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Abstract

Information flowing on communication buses is ordinarily “non-random” in the sense that
data entities are not equally likely and independent. This is because they have
relationships to each other and to physical occurrences to which they may be respondmg
Random data would convey no information or meaning,

From a different viewpoint, there can be applications for creating randomness
characteristics, and four of these are described in this paper. Two examples derive from
cryptology and the other two from safety. One cryptology application described is the
generation of random numbers for use as, for example, keys, hash functions, nonces, and
seeds. The other is for inter-message “padding” to resist traffic analysis by masking when
data are being transmitted and when the channel is conveying no information.

One of the safety applications described is the “unique signal” approach used in modern
nuclear weapon electrical safety. The other is the use of unique signals as non-weapon
critical-operation control functions. Both of these safety applications require provisions to
help assure randomness characteristics in any inadvertently occurring inputs. In order to
satisfy these cryptology and safety needs, communication strategies are described that
generate or selectively encourage independent (unrelated) symbols or messages.

Introduction

In a logical sense, information flowing on most communication buses ordinarily appears as
“bits” (“zeros” and “ones”). Some forms of communication traffic analysis depend on
estimating the relative numbers of zeros and ones in unknown traffic, estimating the
relative numbers of zeros and ones in various communication logical positions of such
traffic, and estimating the Markov characteristics (e.g., the number of ones followed by
ones, the number of ones followed by zeros, etc.). While assumptions of random
characteristics may give useful results on the average, there are situations where such
analyses can be extremely misleading. This might be expected, since truly random bits
would convey no useful information. One of the objectives of this paper is to outline an
analysis approach that addresses such problems.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the United
States Department of Energy under Contract DE-AC04-94AL8500.
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There is a reverse situation leading to a set of synthesis problems. If it is desired to
preclude any useful intelligence to an “outsider” in a communication sequence, it is
desirable to create randomness characteristics. ~ Although “pseudorandom” synthesis
strategies are well known, so are after-the-fact analysis procedures, which can quickly
detect pseudorandom characteristics. This means that protective difficulties may arise,
depending on the amount of design structure involved in creating pseudorandomness. In
this paper, new techniques for enhancing randomness will be described. Four applications
will be discussed. Two examples derive from cryptology and the other two from safety.

On the “Analysis” of Non-Random, Unknown Communication Characteristics

The difficulty is obvious, since the unknown cannot be analyzed. The problem is that it is
tempting to over-analyze by assuming characteristics that may not exist. For example, the
assumption of random characteristics can be misleading. Under this assumption,; the
one/zero balance of unknown communication bits can be probabilistically computed as
equal. Furthermore, the probability of a one/zero balance for a bit following a one (or a
zero) would be computed as one-half Similar assumption-based results could be invalid
because of the inherent dependence in message traffic. Neither of these assumptions
(equally likely and independent) will be true for meaningful messages.

Another common practice is to represent lack of knowledge by a “non-informative”
probability distribution (e.g., a uniform distribution).  But if the characteristics are
unknown, this too is misleading, because every point across the range of uniformity is
represented as exactly as likely as any other point. One type of representation that solves
the above problems is a possibilistic distribution. A possibilistic analysis more accurately
represents the available knowledge when knowledge is sparse or lacking altogether.

In order to show this with a simple example, the uniform probability density function
(PDF) shown below indicates the likelihood of “ones” for a family of unknown
communication channels or communication sources, under the tacit assumption that any
probability from zero to one is equally likely. As a result, the mean value for the
probability of a “one” is one-half
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density of “one”
Figure 1. lllustration of Assumed Knowledge
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This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
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Consider four bits of information on a communication channel that are to be assessed for
the probability of matching some unique pattern, say 0110. Assume uniform distributions
between zero and one for the probability of matching each bit. Now we will use a Monte
Carlo simulation to take four samples from the distribution and multiply the sample
probabilities together. This will be repeated 20 times, each time computing a cumulative
average, as shown in Fig. 2.
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Figure 2. Cumulative Average of Four Random Samples on {0, 1}

An interesting feature of this simulation is that although the average will eventually reach
1/16, the initial sample gives about 1/7. The result shows that even if uniform
distributions are a correct model, the first sample that we see may not be average.

Another way to visualize the problem is to observe averages of various numbers of
Monte-Carlo sampled density functions. Figure 3 shows averages of up to 12 uniform
distributions (most peaked curve) from one (least peaked curve). As expected from the
Central Limit theorem, the average of a large number of independent linear distributions
over {0, 1} approaches a Gaussian (Normal) distribution with mean 0.5. However, the
plot shows that a large number of samples is required before the “theoretical” value is
approached. Also, the necessary Central Limit Theorem assumptions are not easily met.
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Figure 3. Monte-Carlo-Generated Averages of Various Numbers of Uniform Distributions
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As a result of these observations, we conclude that point-estimate probabilities and
probability distribution functions are misleading indicators of exposure to an unknown
data stream.

But if probabilities and probability functions are not valid indicators of our state of
knowledge, is there any possible indicator? The answer is yes. Consider a “possibilistic”
distribution [Ref. 1] for the occurrence. Figure 4 shows the possible values for probability
of a zero (or one). The ordinate is a possibility “membership.” The maximum
membership is one by convention, and the area integral is not constrained, as it would be
in a PDF.
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Figure 4. Illustration of One-Bit Possibility Function for No Assumed Knowledge

This distribution conveys the information that any value is possible, but no more extensive
knowledge is available, and the mean value remains unknown. This accurately represents
the available knowledge; the PDF does not. The possibilistic representation of the
probability of a particular four-bit pattern is shown in Figure 5.
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Figure 5. Illustration of Four-Bit Possibility Function for No Assumed Knowledge

Although Fig. 5 appears identical to Fig. 4, it is actually obtained from Fig. 4 by
possibilistic multiplication [Ref. 2]. This result differs sharply from Fig. 2, where we
depend on averages of random functions to approach the result 1/16.



These observations would be of little value if more sophisticated problems were not
tractable. We will illustrate an analysis that has some similarities to those that must be
accomplished for judging the safety of “unique signals” (UQSs) used to pre-arm nuclear
weapons.

First, assume a 24-bit unique pattern (these are actually called UQS “events” for reasons
we will explain later). We need to assess the probability of matching that pattern with a
single occurrence of 24 bits from a communication channel. A possibility function such as
shown in Fig. 5 is not helpful, because it just bounds the probability between zero and one.
A probability function such as shown in Fig. 2 (converging toward a value of 6x10'®) is
not appropriate, because it is only valid for extensive averages.

We will introduce a triangular possibility function for each bit probability, peaked at ' as
the most “possibilistic” value (Fig. 6).
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Figure 6. Triangular Possibility Function for a Single Bit

For multiple independent bits, the peak values of probability simply multiply. For
dependent values, the result can be greater (if the dependence characteristics match the
unique signal) or less (if they are counter to the unique signal). For illustration, assume
that the multiplication has an additional factor “d” (0<d<2) to represent the effective
dependence. The resultant peak value is then (d/2)**. If d cannot be determined, the
result becomes the same as that shown in Fig. 5. However, if we are able to learn enough
from communication characteristics to better bracket d, the information is useful. For
example, if 0.7<d<1.4, we obtain the trapezoidal possibilistic function shown in Fig. 7
(drawn on a logarithmic scale). Although this dependence is similar to actual results
compiled from communication statistics, there are communication strategies that reduce
the effective dependence. For example, if unique signals are communicated using separate
transmissions for each event, the dependence in inadvertent communication is reduced
since samples received inadvertently are from more unrelated message bits [Ref. 3]. This
is shown in Fig. 8.




-11 4 0
possibilistic values for
log of probability of UQS

Figure 7. Possibility of UQS Considering Dependence
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Figure 8. Possibility of UQS Using Separate Communication Entities
Applications for Synthesis

There are many applications for synthesis of random-appearing sequences. Some
cryptology applications are for use as, for example, keys, hash functions, nonces, and
seeds. In all of these cases unpredictability of what might be generated is of value.
Another application is for inter-message “padding” to resist traffic analysis. The objective
is to give no indication that messages are not being communicated. In all of the above
applications, randomness properties are an attribute, but predictability is not. A common
approach is to use “pseudorandom” generators, constructed through linear algebra
operations. The advantages are that many common randomness properties are satisfied,
and the generation is easily constructed mathematically and through logic circuits. The
disadvantages are that some randomness properties are not met, and analysis can
efficiently detect pseudorandom characteristics.

Safety applications for synthesized randomness include the “unique signal” approach used
in modern nuclear weapon electrical safety and the use of unique signals as non-weapon
critical-operation control functions. Both of these safety applications require provisions to



help assure randomness characteristics (but not pseudorandom characteristics) in any
communicated patterns.

Observations Concerning Synthesis of Random Patterns

One of the important properties of random patterns is that the number of “ones” should be
as nearly equal as possible to the number of “zeros.” The reason for this is that the
maximum probability of inadvertently generating an equal number of ones and zeros is
thereby minimized [Ref. 3]. Similarly, the number of ones followed by ones should be as
nearly equal as possible to the number of ones followed by zeros, and the number of zeros
followed by ones should be as nearly equal as possible to the number of zeros followed by
zeros. These constraints (equivalent to protecting against first-order Markov dependence)
can be visualized by a three-dimensional pattern such as that shown in Fig. 9. The
abscissas represent, for example, the percentage of ones and the percentage of ones
followed by ones. The maximum likelihood of inadvertently matching a pattern
(illustrated by the peak of the three-dimensional image) is minimized by achieving the
balance indicated.

Figure 9. Three-Dimensional Shape Indicating Maximum of Two Pattern Choices

Similar extensions can be made to other orders of Markov dependence and other types of
dependence. However, we will limit our discussion here to a non-random characteristic of
pseudorandom patterns. In a pseudorandom pattern, the number of strings of length n
ones equals (within the constraint of length-(2™-1) sequences) the number of strings of
length n zeros for 0<n<m. Improved randomness patterns can be achieved (but not with
linear generators) by assuring that these matches no not exist.

Another interesting observation is that “mixing” two data streams using an exclusive-or
function statistically increases randomness in the following sense. Whatever the
probabilities of ones and zeros in the two data streams, the exclusive-or probabilities of
ones and zeros will be closer to 0.5 than were either of the data streams (or equal to 0.5 if
the probabilities of any entity are 0, 1, or Y. What this means at least on the average is
that randomness can be enhanced by exclusive-or mixing of two (or more) data streams.
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