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Abstract

Global rainfall over land and ocean is estimated using measurements of up-
welling microwaves by a satellite passive microwave radiometer. Radiative transfer
calculations through a cloud model are used to parameterize an inversion technique
for retrieving rain rates from brightness temperatﬁres measured by the Special Sensor
Microwave/Imager (SSM/I). The rainfall retrieval technique is based on the inter-
action between multi-spectral microwave radiances and millimeter sized liquid and
frozen hydrometeors distributed in the satellite field-of-view. The rain rate algorithm
is sensitive to both hydrometeor .rémjssion and scattering while beiﬁg relatively insen-
sitive to extraneous atmospheric and surface effects. Separate formulations are used
over ocean and land to account for different background microwave characteristics
and the algorithm corrects for inhomogeneous distributions of rain rates within the
satellite field-of-view.

Estimates of instantaneous and climate scale rainfall are validated through
comparisons with modeled clouds, surface radars, rain gauges and alternative satel-
lite estimates. The accuracy of the rainfall estimates is determined from a combina-
tion of validation comparisons, theoretical sampling error calculations, and modeled
sensitivity to variations in atmospheric and surface radiative properties. An error
budget is constructed for both instantaneous rain rates and climate scale global es-
timates. At a one degree resolution, the root mean square errors in instantaneous
rain rate estimates are 13% over ocean and 20% over land. The root mean square
errors in global rainfall totals over a four month period are found to be 46% over

ocean and 63% over land.



\'

Global rainfall totals are computed on a monthly scale for a three year
period from 1987 to 1990. The time series is analyzed for climate scale rainfall dis-
tribution and variability. Monthly rainfall patterns over the northwestern Atlantic
Ocean exhibit a strong correlation between increased rainfall and the warmer waters
of the Gulf Stream. Over northern Africa, a rain edge detection technique is applied
to a monthly time series to track the propagation of heavy convective rainfall associ-
ated with the ITCZ as it moves latitudinally across the Sahel. Finally, variability in
global seasonal rainfall observed during the El Nifio Southern Oscillation shows that
the variability of climate scale rainfall is equal in magnitude to the mean rainfall
itself. The most prominent global change associated with El Nifio is a shift in the

heaviest rainfall from the western to the central and eastern Pacific Ocean.
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CHAPTER 1

RAINFALL REMOTE SENSING

1.1 Observational requirements

Rainfall plays an important role in the hydrologic and energy cycles of the
Earth system. Rainfall is part of the Earth’s transport mechanism for distributing
energy and water between the ocean, land and atmosphere. Solar energy absorbed
in the equatorial oceans is transported into the atmosphere through evaporation and
then released as latent heat energy during raindrop condensation. This energy con-
tributes to the atmospheric circulation which in turn carries water vapor poleward.
The latent heat released at higher latitudes acts to reduce the Earth’s latitudinal
temperature gradient. Many large scale atmospheric dynamical features such as the
Hadley cell and the Walker circulation are driven in part by the energetics of the
rainfall process.

In addition to the influences within the atmosphere, rainfall interacts with
ocean and land surfaces. The freshwater flux associated with rainfall alters the ocean
salinity and buoyancy, which in turn affects vertical mixing, skin temperature and
radiation to space. Over land the rainfall distribution controls the biological system,
affecting soil moisture, potential evapotranspiration and sustainable leaf area. Cli-
mate scale changes in terrestrial rainfall cause ecotone migration and redistribution
on a global scale.

Rainfall is a component of the Earth system that directly affects the livabil-
ity of the planet. The variability of tropical monsoons brings cycles of both drought
and flooding in India and Asia and cycles of drought, crop failure, and famine in the

African Sahel. Rainfall variability in the United States has resulted in the recent
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long term drought in the Southwest and severe flooding in the Midwest. The impact
of the natural variability of rainfall is accompanied by the prospect of long term
_global climate change. A consensus report on equilibrium climate models predicts
that if CO, is doubled over the next hundred years the globe will warm by 1.5 °C
to 4.5 °C and that rainfall will decrease in North America by as much as 0.7 meters
per year (Mitchell 1990). The continuous observation of global rainfall is especially
important considering the critical role that rainfall plays in the quality of human life

and the nature of the Earth system.

1.2 Rainfall monitoring techniques

Despite the scientific and human significance of an understanding of global
rainfall, only recently has the capability for global monitoring been realized. It is not
feasible to collect sufficient information from radar and raingauges on the ground,
especially over the ocean. Because rainfall is so highly variable in time and space
it was not until the introduction of Earth orbiting satellites that the distribution of
planetary rainfall was first monitored. Satellite estimates of rainfall were first derived
from visible and infrared instruments using cloud top temperature and cloud optical
properties to indirectly infer underlying rain rates (Adler and Negri 1988; Arkin and
Meisner 1987; Negri et al. 1988). Although the accuracies achieved by the visible and
infrared techniques suffered from the indirect relationship between cloud properties
and rainfall (McConnell and North 1987), valuable tropical rainfall climatologies were
derived using visible and infrared data (Arkin and Ardanuy 1989; Garcia 1985).

With the advent of passive microwave radiometers, including the Elec-
trically Scanning Microwave Radiometer (ESMR), the Scanning Multichannel Mi-
crowave Radiometer (SMMR) on the Nimbus and Seasat satellites, and the Special
Sensor Microwave/Imager (SSM/I) on the Defense Meteorological Satellite Program

(DMSP) satellites, more accurate rainfall retrievals were achieved. Upwelling passive
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microwave radiances directly interact with raindrops through attenuation and scat-
tering while remaining virtually unattenuated by clouds (Wilheit and Chang 1980).
The 19 GHz channel of the ESMR instrument on Nimbus-5 was used to infer precip-
itation rates over the ocean based on the functional relationship between rain rate
and increases in measurable upwelling brightness temperature resulting from rain-
drop emissions (Wilheit 1986). Over the ocean, which has a relatively low emission
when viewed at an oblique angle, emission based algorithms are effective until the
rain rates reach about 20 mm/hr. At this point, brightness temperatures saturate
and begin to decrease as the rain layer becomes optically thick.

In addition to the raindrop emission at lower microwave frequencies, large
liquid and frozen hydrometeors scatter radiances at higher frequencies. At the 37
GHz SMMR channel and the 37 and 85 GHz SSM /1 channels, rain and ice scatter and
depolarize upwelling radiances. The scattering of the SMMR 37 GHz measurements
‘was used to retrieve rain rates in convective storms (Spencer 1986), and the SSM/I
85 GHz channel was used to retrieve precipitation over land and ocean (Spencer et al.
1989). Although scattering techniques are not especially sensitive to low rain rates
where raindrops are smaller and ice content may be minimal, scattering algorithms
can detect rainfall over land surfaces, with higher resolutions and for higher rain rates
than emission algorithms. The lower frequency (19 GHz) and higher frequency (85
GHz) channels were combined by Liu and Curry (1992) to formulate an algorithm
sensitive to both emission and scattering, thus taking advantage of both regimes at
once. Methods for utilizing passive microwave radiometric measurements to retrieve
vertical rain rate profiles have been developed by Kummerow et al. (1989), Olson
(1989), and Mungai and Smith (1988).

Although significant progress has been demonstrated for computing global
monthly rainfall composites over the ocean (Arkin and Ardanuy 1989; Berg and

Chase 1992; Berg and Avery 1994; Prabhakara et al. 1992; Wilheit et al. 1991),
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global rainfall estimates must be greatly improved before climate changes can be
distinguished from natural variability (Simpson 1988). With an operational deploy-
ment of SSM/I instruments on Defense Meteorological Satellites, it is now possible
to develop and validate algorithms for monitoring global rainfall over both land and
ocean. Although rainfall estimates from SSM/I have been shown to compare favor-
ably with ground based observations, continued algorithm development is needed

to further reduce rainfall estimation errors (Adler et al. 1993; Liu and Curry 1992;

Grody 1991; Spencer et al. 1989).

Validation studies of passive microwave algorithms usually claim an accu-
racy of only about a factor of two (Simpson 1988). The accuracies are inconsistent
over variable land backgrounds and for non-conventional raincloud types such as the
“warm rain” over the tropical oceans and orographic rain over western India (Lee
et al. 1991; Kniveton et al. 1993; Barrett et al. 1994). The results of the intercom-
parisons of current SSM/I rainfall algorithms reveal significant differences in rainfall
estimates. These differences result from a variety of theoretical approaches utilized
in algorithm development. There are differences in treating the attenuation and scat-
tering in the signal, separating rainfall response from surface variability, accounting
for rainfall inhomogeneity in the radiometer field-of-view, and distinguishing between
warm rain events and non-precipitating cloud liquid water (Wilheit et al. 1994). The
nonlinear relationship between measured radiances and rain rates, when coupled with
rain rate variability within the instantaneous instrument field-of-view, contributes to
a retrieval underestimation commonly referred to as the beam filling error (Ferriday
and Kummerow 1992; North and Nakamoto 1989). Variations in surface properties
and cloud structure contribute additional challenges to estimation algorithms when

applied to the global environment (Kummerow et al. 1989; Grody 1991).




1.8 Rainfall retrieval using SSM/I

In order to produce accurate global maps of rainfall, a new technique is
developed to estimate rain rates using passive microwave measurements from SSM/I
(Ferriday and Avery 1994). Measured multi-spectral brightness temperatures are
inverted to retrieve rain rates based on theoretical radiative transfer calculations
through a surface-cloud model. The algorithm is sensitive to both emission and
scattering, accounts for variable rainfall distributions within the radiometer field-of-
view and is relatively insensitive to variations in surface and atmospheric background
effects. Furthermore, the algorithm is very simple in form and structured to be
readily implemented by investigators using SSM/I data.

An error budget is calculated for both instantaneous and time averaged rain
rates. The uncertainties are estimated from a combination of validation comparisons,
theoretical sampling error calculations and sensitivities to variations in cloud model
composition. Using the algorithm, a time series of global rainfall is computed from
F8 SSM/I data for the period August, 1987 through December, 1989. The global
maps are analyzed for rainfall distribution and variability. The relationship between
rainfall and sea surface temperatures over the Gulf Stream is investigated. The
latitudinal rainfall edge over northern Africa is tracked to determine the temporal
variability of the northern migration of the intertropical convergence zone over the
Sahel. Finally, global rainfall variability is mbnitored during an El Nifio Southern

Oscillation event.




CHAPTER 2
PASSIVE MICROWAVE THEORY

2.1 Cloud modeling

Passive microwave rainfall remote sensing is based on distinguishing the
rainfall signature in upwelling radiance measured by a spaceborne radiometer from
the effects of the underlying surface and atmospheric cloud liquid water, water vapor
and ice. The development of the SSM/I rainfall algorithm begins with a description
of microwave radiative transfer theory applied to a physical model detailing both the
underlying surface and atmospheric composition. The model specifies the amount
and distribution of atmospheiic and surface components that strongly influence up-
welling microwave radiance. The quantity of water vapor and molecular oxygen are
modeled using a constant path integrated value while liquid and ice hydrometeors,
cloud liquid water, and temperature are vertically distributed. Underlying surface
parameters such as temperature and emissivity are coupled to the atmospheric pa-
rameters to form a cloud model system. Theoretical calculations of radiances up-
welling through the model form the basis of estimating the underlying rain rate using
actual satellite brightness temperature measurements.

In general, cloud models specify either a plane-parallel, horizontally infinite
cloud distribution or a vertically structured horizontally finite cloud distribution.
There are two basic approaches for modeling horizontally infinite, plane-parallel
clouds. In one basic modeling approach, rain is constrained to below the freezing
level and ice to above the freezing level (Spencer et al. 1983). In a more realistic
approach, vertical layers containing mixed distributions of rain, cloud liquid water,

and ice particles are modeled (Wu and Weinman 1984; Liu and Curry 1992). In
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more complicated models, numerous atmospheric profiles representing different rain
event types are used in a retrieval scheme (Kummerow et al. 1989).

The cloud model used in this study is a vertically structured, plane-parallel,
horizontally infinite representation of a raining atmosphere similar to Wu and Wein-
man (1984) and Liu and Curry (1992). Vertical hydrometeor profiles, including
raindrops, ice particles and cloud liquid water are specified from 0-14 km in a se-
ries of homogeneous layers. The model represents rain cloud conditions typical of
stratiform rain at low rain rates and convective rain at higher rain rates. Raindrops
are found exclusively below the freezing level for low rain rates, but as rain rate
increases, raindrops are included in layers above the freezing level. Ice particles,
modeled as aspherical frozen rain drops, are distributed above the freezing level.

The distribution of hydrometeors within each layer is shown for liquid and
ice in Figure 2.1. The rain rate is constant from the surface to 4 km. A layer of cloud
liquid water is also included from 4-6 km. Ice and supercooled water drops compose
mixed layers between 4 and 8 km. The rain rate decreases while ice increases linearly
with altitude in this mixed layer. Ice content at 8 km is 1/2 the surface rain rate, and
above 8 km, decreases linearly with height. The cloud top height increases linearly
with surface rain rate from 8 to 12 km. Table 2.1 lists the parameters used in the
model which are independent of rain rate. The temperature profile has a freezing level
at 4 km and a lapse rate of 6.5 K/km, corresponding to pseudo adiabatic conditions.
Humidity is held constant at 90% through all layers. The model includes cloud liquid
water with a density ranging from 0-0.2 gm/m3 near and below the freezing level.
The boundary conditions include a contribution of downwelling radiation from space
of 2.7 K and a constant surface temperature of 288 K. The emissivity of the land

surface is held constant at 0.95 and the ocean is treated as a specular surface.




calculations.

Table 2.1. Parameters used in the cloud model for theoretical radiative transfer

Surface Temperature | 288K

Land emissivity 0.95
Humidity 90%

Lapse Rate —6.5K/km
Max Cloud Height 14km
Cloud Liquid Water | 0 — 0.2¢g/m®
Space background 2.7TK

Cloud Model Hydrometeor Distribution

Altitude (km)

Relative Hydrometeor Content

rain rate and distributed through altitude.

Figure 2.1. Model of liquid and ice phase hydrometeor content normalized by surface




2.2 Radiative transfer theory

Equations which describe the theoretical transfer of microwave radiances
through a horizontally infinite, plane-parallel vertically structured atmosphere form
the basis for calculations of upwelling radiances measurable by SSM/I. The basic
equation for the differential radiant intensity can be written as

—uw = —I(r,p)+ I (7, 1) (2.1)
where I(7,p) is the radiant intensity at optical depth 7 and p = cos(8), where 8 is
the zenith angle. The source function J is defined as

I(r,) = (1= ()] B+ 25 [ gt M, e (2.2)
in which B(7) is the Planck function, a is the single scattering albedo and p is the

single scattering phase function. The equation for 7, the extinction optical depth at

any point in the medium is

»

T(z)=/z keze(2' )d2' (2.3)
z
where k., is the extinction coefficient, 2* is the cloud top altitude and z is the
altitude in kilometers (Olson 1989).

The radiant intensity can be expressed in more conventional units as the
brightness temperature, which is the thermodynamic temperature of a blackbody
emitting an equivalent intensity. At microwave frequencies the Rayleigh-Jeans ap-

proximation replaces the Planck function (Liou 1980) for blackbody emission,

2kBoltzy 2

B,(T) = [c—z] T (2.4)
where T is the thermodynamic temperature of the blackbody, c is the speed of light,
v is the radiation frequency, and kpgois, is the Boltzman constant (1.38z10%¢erg/K).

The brightness temperature as a function of intensity is then

T, = [Ll I. | (2.5)

2kBoltzV 2
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2.3 SSM/I description

Calculations of upwelling radiances are desired for frequencies sampled by
the Special Sensor Microwave/Imager (SSM/I), a passive microwave radiometer pro-
viding the data base for retrieving global rainfall. The SSM/I is built by Hughes
Aircraft Company (HAC) under the direction of the Naval Space Systems Activ-
ity (NSSA) and the Air Force Space Division (AFSD) (Hollinger et al. 1987). The
SSM/11is carried aboard the Defense Meteorological Satellite Program (DMSP) Block
5D-2, F8, F10 and F11 spacecraft. It serves as an oceanographic and meteorological
sensor providing data for the extraction of environmental parameters such as ocean
wind speeds, ice concentrations, land surface cover, precipitable water, cloud liquid
water and rain rates.

The F8 spacecraft is in a circular, sun-synchronous, near-polar orbit at an
altitude of 833 km (Wentz 1989). The orbital period is 102.0 minutes yielding 14.1
full orbits each day. Each scan covers 12.5 km of ground track with a 1400 km
swath width. Seven channels measure upwelling radiance at 19.35, 22.235, 37.0, and
85.5 GHz. All channels except the vertically polarized 22.235 GHz channel are dual
polarized. Along the swath, 128 radiometric samples are obtained at two 85.5 GHz
channels, and 64 samples are obtained on alternating scans by the remaining chan-
nels. The spatial resolution of the SSM/I channels varies inversely with frequency
from 60 km at 19.35 GHz to 15 km at 85.5 GHz. Global SSM/I coverage yields ap-
proximately 40 million measurements. With the launch of F10 and F11 the DMSP
began operational support of a constellation of at least three spacecraft with SSM/I

instruments.

2.4 Calculations of upwelling microwave radiances

Theoretical upwelling brightness temperatures (T}) corresponding to each

of the SSM/I channels are calculated as a function of rain rate. Radiative transfer
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calculations are made using a one dimensional Eddington approximation (Kum-
merow 1987) in which the phase function and intensity distribution of the upwelling
microwave radiance are expanded as
p=1+3g [cos fcosf' +sinfsin b’ (2.6)
where p is the phase function, g is the asymmetry factor for single scattering, § and
6' are the incident and outgoing scattering angles, and
I=Iy+Icosb (2.7)
in which I is the radiant intensity.
These expressions for p and I are then substituted into the radiative transfer
equation (2.1) which becomes,
dlp/dz = —kezt + (1 — ag)lh. (2.8)
The Eddington approximation requires that k¢, @ and g are constant
within each computational layer. These parameters are ca.lcula.ted using Mie theory
(Liou 1980). Both raindrops and ice particles are modeled as spherical hydrometeors
homogeneously distributed in each computational layer as described by the Marshall-
Palmer dropsize distribution (Marshall and Palmer 1949).
The extinction and single scatter albedo coefficients are calculated from an
empirical power-function model as
k= KR" (2.9)
where k is the extinction coefficient, K and s are constants and R is the rain rate
and
a=AR* (2.10)
where a is the single scatter albedo coefficient and A and o are constants.
Theoretical upwelling brightness temperatures for SSM/I channels are cal-
culated as a function of ;a.in rate. Brightness temperatures are calculated separately

over ocean and land surfaces. Horizontally polarized brightness temperatures are
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plotted in Figure 2.2 as a function of rain rate over the ocean and vertically polar-
ized ocean brightness temperatures are shown in Figure 2.3. The form of the curves
represents contributions from both emission and scattering associated with liquid
and frozen hydrometeors. For a non-raining case, the temperatures are dependent

primarily on surface emission.

HORIZONTAL POLARIZATION OVER 288 K OCEAN SURFACE
300 T T ¥ T T T

BRIGHTNESS TEMPERATURE (K)
n
=1
S
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1201 1

1000 5 10 15 20 25 30 35

RAIN RATE (MM/HR)

Figure 2.2. Theoretical horizontally polarized brightness temperatures as a function
of cloud model rain rate over the ocean.

The relationship between brightness temperature (T3) and rain rate (RR)
over ocean begins with an increase of the lower frequency T with rain rate until a
saturation temperature is reached. The saturation is followed by a slight decrease in
Ty, with further rain rate increases. The initial T} increase is due to absorption and
emission by liquid rain drops which level off when the drop layers become optically
thick. Contributions from scattering by ice aloft and emission from colder drops at
higher altitudes depress temperatures at the highest rain rates. The 19 GHz signal

is highly polarized at low rain rates because the ocean acts as a specular surface
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when viewed at an oblique angle such as with the SSM/I. The signal becomes unpo-
larized at high rain rates because of the randomly polarized attenuation produced

by raindrops and scattering by ice.

VERTICAL POLARIZATION OVER 288 K OCEAN SURFACE
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Figure 2.3. Theoretical vertically polarized brightness temperatures as a function of
cloud model rain rate over the ocean.

At 85 GHz, the T, exhibit a pronounced depression beginning at low rain
rates which continues without saturation to rain rates of 35 mm/hr. The no-rain T}
are higher than those from the lower frequency channels because the emissivity of the
ocean surface increases with frequency in this regime. The marked drop in T} with
rain rate at 85 GHz is due primarily to significant scattering by ice hydrometeors
above the freezing level in raining clouds. Not all rain clouds contain ice, especially
stratiform systems, so the model used in this study contains appreciable ice only
at higher rain rates. The 85 GHz channels are less polarized than lower frequency
channels because polarization decreases with frequency for an obliquely viewed ocean

surface. The attenuation of T, with rain rate at 37 GHz contains a mixture of the
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characteristics outlined for 19 and 85 GHz. At low rain rates the T} increase is due
to rain drop emission, but at higher rain rates the signal is depressed by scattering

from ice particles.

The calculations of Ty upwelling over land, which is treated as a Lamber-
tian emitter (Liou 1980), are shown in Figure 2.4. The emissivity of land is highly
dependent on surface moisture, texture and composition. Because modeling of land
surface emissivity is beyond the scope of this study, a constant emissivity is adopted
for both vertical and horizontal polarizations yielding one set of T} curves. Because
the land background has a much higher emissivity than the ocean, rainfall emission
is precluded. The primary signal associated with increasing rain rates is the decrease
in T} associated with scattering most noticeable at 85 GHz. The scattering signal

does not saturate even at a rain rate of 35 mm/hr.

288 K LAND SURFACE WITH EMISSIVITY OF 0.95
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Figure 2.4. Theoretical brightness temperatures as a function of rain rate over land.




2.5 Global brightness temperature maps

The general characteristics of the SSM/I T and polarization differences
are presented in a series of images from one day of data collection over the globe.
Figures 2.5-2.7 depict T with a frequency and polarization of 19h, 37h, 85h, respec-
tively. Figure 2.8 shows the 19 GHz polarization difference and Figure 2.9 shows the
37 GHz polarization difference. The data were collected on May 01, 1988 by the F8
SSM/I during a 24 hour period. An average measurement is calculated within each
grid point at a resolution of one degree latitude and longitude. The data outages, ap-
pearing as diamond shapes spanning across the image, result from the criss-crossing
of instrument scans during ascending and descending orbits. The orbit precesses so
that the entire globe is sampled every few days within the polar orbit inclination
limits. The F8 orbit is sun synchronous with a local equatorial ascending crossing
time of 6:12 am. Microwave radiances measurable by SSM/I are emitted by the
Earth’s surface and attenuated and scattered by the intervening atmosphere so that
both day and night temperatures can be composited into a daily image.

The general characteristics exhibited by the maps of measured brightness
temperature can be described relative to the lower frequency and higher frequency
channels. The lower frequency channels have a lower resolution, are more highly
polarized, and are attenuated most significantly by liquid hydrometeors and precip-
itable water. The higher frequency channels have higher resolution, are less polarized
and are attenuated primarily by scattering from atmospheric frozen hydrometeors.
The horizontally polarized channels have lowered brightness temperatures over moist
and flooded land surfaces and over the ocean due to a reduced emissivity. The global
T, maps emphasize the radiative principles demonstrated by the theoretical calcu-
lations of upwelling radiances measurable by SSM/I presented in section 2.4. The
global Tp, maps collectively show the latitudinal temperature gradient with bright

temperatures near the equator that decrease with increasing latitude. The higher
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emissivity of the land surface for both polarization measurements is seen in all the
maps. The higher polarization of the ocean is evident in the reduced horizontal po-
larized brightness temperatures, especially at 19 GHz. The strong convection in the
equatorial intertropical convection zone (ITCZ) gives rise to extremely large amounts
of rainfall. The attenuation and scattering resulting from this intense band of equa-
torial rainfall is visible as increases in the lower frequency channels and reduced
temperatures in the higher frequency channels. Over land the 19 GHz horizontal
channel is relatively homogeneous. The scattering and polarized Tj at 85 GHz re-

sulting from lowered emissivity by ice and snow is evident in Figure 2.7 over the

Himilayas and Antarctica.




SSM/I Horizontally Polarized 19 GHz Channel, 05/01/88
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Figure 2.5. SSM/I 19 GHz horizontally polarized brightness temperature for May 1,
1988 gridded to one degree resolution.
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SSM/I Horizontally Polarized 37 GHz Channel, 05/01/88
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Figure 2.6. SSM/I 37 GHz horizontally polarized brightness temperature for May 1,
1988 gridded to one degree resolution




SSM/I Horizontally Polarized 85 GHz Channel, 05/01/88
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Figure 2.7. SSM/I 85 GHz horizontally polarized brightness temperature for May 1,
1988 gridded to one degree resolution.
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Figure 2.8. SSM/I 19 GHz brightness temperature polarization difference for May
1, 1988 gridded to one degree resolution.




SSM/I 37 GHz V-H Polarization Difference, 05/01/88

90

60

30

9
? 80 -120 -60 0 60 120 180
Brightness Temperature (K)

0 8 17 25 34 42 o1 5 67 76

Figure 2.9. SSM/I 37 GHz brightness temperature polarization difference for May
1, 1988 gridded to one degree resolution.



CHAPTER 3
RAINFALL ESTIMATION USING SSM/I

3.1 Algorithm formulaﬁon

The theoretical brightness temperatures T}, calculated as a function of rain
rate are used to develop an algorithm for estimating rainfall from SSM/I brightness
temperatures (Ferriday and Avery 1994). Separate formulations are constructed for
ocean and land backgrounds to account for dissimilar background T; signatures. In
order to utilize information available from the polarization and emission features
at low rain rates, the ocean algorithm is based on polarization differencing and
mixed emission-scattering response. Over land, the algorithm relies primarily on
scattering information because the bright land background obscures hydrometeor
emission. Channel combinations sensitive to low rain rates are chosen to aid in
rain thresholding. Creating a normalized brightness temperature by adding and
subtracting equal numbers of channels reduces the influence of background surface
and atmospheric variability from different climatic regions (Spencer et al. 1989).
Finally, channels are corrected for beam filling errors so that they vary nearly linearly
with rain rate. The algorithm comprises two basic steps: the data are first screened
to detect rain and to remove non-raining cases which exhibit T} signatures similar
to rain, and then a rain rate is calculated using a linear combination of T;. The
algorithm is constructed to perform consistently with both low and high rain rates

for a variety of rain cloud systems over the highly variable Earth background.




3.2 Rain screening

The effects of raining hydrometeors on radiances measurable by SSM/I are
similar to the signatures of many surface and non-raining atmospheric conditions
(Grody 1991). Therefore, an algorithm constructed simply to quantify rain rate can
often misclassify these non-raining conditions by assigning a rain rate. Surfaces such
as ice, snow, sand, cold ground, and moist soil exhibit signatures similar to rainfall.
Variations in atmospheric water vapor, cloud liquid water, non-precipitating ice and
temperature profiles produce attenuation and scattering which also may resemble
the effects of rainfall (Wilheit 1986). There are, however, subtle differences in the
brightness temperature response measurable by SSM/I that are useful in distinguish-
ing among these conditions. Prior to a rain rate calculation, the algorithm tests the
SSM/I data to distinguish between possible raining events and underlying surface
and atmospheric conditions exhibiting a potentially erroneous rainfall signature.

Each of the non-raining conditions may be distinguished from rain using
a testing logic based on separate scattering, attenuation and polarization criteria.
Over land, the data are flagged as non-raining cold or ice/snow covered ground if
the 19 GHz T} is less than 265 K. Also over land, if the polarization difference at 37
GHz or 19 GHz is greater than 10 K, the pixel is flagged as desert or moist or looded
soil. These tests are derived from the theoretical brightness temperature response
curves in section 2.4 and the polarization curves in Figure 3.1, by noting the T} and
polarization for low rain rate thresholds. Over ocean the polarization difference at
19 GHz must be below 60 K to signal the possible presence of rain. The rain rate
calculation, outlined in the next section, tests for the combined presence of emission
and scattering associated with hydrometeors. Because it is possible to distinguish
between raining and non-raining pixels in most cases over a multitude of different
surfaces, flagged pixels in this algorithm are set to zero rain rate rather than left

indeterminate.
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The impact of employing this screening technique is evident in zonal and
meridional brightness temperature averages computed from one day of SSM /1 data
for the vertically polarized 19 GHz channel (Figure 3.2) and the polarization dif-
ferences at 19 GHz (Figure 3.3) and 37 GHz (Figure 3.4). The most noticeable
feature for the vertically polarized 19 GHz T} is the latitudinal dependence of the
global mean over land which ranges from about 220 K near the poles to about 270
K near the equator. The meridional trend is primarily due to the dependence of T}
on surface temperature. The same feature is evident over ocean, with a range of 185
K to 220 K. The 19 GHz polarization is less dependent on latitude, with a range
over ocean of 70 K to 55 K and over land of 50 K to 10 K from pole to equator.
The polarization at 37 GHz is similar to the 19 GHz polarization except that the
magnitude is always less by about 10 K.

The land algorithm temperature threshold at the vertically polarized 19
GHz channel of 265 K will remove the colder regions at high latitudes where the
primary precipitation is snow and where the radiances resemble raining cases because
of the snow, ice and cold ground. The further addition of the polarization checks
at 19 and 37 GHz remove high latitude areas with polarization resulting from snow
and ice. Over ocean, the algorithm utilizes a polarization difference to flag non-
raining cases; however this screen is minimal relative to the land screening because
the emission and scattering response of hydrometeors is more easily detected over

the uniform backdrop of the ocean surface.
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POLARIZATION DIFFERENCE OVER 288 K OCEAN SURFACE
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Figure 3.1. Theorectically calculated polarization difference at SSM/I frequencies
over an ocean surface with increasing rain rate.
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Figure 3.2. Zonal (top) and meridional (bottom) averages of vertically polarized 19
GHz brightness temperatures calculated separately over land and ocean from SSM /1

data on August 2, 1987.
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Figure 3.3. Zonal (top) and meridional (bottom) averages of 19 GHz brightness
temperature polarization difference calculated separately over land and ocean from
SSM/I data on August 2, 1987.
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ZONAL AND MERIDIONAL AVERAGES OF SSM/l 37 GHZ TB POLARIZATION
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Figure 3.4. Zonal (top) and meridional (bottom) averages of 37 GHz brightness
temperature polarization difference calculated separately over land and ocean from
SSM/I data on August 2, 1987.




3.3 Rain rate calculation

Over ocean, the channel combination chosen to form the core of the rain
rate retrieval algorithm is (19h + 19v 4 3Th — 22v — 37v — 85h), where the notation
describes the frequency and polarization of the SSM/I channel. The basis for this
selection, in addition to satisfying the algorithm requirements outlined in section 3.1,
lies in the sensitive response of the low frequency horizontally polarized channels
to low rain rates and the depolarization accompanying attenuation by liquid and
scattering by ice observed in section 2.4. A further attribute is that while the lower
frequency response increases primarily for low rain rates, at high rain rates the higher
frequency response continues to decrease when the low frequencies have saturated,
so that the algorithm is extended in dynamic range. The channel combination used
for the calculation of land surface rain rates is (19h 4+ 37h — 2% 85h). The use of only
one polarization over land minimizes the effect of surface moisture variations. Since
the no-rain signal is already depolarized in most cases and polarizing effects from
non-spherical hydrometeors are not modeled, polarization information over land is
limited to screening non-raining surfaces such as ice and moist soil. Subtracting
the higher frequency channels from the low frequency channels gives a nearly linear
channel combination dependence on rain rate.

Using the brightness temperatures calculated from the combination of chan-
nels selected for the algorithms, a threshold is chosen to signal the presence of rain.
There is a tradeoff between lowering the threshold to allow sensitivity at lower rain
rates, and raising the threshold to adequately screen out non-raining cases. In the
ocean algorithm, thresholding between non-precipitating clouds containing signifi-
cant amounts of cloud liquid water, and cases where rain drops are actually reaching
the ground, is especially difficult. A bias is added to the brightness temperatures
such that the threshold is at a rain rate of 0.5 mm/hr. The bias for the ocean

algorithm is 170.2 K, and the bias for the land algorithm is -15.6 K.
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Inhomogeneous distributions of rain rates within a satellite instantaneous
field-of-view (IFOV) can cause an underestimation in uncorrected retrieval algo-
rithms developed from idealized rain distributions (Chiu et al. 1990). The under-
estimation, known as “beam filling errors”, results from an inhomogeneously filled
IFOV because there is a non-linear relationship between brightness temperature and
rain rate especially at lower frequencies. When an ensemble of T} contributions from
a distribution of rain rates are averaged together in one satellite measurement, the

apparent T} as calculated from a model of homogeneous rates indicates a lower rain

rate than the true value (Ferriday and Kummerow 1992).

The T}, combinations are adjusted to compensate for beam filling errors.
The errors occur in the emission regime with rain rates of 0-20 mm/hr. The beam
filling error is negligible in the scattering regime with rain rates greater than 20
mm/hr because the Tj are nearly linearly related to rain rate. From studies of
rainfall in the Global Atlantic Tropical Experiment (GATE) the beam filling error
was measured to result in an underestimation in rainfall retrievals of about 50%
(Short and North 1990; Chiu et al. 1990). To correct for this underestimation, the
T, combinations are adjusted in the emission regime. The theoretical T} combination
is shifted so that it will retrieve twice the rain rate in the range 0-20 mm/hr. The
correction linearizes the Tp-rain rate curve in a manner which is consistent with other
beam filling correction methods (Liu and Curry 1992; Chiu et al. 1990).

A regression line is fit to the bias and beam filling corrected brightness
temperatures to create an inversion formula for converting Tj to rain rates. In Fig-
ure 3.5 and Figure 3.6 the beam filling corrected T} combinations are plotted along
with the regression line. Over ocean the slope is 18.3 K/mm and over land the slope
is 9.1 K/mm. The straight line fit to the T} preserves simplicity in algorithm im-
plementation and in future modifications. Slope and bias corrections obtained from

comparisons with alternative rain rate retrievals can be incorporated as a calibration
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in future versions of the algorithm. Although the regression line does not match the
modeled T} directly, it is more effective than a non-linear fit because actual satellite
footprint averaged Tj exhibit a nearly linear response to averaged rain rates (Spencer
1986). In both Figure 3.5 and Figure 3.6 the T corresponding to a cloud model rain
rate of 32 mm/hr is an outlier relative to the regression line. It is not expected
that this will cause significant error in actual retrievals because the area-average
rain rate in a satellite footprint that is 25 km across seldom reaches higher than 20
mm /hr. The algorithm validation and error budget in Chapter 4 further support

this assumption.
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RAIN RATE ALGORITHM OVER 288 K OCEAN
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Figure 3.5. Formulation of the SSM/I land rain rate algorithm: the T} are linearly
combined, corrected for beam filling, and plotted as a function of cloud model rain
rate. A regression line is fit through the T} points providing the slope and bias used
to invert actual measured T} to rain rates.




RAIN RATE ALGORITHM OVER 288K LAND
300 1 I T i T 1

2501 TB = 19H+37H-2."85H .

— —_ no

[e=] [42] o

(=] (=] (=]
T T T

BRIGHTNESS TEMPERATURE (K)
o
S

Or INTERCEPT =-15.6 7
REGRESSION SLOPE = 9.1

0 5 10 15 20 2% 30 35

MODEL RAIN RATE (MM/HR)

Figure 3.6. Formulation of the SSM/I land rain rate algorithm: the T}, are linearly
combined, corrected for beam filling, and plotted as a function of cloud model rain
rate. A regression line is fit through the T}, points providing the slope and bias used
to invert actual measured T} to rain rates.
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3.4 Algorithm sensitivity analysis

The rainfall algorithm is tested for theoretical sensitivity to variations in
background atmospheric and surface parameters. The sensitivity analysis is achieved
by creating cloud models that differ from the original model by the variation.of a
single parameter at a time. Theoretical radiances are calculated through the al-
tered model, the algorithm is applied and the difference between the modeled and
retrieved rain rate is noted over the range of rain rates. Models are constructed with
varying surface temperature, cloud liquid water, ice content, precipitable water, and
freezing level. Separate analyses are conducted for the ocean and land algorithms.
The results of the sensitivity test detail the expected errors when the actual atmo-
spheric composition and surface characteristics are different from those specified by
the model system used for the algorithm derivation.

The influence of removing the entire layer of cloud liquid water from the
cloud model, and of reducing the water vapor content by 50%, on expected retrieval
accuracies for the ocean algorithm is very slight (Figure 3.7). Ice in the mixed and
upper layers of the cloud model, on the other hand, dramatically affects the algo-
rithm. With ice removed from the cloud model the algorithm saturates at rain rates
of approximately 7 mm /hr because the high frequency channels are not depressed by
scattering; the algorithm is responding to increases in the lower frequency channels
due to the emission by raindrops. A low rain rate saturation is characteristic of
algorithms that respond exclusively to emission. This sensitivity should not com-
promise retrievals because cloud types that do not generally contain an ice layer,
such as stratiform clouds or low level convection, also do not generally exhibit high
rain rates. Usually intense rain rates are associated with strong convective upwelling
which is most often above the freezing level and contains ice.

Over land the sensitivity of the rain rate algorithm to atmospheric con-

stituents is shown in Figure 3.8. Similar to the ocean algorithm, the effects of
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variations in cloud liquid water and water vapor on the land algorithm are negligible
compared with the absence of ice. Although it is argued that the absence of ice
would not adversely affect the retrievals over ocean, the land algorithm is more re-
liant on an ice layer. The physical explanation is that since the emission respon.se is
masked by the warm land background, rain rates over land are identified to a great
extent by the ice associated with raining clouds. The sensitivity analysis indicates
that retrievals over land using passive microwaves require a scattering signal.

The sensitivity of both algorithms to surface temperature is shown in Fig-
ures 3.9 and 3.10. The land algorithm is more sensitive to surface temperature
variations than the ocean algorithm. At a rain rate of 5.0 mm/hr there is a vari-
ation of approximately 2.0 mm/hr over ocean and approximately 3.0 mm/hr over
land associated with variations in surface temperature. Using results over a 288
°K surface to construct the algorithm, the errors introduped from surface tempera-
ture va%iations do not pose a significant problem since they are a small fraction of
the total rain rate. The channel differencing technique is primarily responsible for
significantly .reducing surface temperature effects.

To investigate the sensitivity of the algorithm to the vertical temperature
profile a model is constructed with a surface freezing level. The climatological freez-
ing level is dependent on latitude and at latitudes near 60 degrees the freezing level
frequently reaches the Earth’s surface. The attenua,tion/of upwelling microwaves by
raindrops is dependent on the column ensemble of droplets such that when the freez-
ing level drops there are fewer droplets through which the radiances must pass. In
extreme cases, such as when the surface precipitation is frozen, there would be only
a scattering signal measurable by the radiometer.

When the model is altered so that the freezing level is at the surface, the
ocean algorithm underestimates the rain rates with a maximum underestimate at

4-8 mm/hr of about 2.5 mm /hr (Figure 3.11). This is the expected result since there
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would be reduced emission from the reduced column of raindrops. Over land the
underestimate is more severe (Figure 3.11), with an underestimate for all rain rates
below 10 mm/hr. Because of the magnitude of this error a climatological freezing
level correction is introduced to the algorithm. A bias is added to the land channel
combination which is a function of season and latitude and is is derived from global
trends in seasonal and meridional freezing levels. The land surface threshold bias
becomes —15.64(X/5) where X is the absolute value of latitude+seasonof fset. The
seasonof fset is 20 during December, January and February; -20 during June, July
and August; and 0 for the remaining months. The ocean algorithm underestimates
are relatively slight and are not uniform over the model rain rate so no further

correction is added.
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ALGORITHM SENSITIVITY TO OCEAN SURFACE TEMPERATURE
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Figure 3.9. Theoretical sensitivity of the ocean rainfall algorithm to surface temper-
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8.5 Algorithm implementation

Rain rates and composite rainfall data maps are computed from the ocean
and land algorithms using SSM/I data formatted and packaged according to Wentz
(1991). Rain rate estimates are computed on a scan-by-scan basis for each pixel at
the 25 km all-channel SSM/I resolution. The antenna temperatures are converted
to brightness temperatures, mislocated data are removed and a geolocation correc-
tion is applied according to Wentz (1991). Scans which deviate significantly from
neighboring scans are also filtered out according to Berg (1993), and the original
footprint resolution of different frequencies is retained. The surface type flags con-
tained in the data records are used to identify underlying surfaces: land, ocean and
coastline. Pixels flagged by the algorithm using the screening procedures are set
to zero rain rate. The land algorithm is applied to pixels identified as coastline in
the data records. The rainfall algorithm is applied only to data located between
60° north and south latitude. A summary of the rain rate algorithm structured for

straightforward conversion into computer code is outlined in Figure 3.13.




Global Rain Rate Algorithm for SSM/I

Applicable Between + — 60° Lattitude

Land Surface:

If (37v — 37h < 10.0) and (19v — 19k < 10.0) and (19v > 265.0)
Then (RainRate = (19h + 37h — 2. x85h + X )/9.1mm/hr
Where X = (—15.6 + |(latitude + seasonof fset)/5|)
and seasonoffset =
20 during December, January and February
-20 during June, July and August and
0 during remaining months

Otherwise Rain Rate is set to 0 mm/hr

Ocean Surface:
If ((19v — 19k) < 60.0)
Then RainRate = ((19h + 19v + 37h — 22v — 37v — 85h + 170.2)/18.3)mm /hr

Otherwise Rain Rate is set to 0 mm/hr.

Figure 3.13. Algorithm for estimating rain rate from SSM/I brightness temperatures.
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Rainfall totals are computed by integrating an average of all rain rate es-
timates over the time period of interest. Spatial averaging is achieved by a simple
average of all estimates within a given grid cell. The algorithm is applied to selected
SSM/I overpasses containing a variety of surface and rainfall types. In Figure 3.14 a
mid-latitude depression over the United Kingdom contains an East-West band and
a rainfall cell. In Figure 3.15 an SSM/I overpass of Hurricane Andrew over the U.S.
shows the continental scale rainfall produced as the hurricane was dissipating. In
Figure 3.16 in the Tropical Pacific during the Toga Coare period an intense rainstorm
in the Coral Sea outlines the fine scale features of a tropical cyclone.

Global rainfall is typically reported as totals from a month or more so that
enough samples are available to represent the average global distribution. An exam-
ple of a monthly composite rainfall map is presented in Figure 3.17. Approximately
a gigabyte of satellite data is processed to derive one monthly rainfall map. In this
particular monthly composite simple averaging is used to compute monthly totals at
one degree resolution. The data values range from 0.0-0.5 meters of rainfall. When
a monthly total is computed at one degree grid cell sizes, the sampling errors are
reduced. One or two samples a day undersamples rainfall in time, but the large areas
used in the integration compensate with large spatial averaging.

The general pattern of global rainfall is well represented in a monthly map.
Of particular interest is the strong band of intense convective rainfall along the
ITCZ where most of the global rainfall is measured. The ITCZ stretches along the
Earth’s tropics over both land and ocean. The mercator map projection distorts the
relative magnitudes of the Earth’s surface area by stretching the zonal dimension
at high latitudes to equal that of the equatorial regions. In reality, tropical rainfall,
falling primarily along the intertropical convergence zone, represents about 80% of

the Earth’s total rainfall.




Figure 3.14. Rain rates (mm/hr) during a United Kingdom mid-latitude depression
derived from F11 SSM/I data on 08/23/92 at-06:53 UTC.
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Figure 3.15. Hurricane Andrew rain rates (mm/hr) derived from SSM/I F11 data
on 08/27/92 at 22:35 UTC.
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Figure 3.16. Rain rates (mm/hr) during TOGA-COARE derived from F11 SSM/I
data on 02/06/93 at 07:24 UTC.
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Rainfall (mm) from SSM/l for August, 1987
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Figure 3.17. Rainfall total for the month of August, 1987, derived from SSM/I data.
An average of all rain rate observations within each one degree grid point is used to
compute the monthly total.




CHAPTER 4

ALGORITHM VALIDATION AND ERROR BUDGET

4.1 Characterization of errors

The accuracy of the rainfall estimates is determined using theoretical error
calculations and comparisons with alternative rainfall data. The calculation of an
algorithm error budget relies on comparisons with alternative data from rain gauges
and surface precipitation radars coincident in time and space with satellite over-
passes. Error estimates are hampered by the scarcity of such validation data, by
the challenges of comparing dissimilar data types, and because validation data sets
cannot readily be treated as “ground truth”. Rain rates derived from surface radars
rely on the same remote sensing methods that contribute to errors in current satel-
lite estimates: empirical assumptions of hyrometeor drop-size distributions in the
formulation of a reflectivity-rain rate inversion can introduce significant errors. Rain
gauges are known to underestimate rainfall due to collection inaccuracies (Legates
and Willmott 1990) and it is non-trivial to compare point source gauges with area-
averaged rain rates from satellite (Morrissey and Greene 1993). The calculation of
an error budget must also account for the temporal and spatial scales over which
the estimates are reported. Instantaneous estimates are often averaged in space and
time to produce monthly totals at 1-5 degrees resolution. Although random errors in
instantaneous estimates tend to cancel out when averaged together over longer time
and space scales, the extreme variability of rainfall results in spatial and temporal
sampling errors (Atlas et al. 1990; North and Nakamoto 1989).

The sources of error in satellite rainfall estimates can be logically divided
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between instantaneous algorithm estimate errors and monthly time and space inte-
gration errors. The algorithm errors include contributions from the satellite data,
the surface screening techniques, rainfall thresholding and rain rate quantification.
The SSM/I data set contains erroneous data due to mislocation, scans with sys-
tematically high values, and random T} noise. In most cases the removal of the
erroneous SSM/I data is successful and the effect of the T accuracy is negligible.
Surface screening techniques introduce significant errors, especially over land, which
can be geographically and seasonly dependent. The thresholding technique used to
distinguish the onset of rainfall introduces another source of error in the algorithm
which is equally important over ocean and land. Over ocean the main difficulty
is in distinguishing significant non-precipitating cloud liquid water from low-lying
stratiform “warm rain” events. The detection of rainfall over land is more difficult
due to the inhomogeneous surface background. The land screening techniques use
combined T} and polarization thresholding which introduce errors if there is no scat-
tering by frozen hydrometeors associated with the underlying liquid hydrometeors.
The quantification of rain rates introduces another error that results from differences
between the structure of the rain cloud under investigation and the reference cloud
modeled in the radiative transfer calculations. When the radiometer field-of-view
is filled with an inhomogeneous distribution of rain rates an underestimation often
results from an algorithm developed from plane parallel cloud models.

When the algorithm results are integrated in space and time to produce
rainfall totals, additional errors result from inadequate temporal sampling by the sun-
synchronous near-polar orbit and inadequate spatial sampling due to the diffraction
limits of the satellite antenna pattern (Bell et al. 1990). The spatial autocorrelation
of instantaneous rainfall fields is about 10 km, less than the 12 km resolution of the
highest frequency SSM/I 85 GHz footprint. The temporal autocorrelation for SSM /I

resolution is typically found to be less than 12 hours so that the 24 hour temporal
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sampling frequency of SSM/I undersamples severely in time. The significance of the
temporal and spatial sampling errors depend on the scales at which the rainfall is
reported. Instantaneous rain rate errors are usually reported to be about a factor
of two, whereas sampling errors are usually reported to be between 25% 50% for
global monthly oceanic totals (Chang et al. 1993; North and Nakamoto 1989). The
diurnal cycle of rainfall, more pronounced over land due to the convection initiated by
the daytime warming of the surface, is not adequately sampled by a sun-synchronous
orbit. Over ocean the mean diurnal cycle is estimated to be about 10%, but over land
the diurnal cycle is dependent on surface type, season, and atmospheric conditions,
and in general is closer to 10%-25% of the mean rainfall.

The calculation of an error budget in sections 4.2-4.7.2is based on the statis-
tics generated from comparisons with alternative rain estimates and from theoretical
considerations of the various error sources. Errors associated with the instantaneous
rain rates are analyzed separately from the errors associated with temporal and
spatial averages. Instantaneous validation are conducted through comparisons to
different land surface screening methods, a dynamical cloud model and precipitation
radar data. Comparisons with rain gauge composite data and an alternative SSM/I
algorithm serve to validate the algorithm on global seasonal scales. Since there is no
“ground truth” the comparisons determine the agreement between the microwave
technique and conventional methods. Theoretical sampling error calculations will
establish the relative importance of the different categories of errors. The results
from participation in independently proctored algorithm intercomparison programs
are presented, as well as error budgets reported in the literature. As a final formula-
tion of the error budget, the statistics generated by the validation comparisons are
compared with the statistics calculated by theoretical means, and a comprehensive

error budget is derived.
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4.2 Intercomparison of rainfall detection procedures over land

An investigation of the instantaneous error budget begins with the rainfall
screening process. Due to the relatively high microwave emissivity of land surfaces
and the variability of the spectral properties of different land surfaces, false rain
signatures often result from ice, snow, sand, and moist or cold ground (Grody 1991).
Further rain detection problems result from atmospheric cloud liquid water and
from significant frozen hydrometeor content without associated low-level precipita-
tion. Over ocean the uniform background means that the most significant detection
problem is in distinguishing rain from other atmospheric éonditions. Over land the
contribution from the surface creates screening problems of greater severity.

The validity of rainfall algorithms over land depends on a robust method
for screening out surfaces which mimic rainfall signatures. Screening and detection of
land surfaces rely on the scattering of the higher frequency channels and attenuation
and depolarization of the lower frequency channels. It is understood that snow and
ice tend to exhibit cold scattered signals. The fact that the frozen hydrometeors in
the upper layers of clouds have scattering and lowered radiances similar to snow and
ice on the ground creates the false rain signatures. Forfunately, there is a difference
between frozen hydrometeors on the ground and in the cloud; surface snow tends
to have a higher polarization and is discarded in the screening process. Another
important land surface feature, moist and flooded soil, exhibits a highly polarized
signal like that of the ocean, so polarization screens are adequate for distinguishing
rainfall. Finally, sand is screened out based on its highly polarized emissivity at
the lower SSM/I frequencies. Each of the screening procedures employs a slightly
different combination of these principles.

There are currently several screening techniques available which utilize dif-
ferent channels and poiarization tests. Prior to the launch of F8, an operational

algorithm for screening rainfall over land was described for SSM/I by Hollinger et al.
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(1987). A low frequency threshold flags ice and glacial snow, a low frequency polar-
ization difference screens flooded land and a high frequency polarization difference
detects scattering associated with rainfall. As part of the calibration and validation
of the F8 SSM/I instrument (Hollinger 1991), the technique is improved to cor-
rect the misclassification of non-raining pixels over land (McFarland 1991). Grody
(1991) developed a screening technique to distinguish precipitation from from all
other atmospheric and surface variables. Discriminant analysis is used to obtain
channel relationships in a decision tree algorithm. The water content of moist soil,
vegetation, cloud liquid water, and melting snow and the associated increase of ab-
sorptance with frequency leads to an “absorptive” classification. Snow, precipitation
clouds, and ice exhibit radiative properties leading to a “scattering” classification.
Non-scattering lower frequencies are combined to estimate the scattering 85 GHz
channel so that scattering associated with precipitation can be detected. Spencer
et al. (1989) utilizes a polarization corrected temperature in which the two 85 GHz
channels are normalized so that scattering associated with convection is detected.
Precipitation screening methods from Grody (1991), Spencer (1989) and
McFarland-Neal (Hollinger 1991) are applied globally to one day of SSM/I data and
intercompared with the screening method developed here. The results of applying the
different screening procedures to one day of SSM/I data are displayed in Figures 4.1-
4.4. The images represent the normalized fraction of pixels within each one degree
grid cell that pass through the screening process and are considered to be possibly
raining. The McFarland-Neale algorithm, part of the Calibration Validation Project
for SSM /I, successfully identifies likely raining areas while screening out the majority
of the pixels. Spencer’s polarization corrected brightness temperature at 85 GHz does
not screen out high latitude areas where the temperatures are scattered by cold ice
and snow covered ground. The Grody algorithm screens out the areas that the other

methods have missed and retains pixels located in the Amazon, south central Africa
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and Malaysia where rainfall is expected. The Ferriday rainfall screening procedure
identifies likely raining areas while screening out the majority of the data. There are
no clearly misdiagnosed surfaces; areas identified as possibly raining are in accord

with the other techniques.
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Figure 4.1. Normalized fraction of SSM/I pixels within each one degree grid box
which are flagged as possibly raining by the McFarland Neale Calibration-Validation
screening algorithm.
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Spencer PCT Land Rainfall Screening Algorithm 11/02/87
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Figure 4.2. Normalized fraction of SSM/I pixels within each one degree grid box
which are flagged as possibly raining by the Spencer polarization corrected temper-
ature scattering based screening algorithm.
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Figure 4.3. Normalized fraction of SSM/I pixels within each one degree grid box
which are flagged as possibly raining by the Grody screening algorithm.
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Ferriday Land Rainfall Screening Algorithm, 11/02/87
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Figure 4.4. Normalized fraction of SSM/I pixels within each one degree grid box
which are flagged as possibly raining by the Ferriday SSM/I screening algorithm.




4.3 Comparison to a dynamical cloud model

To validate the rainfall estimates on an instantaneous basis over ocean the
rainfall algorithm is applied to simulated SSM/I T} upwelling from a dynamic cloud
model. A three-dimensional ensemble cloud system with parameterized microphysics
is used to simulate a fast-moving ocean squall line (Tao et al. 1987). A three di-
mensional ray trace image, in Figure 4.5, outlines the shape of the storm defined by
the cloud surface where the rain rate is 5 mm/hr. The individual convective towers
and the larger stratiform cloud mass characterizing the “ensemble” model are visible
in the image, which has a spatial resolution of approximately 1 km. In Figure 4.6,
the rain rate at the lowest level of the cloud model, corresponding to the rain rate
reaching the ocean surface, is averaged to the SSM/I all-channel resolution. The re-
gion for the average rain rates is a subsection of the original data because a point is
included only if there are enough points surrounding it to complete a spatial average.
The clustering and high rain rate variability visible in the full resolution image are
smoothed considerably in the SSM/I footprint average.

Rain rates retrieved by the SSM/I ocean algorithm from brightness temper-
atures simulated through the cloud model are shown in Figure 4.7. The brightness
temperatures are first simulated through the vertical cloud distribution at the orig-
inal model resolution and then averaged to the SSM/I footprint. The algorithm is
applied to the averaged brightness temperatures so that the effects of beam filling
are accurately modeled. In Figure 4.8, the SSM/I estimates derived from the al-
gorithm are plotted against the model surface rain rates. The retrieved rain rates
are virtually identical to the model surface rain rates with a slope and correlation
near unity and a bias near zero. The algorithm senses both the light rainfall near
1 mm/hr and the relatively high rain rates of 20 mm/hr. In Figure 4.9, all rain
rates from the model and the algorithm are used to compute a histogram. The dis-

tribution of rain rates are consistent for all rain rates in the model. The model is
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representative of a realistic storm; however, because the T utilized in the retrieval

are calculated theoretically by a radiative transfer model, the model and algorithm
estimated rain rates cannot be considered uncoupled. The results support the use
of the beam filling adjusted T} and the linear fit to the T} combinations forming the

temperature inversion technique.




Figure 4.5. Goddard Cummulus Ensemble Model shaded with a ray tracing technique
showing the outline of the cloud where the rain rate is 5 mm/hr. (Image courtesy of

Kelly Luetkemeyer)
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Figure 4.6. Surface rain rates from an area average of the Goddard Cumulus En-
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Figure 4.7. Rain rates estimated by the ocean rainfall algorithm from simulated
SSM/I brightness temperatures upwelling through the GCEM.
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Figure 4.8. A comparison of surface rain rates from the Goddard Cumulus Ensemble
Model (GCEM) with rain rates estimated by the application of the SSM/I ocean
algorithm to brightness temperatures simulated through the model.
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Figure 4.9. Histograms of the rain rates from the surface level of the Goddard Cu-
mulus Ensemble Model and from ocean rainfall algorithm estimates using simulated
upwelling brightness temperatures through the model.
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4.4 Comparison with surface radar

The SSM/I rain rate algorithm is compared with surface radar rain mea-
surements. The radar data are primarily located over land and serve to validate
the instantaneous land rainfall algorithm estimates. Radar scans and SSM/I over-
passes coincident in space and time are directly compared for three climatologically
distinct stations: Darwin, Australia; Cape Canaveral, Florida; and Oklahoma City,
Oklahoma. The radar data, part of the Atmospheric and Oceanographic Information
Processing System (AOIPS) at NASA/Goddard Space Flight Center, are C and S
band Doppler radars with 5 and 10 cm wavelengths. Table 4.1 provides the location
coordinates for each of the radars and Table 4.2 provides the time of each of the nine
radar scans.

Coincident SSM/I and radar data for three selected cases are displayed in
Figures 4.10-4.12 The radar resolution, initially reported at 1 km, is co-located in
time and space with SSM/I pixels and averaged to match the SSM/I all-channel
footprint. The range is bounded by 20 km and 180 km to reduce ground clutter and
range errors. The raaar data are received with rain rate in mm/hr after calibration
by separate Z-R relationships tuned for each of the radar locations. The radar scan
time coincides to within 5 minutes with the coincident SSM/I overpass data.

In all cases the absolute difference between the totals for the SSM/I and
radar estimates is less than the radar mean rain rate. The differences between the
radar and SSM/I are probably due to a combination of algorithm error, coastline
effects, satellite mis-navigation, instrument viewing geometry and inaccuracies in the
empirically derived Z-R relationships. The Darwin radar scan encompasses a great
deal of coastline which is not excluded because the resulting data points would be
too few. The SSM/I navigation errors are known to typically reach 10 km and are
possibly the cause of the displacement of the squall line in Figure 4.12. The radar

estimates of rain rate on the far side of clouds may be adversely influenced by the




Table 4.1. Coordinate locations of surface precipitation radar sites used in compar-
isons with coincident SSM/I overpasses.

| Location | Latitude | Longitude |

Darwin, Australia -12.457 | 130.925
Cape Canaveral, Florida 28.255 -80.606
Oklahoma City, Oklahoma | 35.40 -97.60

Table 4.2. Times (UTC) for nine precipitation radar scans used in comparisons with
coincident SSM/I overpasses.

| Location | case | YY/MM/DD | HR:MM |

Darwin 1 02/11/88 21:18 UTC

5 | 02/14/88 | 00:44

3 02/26/88 08:30
Florida |1 | 01/25/88 | 00:04

2 12/11/88 23:44

3| 10/06/88 1119
Oklahoma | 1 07/13/87 01:20

5| 00/12/87 12:00

3 09/18/87 12:30
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intermediate cloud attenuation through the storm. Likewise, the SSM/I brightness
temperatures from the lowest layers of heavy storms are, in some cases, completely
obscured by the higher layers (Smith and Mugnai 1988). Histograms for each radar
site and for combined data, in Figure 4.13, shows that in each case the majority of
the rain rates for both radar and satellite are between 0 mm/hr and 2.5 mm/hr with
decreasing frequency to a limit near 20 mm/hr. The distribution of the Oklahoma
rain rates has a lognormal shape while the others are logarithmically decreasing
with rain rate. In all cases the algorithm detects an appropriate rain area and then
estimates a reasonable rain rate. Statistics from the comparison are presented as

part of the error budget in section 4.7.
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Figure 4.10. Coincident rain rates estimated from SSM/I and the Darwin, Australia
precipitation radar for February 11, 1988 at 21:18 UTC.
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Cape Canaveral, Florida
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Figure 4.11. Coincident rain rates estimated from SSM/I and the Cape Canaveral,
Florida precipitation radar for December 11, 1988 at 23:44 UTC.
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Figure 4.12. Coincident rain rates estimated from SSM/I and the Oklahoma City,
Oklahoma precipitation radar for July 13, 1987 at 01:20 UTC.



Radar
40
£
£ 20
e T S VI
5 10 16 20
40
[o]
]
_520
= obelx L
"5 10 15 20
(o]
g40
520
X
0o
5 10 15 20
°
2
550
E
[}
(¢] 0bix

5 10 15 20 2
Rain rate mm/hr

SSMi
4
20
N I
5 10 15 20
40
20 —
0% X X ¥
5 10 15 20
4
20

o
3
€
3

E 3
E
E 3

iinmi
0hDelx X

20 25

5 10 15
Rain rate mm/hr

70

Figure 4.13. Satellite and radar rain rate histograms showing the number of retrievals
corresponding to rain rate intervals. The precipitation radars are located at Darwin,
Australia, Cape Canaveral, Florida and Oklahoma City, Oklahoma. The satellite
overpasses coincide in time and space with the radar scans. The radar rain rates are

spatially averaged to match the SSM/I all-channel resolution and the land SSM/I

rain rate algorithm is applied to coastline pixels.




4.5 Algorithm intercomparison programs

The development of the rainfall algorithm and an understanding of the error
budget has benefited from participation in a number of independently proctored
algorithm inte:fcomparison programs conducted to quantify the accuracies in state-
of-the-art algorithms. The World Meteorological Organization (WMO) completed
the first and second Algorithm Intercomparison Programs (AIP/1,2) as part of the
Global Precipitation Climatology Project (GPCP). In AIP/2, a number of SSM/I
precipitation algorithms were intercompared along with surface precipitation radars
over the area surrounding and including Western Europe. Another project, the
NASA WetNet First Precipitation Intercomparison Project (PIP/1), intercompared
global monthly SSM/I precipitation maps submitted by rainfall algorithm developers
with atoll and continental raingauge data sets (Barrett et al. 1994; Wilheit et al.
1994). Selected results from the PIP /1 program are listed in Tables 4.3 and 4.4. |

A developmental version of the algorithm was submitted to the AIP/2 and
the PIP /1. The results from these intercomparisons were used to modify the theory,
development and implementation of the algorithm. The results of the intercom-
parisons are therefore useful in assessing the usefulness of the algorithm as long
as the subsequent changes are also considered. In both intercomparisons the algo-
rithm performed satisfactorily relative to others and the surface data. In the AIP/2,
the microwave algorithms performed poorly overall when compared with the surface
radars over both land and ocean. The errors resulted from the cold land surfaces,
low-lying frontal systems and light rain rates comprising the bulk of the selected
SSM/I cases. The most important changes to the algorithm based on the results of
AIP/2 are in the screening of coastlines, the substitution of a polarization screen for
oceanic precipitation instead of a thermometric screen and more careful screening of

land surfaces to delineate snow, ice, and cold ground.
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In PIP/1 the algorithm global monthly maps were compared to atoll rain-
gauge data in the tropical Pacific and global continental raingauge data over land.
The atoll data were combined into 2.5 degree resolution boxes according to Morrissey
and Greene (1991) . A grid box was used only when it contained at least 2 gauges.
The four month SSM/I rainfall totals corresponding to each atoll raingauge box were
statisticly compared with all data pairs. The mean SSM/I estimate was 157.6 mm
and the mean gauge estimate was 213.8 mm yielding a relative bias of 0.74, a mean
error of -56.2 mm, a mean absolute error of 80.4 mm, and a correlation coeflicient of
0.84 mm. This suggests that the algorithm is underestimating over tropical oceans
and, since the mean error is almost as large as the rms error, the bias comprises the
bulk of the algorithm error.

The land surface comparison in PIP/1 utilized a continental raingauge data
set from the Global Precipitation Climatology Center (GPCC). The raingauge data
from the four-month period were used at a resolution of 2.5 degrees for the region
between 60 N and 60 S. SSM/I and GPCC data were paired for non-coastline areas
whenever there was at least one raingauge in the grid cell. Using 1032 data pairs the
SSM/I mean estimate was 310.3 mm and the GPCC mean was 231.6 mm yielding a
relative bias of 1.34, a mean error of 78.36 mm and a correlation coefficient of 0.57.
In this case the SSM/I algorithm overestimated rainfall over land due mainly to very
large positive errors over high latifude cold, ice-covered surfaces.

The results from PIP/1 were more useful both in improving the algorithm
and in characterizing its accuracy. The PIP/1 also served to gage the algorithm
relative to other current algorithms. The results showed that there was no one algo-
rithm which was the best over the whole Earth for all months, but insteaci, different
algorithms operate more or less successfully depending on underlying surface, type
of rain, season etc. This algorithm compared quite satisfactorily with the other al-

gorithms and with the raingauge data sets. PIP1 results were used to improve the
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algorithm through an improved cold land surface screening technique and a polariza-
tion screen over oceans. The improved algorithm and two global raingauge data sets
are compared for August through November, 1987, in the next section. The results
from the intercomparison projects establish this algorithm as a legitimate method
of retrieving global scale precipitation both in comparison to surface data and to

alternative SSM/I algorithms.
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Table 4.3. Statistics calculated from a comparison of the SSM/I algorithm and
the Global Precipitation Climatology Center continental raingauge database using
monthly total rainfall between 60°N and 60°S latitude for the period of August
through November, 1987 at a resolution of 2.5°. Data pairs are selected whenever the
GPCC contained at least one raingauge for values greater than or equal to zero, for all
non-coastline land locations. The statistical parameters are SSM/I estimated mean,
GPCC observed mean, relative bias, mean error, mean absolute error, correlation
coefficient, and number of data pairs.

mean estimate 310.3 (mm)
mean observation 231.6 (mm)
relative bias 1.34

mean error 78.63 (mm)

mean absolute error | 171.3 (mm)
correlation coefficent | 0.57
number of data pairs | 1032

Table 4.4. Statistics calculated from a comparison of the SSM/I ocean algorithm
and the Morrissey and Greene Pacific Atoll Raingage Data Set using 2.5° resolution
monthly totals for the period August through November, 1987. Data pairs are
selected for all points greater than or equal to zero when there are at least two
rain gauges in the pixel. The statistical parameters are SSM/I estimated mean, atoll
observed mean, relative bias, mean error, mean absolute error, correlation coefficient,
and number of data pairs.

mean estimate 157.6 (mm)
mean observation 213.8 (mm)
relative bias 0.74

mean error -56.16 (mm)

mean absolute error | 80.4 (mm)
correlation coeflicent | 0.84
number of data pairs | 44




4.6 Validation of monthly global rainfall totals

Intercomparisons conducted on a climate scale are important for testing
the algorithm during different seasons and locations, and for assessing the severity of
sampling errors. Validation of climate-scale rainfall estimates accounts for sampling
errors introduced by temporal and spatial averaging. To establish the validity of
the algorithm for estimating rainfall globally, rainfall maps derived from SSM/I
are compared to the Legates and Willmott precipitation climatology (Legates and
Willmott 1990), the Global Precipitation Climatology Program (GPCC) raingauge
composite (GPCC 1992), and the Berg SSM/I oceanic rainfall maps (Berg and Chase
1992).

Monthly rainfall totals from each data set for August through November,
1987, corresponding to the WetNet First Precipitation Intercomparison Project, are
used in the comparison. The global distribution of rainfall from each of the three
sources are shown in Figures 4.14- 4.17. Total precipitation is calculated at 1°
resolution for +-180° longitude and +—60° latitude, excluding coastlines. The
Legates and Willmott and Ferriday maps cover both land and ocean, while the Berg
map is for oceans only and the GPCC is for land only. Over land the SSM/I rainfall
maps are compared to raingauge composites. The Legates and Willmott (L/W)
data are a climatological monthly mean of terrestrial rainfall totals. The GPCC is
derived from raingauge measurements taken each month during 1987. Over ocean
the SSM/I algorithm is compared with an alternative SSM/I algorithm from Berg,
and to shipboard raingauge measurements composited in the L/W ocean data. |

The L/W data base is derived from raingauges over land and shipboard
measurements over ocean. The precipitation values reported are “corrected” using
techniques for removing raingauge and shipboard biases and for computing monthly
values. The data represent a climatological mean rather than estimates for any par-

ticular month. Therefore, the comparison to SSM/I is limited by the incongruencies
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in the time period. The data are reported at one-half-degree resolution and are de-
rived from a 60 year time series of measurements. The GPCC was initiated by the
World Meteorological Organization as part of the Global Precipitation Climatology
Project established by the World Climate Research Programe. Monthly precipita-
tion totals are reported at 2.5 degree resolution for the global continents. A total of
6600 reporting stations are utilized in an interpolation averaging scheme. The Berg
monthly data are produced by fitting instantaneous SSM/I estimates derived from a
modified version of the Hughes algorithm to a lognormal distribution. The monthly
values are reported at one-half-degree resolution and have been rigorously verified
relative to atoll raingauges and alternative satellite precipitation retrievals.

A number of statistics are used to compare the alternative data sets with
the SSM/I algorithm. The method of comparison is to compute zonal and meridional
means, correlation coefficients, and mean and absolute mean differences. The zonal
and meridional means are computed from all data within the appropriate land or
ocean category and include values of zero precipitation. The correlation coefficients
are calculated from the sc;a.tter plot of all coincident one-degree resolution point es-
timates and include zeroes. The GPCC and SSM/I continental comparison results
are listed in Table 4.5. The mean SSM/I value is 240.8 mm and the mean GPCC
value is 222.0 mm, yielding a mean difference of 18.7 mm. The mean of the absolute
difference between pairs of spatially coincident rainfall is 155.1 mm and the correla-
tion of the totals is 0.70. Because of the differences in temporal and spatial sampling
characteristics between the SSM/I and raingauges, the absolute differences will be
much higher than the difference of the mean. The satellite will typically provide one
or two overpasses each day which undersamples in time while the GPCC typically
contains cells with one or two gauges which undersamples in space.

Histograms of the distribution of rainfall totals for GPCC and SSM/I are

shown in Figure 4.18. The GPCC contains more grid cells with totals from 0-200
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mm and the SSM/I contains slightly more cells with totals between 300-1000 mm.
The distribution of the precipitation totals suggest that the SSM/I algorithm is
providing accurate totals over relatively dry continental areas as well as areas with
persistent convective activity. The spatial distribution of rainfall is further analyzed
in Figure 4.19, where the zonal and meridional averages of the continental four
month totals are compared. The GPCC shows less high-frequency variability along
both latitude and longitude, which may be the result of the raingauge interpolation
technique. The two data sets are closely correlated over both latitude and longitude;
the only distinguishable difference occurs between —20° and 0° latitude where the
SSM/I algorithm is approximately 50-100 mm higher than GPCC.

The L/W ocean climatology comparison results are listed in Table 4.6. The
SSM/I mean for the four month totals is 371.7 mm and the L/W mean is 440.0 mm
yielding a difference of (SSM/I-L/W) = -68.3 mm. The mean absolute difference
is 217.8 mm and the correlation coefficient is 0.71. It is expected that the SSM/I
should estimate precipitation more accurately over oceans than over land because
of the cold polarized background provided by the ocean surface. The reason that
the correlation is not higher than over land is probably because the L /W represents
a climatological mean while the SSM/I data were collected during the particular
period in 1987, which also corresponds to an El Nifio/Southern Oscillation event.

Histograms for the L/W SSM/I comparison shown in Figure 4.20 provide
an explanation for the higher estimates from L/W. The L /W precipitation totals are
lognormally distributed whereas the SSM/I totals are logarithmically distributed.
The lognormal L /W distribution is unlike the logarithmic distributions exhibited by
SSM/I over land and ocean or the distribution of GPCC over land. An examination
of the zonal and meridional averages in Figure 4.21 determines that the higher L/W
estimates are located south of —10° latitude and west of —70° longitude in the South

Pacific Ocean. The four month comparisons for both land and oceans verify that
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the SSM/I algorithm closely agrees with surface-based precipitation retrievals when

global estimates at spatial scales of 1° are desired.
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Figure 4.14. Rainfall total for August through November, 1987, from the Global
Precipitation Climatology Center. Continental raingauge measurements are inter-
polated to a global grid.
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Rainfall from Legates/Willmott for August-November
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Figure 4.15. Rainfall total for August through November from the Legates & Will-
mott shipboard and terrestrial raingauge climatology.
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Figure 4.16. Rainfall total for August through November, 1987, reported by Berg
(1994). A modified version of the Hughes algorithm is applied to SSM/I data over
the oceans and a lognormal distribution is used to estimate monthly totals.
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Rainfall from SSM/I for August-November, 1987
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Figure 4.17. Rainfall total for August through November, 1987, from the Ferriday
SSM/I algorithm.




Table 4.5. Statistics calculated from a comparison of the SSM/I land algorithm and
the Global Precipitation Climatology Center continental raingauge data base using
monthly rainfall totals at 1° resolution for the period August through November,
1987. The mean difference, root mean square difference, and correlation coefficient
are calculated by pairing corresponding gridded SSM/I and GPCC rainfall totals for
all reported values over contintental surfaces below 60 degrees lattitude.

SSM/I mean 240.8 (mm)
GPCC mean 222.0 (mm)
mean difference 18.7 (mm)
mean absolute difference | 155.1 (mm)
correlation coefficent 0.70

Table 4.6. Statistics calculated from a comparison of the SSM/I ocean algorithm
and the Legates/Willmott (L/W) precipitation climatology using monthly oceanic
precipitation totals at 1° resolution for the period August through November, 1987.
The mean difference, root mean square difference, and correlation coefficient are
calculated by pairing corresponding gridded SSM/I and L/W precipitation totals for
all reported values over ocean surfaces below 60 degrees latitude.

SSM/I mean 371.7 (mm)
Legates & Willmott mean | 440.0 (mm)
mean difference -68.3 (mm)
mean absolute difference | 217.8 (mm)
correlation coefficent 0.71

Table 4.7. Statistics calculated from a comparison of the SSM/I ocean algorithm and
rainfall totals from SSM/I by Berg using monthly precipitation totals at 1° resolution
for the period August through November, 1987. The mean difference, mean absolute
difference, and correlation coefficient are calculated by pairing corresponding gridded
SSM/I and Berg rainfall totals for all reported values over ocean surfaces below 60
degrees latitude.

SSM/I mean 367.4 (mm)
Berg mean 598.2 (mm)
mean difference -230.8 (mm)
mean absolute difference | 295.0 (mm)
correlation coefficent 0.88
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Figure 4.18. Distributions of total global continental precipitation for August
through November, 1987 from estimates by the SSM/I algorithm and a raingage

areal average by GPCC.
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Figure 4.19. Meridionally (top) and zonally (bottom) averaged distributions of total
global continental precipitation for August through November, 1987 from estimates
by the SSM/I algorithm and a raingauge average by GPCC.
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Figure 4.20. Distributions of total global oceanic precipitation for August through
November, 1987 from estimates by the SSM/I algorithm and a shipboard climatology

by Legates and Willmott.
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Figure 4.21. Meridionally (top) and zonally (bottom) averaged distributions of total
global oceanic precipitation for August through November, 1987 from estimates by
the SSM/I algorithm and a shipboard raingauge climatology by Legates and Will-
mott.
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Figure 4.22. Distributions of total global oceanic precipitation for August through
November, 1987 from estimates by the SSM/I algorithm and SSM/I estimates by
Berg. :
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Figure 4.23. Meridionally (top) and zonally (bottom) averaged distributions of total
global oceanic precipitation for August through November, 1987 from estimates by
the SSM/I algorithm and SSM/I estimates by Berg.
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4.7 Calculation of an error budget

An algorithm error budget is constructed so that SSM/I rainfall estimates
may be provided with associated uncertainties. Uncertainties are estimated both
for instantaneous retrievals and seasonal means. The error budget is partly based
on the validation study that compared a cloud model, surface precipitation radars,
rain gauges and an alternative SSM/I algorithm to the rainfall estimates. The error
budget is also based in part on theoretical calculations of sensitivity and sampling
errors. The validation results and theoretical error calculations are intercompared
since no “true” rainfall data is available with which to calculate an exact error
budget. The final comprehensive error budget is a combination of the statistics from
the validation comparisons and the theoretical calculations of sampling errors.

4.7.1 Errors in instantaneous estimates Beginning with instan-
taneous rainfall estimates, the major sources of error arise from radiative transfer
modeling limitations, beamfilling, surface contamination and footprint mismatch.
Over ocean the significant rain rate error sources include beamfilling, and misclassi-
fication of non-raining cloud liquid water. Over land the significant rain rate error
sources are surface variability and non-convective raining conditions. The most se-
vere instantaneous errors over both land and ocean are usually attributed to the
beam filling error. Short and North (1990) and Chiu et al. (1990) both reported
that for instantaneous rainfall estimates over ocean using an emission based algo-
rithm uncorrected for beam filling, the underestimation error was about 50%. Since
the algorithm in this study has been corrected for beam filling the instantaneous
error is not expected to be that high.

The error budget for instantaneous rain rates is derived from comparisons to
the GCEM model and the radar data, and from the sensitivity tests using variations

of the cloud model. Based on the application of the algorithm to the simulated T}
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Table 4.8. SSM/I rainfall algorithm errors calculated from comparisons with alterna-
tive rainfall data. The GCEM and Radar errors are for instantaneous area averaged
rainfall retrievals and the GPCC and Legates Willmott errors are for global four
month means.

GCEM Radar GPCC L/W
bias 35% -15.7%  8.4% -15.5%
rms | 12.8% 19.5% 69.9% 49.5%

through the GCEM the bias was 3.5% and the rms was 12.8%. The GCEM model is
over ocean so the errors are representative of expected errors in the ocean algorithm.
The radar comparison yielded a bias of -15.7% and an rms of 19.5%. The bias
and rms errors between the SSM/I algorithm estimates and the alternative data for
instantaneous estimates are summarized in the first two columns of Table 4.8. Since
most of the radar area consists of land surface, the comparison most closely represents
the expected errors in instantaneous land algorithm estimates. The ocean provides a
cool uniform polarized background, unlike the warm heterogeneous unpolarized land
background, so the accuracy over ocean should be higher than over land.

The instantaneous error budget can be analyzed in the context of the sen-
sitivity modeling. The dependence of the algorithm on variations in background
parameters, section 3.4, is studied through alterations in the structure of the surface-
cloud model. The most significant error occurs over land if there is no ice above the
rain cloud. When the freezing level is lowered or ice is removed, an underestimation
results over both land and ocean. The effect of surface freezing level also causes an
underestimation in both algorithms. Since the land algorithm has been adjusted to
correct for surface freezing level, surface temperature variations and beam filling,
and the ocean algorithm has been adjusted for beam filling, the instantaneous errors
of approximately 20% over land and 13% over ocean are qualitatively consistent with

the sensitivity tests.




92

4.7.2 Errors in monthly estimates When rain rates from multi-
ple satellite overpasses are averaged together, a sampling error results in the time-
integrated total. In the case of a sun synchronous polar orbiter such as SSM/I the
error is quite significant when monthly or seasonal totals are computed. For a global
average, the SSM/I samples about once each day, while the variability of rainfall
events occurs with a much higher frequency, with a typical autocorrelation time of
6 hours for a 1.15 degree area (Laughlin 1981). This means that successive SSM/I
overpasses sample uncorrelated rainfall events, and it is not uncommon for an entire
rainfall event to be completely missed. Rainfall also has a strong diurnal cycle that
is region dependent and most pronounced over land. The SSM/I sun synchronous
orbit, with overpasses occurring at approximately the same local time each day, will
introduce a bias in time integrated rainfall due to the diurnal cycle. The error con-
tributions resulting from undersampling rainfall variability, especially the diurnal
cycle, give rise to temporal sampling errors.

In addition to temporal sampling errors, the relatively low resolution of
the microwave footprint causes a spatial sampling error. The spatial autocorrelation
length of rainfall is about 10 km, less than the 25-60 km SSM/I footprints. The beam
filling portion of the spatial sampling error has been corrected within the algorithm
formulation. Also, adjacent pixels cover the entire swath so there is almost complete
spatial coverage. Therefore, the spatial sampling error is considered to be small
compared with the temporal sampling error and is not included in the error budget.

The temporal sampling error has been studied both by theoretical and
observational means. Chang et al. (1993) reported observations of monthly mean
rainfall errors over ocean with a 5x5 degree resolution to be 57.5% of the mean.
These errors were computed using an average sampling interval of 48 hours which
would make the sampling error about twice what it would be for a 24 hour interval.

Berg and Avery (1994) reported monthly errors over ocean of 31% using a 2.5 degree
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grid size. Weng et al. (1993) found measured sampling errors in monthly values
of about 40% including land and ocean for a sampling interval of 24 hours. The
sampling errors were geographically dependent with the largest values found over
high latitude land, and lowest over the ITCZ, an area of persistent convection. Weng
et al. (1994) also found that the difference between calculating a mean monthly rain
total by fitting a lognormal curve and by simple averaging differed by less than 5%.
Sharma et al. (1991) found a diurnal difference in monthly oceanic rainfall between
AM and PM SSM/I overpasses to be about 20%. This does not represent the entire
diurnal cycle only the mean difference of the diurnal cycle between two specific times
of the day.

Observations can also be used to derive theoretical descriptions of sampling
error. Bell (1987) found that the temporal sampling error in averaged rainfall esti-
mates is random and follows a normal distribution about the mean. This means that
a global mean monthly rainfall estimate may be very accurate even though individ-
ual grid points may have substantial sampling errors. North and Nakamoto (1989)
proposed that the diurnal component of the sampling error can be separated from
the random sampling error, and proposed a formulation for the random component.

As a first step in estimating the theoretical temporal sampling error for
monthly and annual rainfall totals, the formulation presented by North and Nakamoto
(1989) is used to calculate expected random sampling errors for SSM/I F8 monthly
global rainfall totals at one degree resolution. The mean square random sampling
error is derived from the characteristic temporal autocorrelation, the time between
samples, the integration period, and the coefficient of variance. Assuming that the
satellite completely covers an area of interest at even intervals in time, 6%, over an

integrating time period T, the mean squared error can be calculated using,

AT o,

where a’i is the variance of area-averaged rain rate, and 7, is the autocorrelation

(4.1)




94

Table 4.9. Theoretical error budget for global rainfall monthly means at one degree
resolution. The theoretical temporal and diurnal sampling errors are estimated for
the SSM/I orbital characteristics. The algorithm error is taken from the instanta-
neous rms differences between SSM/I and the GCEM and radar data.

Ocean Land
Temporal 23%  23%
Diurnal 10% 20%
Algorithm | 13%  20%
TOTAL 46% 63%

time of the rain field for a given size area. The coefficient of variation of rain rate is
close to 2.5 for areas of 90 km on a side (North and Nakamoto 1989). The value does
not drop significantly for areas larger than 1 degree. The area-averaged rain rate
usually exhibits a standard deviation that is about twice the mean for area-average
values below 1 mm/hr. The autocorrelation is about 3.5 hours for 1 degree areas.
Using the formulation of mean square random sampling error, the estimate of the
sampling error for this resolution is 23%. |

The random sampling error can then be added to the diurnal sampling error
to give the overall error. Although Hendon and Woodberry (1992) found that the
diurnal cycle is strongly geographically dependent without substantial latitudinal
or longitudinal organization, estimates of the diurnal cycle made by Meisner et al.
(1987) show an average value of 10% over ocean and 20% over land. Using these
values for the diurnal sampling error and adding the random sampling errors yields
a total sampling error of 33% and 43% over ocean and land, respectively.

A theoretical error budget, the expected absolute mean difference between
the SSM/I monthly rainfall estimates at one degree resolution and the true mean
rainfall, is derived by adding up theoretical sampling, diurnal, and algorithm errors.
The error budget is summarized in Table 4.9 where the total expected rms error
is formed by adding together the temporal sampling error, the additional diurnal

sampling error due to the particular SSM/I orbit, and the algorithm retrieval error.




The algorithm error is based on the comparisons with the cloud model simulation

and the radar data. The total expected rms error budget in monthly mean rainfall
is simply the addition of each of these three components. The result is an estimated
46% rms error over ocean and a rms of 63% over land.

A comprehensive error budget is based on checking the theoretical total
expected rms errors with the statistics generated from the four month comparison
with the GPCC and Legates raingauge data. Based on the assumption that each of
the data sets is unbiased, contains normally distributed sampling errors, and that the
SSM/I sampling errors are greater than the comparison data set, the rms difference
between them will be equal to the sampling errors of the data set with the highest
sampling error. The calculated rms difference between the rain gauge data is then
assumed to be equal to the SSM/I sampling error, including the instantaneous bias,
the random sampling error, and the diurnal sampling error. The mean absolute error
between the GPCC and SSM/I data over land is 69.9% which compares well with the
63% calculated theoretically. The mean absolute error between the L/W and SSM/I
data over ocean is 49.5% and also agrees with the 46% calculated theoretically. It
is reasonable to assume that the rms between the SSM/I mean estimates and the
raingauge estimates would be comparable to the rms between the SSM/I and the

true mean as long as the raingauges exhibit negligible bias relative to the true mean.



CHAPTER 5
CLIMATE SCALE RAINFALL ANALYSIS

The passive microwave rainfall algorithm is used to estimate global rainfall
for the time series of SSM/I F8 data over the period August, 1987, through Decem-
ber, 1989. The length of the time series is limited by the launch of the satellite and
the eventual failure of both the 85 GHz channels. The time series, presented as a
seasonal climatology, shows the global distribution and variability of climate-scale
rainfall. To demonstrate the usefulness of global rainfall monitoring to the study of
the Earth system, the SSM/I rainfall maps are then analyzed in three different ways:

1) Global rainfall maps are compared during different phases of an El Nifio
Southern Oscillation event in order to detect associated global rainfall changes. Rain-
fall maps are analyzed for information about the relationship between the decrease
of rainfall associated with the Asian monsoon in the western Pacific region and the
increase in rainfall associated with enhanced convective activity in the central Pacific.

2) The relationship between monthly oceanic rainfall and sea surface tem-
peratures in the Atlantic Gulf Stream is examined. The relationship between in-
creased sea surface temperature and rainfall is analyzed during 1988 using a singular
value decomposition technique to determine the modes of coupled variability.

3) The migration of the rainfall edge in the African Sahel is tracked over the
course of a year. The study tracks the latitudinal extent of the the band of intense
rainfall associated with the intertropical convergence zone stretching eastward across
Africa from the Ivory Coast to the Ethiopian highlands. The latitudinal extent and
migration of the ITCZ causes extreme rainfall variability in the African Sahel region

resulting in periodic droughts.




5.1 Rainfall climatology

Global rainfall is derived from the F8 SSM/I data for the period August,
1987 - December, 1989, and is presented as a series of four month rainfall accumu-
lation maps. Figures 5.1- 5.9 present the total seasonal rainfall between 60 degrees
latitude. The global patterns of rainfall are generally consistent from season to sea-
son except for an annual latitudinal shift. The most prominent feature in the global
rainfall pattern is the equatorial rainfall band circumnavigating the globe along the
intertropical convergence zone. The band is most organized from Eastern Africa to
the western Pacific warm pool where it begins to dissipate at the western edge of
the Indian ocean through Ethiopia and Somalia in Eastern Africa. Two global rain-
fall bands occur in the Southern Ocean and in the northern latitudes at about 45
degrees. These are both separated from the equatorial band by the drier subtropics.

The next sections will discuss specific features of the rainfall patterns.
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Figure 5.1. Rainfall total for September-October-November, 1987, estimated from
SSM/I.
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Figure 5.2. Rainfall total for December-January-February, 1987-1988 estimated from
SSM/I.
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Figure 5.3: Rainfall total for March-April-May, 1988, estimated from SSM/I.
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Figure 5.4: Rainfall total for June-July-August, 1988, estimated from SSM/I.
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Figure 5.5. Rainfall total for September-October-November, 1988, estimated from
SSM/I.
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Figure 5.6. Rainfall total for December-January-February, 1988-1989, estimated
from SSM/IL
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Figure 5.7: Rainfall total for March-April-May, 1989, estimated from SSM/I.
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Figure 5.8: Rainfall total for June-July-August, 1989, estimated from SSM/I.
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Figure 5.9. Rainfall total for September-October-November, 1989, estimated from
SSM/I.
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5.2 Global changes in rainfall associated with ENSO

The rainfall climatology offers an opportunity to study the variations in
the global distribution of rainfall and to relate these variations to well known cli-
mate anomalies such as the El-Nifio/Southern Oscillation (ENSO). The ENSO is
characterized by a warming of the eastern Pacific tropical ocean, part of a num-
ber of anomalous conditions including a zonal shift in atmospheric pressure and in
the Walker circulation (Rasmusson and Wallace 1983; Cane 1983). During El-nifio
events, the variability of rainfall patterns results in intense drought and severe flood-
ing over large regions of the world. The rainfall anomalies are thought to result from
the influence of variations in sea surface temperature and atmospheric circulation.
Changes in vertical latent heating in the intertropical convergence zone are thought
to cause variability in rainfall and other climate parameters at higher latitudes by
affecting the meridional upper atmospheric Hadley circulation (Simpson 1988).

The monsoon rainfall over Eurasia is a climate scale feature of the global
distribution of rainfall that is linked to the ENSO. The monsoon is characterized by
intense summertime rainfall yielding about 80% of the annual total in a few events.
The monsoon system may be tightly linked to the atmosphere-ocean system in the
Pacific (Yasunari 1991), and to the associated large scale atmospheric circulation
system, a meridional circulation from the Indian ocean, through India and over the
Himilayas and a zonal circulation over the tropical Pacific and Indian Ocean. The
monsoon is thought to be linked both to these two atmospheric circulations and to
the radiative influences of the Eurasian continent. With an abundance of precipitable
water from both the Indian and Pacific ocean, and a positive feedback mechanism
between convection induced rainfall and latent heat induced convection, the monsoon
is propagated by the resulting meridional and zonal atmospheric circulation. At the
onset of an ENSO event, when the warm pool disperses into the central Pacific, and

the intense convection associated with the warm pool is not centralized near Eurasia,
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the monsoon rainfall is naturally disrupted. The rainfall climatology may offer a clue
to how the rainfall is redistributed during an ENSO event and to what extent this
affects the monsoon region.

The period from September, 1987, to November, 1988, represents the end
of an El Nifio and the onset of anti-El Nifio or La Nifia. To investigate the changes in
global climate scale rainfall patterns associated with this phenomenon, the rainfall
total for September, October, November, 1987, is differenced with the same period
for 1988. In Figure 5.10, areas with more rainfall in 1987 are depicted with positive
rain amount while areas with more rainfall in 1988 are depicted with negative values.
The result of differencing the two time periods shows that rainfall is in general higher
in the western Pacific during La Nifia and greater in the central and eastern Pacific
during El Nifio. This is expected since the warmer central and eastern Pacific waters
during El Nifio will initiate more convection rainfall. Another difference is noted
in the subtropical central Pacific where more rainfall occurs during La Nifia. It
appears that during El Nifio the ITCZ convection is constrained to a narrow band
in the equatorial latitudes and then disperses during La Nifia. It also appears that
most of the differences occur over the ocean and at lower latitudes. The Atlantic
receives more rainfall in the northern midlatitudes but there is little change along
the Atlantic equatorial region. The most noticeable global change during El Niiio is
an eastward shift in global rainfall along the equator from the western to the central

and eastern Pacific equal in magnitude to the total rainfall.
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Figure 5.10: Estimated rainfall difference (SON 1987 - SON 1988)
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5.8 Coupling of rainfall and sea surface temperature over the Gulf Stream

The Gulf Stream is characterized by a warm “river” of water snaking north-
-ward just off the coast of the southeastern United States and eventually turning east-
ward into the north Atlantic (Pickard and Emery 1982). It has long been suggested
that the warmer water should produce enhanced convection and initiate heavy rain-
fall. Evidence such as visible and infrared imagery over the Gulf Stream usually
exhibit persistent cloud cover, suggesting the presence of underlying rainfall; how-
ever, these sensors are only marginally effective for rainfall detection at these high
latitudes over much of the cold season. In order to directly test the validity of this
assumption rainfall maps are analyzed over the Gulf Stream in conjunction with
sea surface temperatures. The coupled modes of temporal and spatial variability
are determined to establish the dependence of rainfall on the position of the Gulf
Stream.

Monthly rainfall and sea surface temperature (sst) from 1988 are used in
the comparison. The rainfall time series is shown in Figure 5.11 and the sst time
series in Figure 5.12. The data are extracted for the region bounded by 80 and
50 degrees west longitude and 30 and 45 degrees north latitude. The rainfall data
are rainfall totals over ocean at one degree resolution. The sst data, also at one
degree resolution are taken from Reynolds (1988), a blended monthly sea surface
temperature analysis using ship, buoy and satellite data. Land and coastline are
masked in both data sets.

To examine the coupled modes of variability between the two data sets,
singular value decomposition (SVD) is used to determine the eigenvectors and eigen-
values of the cross-covariance matrix. The SVD technique is a well established
method for diagonalizing non-square matrices similarly to related techniques such
as “principal components” or “empirical orthogonal functions” analysis (Bretherton

et al. 1992; Stidd 1967). Each time series is arranged as a matrix with each column
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including all data points for one month and successive columns including data for
separate months. The data are normalized by subtracting the yearly mean for each
grid point and by subtracting the monthly mean from each of the monthly fields.
Each monthly field is then divided by the standard deviation of the entire data set so
that neither data sets will dominate the magnitudes of the cross-covariance matrix
merely because of the units in which they are expressed. The cross-covariance matrix
is obtained by multiplying the rainfall matrix by the transpose of the sst matrix.

The SVD technique produces basis functions of the coupled variability
which are new grid fields in which the maximum amount of variability is represented.
The amplitude of each of the modes is obtained by multiplying the modal field by
the original data. The percent of variance explained by each of the eleven modes
from the SVD are plotted in Figure 5.13. Only the first two modes of variability
will be examined since the statistical nature of the decomposition means that modes
representing only a small fraction of the variance are not expected to represent a
physical characteristic of the variability and are usually accounting for the noise in
the data. An important difference between the analysis here and.more conventional
principal component analyses is that because the cross-covariance matrix relates two
different data sets rather than just one, there are two resulting eigenvector sets, one
for each of the original data sets. Corresponding modes are related to one another
because they share the same temporal amplitudes.

The first two modes of coupled variability for rainfall are shown in Fig-
ure 5.14 and for sst in Figure 5.15. The associated temporal amplitudes governing
each of the modes are presented in Figure 5.16. In the first mode of the rainfall data,
the pattern shows variability located along both edges of the mean Gulf Stream. This
is evident by the diagonal bands of highs and lows in the rainfall mode one image.
The variability of the sst data in mode one also shows a high and a low diagonal

band flanking the mean Gulf Stream position. This would suggest that the shifts in
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the mean Gulf Stream over the course of a year are shadowed by associated shifts in
the rainfall. The wavelengths of the amplitude curves for both the first and second
modes correspond to an annual signal. The first and second modes are in quadrature
meaning that the temporal amplitude curves are three months out of phase.. The
second mode corresponds less to the Gulf Stream pattern, especially in the rainfall
map. It appears that the primary coupled mode of variability consists of the sst
changes along the edges of the Gulf Stream and corresponding variability in rainfall

also along the edges of the Gulf Stream.
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Figure 5.11: Monthly rainfall over the Gulf Stream derived from SSM/I in 1988.
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Figure 5.12. Monthly Gulf Stream sea surface temperatures in 1988 after Reynolds.




Percent of variance explained by ordered eigenvectors

45

40r

30

Percent of variance
N Ny
[=] (A
T T

—_
[44)
T

—_
(=]
T

i 1 1 T 4 1 J

Figure 5.13. Percent of variance explained by the ordered eigenvectors corresponding
to the covariance fields of rainfall and sea surface temperature determined from

Eigenvalue

singular value decomposition.

"



116

Lon

14 11 9 -6 -3 0 3 9 12 15

Lon

Figure 5.14. Modes one and two of Gulf Stream rainfall variability coupled with sea
surface temperature.
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Figure 5.15. Modes one and two of Gulf Stream sea surface temperature variability
coupled with rainfall.
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Figure 5.16. Temporal amplitudes of modes one (upper) and two (lower) of the
singular value decomposition of rainfall and sea surface temperatures over the Gulf
Stream.




5.4 Rain edge detection over the African Sahel

The global rainfall maps in section 5.2 reveal an equatorial band of intense
rainfall associated with the intertropical convergence zone (ITCZ). The maps also
reveal the annual latitudinal oscillation of the ITCZ rainfall about the equator. In the
African Sahel, a region on the edge of the rainfall band connecting the Sahara desert
and the equatorial rain forests, the variability of the annual oscillation leaves some
areas without rainfall for extended periods of time. In addition to the immediate
effects on the people of the Sahel, these droughts are important because they can
lead to desertification of fertile grasslands (Bryson 1977).

The SSM/I rainfall maps can be applied to the problem of monitoring the
potential droughts and desertification. Figure 5.17 shows the monthly rainfall over
northern Africa during 1988 bounded by 20 West and 60 East longitude and -20 and
20 latitude. The stark gradient between the Sahara desert and the rain forests of the
Congo region are evident as is the north-south movement of the rainfall band over
the course of the year. An edge detection technique is applied to the data to find
the northern extent of rainfall greater than 10 mm/month as a function of longitude.
The technique simply searches from the central Sahara desert down each longitude
until the first incidence of rainfall is detected. Figure 5.18 shows the latitude of
the rainfall edge as a function of longitude and month. The rain edge diagram can
be used in the following way: determine the longitude of the region of interest and
then find the latitude of northernmost rainfall for each month of the year. Using the
diagram, the time series of rainfall incidence can be determined for any location in
the Sahel and the severity of drought inferred.

The pattern of rainfall edge is most stable over the longitudes between 10
West and 40 East. Further east the influence of the Ethiopian mountains disrupts
the organization of the ITCZ and consequently the latitudinal consistency of the

rainfall band. This may explain why Somalia and Ethiopia are especially vulnerable
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to drought; it may also suggest that the predictability of droughts in these regions
is more difficult than in central Africa. In central African regions along the rain
edge there is enough variability that adjacent regions may differ in the severity of
drought. This diagram could be used to assess the severity of ongoing drought and

to direct people to regions of more abundant water.
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Figure 5.17. Monthly rainfall in Northern Africa estimated from SSM/I during 1988.
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Figure 5.18: Northern boundary of the ITCZ rainfall over Africa during 1988.




CHAPTER 6

CONCLUSIONS

A method for estimating global rainfall using a satellite microwave ra-
diomenter has been presented. Theoretical microwave radiances upwelling through
a cloud model are calculated and an algorithm for inverting measured multispectral
brightness temperatures to underlying rain rates is constructed for the Special Sen-
sor Microwave/Imager (SSM/I). A combination of checks to screen out non-raining
background conditions that exhibit microwave signatures similar to rainfall and a
linear inversion formula to estimate rain rate comprise the algorithm. A correction
compensates for the non-linear brightness temperature response to inhomogeneous
rain rates within the radiometer field-of-view. The rainfall estimation technique is
constructed to be relatively insensitive to background conditions by using separate
formulations over land and ocean and by ﬁsing brightness temperature polarization
and frequency differences.

SSM/I rainfall estimates are compared to a variety of alternative measure-
ments. Instantaneous rainfall estimates are compared to surface radar data from
varied climatic regions. Global raingauge climatologies are compared to seasonally
averaged rain rates. The validation comparisons are used in a statistical analysis
to determine relative rain rate estimate errors. Theoretically modeled sampling sce-
narios are used to estimate the temporal sampling errors. The error estimates are
combined into an error budget for the rainfall algorithm both for instantaneous and
climate scale retrievals. The root mean square errors in instantaneous estimates are
found to be about 13% over ocean and about 20% over land. The root mean square

errors in global rainfall are found to range from 46%-50% over ocean and range from
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63%-70% over land. |

A climatology of global rainfall is computed from F8 SSM/I data for the
period August, 1987, through December, 1989. Maps of rainfall totals depict the
global rainfall distribution including the prominent equatorial band of heavy convec-
tive rainfall along the intertropical convergence zone. A difference map calculated
from two phases of an El Nifio cycle shows a global redistribution of rainfall from
the western to the central and eastern Pacific. The variability in the climate scale
rainfall is equal to the magnitude of the mean rainfall itself.

The rainfall time series is analyzed over the Gulf Stream for indications of
coupling to the sea surface temperature. A singular value decomposition technique
shows that there is increased rainfall corresponding to the elevated sea surface tem-
peratures in the Guif Stream. An edge detection technique is applied to monthly
rainfall over northern Africa during 1988. The northern edge of the convective rain-
fall associated with the intertropical convergence zone is monitored as it migrates
latitudinally over the African Sahel. The results indicate that over central Africa
the edge is dominated by the seasonal cycle but that variations in drought potential
can be identified between areas just 100 km apart. This would suggest that the
effects of drought on people in the Sahel may be reduced by monitoring the evolu-
tion of drought and by determining the location of nearby areas of refuge. Over the
Ethiopian mountains and Somalia the high variability of the northern rainfall edge
indicates that these regions receive sporadic rainfall that is not well defined by the
ITCZ.

The rainfall estimation technique using SSM/I brightness temperatures can
be readily incorporated into existing processing software. With the current opera-
tional stature of the SSM/I instruments on three orbiting spacecra;ft, a long term

climatology of rainfall will be available. The time series will be suitable for rainfall
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predictive studies and for quantifying part of the Earth’s hydrologic and energy cy-

cles. There is great potential for integrating global rainfall maps with other climate

-parameters in order to further our understanding of the interactions governing the

Earth system.
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