaze and the dynamical
phase defined by exp(-i _<_b(t)[h(t)[_b(t)ldt).

The Berry connection and phase is obtained from (4.64) and (4.65) in the adiabatic
approximation in which F is replaced by the identity

0 In; x)dx _ (4.66)A = (n; xi0- _

ei'r(c) =exp(-/c<n;xlo_ln;x>dx" ) (4.67)

where C is the closed curve (4.1) which also appears in (4.45).
The B-S bundle (4.45) A = f*(_) and the bundle A = f*(rl) of (4.61) are related

by the bundle morphism F*'
F"_-- A

1 l
F

M ----* M (4.68)

As F is a diffeomorphism continuously related to the identity, the two maps f= ]o F -1
and ] belong to the same homotopy class in [M, CP(c_)]. Consequently A,A have the
same topology. 9)

In this section 4 we gave a general description of the structures which we discovered
in section 3 for the specific example given by (3.1). We introduced the geometric
phase for general cyclic (non-adiabatic) evolution and showed that the adiabatic phase
introduced in section 2 is a limit of the general geometric phase. But we also showed
that exact cyclic adiabatic evolution is always stationary, i.e. the closed path is a point
in

We uncovered the mathematical structure behind the gauge theory of the geometric
' phase and showed that this involved two fibre bundles with the structure group U(1):

the U(1) bundle over the parameter space M (differentiable manifold) of the parameter
dependent Hamiltonian in the adiabatic approximation considered by Berry and Simon
and the U(1) Stiefel bundle in the Anandan Aharonov approach where the base space
is the space of (pure) physical states P(7_) = CP(oo).

We then related the time evolution (4.2) of a cyclic quantum state W(t) (considered
in the Aharanov-Anandan approach) to the change of a parameter dependent Hamilto-
nian and its eigenprojectors along a closed path (4.1) in parameter space, (considered
in the B-S approach). Since the Stiefel bundle is the universal classifying bundle of the
U(1) bundles over manifolds M, the classifying theorem provides all U(1) bundles over
M (characterized by the first Chern class). Bundles and Chem class are labeled by the
quantum number n.

The classifying Stiefel bundle has a natural connection (4.42) given by differential

geometry (Stiefel connection) which is identical to the connection obtained from the
Aharanov-Anandan approach by separating from the total phase in a natural way a dy-
namical phase. The connection in the parameter space bundle for exact (non-adiabatic)
evolution is the pullback (4.64) of the Stiefel connection (4.62). This pullback connection
goes into Berry's connection (4.66) in the adiabatic limit.

, i , i_1 , ?1 , ' ' ' I) ,11
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The mathematics of the fibre bundles was created and the classification theorem

of principal bundles was established 5) long before the quantum geometric phase was
considered to be of any importance in physics. Though we have accepted the fact that
physics is described by mathematical structures, one usually faces the situation that the
mathematics is not quite ready for soz,ae new physical theory and has to be created along
with, or adapted specifically for, this new physics. It is very rare that the mathematical
structure is already all there and the physical quantities need just to be mapped upon

• the elements of this mathematical structure. This was the situation for the quantum
geometric phase and was therefore the cause of great excitement and exultation. The
role which the mathematics of fibre bundles plays for the physics connected with the
quantal geometric phase is one of the more spectacular examples of what Wigner calls
"the unreasonable effectiveness of mathematics in natural science."
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As a consequence the bundles Aand Aare no m ore isomorphic for v > 1. For details
see: A Mostafazadeh, A. Bohm. Topological Aspects of the Non-Adiabatic Berry
Phase.
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Mathematical Appendix:

"A Brief Review of Fibre Bundles and Their Classification"

by

Ali Mostafazadeh
4

A.I. Fibre Bundles:

Definition: A fibre bundle (1),(4) is a collection (E,M, Tr,G) of two (smooth)
manifolds E and M, an onto continuous (smooth) map 7r • E ---- M and a Lie group
G. E, 77,Tr,and G are called the "total space," the "base manifold," the "projection map"
and the "structure group", respectively. For any x E M, the set 7r-l(x) is a (smooth)
manifold and lr-l(x) =: F= is called the fibre over x. As a point set E - U Fx.

xEM

Furthermore, all fibres look alike, i.e. there exist a (smooth) manifold F such that Fx
axe homeomorphic (dii_eomorphic) to F. F is called the "typical fibre". The structure

group G is a group of diffeomorphisms of F and it has a global right (or left) action on
E. The collection (E, M, _r,G), which sometimes collectively called E, is said to have a
fibre bundle structure if for any x e M there exist an open neighborhood Oi of x such
that

7r-t(O_)_ Oi x F (,4.1)
Moreover, the (right) action of G on E is such that Vp E E, Vg e G:

_(p.g)=_(p)

i.e. the action of G moves the points along the fibres. Furthermore, G acts on fibres
freely and transitively.

Definition: If F happens to be identical to G (as manifolds), then the fibre bundle
is called a "principal fibre bundle".

Definition: If E = 7r-1 (M) __M x F then the fibre bundle is said to be "trivial"
or a "product" bundle. Not every fibre bundle is trivial. The degree in which a fibre
bundle differs from being trivial is measured by a set of functions called the "transition
functions" {g,j }. Let {Oi } be on open covering of M = U Oi such that

i

,#_' _'-1(0_) ---,Oi x F

are the diffeomorphisms of (A.1). Then one can view E as a collection of patches Oi x F
over Oi. The global or topological structure of E is characterized by gluing these patches
in their intersections. Let Oi and Oj have a nonempty intersection then the gluing map
is defined by:

r

gu :=_._o_;-_' _(0_noj) ----,,pj(o_no._)
. (o_no._)x F-.---_(O,nOj) x F

Then Vx e Oi n Oj
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g,j(z) : {z}× {z} × F
:F----_F

, and

g j(z) G.

" Example: A nontrivial and quite relevant (2) example of a principal bundle is the Hopf
bundle: (S 3, S 2, Tr,U (1)) also denoted by:

S I= U(1) ---,S3 = SU(2) -- S2 = SU(2)/U(1).

where thefibresareU(1) orbitsinSU(2)(3).

A.II: Sections, Lifts, Connections and Holonomy:
Let (E, M, lr, G) be a fibre bundle.
Definition: For any open submanifold O C M, a continuous (smooth) map S :

O --. E is called a "section" over O if

o S = idlo
7r

If O -- M then S is said to be a global section of E.
Remark: A principal bundle is trivial if and only if it has a global section.
Definition: Let C : [0, T] --. M be a continuous (smooth) curve in M. Then a

curve C : [0, T] --. E in E is said to be a lift of C if

7roC =C

If a principal bundle P is endowed with a connection (a geometric structure), one has
a well-defined notion of parallel transport. O) Then, a point Po E P can be parallelly
transported along the curve C, to define a curve

C: Po _ p(t) --. p(T)

in P which is called the "horizontal lift" of C associated with the connection on P.

Alternatively, a connection on P may be defined in terms of horizontal lifts. More
precisely, a connection is realized as a rule which associates a lift C to any pair (C, Po).

The tangent vectors wt '= _;C(s)l,=t to C(t) which project to the tangent vectors vt
to C(t) are called "horizontal vectors". Note that wt e Tc(oP, and vte Tc(t)M where
Tc(oP denotes the tangent space of the bundle P at C(t) and Tc(oM denotes the
tangent space of the base space M at the point C(t). Since one can reconstruct C from

' the knowledge of the horizontal vectors, one has(4):
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Definition (1)' A connection on (P, M, Tr,G) is a linear mapping o'p " Tz M ----,
TpP, Vp E P, such that:

i) _r' o ap " T_M ---,T_M is the identity map.
ii) ap depends smoothly on p E P.

iii) ap.g = Rgap

where, 7rI ' TpP ---, T_(p)M is the push forward map corresponding to 7r • P --, M, and
Rg " TvP _ TvP is the push forward map corresponding to the right action map of
g E G, Rg • P ---, P, which is denoted by Rg(p) = p.g, Vp E P and g E G. The right
action of G on P is defined as follows: Let g E G,x E Oi C M,p E _r-l(x) C P, and
_(x) • {x} x lr-l(x) ---, G be the restriction of _0_• 7r-1(O_) ---, Oi x F (of A.I) onto
the fibre over x, 7r-l(x). Clearly, _,(x) is a diffeomorphJsm identifying the fibre 7r-1 (x)
with G. The right action map Rg " P ---*P is defined by

n (p) =p.g := g]

where _v_(p) e G and the product in the bracket is the group product.
The horizontal vectors span a subspace of TvP, Vv e P which is called the "horizon-

tal subspace H_,P of TTP. Hence, a connection leads to a, not necessarily orthogonal,
decomposition of TTP into:

TTP - HTP +. VTP

VTP is called the "vertical subspace". One can view a connection as a rule which
determines HvP ,VT e P:

Definition (2): A connection on (P, M, Tr,G) is a collection of vector spaces HTP C
TpP, such that

i) 7r]H_, P " HTP _ T, ffp)M is an isomorphism.
ii) H T depends smoothly on p E P.

iii) HT.9 = R_Hp.

The vertical subspaces VTP are actually canonically isomorphic to the Lie algebra

g of G. This is seen as follows: For all X = dgd-_]s=o E T_G = G, let v(p) E VTP be
defined by

v(p) := d(p. g(s)))/s Is=0 (A.2)

Then, (A.2) establishes an isomorphism between G and VpP. This isomorphism allows
one to have a more practical definition of a connection on a principal bundle.

Definition (3): A connection on (P, M, r, G) is a 1-form w on P with values in
_, such that

i) Vvv e VTP,WT(VT) = X where X e g is related to VT as dictated by (A.2).
ii) wp depends smoothly on p E P.

iii) w_,.g(R_vp) = Ad(g-1)wp(vT) where Ad denotes the adjoint representation of G on
G. Given w the horizontal subspaces are obtained by

HT := (w T e TpP" wp(wv) = 0}
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The three definitions (1), (2), and (3) can be shown to be equivalent. (4) In the
physics literature one usually encounters a 1-form A on M with values in G. This is
obtained by pulling back the connection one-form w on M, via a local section

, Si'O_----_P

Then, locally

, A(i) := 5_ (w)

where the subscript i refers to the local patch over Oi c M and S_ denotes the pullback.
If P is a trivial bundle, as is the case in many gauge theories, Si can be taken to be a
global section, i.e. Oi = M.

It turns out that the 1-form A(0 is well-defined if one requires a particular trans-
formation rule which reads:

A(i) = g_l(x) . AU). gij(x) + g_*(x) . g_j(x) (A.3)

In (A.3), gij(x) 6 G is the transition function connecting the patch Oi to Oj g-1 is its, ii(x)
! I

(group) inverse, and gij(x) is the push forward map: gij(x) • T,M --, _, corresponding
to gij • M --. G. Here we have assumed G to be a matrix group for simplicity. The
second term in the right hand side of (A.3) is known as the pullback of "Maurer-

/

Cartran" 1-form on G defined by gij " M --, G. Another notation for gij(x) is dgij(x).

To motivate this notation, let _ 6 TM=(s) and act g_j(x(s)) on _;. By definition of
push forward map(1,4) one has:

, d d
g_j(x(s))-_s = ds (g,j(x(s)))

In a local coordinate frame (x ") this becomes

giJ(z(s))k ds OxY' = ds Ox+'(g_j(x(s))
!

which together with the fact that gij(x) is a linear map suffices to see

b- -Zx(a,J(x))
Hence, in general one has:

0
!

g_j(x) -- i)x_ g_j(x)dx_ = dg,j(x)

and (A.3) is then written as:

A(i) = (x)A(j)gij(x)+g l(z)dg j(x) (A.3)!

. It is remarkable that (A.3') coincides with the transformation rule for the gauge potential
of parti_le physics.

Co_sider a closed curve, a loop, C • [0,T] _ M in M and let po e r-l(C(0))
and C be the horizontal lift associated to a connection 1-form w on P. Then, since

' ' qll
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C(0) = C(T),p(T)'= C(T) E rr-l(C(T)) = rr-l(C(0)), i.e. p(T) belongs to the same
fibre as po does. On the other hand, G has a transitive action on the fibres, thus, there
exists a g E G, such that

p(T) = po "g = p(O) . g

since p(T) is the parallel transport of p(0), g is determined by the one-form A =
A_,dx_' -- A_dx_' @ J_,, as:

.: ic']: [_/o..
where Ja aregeneratorsof_,and IPand T standforthepathorderedand timeordered
products, respectively. (x)

Definition: The set of all elements g of G given by (A.4), for fixed po, form a
subgroup of G which is called the "holonomy" group of w associated to po •g is called
a holonomy element.

As is seen from (A.3), A does not transform as a tensor. However, one can introduce
a tensorial quantity for a given connection. This is called the curvature two-form F/of
the connection w. f_ is pulled back on M by a local section to define a Lie algebra valued
two-form F on M. The latter is in perfect analogy to the field strength associated to a
gauge potential. F is related to A by the following local expression:

F(O - dA(o + _ A(O

F(0 has the following tensorial transformation rule:

F(o = g_l(x) . F(j) . g,j(x).

Finally (A.4) is also written in terms of F:

where Stokes theorem is used and S is any two-surface in M bounded by C.

A. III.Classification Theorem for Principal Fibre Bundles:

Definition: Let (E, A_I,Tr,G) be a fibre bundle, and M a (smooth) manifold. Let
f • M _ A_rbe a continuous (smooth) map of manifolds. Then one can induce a (G-)
bundle structure over M using f.

For any x E M, the fibre Fx is defined to be _r-l(f(x)). The "pullback bundle" is

f*(E) "= t2xeMrr-l(f(x)).

as a point set. The bundle structure is then fixed by requiring the transition functions
gij(x) of E = f*(E) to be given by

gij(z) = _j(f(x)) Vr. E M
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where {gij } are transition functions of/_ corresponding to an open covering {6i } of/tS/,
and {gij} correspond to the open covering {f-l((_)} of M.

Definition: Let M and hS/be two topological spaces (smooth manifolds), and fl
and f2 two continuous maps

ff

/i:M--*IQ i=1,2

• fl and f2 are said to be "homotopic" if there exists a continuous map:

_" : M x [0,1] -- .Q

such that _[ M x {0} = fl and _'[ Mx {1} = f2. The existence of _" is equivalent to the
statement that fx can be continuously deformed into f2 and vice versa.

Theorem: For any Lie group G, there exist a principal G-bundle
77: (_?(G), BG, _r,G) such that any principal G-bundle (P, M, zr, G) is obtained from 77
as a pullback bundle i.e. there exist a continuous (smooth) map f : M ---, BG such that

P _- f'(o(G))

Furthermore, homotopic maps pullback (topologically) identical bundles.(5)
The statement of the classification theorem can be illustrated by a commutative

diagram:
/.

P = :'(rl(G)) , rl(G)

I
M , BG

BG and r/(G) are called the "classifying space" and the "classifying bundle", respec-
tively.

For G=U(N), BG can be chosen to be the complex Grassmannian
oo

Gr]¢ = I,J Gr(n,A/') and 77 is the so-called "universal (Stiefel) bundle." For
r_----1

(7 = U(1), BG = Gr1 = CP(oo).
Theorem: There exists a "universal" (Stiefel) connection on 77such that any con-

nection on any principal G-bundle (P, M, zr, G) can be obtained as a pullback connection
one-form from the Stiefel connection. (6)

' rl II_l ' " ' ' li , i i , i I1' _ _ , _r ,
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