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ABSTRACT 

Heavy-duty, a i r -coo led  gas tu rb ines  u t i  1  i z e  r e 1  a t i  v e l y  1  arge superal l o y  
buckets and nozzle guide vanes. These l a r g e  components, p a r t i c u l a r l y  buckets, 
must demonstrate a  v a r i e t y  o f  p rope r t i es  . The a i r f o i  1  vane requ i res  excel  l e n t  
sur face s t a b i l i t y  w i t h  h igh  creep and low-cycle f a t i g u e  (LCF) s t reng th .  The 
doveta i  1  requ i res  exce l  l e n t  t e n s i  l e  s t rength  and low-cyc l e  f a t i g u e  (LCF) 
p rope r t i es .  Corivent i o n a l  buckets are f a b r i c a t e d  as one s i n g l e  cas t i ng  o r  
f o r g i n g  i n  which compromises i n  these p rope r t i es  are i n e v i t a b l e ,  and the f u l l .  
c a p a b i l i t i e s  o f  the superal loys used are r a r e l y  opt imized along each i n d i v i d u a l  
1  ine. 

A  unique approach toward improved .performance , i n  key p rope r t i es  i s  t o  
i n t e g r a t e  the best ma te r i a l  f o r  each p a r t  o f  a  hot  sec t ion  bucket o r  nozz le  
i n t o  a  bonded "composite" component, o r  a  "hybr id"  component. A h y b r i d  bucket 
i s  a superal l o y  p a r t  ,composed o f  a  v a r i e t y  o f  a l l o y s  .bonded i n t o  one i n t e g r a l  
p a r t .  Each segment i s  t a i l o r e d  t o  perform a  s p e c i f i c  f u n c t i o n  w i t h  g reater  
re1  i a b i  1  i t y  and performance than poss ib le  w i t h  contemporary mono1 i t h i c  p a r t s .  
An example i s  a  d i r e c t i o n a l l y - s o l i d i f i e d  (DS) a i r f o i l  vane bonded t o  a  d o v e t a i l  
sec t ion  o f  forgedlPM superal l oy .  

Phase I- o f  t h i s  program evaluates several n i c k e l  base superal l o y  
combinations which have been d i f f u s i o n  bonded using hot  i s o s t a t i c  p ress ing  
(HIP). This  technique enables l a rge  gas t u r b i n e  buckets t o  be f a b r i c a t e d  us ing  
m a t e r i a l s  w i t h  improved creep and low c y c l e  f a t i g u e .  1  i f e  f o r  the a i r f o i l  and 
greater  h igh  temperature t e n s i  l e  s t rength  i n  the dovet a i  1. 

The program w i l l  s p e c i f i c a l l y  i n v e s t i g a t e  th ree  d i r e c t i o n a l l y  s o l i d i f i e d  
a i r f o i l  a l l o y s  and two powdered metal d o v e t a i l  a l l o y s .  This  e f f o r t  w i l l  
i i l c l  ude heat t r e a t  studies, physical  me ta l l u rgy  and high' temperature t e n s i l e  
t e s t i n g  f o r  a l l  5 a l l o y s  i n  t h e i r  .HIP bonded cond i t i on .  I n  p a r a l l e l  w i t h  these 
tasks w i l l  be s tud ies  on a l t e r n a t e  bonding techniques and mechanical design 
cons idera t ions  f o r  adopt ing composite bucket technology i n t o  the Gas Turb ine  
product l i n e .  
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PROGRAM DESCRIPTION 

OBJECTIVE 

The o v e r a l l  o b j e c t i v e  o f  the program i s  t o  maximize the p o t e n t i a l  f o r  
d u r a b i l i t y ,  r e l i a b i l i t y  and performance f o r  heavy d u t y  gas tu rb ine  hot-stage 
par ts .  This e f f o r t  i s  being undertaken i n  a mult i -phased program. 

Phase I, the cu r ren t  e f f o r t ,  i s  s p e c i f i c a l l y  d i rec ted  t o  develop t h e  
technology f o r  a composite gas tu rb ine  bucket comprised o f  ' a i r f o i  1 vanes made 
from mater i  a1 s opt imized f o r  c reep l rup ture  p roper t i es  and dove ta i l  members o f  
h igh  t e n s i l e  and f a t i g u e  proper t ies .  Primary emphasis i s  .placed on v a l i d a t i n g  
a bonding technique. f o r  j o i n i n g  the  a i r f o i l  t o  the  d o v e t a i l .  . . . . .  

Upon the  successful  completion o f  the Phase I e f f o r t  and the a v a i l -  
a b i l i t y  o f  funding, the  proposed o b j e c t i v e  o f  the  next  step i n  the  program, 
Phase 11, w i l l  be t o  process and f a b r i c a t e  f u l l  s i z e  gas t u r b i n e  buckets f o r  
t e s t i n g  i n  the l abo ra to ry  and subsequent demonstration i n  a gas tu rb ine .  
Subsequent phases w i l l  take  the  demonstrated compo.si t e  gas tu rb ine  bucket 
concept and complete the  essent i  a1 operat ion  o f  apply ing e f f e c t i v e  and super ior  
ox ida t i on /co r ros ion  p r o t e c t i v e  claddings and coat ing.  t o  the  a i r f o i l  vanes. 

The successful complet ion o f  these e f f o r t s  i s  intended t o  demonstrate 
t h e  technology and p r i n c i p l e s  o f  composite hardware and v e r i f y  the re1 i abi 1 i ty  
and durabi 1 i t y  requ i red  by e l e c t r i c a l  u t i  1 i ty  and i n d u s t r i  a1 markets. 
Accordingly, i t i s  the i n i t i a t i o n  and successful  comp le t i on 'o f  , a l l  phases t h a t  
can r e s u l t  i n  b r ing ing  the  accompl ishments o f  the  program t o  comnerci a1 i z a t  ion 
and subsequent benef i t . . . 

OVERALL APPROACH 

Un t i  1 now, buckets f o r  heavy-duty gas tu rb ines  have been constructed o f  
1 arge s i n g l e  metal cas t ings  or  fo rg ings .  Improvements i n  mater i  a1 s f o r  these 
mono1 i th. ic designs have demanded simul taneous cons idera t ions  o f  a1 1 essent i  a1 
p roper t y  requirements. These .propert ies inc lude h igh  temperature t e n s i l e  
strengths, r u p t u r e  s t rength ,  low cyc le  f a t i g u e  st rength,  cor ros ion  res is tance,  
o x i d a t i o n  res is tance and duct i 1 i ty. Simultaneous improvement in '  a1 1 these 
areas r a r e l y  occurs. Instead, t rade -o f f  .pos i t ions  i n  which one p roper t y  i s  
improved at the  expense o f  another i s  the genera l l y  accepted p rac t i ce .  

The performance o f  a gas turb ine,  as measured by both output  and e f f i -  
c iency, i s  s t r o n g l y  in f luenced by the gas temperature a t  which i.t operates. 
The h igher the opera t ing  temperature the greater  the  e f f i c i e n c y  and output .  As 
an example, a mono l i t h i c  bucket fab r i ca ted  w i t h  m a t e r i a l s  t h a t  can operate. w i th  
equ iva lent  stresses at  h igher metal temperatures would be o f f s e t  by the  same 



m a t e r i a l ' s  poor oxidation and hot corrosion res is tance in the a i r f o i l  area and 
lower high temperature yie ld  strength in the doveta i l .  

One method of achieving improved propert ies for both the dovetail ,  a i r -  
f o i  1,  and hot gas path surfaces i s  to match d i f f e r en t  mater ia ls  together.  
This approach toward improved performance in key propert ies i s  to in tegrate  the 
best  material f o r  each part  of a hot section bucket or nozzle into a bonded 
l l ~ ~ m p ~ ~ i  tell component, or  a "hybrid" component. A hybrid bucket i s  a super- . 
a1 loy par t  composed of a var ie ty  of al loys bonded into  one integral  par t .  Each 
segment i s  t a i lo red  t o  perform a specif ic  function with greater  r e l i a b i l i t y  and 
performance than possi ble with contemporary mono1 i t h i c  par t s .  Such a s t ruc ture  
would consis t  of a strong low temperature dovetai 1 material ,  a strong high 
temperature a i r f o i l  materi a1 , and a high re1 i abi 1 i t y  hot corrosion r e s i s t a n t  
skin materi a1 . These three  dissimi 1 ar materi a1 s would then be bonded together 
t o  form a homogeneous s t ruc ture  with each material responding to the spec i f ic  
se rv ice  conditions 'applied to  i t .  The success of such a s t ruc ture  would be 
t o t a l  l y  dependent on. the  abi 1 i t y  to  adequately bond c l  addings to a i r fo i  1 
surfaces ,  and a i r fo i  1 s t ruc tures  to dovet ai 1 s . Currently, there are programs 
in place within ttie General E lec t r i c  Company Gas Turbine Division to eva lua te .  
c l  addings bonded. to  a i r fo i  1 materi a1 s .  Phase I of the overall  program 
addresses bonding a i r f o i l  and dovetail selected materi a1 s .  

PHASE I DEFINITION 

The Phase 1 . e f fo r t  consis ts  of process development, composite mechanical 
performance and mechanical design. Tasks in the program are an evaluation of 
bonding techniques, the physical metallurgy of the candidate a l loy combinations 
and t h e i r  bond1 ines ,  and the  mechanical performance of a i r fo i  1 and dovetail 
mater ia ls  separate ly  and as bonded composite s t ruc tures .  In addition, s tud ies  
are being made on how best to  incorporate the detai  1 s  of bonding (shape, 
location,  strength .requirements) in to  f u l l  scale  hardware. 

The Phase I e f f o r t  requires the coordinated e f f o r t s  from the following 
organizations:  

Advanced Materi a1 s Systems ( AMS) 
Mechanics of Materials ( M M )  
Materials and Prorerzing l ahnratnry (MP) 
Gas Turbine Mechanical Design 

Advanced Materi a1 s Systems i s  responsible fo r  a i r f o i l  and dovetail a1 loy 
se lec t ion ,  procurement of materi a1 for  a l l  tasks,  preliminary high temperature 
t e n s i l e  t es t ing  of a l l  unbonded and bonded mater ia ls ,  and the physical 
metallurgy of a l l  candidate materials .  

Mechanics of Materials i s  responsible for  a1 1 long term creep atesting of 
the  prime a i r fo i l  material and low cycle fa t igue t e s t i ng  o f ' . t he  dove t a l l  and 

. a i r f o i l  material as well as the prime a i r f o i l  to  dovetail bonded combination. 
Ut i l i z ing  the r e su l t s  of the t e s t  programs and specimen analysis ,  
recommendations wi 11 be made regarding the desired configuration of bond 
geometry as well as methods for  determining composite bucket l i f e .  . 



The M a t e r i a l s  and Processing l abo ra to ry  i s  suppor t ing  AMS s tud ies  and 
eva lua t i ng  a1 te rna fe  bonding techniques. Bonding s tud ies  conducted by  AMS w i l l  
use ho t  i s o s t a t i c  p ress ing  t o  achieve a d i f f u s i o n  bond between the a i r f o i  1 and 
doveta i  1 m a t e r i a l s .  A1 te rna te  bonding techniques, us ing processes 1 i ke . . . 

.Ac t iva ted  D i f f u s i o n  Bonding (ADB), w i l l  be pursued by  the M&P Lab. A i r f o i  1 and 
d o v e t a i l  m a t e r i a l s  t o  be used i n  a l t e r n a t e  bonding s tud ies  w i l l  be recommended 
by  AMS.. 

Mechanical Design Engineering i s  eva lua t i ng  the requirements f o r  a 
composite bucket t o  be used i n  f u l l  scale hardware. Areas being addressed 
i nc lude  bond1 i n e  geometry, l o c a t i o n  and s t rength  requirements. I n  add i t ion ,  
cons idera t ion  w i l l  be g iven t o  a l t e r n a t e  bucket d o v e t a i l  and shank designs so 
as. t o  s i m p l i f y  i t s  f a b r i c a t i o n .  

The, program was i n i t i a t e d  w i t h  AMS i d e n t i f y i n g ,  s e l e c t i n g  and procur ing  
a i r f o i l  and d o v e t a i l  a l l o y s .  Subsequently, t he  M&P Lab began i t s  a l t e r n a t e  
bonding s tud ies  on a pre-selected combination. A f t e r  the HIP bonded t r i a l s  and 
t e s t s  have been completed, M&M w i l l  begin t o  evaluate the  prime a i r f o i l  . 
and doveta i  1 combination by conduct ing long term creep and low c y c l e  f a t i g u e  
t e s t s .  Design Engineering s tud ies  w i l l  be conducted i n  p a r a l l e l  w i t h  the  
mechanical t e s t i n g  p o r t i o n  o f  the program. 

Since the program's incept ion ,  changes i n  t h e  Phase I s t r a t e g y  have 
taken place. Table 1 shows a block diagram f o r  the  progression o f  events 
scheduled t o  occur i n  the  program. The major change i n  t h i s  schedule has been 
the  dec is ion  t o  recommend the a i r f o i l  and d o v e t a i l  a l l o y  which M&M w i l l  
evaluate p r i o r  t o  t h e  HIP bond eva lua t ion  by AMS. 

\ 
Reasons f o r  the  change are based on the  need t o  main ta in  composit ional 

compatibi  1 i ty,  schedule l i m i t a t i o n s  and costs.  Composit ional ly, each o f  t h e  
f i v e  a l l o y s  being s tud ied  i s  q u i t e  complex. Small changes i n  t h e i r  composit ion 
would s i g n i f i c a n t l y  a1 t e r  the ma te r i  a1 ' s  phys ica l  meta l  1 u rgy  and mechanical 
p rope r t i es .  For t h i s  reason i t i s  important  t h a t  an a l l o y ' s  composit ion dur ing  
p r e l i m i n a r y  h igh  temperature t e n s i l e  t e s t i n g  be e x a c t l y  the  same as t h a t  used 
f o r  long term creep and low cyc le  f a t i g u e  t e s t i n g .  I n  t h i s  regard, i t  i s  
des i rab le  t h a t  a master heat o f  each a l l o y  be made a t  the  s t a r t  o f  the  program 
even though on l y  one a i r f o i  l l d o v e t a i  1 combination w i  11 be e x t e n s i v e l y  tes ted .  
However, cos ts  t o  p rov ide  a master heat o f  a l l  f i v e  a1 loys  are p r o h i b i t i v e .  
Also, on a schedular basis, d i r e c t i o n a l  s o l i d i f i c a t i o n  o f  the a i r f o i l  a l l o y s  
had t o  be completed by March 1981 o r  extensive delays (3 t o  4 months) would be 
encountered. For these reasons, the i n t e r n a l  conduct o f  the program events 
were r e d i r e c t e d  t o  p rov ide  a1 te rna te  i npu ts  t o  Mechanics o f  Mater i  a1 s 
a c t i v i t i e s  as i nd i ca ted  by the do t ted  l i n e  shown i n  Table 1. 

ALLOY SELECTION CRITERIA 

Th is  program i s  d i r e c t e d  toward a composite bucket which can replace 
convent ional mono1 i t h i c  design i n  1 arge s i ze  heavy-duty gas tu rb ines .  
Accordingly,  mechanical p rope r t y  improvements are compared t o  convent ional  1 y 
cas t  superal l o y s  ( i e  IN738, U500). Doveta i l  a1 l oys  should have d u c t i  1 i t i e s  and 
h igh  temperature y i e l d  s t rengths  greater  than c u r r e n t l y  used mater i  a1 s wh i l e  
the  a i r f o i l  m a t e r i a l  should have subs tan t i a l  improvements i n  creep and low 
c y c l e  f a t i g u e  l i f e .  



TABLE 1 
SCHEDULED EVENTS FOR THE COMPOSITE BUCKET PROGRAM. 

I AMS Evaluate A i r f o i  1 & 
, x v e t a i  1 Mater ia ls  - 

Li ter .ature Search 

I Order 3 A i r f o i  1 and 
2 Dovetail Mater ia ls  I 

-. - - 
w 

F.ecomnend m e  a i r f o i  1, 
c,'ovetai 1 cmb ina t  ion  t o  

M,P f o r  al ternate 
bording bechniques 

Recommend A i r f o i l  & 
Dovet'ail Combinations to 

Design f o r  Eva1 uat ion I 

Perform Heat Treat ing 
and High Tempevature 

Tensi le Test ing 

:I HIP Bond 3 A i r f o i l  and 
2 dovetai 1 combtnations I 

A l t e r n a t e  plan f o r  a l l o y  
recommendat io,n - based 
on a1 l o y  procurement 

and processing schedule 

Feedback o f  optimum 
a i r f o i  lbdovetai  1 

comt~inat icn - may be 
d i f f e r e n t  from tha t  

w i g i n a l l  y recomnended 

I Long term creep 
t e s t i n g  and low cycle 
f a t i gue  evaluat ion I . 

' - . 

Optimize Bonding parameters 
& heat treatments to  

f u r t he r  optimize one 
a i r f o i  l /doveta i  1 combination 

I I 

Perform Heat Treat ing and 
High Temperature Tensi le 
Test ing - Evaluate - pick 

best combination 

- - 
Recommend one a i r f o i  1 

and dovetai l  combination 
t o  !4&J 

A 



I n  add i t i on  t o  improvements i n  mechan'cal p roper t ies ,  o the r  c r i  t e r i  a  
i n c l u d e  the fo l l ow ing :  

r minimal processing r e s t r i c t i o n s  
0 " o f f - t h e - s h e l f "  mater i  a1 s e l e c t i o n  
a Heat t r e a t  c o m p a t i b i l i t y  
r Oxidat ion  and hot  cor ros ion  behavior 

I n  order t o  achieve the' g rea tes t  b e n e f i t  i n  increased mechanical prop- 
e r t i e s ,  new processes were considered. By s e l e c t i n g  a new supera l loy  
composit ion i n  a conven t i ona l l y  cast  form, o n l y  moderate increases i n  
performance could be rea l i zed .  I n  a n t i c i p a t i o n  o f  a, s i g n i f i c a n t  increase i n  
performance, the f o l  lowing processes were selected.  For the a i r f o i  1, 
d i r e c t i o n a l  l y  sol i d i f  i e d  (DS) s t r u c t u r e s  w i  11 be used whi l e  powdered met a1 s 
(PM) were selected f o r .  the doveta i  1. D i r e c t i o n a l  s o l i d i f i c a t i o n  provides'  a  
s i g n i f i c a n t  improvement i n  s t ress  rup tu re  performance. over t h a t s  o f  c u r r e n t l y  
used superal loys, F igure  1. Hot i s o s t a t i c  pressing o f  PM superal l oys  produces 
a very  f i n e  g ra in  s i z e  which provides d u c t i l i t i e s ,  F igure  2, and h igh  
temperature y i e l d  s t rengths  and u l t i m a t e  strengths, F igure  3, which are  
greater  than those o f  convent ional superal l o y  investment '  cas t i ngs  .' As a r e s u l t  
o f  the s i g n i f i c a n t  improvements associated w i t h  DS arid P.M, a l l o y s  selected f o r  
t h i s  program must be capable o f  being processed us ing  these techniques . 

The program p l  an i s  designed t o  ev.al uate met a1 1 u r g i  ca l  compat i b i  1 i ty, 
w i t h  a l l o y  se lec t i on  l i m i t e d  t o  e x i s t i n g  compositions.. No attempts w i l l  be 
made t o  a l t e r  composit ions i n  order t o  op t im ize  such c h a r a c t e r i s t i c s  as ho t  
co r ros ion  res is tance,  o x i d a t i o n  res is tance and ?/'strengthening. Off-the-she1 f 
a l l oys ,  and t h e i r  es tab l ished composit ions have been. used. Once i t  has been 
es tab l  ished t h a t  strong, homogeneous bonds can be developed, then a1 t e r n a t e  
chemist r ies,  mater ia ls ,  heat t rea ts ,  e t c .  ma$ be cons,idered f o r  o p t i m i z a t i o n  o f  
bond1 i n e  performance. 

Heat t r e a t  compatibi 1  i t y  i s  the remaining c h a r a c t e r i s t i c  which 
in f luenced the  a l l o y  se lec t i on .  I n  order t o  success fu l l y  j o i n  two n i c k e l  base 
supera l loys , i t  i s  important t h a t  the HIP temperature-and heat' t r e a t  cyc le  f o r  
each a1 l o y  be as compatible as poss ib le .  A t y p i c a l  c y c l e  f o r  these a l l o y s  
inc ludes  a h igh  temperature so lu t ion ,  fo l lowed by some h igh  temperature coa t i ng  
cyc le  and then aging. High temperature s o l u t i o n i n g  f o r  both a i r f o i l  and 
doveta i  1  sect ions i s  expected t o  be achieved dur ing  the  HIP bonding operat ion.  
Subsequent heat hea t i ng  would depend upan the coat ing. method selected; f o r  
example, plasma sprgying, cladding, e tc .  Aging f o r  the  bonded s t r u c t u r e  w i l l  
be chosen so '9s t o  op t im ize  p rope r t i es  i n  the  a i r f o i l  .wh i le  s imul taneously 
t r y i n g .  t o  y a i n t a i n  some minimum h igh  temperature s t rength  (120 t o  130 KSI) i n  
the d o v e t a i l :  Possib le aging cyc les  f o r  s t rengthening the a i r f o i l  and d o v e t a i l  
sec t ions  inc lude:  

. . . = 

q aging at h igher  a i r f o i  1  temperpture w i t h  gubseqyent overaging 
i t ! t h e  doveta i  1, 

a. aglgg a t  the  lower d o v e t a i l  temperature w i t h  subsequent a i r f o i l  
ag l fg  , I' ,, t ak ing  p lace dur ing  h igh  temperature serv ice  operat ion, 

. I 

r s i c k  cool ing.  from the  h igh  temperature coa t i ng  cyc le  t o  the d o v e t a i l  
' 

aging temperature, then aging a t  the  lower temperat.~ire. 
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Figure 1 .  A i r f o i l  A l loy  1000 Hour Stress 
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A i r f o i  1 aging would then take place during high temperature service. Detai 1s 
o f  the heat t r e a t  cycle f o r  t h i s  composite s t ruc ture  are being worked out i n  
preparation f o r  the H I P  bonding runs. Table 2 l i s t s  the t yp i ca l  heat treatment 
cycles f o r  each mate r ia l  wh i l e  Table 3 l i s t s  a l te rna t i ves  t o  these cycles. 

TECHNICAL ACTIVITIES , 

Technical a c t i v i t i e s i n  the supporting functiona1;:areas are as 
summarized below: 

Advanced Materi  a1 s Systems . . 

Advanced Materi  a1 s Systems work completed t o  date i n c l  udes the 
fo l lowing:  

Select ion o f  the mater ia l  process by which a i r f o i  1 and . 

dovetai l  mate r ia l  w i  11 be made. 

Select ion o f  3 a i r f o i l  and Pmdove ta i l  m a t i r i a l i  ' f o r  
evaluation. 

Receipt o f  a1 1 a1 loys  

Completed preparations f o r  machining, heat t reat ing,  
bonding, and t e n s i l e  t es t i ng  candidate a l loys.  

A l loys selected f o r  the a i r f o i l  i n  DS form include Rene' 80H, 
MAR-M200+Hf and a1 l o y  441. For the dovetai 1, two powdered a1 loys were chosen, 
PA-101 and APK-1. As par t  o f  the a l l o y  se lec t ion c r i t e r i a ,  1000 hour stress 
rupture strength vs. temperature charac te r i s t i cs  were used t o  select  the  DS 
a1 loys  whi l e  high temperature tensi  l e  and elongation charac te r i s t i cs  were used 
t o  se lec t  the powder a1 loys.  A l l  a1 loys, except 441, are comnerci a1 l y  : ' 
ava i lab le  and considerable data i s  ava i lab le  i n  the open l i t e r a t u r e .  
D i r ec t i ona l l y  s o l i d i f i e d  MAR-M200+Hf has been i n  use i n  the a i r c r a f t  i ndus t ry  
f o r  the past 10 years. Rene' 80H, though not cu r ren t l y  i n  use, represents an 
a l l o y  w i th  exce l lent  castabi l i t y  f o r  f u tu re  a i r c r a f t  appl icat ions.  For the 
a i r f o i l  al loys, three d i f f e r e n t  leve ls  o f  improved stress rupture performance 
were selected. As shown on Table 4, f o r  equivalent st ress levels, the increase 
i n  operating temperature over a l l o y  738 can range from approximately 25 t o  30°F 
f o r  Rene' 80H t o  greater than 200°F f o r  441. 

A l l oy  441 i s  ac tua l l y  Rene' 150 w i t h  Vanadium removed t o  improve oxida- 
t i o n  and hot co r ros ion  resistance.  .. Though, t h i s  -a1 l oy  . is  asti 11 i n  the exper i -  
mental stages, i t  represents the current  upper l i m i t  on improved stress rupture 
performance f o r  DS n icke l  base superal loys  . Mechanical property and chemical 
composi t i o n  data along w i t h  optimum ,heat t r ea t i ng  cycles 'are avai 1 able f o r  441, 
and have been u t i l i z e d  i n  t h i s  program. 

Both powder a l loys  selected have low carbon content ( .02 t o  .04 w t  %) . 
The purpose o f  the low carbon composition' i s .  t o  minimize' the p r e c i p i t a t i o n  o f  
MC type carbides on p r i o r  p a r t i c l e  boundaries dur ing hot i s o s t a t i c  pressing. 



Table 2 
Typical Heat 'Treat  Cycles f o r  Candidate A1 loys 

* T.ypica.1 Coating Cycle - t h i s  w i l l  be al tered f o r  plasma 
spray, type coatings. .. 

I S  . 

- 

PA- 101 

2050°F/2 hr  

2052" F/2 hr  

1250°F/16 hr 
1400" F/ 16 hr 

' APK-1 

' 2120PF12 hr  

- 
1975"F/4 hr 

1200" F/24 hr 
1400" F/8 hr 

0 
Rene 80H 

2175"F/2 hr 

1925"1F/4 hr 

1600eF/16 hr 

MAR-M200 + Hf 

2200" F/2 hr 

Y975"F/4 hr 

1600°F/32 hr 

44 1 
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I 
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Coating* 
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t 

2300°F/2 hr 

19?5"F/4 hr 

1650°F/16 hr 



.Table 3 
Possible Heat Treat  Cycles . f o r  Bonded A i r f o i l  and. Clovetail Combinations 

-.., . , . .  ., . . 

MAR-I4290 + H f  

- ,1600- 1650eF/ 

Slow Cool 'From :.Slow Cool From Slow Cool From Slow Cool From 



Table 4 
Compari son o f  Temperature Improvements and Mechanical Propert ies 

f o r  Conventional ly Cast and D i rec t i ona l l y  S o l i d i f i e d  A i r f o i l  A l loys  

b) MECHANICAL PROPERTI'ES (2! 1.60Q°F 

a ) TEMPERATURE IMPROVEMENTS 

AT 
(OF) 

0 

+35 

4.1 00 

+225 
L 

Appl i ed 
Stress 
( K I )  

2 0 

20 

20 

20 

Operating 
Temp. 
(T 

1 700 

1735 

1800 

1925 

AT 
( O F )  

0 

+25 

+9 5 

+235 

Appl i ed 
Stress 
( KsI 

48 

48 

48 

48 

Operat i ng 
Temperature 

( T I  

1 5OO0F 

1525 

1595 

' 1735 

A1 1 oy 
r 

738 

~ e n e (  80H 

MAR-MZOO + H f  

441 



This p r i o r  p a r t i c l e  boundary (PPB) f i lm, once formed, cannot be e l  i lminated and 
provide a path f o r  easy f r ac tu re  i n  consolidated parts.  

A1 loys APK-1 and PA-101 are be t te r  recognized as low carbon Ast ro loy  o r  
low carbon U700 and IN792 w i t h  H f  respect ively.  Typical compositions are shown 
i n  Table 5. High temperature t ens i l e  property improvements over convent ional ly  
cast  IN738 are shown i n  Table 6. 

D i rec t iona l  sol i d i f  i c a t i o n  o f  a1 1 three a i r f o i  1 a1 loys was completed a t  
the GE Corporate Research and Development Center. This insured close con t ro l  
over the process. D i rec t iona l  S o l i d i f i c a t i o n  f a c i l i t i e s  at CR&D a l low f o r  a 
maximum bar s ize o f  1 518" diameter by s i x  t o  seven inches long. A l loys 441 
and MAR-M200+Hf were made from raw materi  a1 s at CR&D whi l e  cast Rene1 80H bar 
stock was received from GE, Evendale. Typical compositions f o r  the f i v e  
a1 loys, as determined by x-ray fluorescence, are shown i n  Table 5. A l l  
mater ia ls  are cast i n t o  2" diameter bar stock. Lengths o f  bar stock are cut  so 
as t o  provide a DS1ed bar having dimensions o f  1 518" diameter x 6" long. AS1 
melting, pouring and subsequent DSting i s  done i n  argon. A l l  mater ia l  i s  
induct ion melted i n  a ceramic cruc ib le  t o  1635°C. The mater ia l  i s  then poured 
i n t o  ceramic tubes having dimensions o f  the f i n i shed  DS bar. These tubes are 
posi t ioned i n  a v e r t i c a l  furnace operating at the mel t ing temperature 1635'C. 
The f i xed  end o f  the ceramic tube i s  connected t o  a c h i l l  p l a te  which i s  drawn 
down through the furnace at a r a te  o f  12 inches per hour i n  order t o  produce 
the elongated grain s t ruc tu re  shown i n  Figure 4. To date a l l  requ i red Rene' 
80H and 441 DSted bars have been made. Work i s  cont inuing t o  produce the 
required number o f  MAR-M200+Hf bars. 

To insure clean, useable powder f o r  the program, ce r t a i n  requirements 'were 
placed on i t s  production. These included vacuum melt ing, argon atomizing, and 
i n e r t  gas screening. To minimize accident a1 in t roduct ion o f  inc lusions during 
manufacturing and subsequent handling, a maximum allowable powder p a r t i c l e  s ize 
o f  -325 mesh was s t ipu la ted.  Screening out the larger  powder w i l l  he1 p to  
remove any large s ize fo re ign  inclusions tha t  may have been introduced dur ing  
powder production. A l l  APK-1 powder was screened t o  -325 mesh ( l ess  than 44 
microns); however, due t o  increased raw materi  a1 costs w i t h  PA-101, i t  was not  
possib le t o  purchase j u s t  -325 mesh powder. Instead the t o t a l  product o f  a 100 
pound run was purchased and screened i n t o  categories o f  +60 (250 micro-ns) , -60 
+270 (250 t o  53 microns), -270 +400 (53 t o  37 microns) and -400 mesh ( l ess  than 
37 microns). The amount o f  powder i n  the -60 +270 mesh s ize i s  large enough t o  
provide enough mater ia l  t o  perform the pre l iminary  t ens i l e  t es t i ng  and bonding 
studies required f o r  t h i s  program. The s ize d i f ference between APK-1 (-325 
mesh) and PA-101 (-60 +270 mesh) should not present a problem i n  h igh 
temperature tens i  l e  t es t i ng  o f  H I P  consolidated mater i  a1 . However, d i f fe rences 
could occur i n  long term h igh temperature creep rupture or LCF tes t s  where 
fo re ign  inclusions associated wi th larger p a r t i c l e  sizes could reduce mater i  a1 
performance. I f  these two powders are t o  be compared f o r  t h e i r  creep rupture 
and LCF performance, then the -270 +400 mesh PA-101 would be consolidated and 
tested. Tap dens i t ies  f o r  both powders was spec i f ied t o  be equal t o  or greater 
than 4.95 gm/cm3. A l l  powders have been received. 

Heat treatments given t o  n ickel  base superal loys depend on which proper- 
t i e s  ( fa t igue,  creep, t ens i l e )  are to  be optimized. For t h i s  program, com- 
promises i n  heat t r ea t i ng  cycles w i  1.1 be made i n  order t o  successful ly  d i f f u -  
sion bond a i r f o i  1 and dovetai 1 mater ia ls together. Tables 3 and 4 l i s t  optimum 
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Table 6 
Comparison of Mechanical Properties for Conventionally 

Cast and Powdered Metal Dovetail Alloys @ 900°F 
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Figure 4. Directionally Solidified Bar of Alloy 441 



heat t r e a t i n g  c y c l e s  f o r  each a l l o y  and a range o f  treatments which could 
t h e o r e t i c a l l y  be app l ied  i n  order  t o  best j o i n  the  two m a t e r i a l s  ' together .  I n .  
a l l  cases, i t  i s  a n t i c i p a t e d  t h a t  op t im iza t i on  o f  one a1 l o y ' s  p r o p e r t i e s .  w i l l  
cause a  reduc t i on  i n  the o ther .  However, due t o  the  s i g n . i f i c a n t  increase i n  
p r o p e r t i e s  over cu r ren t  a l l o y s  3  t o  40 k s i  i n  the a i r f o i l  and 20 t o  30 k s i  i n  
the dove ta i l ,  Tables 4  and 6, reduc t ions  i n  mechanical p r o p e r t i e s  of e i t h e r  t h e  
a i r f o i  1  o r  dovetai  1  could be t o l e r a t e d  and s t i  11 r e s u l t  i n  an improvement over 
the mono l i t h i c  bucket design. T h e  ef.fects o f  these a l t e r n a t e  heat t reatments 
and an assessment o f  bondl ine s t ruc tu res  w i l l  be done du r ing  the remaining p a r t  
o f  the program. 

MATERIALS AND PROCESSING LABORATORY 

The labo ra to ry  i s  support ing H I P  design, HIP opera t ions  and conduct ing 
a1 t e r n a t e  bonding s tud ies  on pre-selected a1 loys .  Work t o  date has centered 
around can' f a b r i c a t i o n .  H I P  d e n s i f i c a t i o n  o f  powdered n ickel .  a1 loys w i  11 be 
achieved. by us ing rec tangu lar  cans made from m i l d  s t e e l .  Jo in ing  H I P  
consol idated powder t o  DS m a t e r i a l  w i  11 be achieved us ing two d i f f e r e n t  s izes  
o f  thin '  walled' p ipe  welded together ,  F igure 5. This  design e f f o r t  and 
subsequent HIP' ing opera t ions  w i l l  he lp support both AMS and M&M i n  produc'ing. 
t h e  d i f fus i ,on  bonded ma te r ia l  needed f o r  mechanical and m e t a l l u r g i c a l  
eva lua t ions .  

I n  add i t i on  t o  ho t  i s o s t a t i c  pressing f o r  powder conso l i da t i on  and com- 
p o s i t e  specimen f a b r i c a t i o n ,  t h e  M&P 1  ab w i l l  be pursuing a1 te rna te  d i f f u s i o n  
bonding methods. One such method i s  ac t i va ted  d i f f u s i o n  bonding. I n  
t h i s  method, a  t h i n  l a y e r  o f  f o i l  or  powder metal i s  placed between the two . 
supera l loy  meta ls  t o  be j o ined  together .  Chemical composit ion o f  the t h i n  
l aye r ,  coupled w i t h  c o n t r o l l e d  heat t r e a t i n g  and pressure w i l l  produce a  h i g h  
i n t e g r i t y  bond between the two d i s s i m i l a r  m a t e r i a l s .  This  work at the I%P lab  
i s  o n l y  now beginning s ince the ma te r ia l  has j u s t  r e c e n t l y  been made a v a i l a b l e  
t o  them. 

MECHANICS OF MATERIALS 

The ob jec t i ves  o f  the Mechanics o f  Ma te r i a l s  e f f o r t s  are to :  

1. Determine the long t ime cr;eep and LCF behavior o f  the a i r f o i l  a l l o y  and 
e s t a b l i s h  the methods f o r  p r e d i c t i n g  bucket a i r f o i  1  l i f e .  

2. Es tab l i sh  the  LCF behavior o f  the  dove ta i l  a l l o y  and de f i ne  the approaches 
f o r  p r e d i c t i n g  doveta i  1  l i f e .  

3. Evaluate the s t r u c t u r a l  i n t e g r i t y  o f  the a i r f o i  1  /shank i n te r face ,  i d e n t i f y  
the impact o f  j o i n t  con f i gu ra t i on ,  and prov ide  the methodology f o r  
o p t i m i z i n g  i n t e r f a c e  l i f e .  

D i r e c t i o n a l l y  s o l i d i f i e d  MAR-M200+Hf has been .se lec ted  f o r  the i i r f o i  1 
a l l o y .  A t o t a l  o f  n ine  DS MAR-M200+Hf 7/8 inch diameter b y  8 inches long bars 
are being supp l ied  t o  Mechanics o f  Ma te r i a l s  f o r  eva lua t ion .  Up to  9 creep 
t e s t s  w i  11 be conducted. . These specimens w i t h  .505 inch  gage diameter and 5  
i nch  long gage length  have been found t o  prov ide accurate creep response a t  as 
low as .I% creep s t r a i n .  Specimen blanks which are .52 inch diameter b y  6  
inches long are being supp l ied  f o r  LCF t e s t i n g .  Test cond i t i ons  f o r  the 
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program have been .de f ined and inc lude temperatures from 1600 t o  2000°F and 
s t r a i n s  f rom .35 t o  1.0%. 

HIP'ed APK-1 has been selected for  the doveta i  1 a l l o y .  Specimen blanks 
which are .52 inch diameter by  6 inches long are being prepared f o r  conduct ing 
up t o  15 LCF t e s t s .  Test cond i t i ons  have been def ined and inc lude temperatures 
f rom 800 t o  1200°F and s t r a i n s  f rom .8 t o  1.25%. 

The i n t e r f a c e  between the  bucket a i r f o i l  and shank i s  o f  pr ime i n t e r e s t  
s ince i t  conta ins  the d i f f u s i o n  bonded j o i n t  o f  the two d i s s i m i l a r  m a t e r i a l s .  
The behavior o f  t h i s  i n t e r f a c e  w i  11 def ine the j o i n t  c o n f i g u r a t i o n  requ i red  t o  
op t im ize  l i f e  and ensure meeting design requirements. 

Two bondl i n e  con f i gu ra t i ons  w i  11 be examined i n  load c o n t r o l  l e d  LCF 
t e s t i n g  o f  s h a n k / a i r f o i l  composi,tes. The f i r s t  w i l l  p lace  the bondl ine  normal 
t o  t h e  d i r e c t i o n  o f  load ing  and the second w i l l  p lace.  i t  a t  an angle i n c l i n e d  
45" t o  the d i r e c t i o n  o f  loading.  Thi's w i l l  en'able an .eva lua t i on  o f  bond 
f a t i g u e  behavior under bo th .  normal and .shear loading.:  These r e s u l t s  w i  11 be 
u t i l i z e d  w i t h  f a t i g u e  and f racture:  mechanics ana lys is . techn iques f o r  p r e d i c t i n g  
1 i f e  o f  the i n t e r f a c e  j o i n t  and f o r  e v a l u a t i n g  potent  j a1 design con f i gu ra t i ons .  

MECHANICAL DESIGN 

. . 
For the  mechanical design o f  a composite bucket, onea'of the f i r s t  areas 

under i n v e s t i g a t i o n  (bondl  i n e  l o c a t i o n ) .  has l ed  t o  a - t e n t a t i v e  se lec t  ion  o f  the 
r a d i a l  p o s i t i o n  o f  the bondl i ne  w i t h i n  the bucket. To maximize the  success o f  
t he  bonded s t ruc tures ,  the  reg ion  immediately below the a i r f o i  1 p l a t f o r m  
appears t o  o f f e r  the most advantages. The magnitude o f  the  c e n t r i f u g a l  f o r c e s  
a c t i n g  on the  bondl i n e  are much less  her.e than f u r t h e r  inward l oca t i ons .  This  
means a reduct ion  o f  30-50% i n  c e n t r i f u g a l  fo rces  r e l a t i v e  t o  a l o c a t i o n  near 
t he  dovetai  1 i n  a t y p i c a l  l a s t  stage design. Also, the  bonded j o i n t  remains i n  
the coo le r  ( l e s s  c o r r o s i v e )  environments o f  the shank. 

. . 

To f a c i l i t a t e  the  bonding process, .a composite f i r s t  o r  l a s t  stage 
bucket w i  11 have separate coverpl  ates . Whi l e  separate coverg.1 ates , add somewhat 
t o  the  complexi ty  o f  the  t u r b i n e  bucket assembly, they  are proven and ve ry  
e f f e c t i v e  seal i ng  and damping devices. General E i e c t r  i c  has successful  l y  
app l i ed  t h i s  design concept i n  gas t u r b i n e  engines f o r  over 20 y e a r s .  As a 
r e s u l t ,  the  load c a r r y i n g  sect ions o f  the bucket can be s i m p l i f i e d  and more 
r e a d i l y  adapted t o  composite bondl.ine technology needs. 

Based on reviews w i t h  Aero-Thermo Engineering, p r e l i m i n a r y  design i t e r a -  
t i o n s  have begun i n  order t o  extend base l ine  designs towards pro jec ted  h igher  
a l lowab le  s t ress  and temperature environments. 

Two d i s t i n c t  ca tegor ies  f o r  bonding geometry are being considered: 

a), d i r e c t  load geometry (DLG) 
b )  load shar ing geometry (LSG) 

The d i r e c t  load geometry w i l l  r e s u l t  i n  a l l  loads t ransmi t ted  through 
t h e  bondl ine t o  be i n  tens ion .  It represents the s implest  form of j o i n i n g  the 



a i r f o i  1 t o  shankldovetai 1 structures by means o f  two f l a t  surfaces, Figure 6a. 
A va r i a t i on  o f  (DLG) being considered i s  a wedged conf igurat ion.  Loads w i l l  be 
t ransmi t ted both i n  tension and shear, Figure-6b. 

The load sharing geometry w i l l  r e s u l t  i n  loads, at  a given rad ia l  plane, 
p a r t l y  be ing ca r r i ed  by the bond'l i ne  and p a r t l y  through the base materi a1 . I t  
-represents a "dovetai led" version o f  the jo ined structures,  and o f f e r s  the 
advantage o f  reducing the strength requirements o f  the bonded j o i n t .  

A l l  mater ia ls  f o r  the a i r f o i l  and doyeta i l  have been selected, ordered, 
and received. Addi t iona l  bars o f .  DS MAR-M200+Hf f o r  mechanical t es t i ng  
are i n  process,. 

.HIP cans for  b t h  powd,er consol idat ion and dif f~.!sion bonding studies 
have been desi gned and ' are being f abrlcated. 

a '.-Discussions are. underway wi th vendors, f o r  specimen mgchining and tes t ing.  . . 

. ' ~ e c h a n i  cal  De,s.i:gn i s  ev:al uat  ing bondline strength requirements, geometry, 
and locat ion.  
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SHANKIDOVETAIL BONDED REGION 
(TWO .FLAT SURFACES) 

V 
a .  D i r e c t  Load .Geometry Bond '(Simp1 e Tension) 
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b. D i r e c t  Load ~eomktr; Bond (Tension and Shear) 

Flgure 6 .  Shank t o  Dovetai l  Bond Geometry 
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