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1. Introduction

It is well known that highly structured systems of linear

algebraic equations arise when Helmholtz's equation

(1.1) -Au + cu =f, c = constant ,

is discretized by finite difference or finite element methods using

uniform meshes. This is true, in particular, for problems on a

region 0 which permits the separation of the variables. Very fast

and highly accurate numerical methods are now readily available to

solve separable problems at an expense which is comparable to that

i of a few steps of any simple iterative procedure applied to the

linear system; see Bank and Rose [2,3], Buneman [5], Buzbee, Golub

and Nielson [8], Fischer, Golub, Hald, Leiva and Widlund [16],

Hockney [24,26], Swarztrauber [50,51], Swarztrauber and Sweet

[52,53] and Sweet [54].  Adopting common usage, we shall refer to

such methods as fast Poisson solvers.

The usefulness of these algorithms has been extended in

recent years to problems on general bounded regions by the develop-

ment of capacitance matrix, or imbedding, methods; see Buzbee and

Dorr [6], Buzbee, Dorr, George and Golub [7], George  [19] , Hockney

[25,27], Martin [35], Polozhii [40], Proskurowski [41,42,43],

Proskurowski and Widlund [44,45], Shieh [46,47,48] and Widlund

[57].  We refer to Proskurowski and Widlund [44] for a discussion

of this development up to the beginning of 1976.  All of the

numerical experiments reported in those papers were carried out

for regions in the plane. Strong results on the efficiency of



2

certain of these methods have been rigorously established.through

the excellent work of Shieh [46,47,48].  Algorithms similar to

those which we shall describe have recently been implemented very

successfully fot two-dimensional regions by Proskurowski [42,43]

and Proskurowski and Widlund [45].  In that work, a new fast

Poisson solver, developed by Banegas  [1] ,  has been used exten-

sively; see Section 5. We note that the performance of computer

programs implementing capacitance matrix algorithms depends very

heavily on the efficiency of the fast Poisson solver, and if

properly designed, they can be easily upgraded by replacing that

module when a better one becomes available.

In this paper, we shall extend the capacitance matrix method

to problems in three dimensions. The mathematical framework, using

discrete dipole layers in the Dirichlet case, is an extension of

the formal discrete potential theory developed in Proskurowski and

Widlund [44].  We note that these algorithms must be quite

differently designed in the three-dimensional case. As in two

dimensions the fast Poisson calculations strongly dominate the

work. The number of these calculations necessary to meet a given

tolerance remains virtually unchanged when the mesh size is

refined. We have developed a FORTRAN program for Cartesian co-

ordinates and the Dirichlet problem, which turns out to be techni-

cally more demanding than the Neumann case. This program has been

designed to keep storage requirements low. The number of storage,

locations required is one or two times N, the number of mesh points

in a rectangular parallelepiped in which the region is imbedded,

and a modest multiple of p, the number of mesh points which belong
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to the region 0 and are adjacent to its boundary. A further sub-

stantial reduction of storage can be accomplished for very large

problems by using the ideas of Banegas [1], see further Section 5.

In the second section, we discuss the imbedding idea.

Following a review of classical potential theory, we derive our

capacitance matrix methods in Section 3. Section 4 focuses on

algorithmic aspects which are of crucial importance in the develop-

ment of fast, reliable and modular computer code. We solve the

capacitance matrix equations by conjugate gradient methods. These

methods, originally used in a similar context by George [19], are

reviewed in that section. We also discuss how spectral information

and approximate inverses of the capacitance matrices can be

obtained and used at a moderate cost in computer time and storage.

The fast Poisson solver which is used in our program is described

in Section 5. It is numerically stable even for negative values of

the coefficient c of the Helmholtz operator. Finally, we give

details on the organization of our computer program and results

from numerical experiments. These tests were designed to be quite

severe and the method has proved efficient and reliable.

A listing of our program is provided as an appendix. It has

been checked by the CDC ANSI FORTRAN verifier at the Courant

Mathematics and Computing Laboratory of New York University.  It

has been run successfully on the CDC 6600 at the'Courant Institute,

'   a CDC 7600 at the Lawrence Berkeley Laboratory and the Amdahl

470V/6 at the University of Michigan.

Acknowledgements. The authors want to thank John G. Lewis,

Wlodzimierz Proskurowski and Arthur Shieh for their interest and
help with this project.
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2. Discrete Helmholtz Problems and Imbedding

2.1. The Imbedding of the Discrete Problem

In this section, we shall discuss how discretizations of the

problem

-Au + cu  = f on O ,

with a boundary condition and data given on 80, can be imbedded in

problems for which fast Poisson solvers can be used. In the second

subsection, we describe in detail how these ideas apply to the

finite difference scheme which we have used in our numerical

experiments.

The efficiency of capacitance matrix methods depends on the

choice of appropriate finite difference and finite element meshes.

Interior parts of the mesh should be made regular in the sense that

the linear equations at the corresponding mesh points match those

of a fast Poisson solver. We denote the set of these mesh points

by Oh where h is a mesh width parameter.  The set of the remaining,

irregular mesh points is denoted by. 30h.  These points are typi-

cally located on or close to the boundary 80 and the discrete equa-.

tions associated with them are computed from local information on

the geometry of the region. For efficiency, the number of unknowns

associated with the points in 8Oh should be kept small, since the

equations and other information required at the regular mesh points

are inexpensive to generate and can be stored in a very compact

form.

If we work in Cartesian coordinates it is natural to imbed our

open, bounded region 0 in a rectangular parallelepiped and to use
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a rectangular mesh. Other choices which permit the separation of

the variables on the larger region, can equally well be chosen. On

the larger region a mesh suitable for a fast Poisson solver'is intro-

duced which coincides with the regular part of the mesh previously

introduced for the region O. The position of the larger region

relative to 0 is largely arbitrary but when using discrete dipoles

(see Section 3), we need a layer of exterior mesh points, one mesh

width thick, outside  of Oh. u 3hh We shall  use  some  or  all  of  the

discrete equations at exterior mesh points to expand our original

linear system into one which is of the same size as the one which

is solved by the fast Poisson solver. The set of mesh points

corresponding to these equations is denoted by Chh.

Before we describe how these larger systems of equations

are derived, we shall show by two examples how these sets of mesh

points can be constructed. We first consider a Dirichlet problem

solved by a classical finite difference scheme on a rectangular

mesh. The values of the approximate solution are sought at the

mesh points which belong to 0. The discretization of the Helmholtz

operator on the larger region induces, for each mesh point, a

neighborhood of points used by its stencil. A mesh point in 0 be-

longs to Oh if and only if all its relevant stencil  neighbors are

in O,and BOh is the set of the remaining mesh points in 0.  The set

COh is the set of all mesh points which belong to the complement

of 0.  It thus includes any mesh point which is on the boundary 80.

As a second example, consider a Neumann problem for Laplace's

equation in two dimensions solved by a finite element method with

piecewise linear trial functions. The region is approximated by a
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union of triangles using a regular triangulation, based on a uni-

form mesh, in the interior of the region.  The set Oh will then

correspond to the set of equations which are not affected by the

particular geometry of the region. Values of the discrete solution.

are also sought at the vertices on the boundary. These points

normally fail to lie on a regular mesh.  They belong to BOh to-

gether with certain mesh points which are close to the boundary.

Each irregular point can be assigned to a close-by mesh point of

the regular mesh which covers the larger region and we then define

Coh as the set of remaining, exterior mesh points.  There are a

number of permissible ways in which this assignment can be made.

Similar constructions can be carried out for higher order accurate

finite element methods;.see Proskurowski and Widlund  [45 ]  for
further details.

Let us write the expanded linear system in the form

(2.1) Au = b

where u is the vector of values of the discrete solution at the

mesh points and the components of b are constructed from the func-

tion f and the data given on 80· By construction, our formulas for

the interior and irregular mesh points do not involve any coupling

to exterior mesh points, and the matrix is therefore reducible,

i.e. there exists a permutation matrix P such that

CA    0 i
1

11TP AP=I            ·

<A21  A22,
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The block matrix All represents the approximation of the problem

on nh u boh.     It is clear  from the structure  of this system  that  the

restriction of the solution of the system (2.1) to this set is

independent of the solution and the data at the exterior points.

Our methods also produce values of a mesh function for the points

of Chh but they are largely arbitrary and useless.  Similarly, we

must provide some extension of the data to the set Chh' but the

performance of the algorithms is only marginally affected by this

choice.

Let B denote the matrix representation of the operator

obtained by using the basic discretization at all the mesh points.

Only those rows of A and B which correspond to the irregular mesh

points differ provided the equations and unknowns are ordered in

the same way. We can therefore write

T
A = B+U Z    ,

where U and Z have p columns, with p equal to the number of ele-

ments of the set 80 · It is convenient to choose the columns of Uh

to be unit vectors in the direction of the positive coordinate axes

corresponding to the points of 8Oh.  The operator U is then an

extension operator which maps any mesh function, defined only on

Bhh'   onto a function de fined  on  all mesh points. The values  on  83h
are retained while all the rentaining values are set equal to zero.

T
The transpose of U, U , is a restriction, or trace, operator which

maps any mesh function defined everywhere onto its restriction to

3Oh.  The matrix ZT can, with this choice of U, be regarded as a

compact representation of A-B, obtained by deleting the zero rows
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corresponding to the equations for the mesh points innhUCC>h.  It
is important to note that Z and U are quite sparse, a reflection

of the sparsity of A and B.

In Sections 3 and 4, we shall discuss efficient and stable

ways of solving the linear system (2.1).

2.2. The Shortley-Weller Scheme

We shall now discuss the finite difference scheme which has

been used in our numerical experiments to solve the Dirichlet

problem and also describe how the necessary information on the

geometry of the boundary is handled.

The second order accurate Shortley-Weller formula (see

Collatz [9], Chap. 5.1 or Forsythe and Wasow [17], Sec. 20.7) can

be understood as the sum of three point difference approximations

for the second derivative with respect to each of the three inde-

pendent variables. The value at the nearest mesh neighbor in each

positive and negative coordinate direction is used unless this

neighbor belongs to the set (01.1.  In that case the Dirichlet data

at the point of intersection of the mesh line and the boundary is

used.

As an example, suppose that the mesh spacings in the x, y and

z directions are all equal to h. Consider an irregular mesh point,

with indices (i, j,k), which has two exterior neighbors in the x

direction and one in the positive y direction. Let 8 5   andX'  +X

5   be the distances to the boundary, in the respective coordinate+Y

directions, measured in units of the mesh size h and let g-x' g+x

and g be the Dirichlet data at the corresponding points on the
+Y
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boundary 80. Then our approximation to -Au +cu = f at this

irregular point is,

('2/(8       5       )    + 2/5 +   2   +   ch    ) 17
2,

+X -X +Y -ijk

- (2/(1+8 ))u -U      -
+y   i, j-l, k ij,k+1 uij,k-1

2
= h fijk + (2/(62x + 5+x5-x))g+x

+ (2/(5 x +8  5  ))g_x + (2/(52  + 8+Y))g+X -X             +Y         +Y

At the regular points the formula reduces to a simple seven point

approximation.

The Shortley-Weller formula has a matrix of positive type.

This permits the use of the classical error estimates based on ·a

discrete maximum principle, as in the references given above. The

only information required on the geometry of the region is the

coordinates of the irregular mesh points and the distances along

the mesh lines from each such point to the boundary. This appears

to be close to the minimum information required by any method with
more than first order accuracy.  See Proskurowski and Widlund [44],

Pereyra, Proskurowski and Widlund [39] and Strang and Fix [49] for

more details. This geometrical information is also sufficient to

construct higher order accurate approximations to the Helmholtz

equation, as in Pereyra, Proskurowski and Widlund [39] where a

family of methods suggested by Kreiss is developed. These methods

have proven quite effective for two dimensional problems but their

usefulness is limited by the requirement that each irregular mesh
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point must have several interior mesh neighbors along each mesh

line. This requirement is met by shifting the. region and refining

the mesh if necessary. Although this is practical in two dimen-

sions, it is much more difficult for three dimensional regions.

We are free to scale the rows of the matrix A which corre-

spond to the irregular mesh points. The choice of scaling is

important since it affects the rate of convergence of our iterative

method.  Based on the analysis given in the next section, the

experience in the two dimensional case (see Proskurowski and

Widlund [44]) and our numerical experiments, we have chosen to make

all diagonal elements of A equal to one.



11

3. Potential Theory and Discrete Dipoles

3.1. The Continuous Case

In this section, we shall give a brief surkey of certain

results of classical potential theory and also develop an analo-

gous, formal theory for the discrete case. We shall mainly follow

the presentation of Garabedian [18]  when discussing the continuous

case, specializing to the case of c = 0.  A discrete, formal theory

has previously been developed by Proskurowski and Widlund [44] but

our presentation in Sections 3.2 - 3.4 will be more complete in

several respects.

We first introduce the volume, or Newton, potential

(3.1)
UV(x) = (1/4'Ir) l.  f (C)/r df

where  x  =  (xl, x2' X3)'   E  =  (El'42'43)  and  r  =  ((xl- gl)2+  (x2 -42)2

+ (x.3 -43)2)1/2.  We note that (1/4 r)(1/r) is a fundamental solu-
tion of the operator -8, i.e.,

-AUV =f.

A single layer potential, with a charge density p, is given by,

(3.2) 1/(x)   =    (1/2,r )  j      p (E )/r   da

80

and a double layer potential, with a dipole moment density F, by

(3.3) Y (x)    =    (1/2.Ir )        11 (4)(8/avE)(1/r )d a    .
3O

Here v denotes the normal of the boundary BO directed towards the
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interior of 0.  By  f  and 1P-, we denote the limits of »11 when

the boundary is approached from the outside and inside respectively

and similar notations  are  also  used  for the limits  of 94.    The  func-

tions -  and %/ are real analytic functions in the complement

of 80· By using a Green's formula one can establish that 9.* and
3 9030 are continuous and that jump conditions hold for 39'Z/av

and 7%<; see Garabedian [18], Chapter 9.  Thus, for a region with a

smooth boundary,

 ,-4-  =   44 - '

30*\+)/bv = (+) p + (1/271-) u   p(8/Bvx)(1/r)da ,
30

·1''tr +     =    (t)   11   +    ( 1/2,r)         p (B/bvE)(1/r )d a    ,
bo

alr+/av = 89,/-/34

With the aid of these relations the Neumann and Dirichlet problems

can be reduced to Fredholm integral equations. For the interior

Neumann problem,

-Au = f in 0,

bu/Bv = gN  on 30 ,

we make the Ansatz,

U(X) = U (X) + 4£(X) .

The boundary condition is satisfied by choosing p such that
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3 11-/Bv    =   -p    +    ( 1/27r )  jr  p ( 8/bvx)(1/r)do
30

(3.4) =   gN   -    (3/Bv )uVI         =  2   0
lao

This equation can be written as (I-K)p = -2, where K is a compact

operator defined by the formula above. It is a Fredholm integral

equation of the second kind with a simple zero eigenvalue.  Since

K is compact in L2 the integral operator I-K is bounded in L2 and

it has an inverse of the same form on a space of codimension one.
r.

Equation (3.4) is solvable if g is orthogonal to the left eigen-

function of (I-K) corresponding to the zero eigenvalue.  In this
/.

case this simply means that g should have a zero mean value.  By

using the same Ansatz for the exterior Neumann problem, we obtain

an integral equation with the operator I+K.

If we use the same single layer Ansatz for the interior

Dirichlet problem, with data gD' we get an integral equation of the

first kind,

( 1/27r )      P/r   do   =  gD   -   uv I
Bo                                                    I Bo

This operator does not have a bounded. inverse in I.,2.  The use of
an analogous Ansatz for the discrete Dirichlet problem gives rise

to capacitance matrices which become increasingly ill-conditioned

as the mesh is refined.

The Ansatz

U(X) = UTT(x) + 91/(x) ,

which employs a double layer potential, leads to a Fredholm

.----
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integral equation of the second kind,

'h'-   =  11   +   (1/211- )  J     11 ( 8/BvE)(1/r )d a
30

(3·5) - eD- uy'
lan

T          T
The integral operator is now I+K , where K  is the transpose of the

operator introduced when solving the Neumann problems. We shall

obtain well-conditioned capacitance matrices when using a discrete

analogue of this approach.

The close relationship between the integral equations for the

interior Dirichlet and exterior Neumann problems is used to

establish the solvability of the Dirichlet problem; see Garabedian

[18], Chapter 10.  A similar argument is given in Section 3.3 for

a discrete case.

The integral operator K is not symmetric except for very

special regions. Nevertheless it has real eigenvalues; see e.g.

Kellogg [32], p. 309.  For future reference, we also note that

there exist variational formulations of the Fredholm integral equa-

tions given in this section; see Nedelec and Planchard [37]. It

can be shown that the mapping defined by the single layer potential

1/' is an isomorphism from H-1/2(80)/P  to the subspace of Hl-(0)/Po
of weak solutions of Laplace's equation.  Here Hl(0) is the space

of functions with square integrable first distributional deriva-

tives, Hl/2 (30) the space of traces of Hl(0), H-1/2(2<1) the space

dual to Hl/2(80), and P  the space of constants.  By substituting

the single layer potential into the standard variational formula-

tion of the interior Neumann problem and using a Green's formula,
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an alternative formulation is obtained. The resulting bilinear

form is coercive on H-1/2 (al)/po and is equivalent to equation

(3.4).

Before we turn to the discrete problems, we note that, in the

theory just developed, the function (1/471-)(1/r) can be replaced by

other fundamental solutions of the Laplace operator. In particular,

we can use a Green's function for a rectangular parallelepiped in

which the region 0 is imbedded. The theory can also be extended,

in a straightforward way, to Helmholtz's equation with a nonzero

coefficient c.

3.2. Discrete Potential Theory

We now return to the solution of Au = b, (equation (2.1))

with A=B +UZT. Guided by the theory for the continuous case, we
shall develop two algorithms, one suitable for the Neumann and the

other for the Dirichlet case.

We shall assume that B is invertible. This is not a very

restrictive assumption since we have a great deal of freedom to

choose the boundary 'conditions on the larger region.

We recall from Section 2.1 that the columns of U were chosen

to be unit vectors corresponding to the irregular mesh points. If

we order the points of nh first, followed by those of boh and COh'
we can obtain the representation,

/    \
0

U=  I

0\/
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whe·re. I  is  a P x p identity matrix.    Let  us, in analogy  to  the  con-

tinuous case, make the Ansatz

(3.6) u  =  Gb+ GWs

where the vector s has p components, G is the inverse of B, and W

has the form
/   \\
0

W = W2  '

'IW3.'

The operator G plays a role very similar to that of,a fundamental

solution for the continuous problem. The second term GWs corre-

sponds to a single or double layer potential. For additional
I.

flexibility, we have introduced the mesh function b which coincides

with b except possibly at the irregular points of &7 .  In particu-

lar, if the Helmholtz equation has a zero right hand side, we can
r.

often choose  b  = 0, eliminating the first  term  of the Ansatz. To

arrive at an equation for the vector s, we calculate the residual,

b  -A u  =  b  -  (B+UZT ) (G   + GWs)

=   (b-£ ) - UZTG£ -  (I+ UZTG )Ws   .

r.

From the form of b, U, and W, we have the following result:

Lemma 3.1.  The residuals for the system (2.1) corresponding to the

points of Oh are zero for any choice of the vector s in (3·6).  If

the matrix W  is zero they also vanish at all points of Or)h'
We now demand that the residuals vanish on the set 30 :h

% 4.  T
0 = u'r(b-Au) = UT(b-b)- Z+Gb-U+AGWs .
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This gives us a system of p equations:

(3.7) Cs = UTAGWs = (UTW+ ZTGW)s    UT(b-E) - ZTGS ,

where C is the capacitance matrix. We ignore the residuals

on the set Chh since the extension of the data to this set is

largely arbitrary. It follows from the reducible structure of A

that if the capacitance matrix C is nonsingular the restriction of

the mesh function u, given by formula (3.6), solves the discrete

Helmholtz equation.  We shall now discuss two choices of the matrix

W and study the invertibility of the resulting matrices.

For a Neumann problem, our choice of W should correspond to

a single layer Ansatz. We therefore choose W *U and note that the

capacitance matrix CN = UTAGU is then the restriction of AG to the

subspace corresponding to the set boh. Using equations (3.6 ) and

(3.7), we find,

u   =    G    -  GU (UTAGU )-1(ZTG·2  -   UT (b-  )  )      .

I.

This is, for b = b, the well known Woodbury formula; see

Householder [29]. For completeness, we give a proof of the

following result.

Theorem 3.1.  The capacitance matrix CN is singular if and only if
..

the matrix A i s singular.  For b=b the equation (3.7) fails to

have a solution. if and only if b does not lie in the range of A.

Proof:  Let   be a nontrivial element of the null space of CN.

Then since CN =I+ ZTGU, the vector

ZTGU4 = -4
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is nonzero and therefore GU4 cannot vanish identically.  But

AGU4 = UCN  = 0 and therefore A is singular.  Let now 9 belong to

the null space of C  and assume that

4T<ZTGb) = (9TZTG)b 0 0.

Then b does not belong to the range of A since

ATGTZV/   =    (B T +  ZUT ) GTZiP   =   ZCT4   -   0    .

Finally given data for equation (2.1), which does not belong to the

range of A, equation (3.7) cannot be solvable since otherwise formula

(3.6) would provide a solution of equation (2.1).

The Woodbury formula is popular for computation, especially

when the rank p of A-B is·small. In our application, p is usually

very large, often exceeding 1000. This precludes the computation

and storage of the dense, nonsymmetric matrix CN.  We must there-

fore  solve  the p x p linear system,

(3.8) CNs = UT(b- ) - Z Gb ,
T 4 

by an iterative method which does not require the explicit calcu-

lation of the elements of CN; see further Section 4.  We see from
equation (3.6) that in addition to solving the system (3.8 ), we

need only to solve at most two simple Helmholtz problems on the

entire mesh in order to complete the calculation of the solution u.

Our main task is therefore the efficient solution of equation

(3.8).
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The efficiency of the iterative solution of equation (3.8)

depends crucially on the distribution of the singular values of CN.

The choice W=U i s suitable for Neumann problems, since it is

based on a single layer Ansatz,but it gives rise to increasingly

ill-conditioned capacitance matrices if applied to Dirichlet

problems.

An alternative to the Woodbury formula gives well-conditioned

capacitance matrices for the Dirichlet problem.  We shall special-

ize to a case of a uniform rectangular mesh; cf. Section 2.2. Our

choice of W should correspond to a double layer potential. Le t

W = VD, where D is a square diagonal matrix of nonzero scale fac-

tors and each column of V represents a discrete dipole of unit

strength associated with an irregular mesh point. The solution to

our problem is then

u  =   G -  GVD( UTAGVD)-1(ZTG   -UT(b- ))

and the capacitance matrix is CD - UTAGVD.

We would like to construct the discrete dipoles by placing a

positive unit charge at an irregular mesh point and a negative unit

charge at another point located on the exterior normal through the

irregular point. Since the data for the fast Poisson solver must

be given at mesh points only, we instead divide this negative

charge and place it on three mesh points. As an example, consider

an irregular mesh point with indices (i, j,k), for which the

exterior normal through this mesh point lies in the positive

octant. Let the distances, measured in units of the mesh size, to

the boundary along the three positive coordinate axes be 8+1' 5+2
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and 5 respectively. Let further 0<5 <5 <8 We find
+3                                +1 - +2 - +3

the first of the three mesh points for the negative charges by

moving in the positive x1-direction, the direction of the smallest

distance, to the point (i+1, j,k).  The weight for this point is

-(1 - 5+1/5+2).  We then proceed in the x2-direction, the direction

of the medium distance, to the point (i+1, j+1, k) which is given the

weight -(5+1/5   - 5  /6  ) and we finally go to the point (i+1,+2 +1 +3
j+1, k+1) which is given the weight -5+1/5+3.  We note that all these

are nonpositive and that their sum equals -1.  Assuming that the

boundary 30 is smooth enough, we find by expanding the expression

v v in a Taylor series, that it equals hB (Bv/Bv ) + 0(h) where

-2 -2 1/2(3·9)           h = hB +1(5  -2 +5      +5     )5 +1 +2     +3

For future reference, we note that the area, A5' of the triangle

with vertices at the intersections of the boundary and the mesh

lines through the irregular mesh point is

A5    -    (h2/2 )5       5       6        (8        -2  + 5       -2  +  5        -2  1/2+1 +2 +3 +1 +2 +3                ·

For a region with a smooth boundary none of the mesh points

used in the discrete dipole construction belong to the set Oh pro-
vided that the mesh is fine enough. We shall assume that this

condition is satisfied and reject any problem which violates it.

For an irregular mesh point which, along the same mesh line, is

within h of the boundary in both the positive and negative direc-

tions, we use the smaller distance of the two in the dipole con-

struction, resolving a tie in an arbitrary way.



21

3.3. The Invertibility of the Matrix CD

An attempt to prove that CD is nonsingular, modeled strictly

on the proof of Theorem 3.1, is not successful and some additional

ideas must be introduced. The proof of the following theorem is in

an important part due to Arthur Shieh.

Theorem 3.2. Assume that the discrete Helmholtz problem is

uniquely solvable, that c > 0, and that the matrix B is of positive

type. Assume further that any mesh function of the form GUy, takes

on a maximum or a minimum.  Then the capacitance matrix CD is

invertible.

Remark. The last assumption of this theorem is of course always

satisfied if the number of mesh points is finite. It must be veri-

fied for fast solvers on regions with an infinite number of points;

cf. Section 5.

Proof: We begin as in our proof of Theorem 3.1. To simplify our

notations, we choose D = I.  Suppose that there exists an eigen-

vector + such that  CD  = UTAGV4 = 0.   The mesh function AGV  there-

fore  vanishes  on 801,1  and by Lemma  3.1,   it also vanishes  on Oh*
Since the discrete problem represented by the matrix A is

11

uniquely solvable, the mesh function GV4 vanishes for all      -

x € nh u BOh ' Conversely if there exists a nontrivial vector  +  such

that  GV  is identically  zero  on 011 U 80. '  then by the reducible

structure of A, CD4 = 0.

To conclude, we must prove that there exists no nontrivial

discrete dipole potential which vanishes identically  on Oh u Bhh'
We shall work with a very primitive approximation of the Dirichlet
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problem, since the particular choice of the rows of A corre-

sponding to the points of 80h is of no importance in this context

and also use a simple approximation of an exterior Neumann problem.

After a suitable symmetric permutation, which we suppress in order

to simplify our notations, we write the discrete Helmholtz operator

on the entire mesh in the form,

C                                  hB B O11 12

821   322   323
0B

832           33  i            '
\. J

Here the subscripts 1, 2 and 3 refer to the interior, irregular and

exterior mesh points, respectively. Our interior Dirichlet problem

is simply chosen so that

C                                    .\B B O
11 12

X=O  I OD

O B B
32   33C J

The dipole capacitance matrix is then

C =G V+GD   22 2  23'V.3 '

where a discrete dipole layer is written as

'O)

V.ki  72 AL '
13V\ /

The matrices G. ., i, j = 1,2,3, are the blocks of the inverse of B.
1J.
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The exterior Neumann problem is approximated by

(
B B O11 12

-                                T            TA=0  V  VN             23
0B

132           33

Using a single layer Ansatz, the capacitance matrix becomes

2=V G +V GT      T
N    2 22 332 o

By the symmetry of the operator G, we obtain

t=EN i

cf. the continuous case. By the arguments given in the proof of
./

Theorem 3.1 the matrix CN is invertible if

ANGU,# = 0

only for 9 = 0.  Let c = 0. Since, by assumption, GU9 attains an
ru

extremal value and AN clearly satisfies a discrete maximum princi-

ple, we can conclude that GU4 is a constant and that then

BGU4 = U# = 0.  This argument can easily be modified for the case

of c>0 and the proof is therefore concluded.

We note that the assumptions of this theorem, except for the

invertibility of the matrix A . were used solely to prove that the11'
..

null spaces of AN and B coincide.  We also note that one of the

arguments given in a similar context in Proskurowski and Widlund

[44] is incorrect.  The proof given above can be modified to give

rather crude, but still quite useful estimates of the condition

number of the matrix CD' see Shieh [48].
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3.3. The Choice of Scale Factors

The capacitance matrix equation (3.7) is solved by iterative

methods and it is therefore quite important to use a suitable

scaling of the variables and the equations. When choosing the

scaling, we shall be guided by an inte rpretation of equation (3.7)

as  approximations  of  the well conditioned continuous problems  (3.4)
and (3·5)·  We shall only discuss the Dirichlet case, since a

discussion of the Neumann problem adds little new, and also

specialize to the case when c = 0.

The scaling of CD is carried out by choosing the matrix D and
T                                         Tthe row sums of U A or equivalently the row sums of Z . It is easy

to see that these are strictly positive in the special case con-

sidered in Section 2.2 and that this property holds for any other

consistent approximation of the Dirichlet problem for Laplace's

equation. We shall now show  that  it is appropriate to choose D=I

Tand to make the row sums of Z equal to two.

With this choice of D the first term of the capacitance

matrix CD equals UTV; see (3.7).  In the typical case where all the

mesh points corresponding to the negative weights belong to Chh'
T

U V = I.  When we turn to the other term, we first note that it can

be shown, by elementary arguments, that with the choice of scaling

of the matrix B consistent with the formulas in Section 2.2, h-1G,

regarded  as  a mesh function, approximates  r (x, 4 )'. a fundamental

solution of the Laplace operator. In Section 3.2, we have inter-

preted VT as a difference operator in the normal direction.  We

find that (hh5)-1ZTGV formally converges to 23r/BvE since the opera-
T

tor Z  is a local difference operator with a combined weight equal
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to two; see (3.9).  By using finite difference theory or by

studying the discrete fundamental solution directly, we can show

that this convergence is point-wise for any x 0 4.  See Shieh [46]

or Thomee [55]·  We note, however, that this convergence fails to

be uniform. See further discussion below.

We want to inte rpret the vector ZTGVW as a numerical quadra-

ture approximation of the corresponding term

(3.10) 2     br/Bv Ilda4
3o

of a Fredholm integral equation similar to equation (3.5).  We note

that the factor  2 is appropriate since the function   ( 1/27'r ) ( 1/r )

appearing in that equation is twice a fundamental solution of the

Laplace operator. To verify that our choice of scalings gives a

formally convergent approximation, we must consider the density of

the discrete dipoles and the area elements to be assigned to them.

Since the distances between the dipoles vary in a highly irregular

way, we shall consider local averages over patches of the boundary

with a diameter on the order of /E.  Over an area of that size the

direction of the normal can be regarded as a constant. We shall

specialize to the case discussed in Section 3.2, in which the dis-

crete dipoles were introduced, and use the same notations. In the

patch considered there is then one irregular mesh point within a

distance of h to the boundary along any mesh line through the patch

parallel to the xl-axis.  The area AB' previously computed, should

therefore be compared  with  the  area < h2/2 )5    8      of the other  rele-
+2 +3

vant face of the polyhedron with vertices at the irregular point
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and the intersections of the mesh lines and the boundary. Each

dipole should therefore be assigned the weight,

-2 -2 -2 1/2 -2 -2 -2 1/2
8  5  5  (5+1+5+2 + 5+3)  /5+25+3 = 5+1(5+1+5+2 + 5+3) - h8/h .+1 +2 +3

T
Combining these observations, we see that Z GVw. formally converges

to the integral (3.10).

It is natural to ask if the singular values of CD converge to

those of the integral operator. This is not in general the case,

a fact intimately related to the non-uniform distribution of the

irregular mesh points. The study of this question is of very con-

siderable difficulty.  Following Shieh [46,47,48], let

C  = B  +KD    h   h'

where Bh represents the coupling between irregular mesh points

which are within JE of each other.  With the scaling introduced

above Kh converges pointwise to the correct integral operator.

However,  the operator Bh is not in general a formally convergent

approximation of the identity operator, but for certain important

finite difference schemes and general plate regions Shieh [46,47,
48] has been able to show that the spectral condition number of Bh

can be be bounded independently of h. These results, combined with

the crude estimates of the spectral condition number CD mentioned

in the previous subsection, suffice to show that the-number of con-

jugate gradient steps required for a specific decrease of the error

grows only in proportion to log (1/h).  See also Proskurowski [41,

42,43],   Proskurowski and Widlund  [44,45] and Section  6  of  this

paper for numerical evidence.
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4. Capacitance Matrix Algorithms

4.1. The Generation of the Capacitance Matrix

We have previously pointed out that the central problem in

our work is the efficient solution of equation (3·7). In this

section, we shall examine various alternatives.

We shall first consider the cost of computing the capacitance

matrices CN = UTAGU and CD = UTAGV respectively. These are px p

dense nonsymmetic matrices where,p is the number of variables

associated with the set boh. Since the matrices UTA, UT and VT

have only a few non-zero elements per row, the computation of an

individual element of CN or CD requires only a modest number of

arithmetic operations if the elements of G are known. Since the

order of G is at least as large as the number of mesh points in

Oh U  Dh' the computation and storage of all its elements is out of

the question.  Alternatively, columns of CN or CD can be computed

One at a time using the fast solver once per column of GU or GV.

For problems in three dimensions the cost would be enormous.

The number of arithmetic operations can be reduced drasti-

cally by using a device described already in Widlund [56].  The

separable problem can be made periodic or the larger region can

otherwise be chosen without a boundary. In the absence of a

boundary, the problem becomes translation invariant in the sense

that the solution at any mesh point, due to a single point charge

at another mesh point, depends only on the difference of the co-

ordinates of the two mesh points. One use of th.e fast Poisson
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solver, with a discrete delta function as data, provides one column

of the matrix of G.  By this observation, all elements of G are

then easily available from this one solution. Given a column of G,

the entire capacitance matrix can then be found at an expense

2
which grows in proportion to p . This cost is thus of the same

order of magnitude as the evaluation of a numerical quadrature

approximation of the integral equations of the classical potential

theory (see, for example, (3.5)) employing a comparable number of
quadrature points.  At an expense of p3/3 multiplications and

additions, a triangular factorization of the capacitance matrix

can be computed by Gaussian elimination. The solution of the

capacitance matrix equation (3·7) can then be found at an

2additional expense Of P additions and multiplications.

If the capacitance matrix is available, the equation  (3.7 )

can also be solved by iterative methods at an expense of

between p2 and 2p2 additions and multiplications per step; see fur-

ther Proskurowski and Widlund [44].  When using an iterative

method of this kind, the elements of the capacitance matrix can

either be stored, possibly on a secondary mass storage device, or

they can be regenerated whenever they are needed.

In two dimehsions the number of irregular mesh points typi-
1/2cally grows only in proportion to N while in three dimensions

213the growth is proportional to N Many problems in the plane can

be solved satisfactorily using a value of p which is less than 200

but in three dimensions values of p in excess of 1000 occur even

for quite coarse meshes. We must therefore find alternative
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algorithms which do not require the storage or direct manipulation

of the large capacitance matrices unless we are willing to accept

a very substantial number of arithmetic operations and the use of

out of core storage devices.

To put the methods discussed so far in some perspective, we

compare them with known results on symmetric Gaussian elimination

methods applied to standard finite difference problems in two and

three dimensions. For problems in two dimensions Hoffman, Martin

and Rose [28] have shown that the number of non-zero elements of

the triangular factors must grow at least in proportion to

N log2 N.  George [20] has designed such optimal methods and also

shown that at least N multiplications and additions are Iequired3/2

to carry out the factorization step. The corresponding best

bounds for three dimensional problems are on the order of N and4/3
2N  respectively; see Eisenstat [13], Eisenstat, Schultz and

Sherman [14].

We shall now demonstrate that we can compute the product of

a capacitance matrix and any vector t at a much smaller expense.

In the next subsections, we shall show how such products can be

used in efficiently solving equation (3.7) by iterative

methods. We note that in their original form these ideas are due

to George [19].  We shall specialize this discussion to the dis-

crete dipole case, CDt = UTAGVt, but similar remarks can be made

for the discrete Neumann problem.

We first note that the generation of the mesh function Vt

can be carried out using only on the order of p operations on a

three dimensional array initialized to zero. The fast Poisson
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solver is then applied to give GVt and only on the order of p

operations are then needed to obtain CDt = UTA ( GVt ). Similarly CTt

can be obtained, if so desired, by using a factored form of the
T

matrix. The sparse matrices U A and V can be computed from the

coordinates of the irregular points and other local information on

the geometry of the region using only on the order of p arithmetic

operations. Since it is inexpensive to generate these matrices,

we can choose to recompute their non-zero elements whenever they

are needed but they could also.be stored at a cost of on the order

of p storage locations.

We remark that when UTAGVt is computed from GVt only a small

fraction of the values of this mesh function is needed. Similarly

the vector Vt is very sparse. This has inspired the development of

fast Poisson solvers which exploit the sparsity inherent in

problems of this kind; see further discussion in Section 5.

4.2. The Use of the Standard Conjugate Gradient Method

We shall first review some material on conjugate gradient

methods  and then discuss their use in solving equation  (3.7 ).

Let Mv = c be a linear system of equations with a symmetric,

positive definite matrix M.  The k-th iterate vk of the conjugate

gradient method can then be characterized as the minimizing

element for the problem,

v -v (k)    7   v    Mv-  v    c     .

1  T      T

Here S(k  is the subspace spanned by the first k elements of the
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Krylov sequence,

2
r   .Mr  , M  r  , . . .0-   0     0

where  r0 =c-M v   is the initial residual and v  is the initial
0

guess.  See further Hestenes and Stiefel [23] or Luenberger [34].

The k-th iterate is thus of the form

v   =v  +P     (M)ro  ,k    o   k-1

where P is some polynomial of degree k-1. The quadratic form ink-1

(4.1) differs from the error functional

E(v k)   =   7   (v k-  v)T M(v k  -v)    ,

only by an irrelevant constant term. Here v is the exact solution.

The optimality result (4.1) and an expansion of the initial error

v  - v in the eigenvectors of M easily leads to the estimate
0

(4.2) E(vk) - P A€a(M)
< min max  (1- Apk-1(A))2E(vo) '

k-1

where ((M) is the spectrum of M.  See further Daniel [  ], Kaniel

[31] or Luenberger [34]. This inequality remains valid if eigen-

values corresponding to modes absent from the initial error are

ignored when forming the maximum in (4.2).  This is important since

it allows us the use of the method and the estimate for semi-

definite problems if the data and initial guess lie in the range of

the operator.

From inequality (4.2) and a special construction of the poly-

nomial P in terms of Chebyshev polynomials, the estimatek-1

-
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(4.3) E(vk) 1 (2(1 -1/<)15/ ((1 + 1//2 )  + (1-1//2 )  )2E(v ) ,
2k 2k

is easily obtained; see references given above. Here K is the

spectral condition number of the operator M. When this ratio K of

eigenvalues of M is computed, we can again ignore eigenvalues

corresponding to modes which are absent from the initial error.

A convenient way of implementing the conjugate gradient

algorithm is as follows:

Let v  be an initial guess. Compute0

(4.4)                   r = c-Mv00

and set po = ro.

For k = 0,1,2,...:

Update the solution and the residual by

vk+1 k           k k    '
= v +a n

(4.5) rk+1  =  rk- akMPk

where

(4.6)                     ak = r rk/PkMPk

provides the minimum of the error functional along the search

direction Pk'

Compute a new M-conjugate search direction by

(4.7)                P   =r   +B pk+1 k+1   k k

where

(4.8) Bk = rk+lrk+1/rkrk '
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We note that the use of this algorithm requires no a priori

information on the spectrum of M. By a standard result, the

residual vectors rk are mutually orthogonal; see Luenberger [34].

In order to use this algorithm to solve the Dirichlet

problem, we first form the normal equations equivalent to equation

(3.7) and obtain,

cTC s = CT(-ZTG  -UT(E-b)) .DD

We expect that the new matrix C CD will still be quite well

conditioned. The product of it and an arbitrary vector can be

obtained by the methods described in section 4.1.

In our experience the inequality  (4.3 ) gives realistic bounds

for Helmholtz problems with non-negative values of c. If a

negative value of c is chosen so that the discrete Helmholtz

operator is almost singular, the capacitance matrix must have at

least one small singular value. By analogy with the continuous

case, we however expect that there will only be a few such values,

well separated from the rest of the spectrum. Bounds, much

improved in comparison with (4.3 ), can therefore be obtained from

inequality (4.2) by constructing polynomials which vanish at the

isolated small eigenvalues of M and are small over the interval

containing the rest of the spectrum. A similar idea was used by

Hayes [21], who proved that the conjugate gradient algorithm is

superlinearly convergent when applied to a Fredholm integral equa-

tion of the second kind. See Widlund [57] and Proskurowski

and Widlund [44] for further discussion .  Such arguments are also

central in the work of Shieh [47].  He was able to prove that all
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except a fixed number of singular values of certain capacitance

matrices for problems in the plane lie in a fixed interval while
qthe remaining few are no closer than Kh , K and q constants, from

the origin. A construction of polynomials as indicated above leads

to a bound for the number of iterations required to obtain a pre-

scribed reduction of the error. This bound grows only in propor-

tion to log (1/h).

The algorithm described in this section can equally well be

used  for the capacitance matrix equation  (3.8 ).

4.3. An·Alternative Conjugate Gradient Algorithm for Neumann

Problems

We shall now describe an alternative conjugate gradient

method, which can be used with the single layer Ansatz for discrete

Helmholtz problems with positive semi-definite symmetric coeffi-

cient matrices. It has the advantage that a normal equation formu-

lation of the capacitance matrix equation can be avoided and the

cost per step is therefore reduced by a factor two. That such a

reduction is possible is not immediately apparent since the con-

tinuous analogue of the capacitance matrix is a nonsymmetric opera-

tor. The search for a method of this kind was inspired by the

variational formulation of the Fredholm integral equations men-

tioned in subsection 3.1. This algorithm has recently been

implemented successfully by Proskurowski and Widlund [45] for a

finite element approximation of the two dimensional Neumann problem.

Consider the solution of a linear system of the form
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ru

Ax = b

r.
where A is a positive semi-definite, symmetric operator. We make

 
the Ansatz

r.

x = Gy

I.

where G is a suitable, strictly positive definite symmetric opera-

pl/2tor. A new variable is now introduced by z=5 y and the re-

sulting equation is multiplied by 31/2:

G /2 A  31/2 z    =   31/21)     .

44
The new operator is symmetric, positive semi-definite while AG  in

general fails to be symmetric.  The standard conjugate gradient

algorithm is applied to this transformed system and the final

algorithm is then obtained by returning to the variable  y.

Carrying out this substitution, we find that the formulas

given in Section 4.2 must be modified in two respects:
n.,ru

Replace the operator M by AG when calculating the residuals

by  formulas   (4.4 )  and   (4.5 ) ·

In the calculation of the parameters ak and Ok' in formulas

(4.6) and (4.8), replace the inner products r rk and p MPk by
- -r'I r and pP A Gpk respectively.k  k

The error estimates     (4.2)    and    (4.3)    app ly    in   this    case.        The
8 4

relevant spectrum  is  now  that  of the operator  AG.
4

In our application A is the operator corresponding to the

discretization of the Helmholtz problem on the original region 0,

and G the restriction of the operator G to the set (-)hu Bnh   No
r.

extension of the operator A to a larger region is necessary. If
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the right-hand side b vanishes on the set Oh then so will the

vector y, since the solution x can be expressed as a discrete

single layer potential. The iteration can therefore be organized

using only vectors with p components. A version of the algorithm

has been designed which requires only one application of operator
ru
G in each step.  For details see Proskurowski and Widlund [45].

In our problem the possibility of using the sparsity of the

vectors Yk gives this algorithm an advantage over the generalized

conjugate gradient algorithm considered by Concus, Golub and

O'Leary [10] and others; see also Hestenes [22].  Their algorithm
ru

is obtained from ours by using the iterates xk = Gyk.  The vectors

Xk fail to be sparse in our applications.

4.4. Estimates of the Singular Values and Approximate Inverses of

Capacitance Matrices

We have previously pointed out that the residuals rk of the

conjugate gradient method are orthogonal. By combining formulas

(4.5) and (4.7), eliminating the vectors Pk' we obtain,

Mro   = - (1/a o)r l+ (1/ao)ro ,
(4.9)

Mrk = -(1/ak)rk+1+ (1/ak+ Bk-1/ak-l)rk - (Bk-1/ok-l)rk-1 '

Let R(k) be a matrix with its k columns chosen as the normalized

residual vectors.  Using the definition of the parameter Ok' the

formulas (4.9) can be rewritten as,

MR(k) = R(k)J(k)- (/Bk-1/ (ak-l'rkl))rkek .
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Here ek is a unit vector in the direction of the positive k-th

coordinate direction and J the symmetric, tridiagonal matrix,
(k)

f 1/a - 5--/O.
..\

0            00

J(k) =   _ 33-/a (1/el   + 0  /Ol  )      - fE-/a.0 0 1 0 0 1  1

\

Using the orthogonality of the residuals, we find that

J(k) = R(k)TMR(k) ,

i.e. J is a matrix representation of the restriction of the
(k) .

operator M to the space spanned by the vectors ro,...,rk-1.  This

space can easily be shown to be the same as the Krylov subspace

S(k)-which was defined in Section 4.2. See further Engeli,

Ginsburg, Rutishauser and Stiefel [15].

We shall exploit these facts in two ways. Approximations of

the eigenvalues of M are obtained from the eigenvalues of J(k).

(k) . (k+1)The eigenvalues of J interlace those of J and improved

estimates of the largest and smallest eigenvalues of M and a lower

bound for its condition number are therefore obtained in each step.

This procedure is in fact a variant of a well known eigenvalue

algorithm due to Lanczos [33]. The extreme eigenvalues of J (k)

often converge quite rapidly. See for example, Kaniel [31] and

Paige    [38] . In our problems we quickly obtain realistic estimates

of the condition number of M. This idea has proven a very useful

tool in the development of our algorithms, in particular when

different scalings of the capacitance matrices were tested. The
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cost of computing the eigenvalues of J is very moderate and(k) .

grows no faster than k2.

The analogy between the capacitance matrices and the Fredholm

integral operators of the second kind inspired an attempt to com-

pute and use approximate inverses of these matrices of the form of

an identity operator plus a low rank operator. The information

contained in the matrices J (k) and R(k) was used as follows. We

suppose that these matrices have been retained from a previous

problem with the same coefficient matrix but with different data.

The component R(k t  of the new solution in the space S (k) can then0

be computed inexpensively by solving the tridiagonal system,

J(k  )t o=   R(k )T(M* 0-  8  )      ,

A '/\

where v and c are the initial guess and the data for the new
0

problem respectively. We can then start the conjugate gradient

(k),iteration  from the initial point  v   -R    .5  . This procedure  re-
0

quires kp+2k-1 additional storage locations. The computational

cost is modest since the improved initial guess essentially only

requires the calculation of k inner products of length p and the

linear combination R(k t . The same improved initial guess could

also be obtained by using a variable metric algorithm for the first

set of data, with the identity matrix as a first approximation of

the Hessian, and then using the updated Hessian in the calculation

of the second solution.  See Broyden [4 ], Huang [30] and Myers

[36].  We note that our method clearly retains only the minimum of

necessary information to obtain the projection of the new solution

on S(k).
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5. Fast Poisson Solvers in Three Dimensions

In this section, we shall describe several variants of a

Fourier-Toeplitz method for the discrete Helmholtz equation on a

region for which the variables can be separated. We use a Fourier

transformation for two of the three variables and·solve the tri-

diagonal linear systems of equations, which result from this change

of basis, by a Toeplitz method. See Fischer, Golub, Hald, Leiva

and Widlund [16] and Proskurowski and Widlund [44] for descriptions

of similar algorithms for two dimensional problems. As shown by

Proskurowski [43], for problems in two dimensions, the execution

time of a well written code of this kind can compare quite favor-

ably with those of good programs implementing other better known

methods. We also note that Wilhelmson and Ericksen [58] have

presented strong evidence which shows that methods based on Fourier

analysis should be chosen for problems in three dimensions. Our

methods are designed so that we can guarantee a very high degree

of numerical stability for all values of the coefficient c,

positive or negative.

We shall consider the solution of the Helmholtz equation

-Au  + cu  =  f

on the unit cube, 0<x<1,0 l y<1,0<z<1.  Periodicity
-                            -                                                                                                                                                                         -

conditions are imposed on the .data and the solution by

f(x+1, y, z) = f(x, y+1, z) = f(x, y, z)

and

U(X+1, Y, Z) = U(X, Y+1, Z) = U(X, Y, Z)

L
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and a homogeneous Dirichlet condition is used at z

U(X, Y, 0) =0.

We also assume that f(x, y, 0) = 0.  An additional boundary condition

is required at z=1 and will be introduced below after a Fourier

transformation step. Our methods provide an extension of the solu-

tion to all positive values of z. The homogeneous condition at

z = 0 also allows us to extend the solution and the data to nega-

tive values of z by making them odd functions,

f(x, y,-z) -f(x, y, z)

and

U(X, Y,-Z) = -U(X, Y, Z) .

When necessary, we extend the data f(x, y, z) by zero for |z| > 1.

In our experience, an alternative extension, which brings the data

more gradually to zero, offers no benefits in our application.

We shall discuss in detail only the seven point difference

approximation and, to simplify our notations, we shall use the

same uniform mesh size h in the three coordinate directions. We

shall also, without loss of generality, concentrate on the case

when n - 1/h is an even number.  The discrete Helmholtz problem can

be written as,

(6 + h2c)u      - uijk i+1, jk - ui-1, jk- ui, j+1, k- ui, j-1, k

- Uij,k+1 -uij,k-l = h2fijk '

The same periodicity and boundary conditions are used for these

difference equations.                                                       I
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It is well known that the undivided second centered

difference operator, operating on periodic functions, has the

normalized eigenfunctions

(1/n)1/2(1,1,...,1)T  and  (1/n)1/2(1,-1,...,-1)T

corresponding to the simple eigenvalues 0 and 4, respectively, and

the (n-2)/2 double eigenvalues 2 -2 cos (27TZ/n), f=l, 2,0..,(n-2)/2,
with the eigenfunctions

0(8) = (2/n)1/2 sin (k82T/n) ,
I, k

k = 0,1,...,n-1 .

0(8) = (2/n)1/2 cos (k£27"r/n) ,
II, k

The change of basis resulting in the diagonalization of the

centered difference operator can be carried out inexpensively by

a fast Fourier transform if n has many prime factors; see for

example, Cooley, Lewis and Welsh [11].

We choose to work with a partial Fourier transform, trans-

forming with respect to the two variables x and y. The resulting

operator can then be represented as the direct sum of n2 tri-

diagonal Toeplitz matrices which will be of infinite order if we

consider the problem for all positive values of z. The diagonal

elements of each of these matrices are equal to one of the numbers,

A    = 6 +ch2 -2 cos (27Tf/n) -2 cos (27rm/n) , f,m= 0,1,...,n/2 ,f,m

and the off diagonal elements equal -1.

Thus, these tridiagonal systems of equations can be represen-

ted by difference equations,

j
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(5.1) - 11,+1 + Aok- Gk-1 = h2 k '

A

Here A=X
and  fk  and  u 

are values  at  z = kh  of the appropriatef, m
components of the partial Fourier transform of the mesh funotions

f and u.  Since f(x, y, z) - O for z > 1, fk - O for k > n.  Once all
A

the components of u have been computed, the solution u can be found

for the desired values of z by an inverse fast Fourier transform.

It is well known that the fast Fourier transform algorithm is very

stable.

We solve the tridiagonal systems of equations by two differ-

ent methods.

Case 1.  If |XI z 2, we use a special simple factorization of the

matrix into triangular factors. We must first choose the addi-

tional. boundary condition at z=1.  For k>n the difference equa-

tion <5.1) is homogeneous and for |A| > 2 its solution has the form

A

Uk    =    Allk   + BAL-k      .

Here A and B are constants and A = A/2 + (A2/4 -1)1/2 and A-1 are

the roots of the characteristic equation..  We note that |F | > 1.

It is natural to make A=0 since the solution will then decay as
-1-

k -+ +DD .    This is equivalent  to the boundary condition  -un+1 = u,    un
A A

and the equation  at  z  =  l  reduces  to kiu   -u   .  = h2-f  .    The
n       n- i               n

resulting n x n tridiagonal matrix  can be written  as
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C   11        -1                                        1

-1   A  -1

-1   A   -1

C -1 A -/

We have ordered the unknowns in order of decreasing indices

(un,...,ul) and used the homogeneous Dirichlet condition at z=0

to obtain the last row of the matrix. This matrix has a most con-

venient factorization, as the product of two bidiagonal Toeplitz

matrices

/1 h CAL     -1                           \
1                         W  -1

-# 1

Al
-1

-1
-AL       1

-1
-

AL
  C..

The linear systems can therefore be solved by using very simple two

term recurbion procedures which are highly stable since |F| > 1.

The same procedure also works well for the case when |A| = 2.

Case 2.  If |A| < 2, the roots of the characteristic equation fall

inside the unit circle and we can use the three term recursion

formula (5.1) to compute Gk in a stable way. Before we can use

this marching procedure, we need to find a value of ul to provide
A

a second initial value in addition to u  = 0. This can be done by0

using the formula
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A

u . = YEL s i n ( 1 j +k 1 (t ) - s i n ( 1 j - k ' (1, ) h.2 -f  
J k=1 2 sin 4

which can easily be verified to give a solution of the difference

equation.  Here   = arccos (X/2).  For j = 1, we find the simple

formula,

 ·    =   rl-   s i n    (  (k+1)4)   -  s i n    (  (k-1)4)    1.12:i;k   =   FEL Cos
(k4)h2 k ''2=-T 2 sin + ' I

There are other solutions of the difference equation (5.1), but the
present choice gives  the same solution  in the limit  case  |A l=2  a s

the method developed for Case 1. We therefore obtain a solution of

the Helmholtz problem which is a continuous function of the parame-

ter c. We also note that by our choice of boundary conditions,

instability has been avoided for all values of the parameter c.

The method requires .n3(1+0(1)) storage locations and, if n
is a power of two, on the order of n3 (log2n +1) arithmetic opera-

tions.

Although quite efficient this algorithm does not fully

exploit the structure of our problem. During the conjugate gradi-

ent iteration the mesh functions representing the right hand sides

of the Helmholtz equation vanish except at mesh points used for

the construction of the discrete single or dipole layers.

Similarly during.this main part of the calculation, we need the

solution only at the points of the stencils of the irregular mesh

points. Thus on any line parallel to a coordinate axes only a few

source and target points have to be considered.

We shall now briefly describe a method due to Banegas  [1] .

For large problems the direct and inverse Fourier transforms with
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respect to one of the variables can be carried out more economi-

cally by computing inner products of sparse vectors and the basis

vectors of the new coordinate system. The fast Fourier transform

should be used for the second variable because after the first

Fourier transform step the arrays will no longer be sparse. The

main advantage of this variant is that it can be implemented using

only a two-dimensional work array if the necessary information on

the coordinates and values of the source and target points is

stored elsewhere. Only on the order of N2/3 storage locations are

therefore required for the main iteration. See Banegas [1] and

Proskurowski [42] for more details and a discussion of the use of

a similar algorithm for Helmholtz problems in two dimensions. The

three dimensional algorithm has not yet been implemented. The

savings in storage would not show dramatically for problems in .

three dimensions unless a million words of storage is available.

The calculation of the space potential terms and the final

solution can also be carried out without using arrays with n1

elements.  See Proskurowski [42] for a design of a third variant

of a Fourier-Toeplitz method. It requires access to all elements '

of the right hand side twice but no intermediary results need to

be written on secondary storage devices. The primary storage

requirement can be reduced drastically at an expense of a modest

increase of the computational work.

We conclude this section by proving a result needed in con-

nection with Theorem 3.2. We restrict ourselves to z>0 and

assume, as in that theorem, that c z 0.
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Theorem 5.1. Let f have its support in 0<z<1 and let c>0.

The mesh function u = Gf, defined by the Fourier-Toeplitz method

of this section, takes, on a maximum or a minimum.

Proof. We first consider the case of c >· 0. By construction all

modes of the solution decay as z -+ 00 . The conclusion then follows

since we need to consider only a finite subset of the mesh.

For c = 0, we partition the solution into two parts,

u=u  + ul.   The function u  corresponds to the lowest frequency0

for which A = 2.  It is easy to see that uQ depends only on z and

that it reduces to a linear function for z > 1.  ul has a zero

average for each z and decays as z -+ 00. If u is an unbounded
0

function the conclusion easily follows. If u is constant for
0

z > 1, u takes on a maximum and a minimum on that set since any

non-trivial ul changes sign for each z and decays as z -+ co .   If

the maximum and minimum of u o n O<z<1 are also considered, an

extremal value of u o n z>0 can be found.

-
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6. Implementation of the Algorithm and Numerical Results

6.1. The Program in Outline

We have implemented a capacitance matrix algorithm for the

three-dimensional Helmholtz equation as a FORTRAN program. The

Shortley-Weller approximation of the Dirichlet boundary condition

described in Section 2.2 is used, and a normal equation form of

the capacitance matrix equation is solved by using the conjugate

gradient method described in section 4.2.  Discrete dipoles are

used as in Section 3.2.

In designing the program, clarity and ease of modification

have been prime objectives with efficiency in execution time and

storage important but secondary. The program has been successfully

checked by the CDC ANSI FORTRAN verifier on the CDC 6600 at the

Courant Institute. No machine dependent constants are used.

We shall only give an outline of the program and refer the

reader to the comments in the listing of the program for further

description of subroutine parameters and other details of organiza-

tion.

The main subroutine HELM3D is the only subroutine with which

the user needs to have direct contact. The geometric information

necessary to describe the region, the data for the differential

equation, scratch storage space and convergence tolerances are

passed to this routine.

The coordinates of the irregular mesh points, altogether

3(IP1+IP2) integer values, are needed.       Here    IPl   is the numbe r

of irregular points with at most one neighbor on or outside the

boundary in each coordinate direction, and IP2 is the number of

remaining irregular points.
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The signed distances from the irregular mesh points to the

boundary in the x, y and z directions, 3IP1+ 6IP2 real values , are

also required.

The data is entered by using four real arrays. The values Of

the inhomogeneous term f at the mesh points are stored in a three-

dimensional array of dimension NXx NYx NZ where NX, NY and NZ are

the number of mesh points in the different coordinate directions in

the rectangular parallelepiped in which the region is embedded.

Values of this mesh function can be set arbitrarily at mesh points

on or outside of the boundary. The boundary data, i.e. the values

of the solution at the points where mesh lines cross the boundary,

are  stored in three one-dimensional arrays requiring 3 IP1 + 6IP2

real words of storage.

In total two real three-dimensional arrays of dimension

NXx NY x NZ and eleven one-dimensional arrays  are  used.

One of the one-dimensional arrays is real and of dimension

max(IP1+2IP2, NXx NZ, NYx NZ). The remaining four integer and

six real arrays  are of length  IP1 + 2IP2. The need for array space

could be decreased by, among other things, packing the coordinates

of the irregular points into one array. If f is zero one of the

three-dimensional arrays is eliminated simply by not dimensioning

it in the calling program. In the general case this second array

could be kept on a secondary storage device with very little

degradation in the performance of the program. For a discussion

of further possible reduction of array space, see Section 5.

The conjugate gradient iteration is controlled by two input

parameters NIT, the maximum number of iterations allowed, and EPS,
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a tolerance for the norm of the residual.

Upon termination the approximate solutions of the Helmholtz

and capacitance matrix equations and the residual of the capaci-

tance matrix equation are available. The values of the three-

dimensional array containing the solution at mesh points on or out-

side of the boundary are useless byproducts of the calculation.

The capacitance matrix solution can be refined, if so desired, by

additional calls of HELM3D using current values of the dipole

strength and the residual.

A sample driver is provided in our program to illustrate the

use  of the HELM3D subroutine. We note that we have found it rela-

tively convenient to describe our regions in terms of inequalities.

HEI_N[3D calls other subroutines to set up the right-hand side

and solves the capacitance matrix equation. It is the only sub-

routine which needs to be modified in order to incorporate the

singular value estimates or the accumulation of an approximate

inverse discussed in section 4.4. The right-hand side of the

capacitance matrix equation is calculated by the subroutine BNDRY.

The subroutines BNDRY, UTAMLT and UTATRN, all related to the finite

difference formulas near the boundary, must be changed if a differ-

ent approximation of the boundary condition is to be implemented.

The two subroutines VMULT and VTRANS depend on the discrete dipole

construction. Single layer versions of these subroutines should be

written if the program is modified to solve the Neumann problem.

The fast Poisson solver of Section 5 is implemented in sub-

routine CUBE. It uses two FFT subroutines RFORT and FORT provided

by Dr. W. Proskurowski, who has modified code written by Dr. J.

Cooley.

A
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The product of the capacitance matrix CD and an arbitrary

vector is formed by calling the subroutines VMULT, CUBE and UTAMLT.

Similarly, the product of C  and a vector is formed by using

UTATRN, CUBE and VTRANS.

The system also has an error checking module, HELMCK. This

subroutine checks that enough storage space has been allocated,

that the indices of the irregular points are within range, that no

irregular points are missing or listed twice and that the discrete

dipoles point out of the region.

One of the three-dimensional arrays, w, is used when checking

the geometric information for self consistency., For each irregular

point the corresponding element of w is set to indicate 3Oh' after

a check that this point has not been previously marked as irregular

or exterior. The current values of w at the six neighbors of the

point are checked for consistency by using the distances to the

boundary which are given as data. Appropriate elements of w are

then  set to indicate that these points belong  to Qh U 8(lh  or  C(Dh'

Each line of points of the three-dimensional array begins at

an outside point. In a second stage, we march across each line,

setting w to indicate Cr)  until an indicator of Oh (signalling an

error) or BOh is encountered. We proceed along the line, setting

w elements to indicate Oh whenever appropriate, until we leave the

region via a point of &Dh.  In this way an array is created which

could be used to display the subsets Oh' 2()h and C(lh graphically.

We then use this array and the data on the distances to the bound-

ary to check that no dipole charge falls on an interior mesh point;

see Section 3.2. Finally, we make sure that no interior mesh point

has an exterior neighbor.
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Our code could be modified to perform these checks locally,

without using a three-dimensional array.

The execution time could be reduced in several ways. In the

current program the coefficients for the difference equation at the

irregular mesh points and the dipole weights are recomputed every

time they are used. Storage of these elements would save time.

The subroutine CUBE can be replaced by a faster Poisson solver.

Overhead in subroutine calls could be reduced through the use of

COMMON.

6.2. Numerical Experiments

Extensive numerical experiments have been carried out with

our program on the CDC 6600 at the Courant Institute and the Amdahl

470V/6 at the University of Michigan.  Dr. W. Proskurowski has also

kindly run some problems on a CDC 7600 at the Lawrence Berkeley

Laboratory. We report in detail only on experiments carried out

on the CDC 6600 using a FTN, OPT - 2, compiler and no more than

50000 words of storage for the arrays. In our experience, the

program runs about six times faster on a CDC 7600.

The runs reported have been made for problems with the solu-
2 2 2  2 2 2

tions  x  +y +2 z and x  +y  - 2z , but extensive experiments with

other types of data make us confident that the performance of our

algorithm is virtually independent of the right-hand side. The

efficiency of our method as a highly specialized linear equation

solver can easily be studied for these simple solutions since there

is no truncation error. For the finest meshes, we consider only

homogeneous problems, i.e. f E 0, in order tb save one three-

11
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dimensional array. The initial guess is always chosen to be zero.

The parameter EPS is used in the stopping criterion of the

conjugate gradient algorithm. The iteration is terminated when the

Euclidean norm of the residual of the capacitance matrix equation

drops below EPSx /fF  where   IP = IP1+IP2. The condition number   of

C CD' K(C CD)' is estimated by using ideas from Section 4.4 and the

TQLl subroutine of EISPACK. The time required for this calculation

is included in the tables.

Three regions have been used in these experiments and the

results are reported in Tables 1-3. The smallest recorded times

for the execution of the fast Poisson solver are .055, .432 and

2.757  seconds for 8 x 8 x 9, 16 x 1 6 x 1 7  and 32 x 3 2 x 2 4 points

respectively.

When we examine the tables, we note the very modest growth

in the number of iterations when the size of the problem increases.

The stability of our method is further illustrated by the very

accurate solutions obtained when the tolerance EPS is chosen to be

very small.

The experiments of Table 3 require some further comments.

Faster methods are of course available for rectangular regions.

This region has been chosen since the eigenvalues of the discrete

Laplace operator are known explicitly. We note that when c is

large and positive, as in the application of our method to the

solution of a parabolic equation by an implicit method, the con-

vergence is extremely rapid. In such applications an excellent

initial guess is also normally available. Negative values of c

lead to more difficult problems. The smallest eigenvalue of the

r.1



53

operator is A = 52.337926 ... and another eigenvalue is equal
min

to 205.78497··· .  The values 34.892 and 77·91 approximate ( )Amin

and the average of the two smallest eigenvalues respectively. The

problems which are almost singular or indefinite are very ill
T

conditioned. However, only a few eigenvalues of C C are veryDD

small and the conjugate gradient method is still relatively

successful; see further discussion in Proskurowski and Widlund [44].

Using the approximate inverse idea of section 4.4, improved

initial approximations for the discrete dipole strength have been

obtained for a series of problems on a spherical region. TO

illustrate the performance of this method, we consider the problem

of Table 1 with 1357 unknowns. The tolerance EPS was chosen to be

.lE-4 and 14 iterations were required. Eight vectors were saved

from this run and used to construct an initial approximation of the

discrete dipole layer for  two problems with solutions drastically

different from the previous one. For these subsequent problems

only 9 iterations were required to reach a comparable accuracy.

In implementing this method, precautions must be taken to

insure that round-off does not contaminate the computation. The

orthogonality of the residual vectors should be monitored and

vectors and parameters computed after loss of orthogonality must

be discarded. With careful implementation, this can be a very

effective technique and can lead to substantial savings when many

problems are to be solved for the same region.

-AA
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Tab le    1

Radius of
sphere ·360 .424 .424 .447

Number of
interior and
irregular 93 1357 7556 8796
points

Number of
irregular            66

438 1522 1698points, IP

NX x NY  x NZ 8 x 8 x 9 16 x 16 x 17 3 2 x 3 2 x·24 32 x 32 x 24

Condition
number,

ic(CTC )
14.7 39.7 56.7 77.2

DD
Ul

Tolerance, EPS .lE-2 .lE-5 .lE-2 .lE-5 .lE-8 .lE-2 .lE-5 .lE-8 .lE-2 .lE-5 -11-

Number of
5       9       7      15      22       8       17      26      8       17iterations

Maximum error .403E-2 .936E-5 .314E-1 .167E-5 .596E-8 .384E-1 .367E-4 .262E-7 .584E-1 .548E-4

Total execution
time in seconds 0952 1.58 9.03 17.9 25.9 58.5 117 173 58.8 116

Percentage of
time spent
using the fast 65.0 68.8 72.7 76.1 76.8 81.1 84.3 85.5 80.1 83.4
Poisson solver

Experiments with spherical regions centered at (.5,·5,.5) with c = 0.



Table 2

Number of interior 104642050and irregular points

Number of irregular 1000 3 172points, IP

NX x NY x NZ 16 x 16 x 17 32 x 32 x 24

Condition number,
.T ' 602 554

ic(C C JD D'

Tolerance, EPS .lE-2 .lE-5 .lE-8 .lE-2 .lE-5 .lE-8

Number of iterations   13       23      32       13       23       35

5
Maximum error .258E-1 ·325E-4 ·377E-7 ·517E-1 .554E-3 .805E-7

Total execution
19.7 33.1 45.5 101 171 255time in seconds

Percentage of time
spent using the 62.3 63.3 63·5 75.3 77.1 77.6
fast Poisson solver

Experiments with c=0 and a cube with a sphere cut out, 0.1 <x< 0.9,
-

0.1 l y< 0.9, 0.1 Z z< O.9 and x2+ y2+ z2   (O.2)2.

6



Table 3

The
100                      0              -34.892 -52.238 -77.91 -205·5constant c

Condition
number

42.2 6.07E+6 4.35E+3 8.78E+52.39 27.1,T
IC ( CDCD)

Tolerance
EPS

, .lE-3 .lE-5 lE-11 .lE-3 .lE-5 .lE-11 .lE-7 .lE-7 .lE-5 .lE-11       -

Number of    4       6       15       8      12      23         22      42     47      66       200iterations

Maximum
error .121E-2 .233E-4 .14OE-10 .433E-2 .177E-4 .201E-10 .371E-6 .124E-6 .343E-4 .372E-10 .995E-5

5
Execution
time in 6.76 9.43 20.2 11.4 16.4 30.0 27·9 52.3 60.0 85.6 259
seconds

Experiment with the region 0.125 l x< 0.875, 0.125 z y< 0.875 and

0.125 Z z< 0.875 and different values of c and EPS.  The number of
interior and irregular points is 1331 and IP, NX, NY and NZ are 602,
16, 16 and 17, respectively.  Between 70.3 and 74.1% of the execution

time is used by the fast Poisson solver.
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PROGRAM DPOLE(INPUT,OUTPUT,TAP€5=INPUT, TAPE6=OUTPUT) A     1

DIMENSION UU(16,16,17), DELTA(3,SOO), 1(00#0(3,500), INDOKD(500), A    2
15(500), R(500), P(500), AP(500) A     3

DIMENSION V(16,16,17) A     4

LOGICAL IRREG A     5

C                                                                                                            A     6

C       THIS IS A SAMPLE DRIVER PROGRAM 10 SULVE THE HELMHOLTZ A     7

C       EQUATION ON AN ARBITRARY BOUNDED 3 DIMENSIONAL REGION A     8

C       USING A MAIN SUBROUTINE HELM30. THIS SAMPLE PROGRAM iS A     9

C       INEFFICIENT IN THAT 11 TcSTS EVERY MESH POINT iN A CUBE, A  10
C       IN WHICH THE REGION IS IMBEODED, TO FIND THE IRREGULAR A  11
C       POINTS, I.E. THOSE MESH POINTS IN THE WLGION WHICH HAVE A  12
C       EXTERIOR NEIGHBORS. A NEIGHBOR IS CONSIDERED EXTERlOR IF A  13
C       IT FALLS ON OR OUTSIDE TiE BOUNDARY OF THE REGION. A.  14
C       IN THE DOCUMENTATION, H WILL REFER TO THE MESH WIDTH A  15
C       HX, HY, OR HZ AS APPROPRIATE. FOR FURTHER INFORMATION, A  16
C       SEE THE COMMENTS IN SUBROUTINE HELM30. 4  17
C                                                                       A  18

NXDIM=16 A  19
NYDIM=16 A  20
NZD]M=17 A  21
NIPDIM=500 A  22
NAPDIM=400 A  23
NIT=20 A  24
EPS=1.E-5 A  25
READ (5,130) ANX,NNY,NNZ,CC 4  26
WRITE (6,110) NNX,N&Y,NNZ,CC A  27
HX=1.EO/FLOAT(NNX) A  28
HY=1.EO/FLOAT(NNY) A  29
HZ=1.EO/FLOAT(NNZ-1) A  30

C                                                                         A  31
C                         2          2          2                         A  32
C        REGION IS A(X-AL) + 8(Y-d E) + C(Z-GA) .LE. D A  33
C                                                                       A  34

READ (5,140) A,B,C,C,AL,BE,GA A  35
WRITE (6,120) A,8,C,O, AL,dE,GA A  35

C A  37
C       TEST EACH MESH POINT lN THE CUBE TO FIND THOSE A  38
C       IN THE INTERIOR OF THE REGION WHICH HAVE EXTERIOR A  39
C NEIGHBORS. SET UP ARRAYS tOR THESE IRREGULAR POINTS. A  40
C                                                                    A  41

IP1-0 A  42
IP2=0 A  43
DO 20 K=l,NNZ A  44
Z=FLOATCK-1)*HZ A  45
T3.C*(Z-GA)**2 A  46
DO 20 J=1,NNY A  47
Y=FLOAT(J-1)*HY A  48
T2=8*(Y-BE)**2 A  49
DO 20 I-l,NNX A  50
X=FLOAT(I-1)*HX A  51
Tl=A*(X-AL)**2                           -                             A  52
IF ((Tl+T2+T3).GE.D) GO TO 20 A  53

C                                                                       A  54
C       (X,Y,Z) IS IN REGION. TEST wHETHER IT IS AN IRREGULAR POINT. A  55
C       CALCULATE SIGNED DISTANCES TO BOUNDARY IN COORDINATe A  56
C       DIRECTIONS. IF ALL ARE .GT. H THEN THE POINT IS REGULAR. A  57
C      1< AN IKREGULAR MESH POINT FALLS VERY CLOSE TO THE A  58
C      BOUNDARY, THIS CODE MIGHT FAIL. TO HANDLE SUCH A CASE,            A  59
C      THE CODE NEEDS TO BE CHANGED SO THAT EITHER THE ABSOLUTE A  60
C      VALUE OF EACH SMALL DELTA IS INCREASED AHILE ITS SIGN A  61
C      IS RETAINED, OR SMALL DELTAS ARE CONSIDERED TO BE ZERO A  62
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C      AND THE CORRESPOND]NG POINT IS CONSIDERED TO BE EXTERIOR. A  63
C      EITHER OF THESE MODIFICATIONS CORRESPONDS TO A SLIGHT A  64
C      PERTURBATION OF THE BOUNDARY. FOR FURTHER ADVICE ON THIS, A  65

SEE THE COMMENTS IN HELMJD. A  66
C                                                                    A  67
C A  68

1RREG=.FALSE. A  69
XTERM•SQRT((D-TZ-T3)/A) A  70
XDISTl=XTERM+AL-X A  71
XDIST2=-XTERM+AL-X A  72
IF (ABS(*DISTI).LE.HX) lkREG=.TRUE. A  73
IF (ABS(XDIST2).LE.HX) IRREG=.TRUE. A  74
YTERM•SORT((D-Tl-73)/8) A  75
YDISTl=YTERM+BE-Y A  76
YOIST2=-YTERM+BE-Y A  77
IF (ABS(YDISTl).LE.HY) IRREG=.TRUE. A  78
IF (ABS(YDIST2).LE.HY) IRREG=.TRUE. A  79
ZTERM•SORT((D-Tl-721/C) A  80
ZOISTI=ZTERM+GA-Z A  81
ZD1ST2 =-ZTERM+GA-Z A  82
IF (ABS(201STl).LE.HZ) IRREG=.TRUE. A  83
IF (ABS(ZDIST2).LE.HZ) IRREG=.TRUE. A  84
IF (.NOT.IRREG) GO TO 20 A  85

C                                                                            A  86
C      WE HAVE FOUND AN IRREGULAR POINT. STORE COORDINATES AND A  07
C       DISTANCES IN UNITS OF H. A  88
C                                                                            A  89

IF ((ABS(XDISTl).LE.HX).ANO.(ASS(XDIST2).LE.AX)) GO TO 10 A  90
IF ((ABS(YOISTl).LE.HY).AND.(ANS(YUIST2).LE.HY)) GO TO 10 A  91
IF ((ABS(ZOISTl).LE.HZ).AND.(ABS(ZDIST2).LE.HZ)) GO TO 10 A  92
IPl=IP1+1 A  93
i COOKO ( 1,1 P l ) = I A  94
ICOORD(2, IPl)•J A  95
ICOORD(3,IPl)=K A  96
*DIST=XDISTl A  97
YDAST=YDISTl A  98
ZOIST•ZOJSTl A  99
IF (ABS(*DIST2).LT.ABS(*DISTI)) ADJST=*DIST2 A 100
IF (ABS(YDIST2).LT.ABSCYDISTZ)) YDIST=YDIST2 A 101
IF (ABS(ZOISTZ).LT.K85(ZDISrl)} 2D1ST=ZDJST2 A 102
DELTA(1,1Pl).XDIST/HX A 1 C 3

DELTA(2,1Pl)=YDIST/HY A 104
DELIA(3,IPl)=ZDIST/HZ A 105
GO TO 20 A 106

C                                                                         A 107
C      WE HAVE FOJND AN IRREGULAR POINT WITH EXTERIOR NEIGHBORS IN A 108
C       BOTH THE POSITIVE AND NiGATIVE DlhECTIONS ALONG SOME A 109
C AXIS. STORE ITS INFORMATION AT THE END OF THE ICOORD A 110
C       AND DELTA ARRAYS. A 111
C                                                                         A 112

10 192=IP2+1 A 113
INDEXD=NIPDIM-2*IP2+1 A 114
INDEXI=NIPDIM-IP2+1 A 115
ICOORD(1,1NDEXI)=I A 116
ICOORD(2, INDEXI)-J A 117
ICOURD(3,INDEXI)=K A 118
DELTA(1, iNDEAD)=*DISTl/HX A 119
DELTA(2,1NDEXD)=YDISTl/HY A 120
DELTA(3,INDEXD)*ZDISTl/HZ A 121
DELTA(1,1NDEAD+1)=*DISTZ/AX A 122
DELTA(2, INDEAD+11=YOIST2/HC A 123
DELTA(3,)NOEXD+1)=ZDISTZ/HZ A 124
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20 CONTINUE A 125
MINSPC=IP1+2*1P2 A 126
MINSPZ=MAXO(MINSPC,NAX*NNZ,NNY*NAL) A 127
WRITE (6,100) IPl,IP2,NIPDIM,MINSPC,NAPDIM,MINSP2 A 128
IF (MINSPZ.GT.NAPDIM) STOP A 129
IF (MINSPC.GT.NIPDIM) STOP A 130

C A 131
C       SHIFT THE INFORMATION ABOUT THE IRREGULAR POINTS A 132
C       WITH EXTERIOR NEIGHBORS iN BOTH A POSITIVE AND A 133
C       NEGATIVE DIRECTION TO LOCATIONS 1Pl+1 AND FOLLOWING. A 134
C                                                                         A 135

IF (1P2.EQ.0) GO TO 40 A    1.36

DO 30 LL=l, IP2 A 137
IPlPLL=IP1+LL A 138
INDEXD•NIPOIM-(IP2-LL)*2-1 A 139
INDEXI=NIPOIM-IPZ+LL A 140
IDELT=IP1+2*LL-1 A 141
DO 30 KK=1,3 A 142
ICOORD(KK,IPIPLL)=ICOORD(KK,INDEXi) A 143
DELTACKK,IDELT)=DELTACKK, 1NOEXD) A 144
DELTACKK, IDELT+1)=DELTACKK,INDEXD+1) A 145

30 CONTINUE A 145
40 IP•IP1+IPZ A 147

C                                                                         A 148
C       STORE HZ**2 TlMES Gl lN V. A 149
C       STORE BOUNDARY CONDITIONS IN R, AP, AND P. A 150
C       CALL THE SUBROUTINE. A 151
C                                                                         A 152

HZ2•HZ*H2 A 153
DO 50 K=l,NNZ A 154
DO 50 J=l,NNY A 155
DO 50 I=l,NNX A 156
V(I,J,K)•-8.60*HZZ+CC*HZZ*((FLOAT(I-1)*HX)**2+(FLOAT(J-1)*HY)**2+2 A 157

1.EO*(FLOAT(K-1)*HZ)**2) A 158
50 CONTINUE A 159

DO 60 LKT=1, IP A 160
L=LKT A 161
I•ICOORD(l,L) A 162
J=ICOORD(2,L) A 163
K=ICOORD(3,L) A 164
IF (LKT.GT.IPl) L=IP1+2*(L-1Pl)-i A 165
X•FLOAT(1-1)*HX A 166
Y=FLOAT(J-1)*HY A 167
Z=FLOAT(K-1)*HZ A 163
R(L)=(X+DELTA(l,L)*HX)*42+Y*Y+2.Eu*Z*Z A 169
P(L)•X*X+CY+DELTA(2,L)*HY)**2+2.&0*Z*Z A 170
AP(L)=X*X+Y*Y+2.80*(Z+DELT*(3,L)*HZ)**2 A 171
IF (L.LE.IPl) GO TO 60 A 172
R(L+1)=(X+DELTA(1,L+1)*HX)**2+Y*Y+2.EO*Z*Z A 173
P (L+1)=X*X+CY+DELTA(2,L+1)*HY)**2+2.20*Z*Z A 174
AP(L+l)•X*X+Y*Y+2.EO*(Z+ULLTA(3,L+1)*HZ)**2 A 175

60 CONTINUE A 176
MODE=2 A 177
CALL HELM3D (MODE,UU,V,NXDIM,NYDIM,NZDIM,IPl, IPZ,DELTA,NNX,NNY,NNZ A 178
1,NIPDIM,NAPDIM, ICOORD,iNDJRD,CC,NlT,EPS,S,R,P,AP,IER) A 179
WRITE (6,150) IER A 180
IF ((IER.EO.1).OR.(lER.20.2)) STOP A 181

C                                                                       A 182
C       CHECK ANSWER A 183
C       THE TRUE SOLUTION TO THIS SAMPLE PROBLEM IS A lf4
C       U(X,Y,Z) • **X + Y*Y + 22*2. 8 125
C                                                                       A 186
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EMAX=0.EC A 187
DO 80 K=l,NNZ A 188
Z•FLOAT(K-1)*HZ A 189
DO 80 J=l,NNY A 190
Y=FLOAT(J-1)*HY A 191
DO 70 I=l,NNX A 192
X*FLOAT(1-1)*HX A 193
UU(I,J,KJ=X*X+Y*Y+2.to*2*Z-UU(l,J,K) A 194

C                                                                         A 195
C       SET ERROR EQUAL TO ZeRL FOR POINTS ON THE BOUNDARY OR A 196
C       OUTSIDE THE REGION TO iNCREASt READABILITY OF THE OUTPUT. A 197
C                                                                         A 198

IF ((A*(X-AL)**2+8*(Y-BE)**2+C*(Z-GA)**2).GE.0) UU(I, J,K)=O.EO A 199
C                                                                         A 200
C       COMPUTE THE MAXIMUM ERROR. A 201
C                                                                         A 202

IF (ABS(UU(I,J,K)).GT.EMAX) EMAX=ABS(UU(l,J,K)) A 203
70 CONTINUE A 204

WRITE (6,90) (UU(I,J,K),1=1,NNX) A 205
80 CONTINUE A 206

WRITE (6,160) EMAX A 207
C A 208
C       IF MORE THAN ONE PROBLEM IS TO BE SOLVED IN A 209
C       THE SAME REGION, INSERT CODE HERE TO SET MODE, V, A 210
C       R, AP, AND P. ENTER THE BOUNDARY CONDITIONS IN THE CURRENT A 211
C       ORDER OF THE DELTAS, NOT NECESSARILY THE ORDER BEFORE A 212
C       HELM30 WAS CALLED. DO NOT CHANGE DELTA, ICOORD, INDORD, A 213
C       NAX, NNY, NAZ, NXDIM, NYDlM, NLDIM, NIPDIM, IPPI, A 214
C       OR IPP2. EPS, Nll, S, AND CC MAY BE CHANGED. CALL THE A 215
C       SUBROUTINE AS BEFORE. A 216
C                                                                         A 217

STOP A 218

C                                                                            A 219
C                                                                            A 220
C                                                                         A 221

90 FORMAT (1*,16£8.1) A 222
100 FORMAT (1X,6HIPl = ,17,7H 1P2 * ,15,27H SPACE AVAILABLE (NIPDAM) = A 223

1,16,233 MINIMUM SPACE NELOED =,I6/27X,26HSPACE AVAILABLE (NAPOIM) A 224
2=,16,23H MINIMUM SPACE NEEDED =,16) A 225

110 FORMAT (4OH NNX, NNY, NNZ, AND HELMHOLTZ CONSTANT ,3I 7,F20.7) A 226
120 FORMAT (43H ELLIPSOlDAL REGION wITH WEIGHTS A, 8,C,0 = ,4F7.3,12H A A 227

1ND CENTER ,3f703) A 228
130 FORMAT (316,F20.7) A 229
140 FORMAT (7F6.3) A 230
150 FORMAT (3OHO ON RETURN FROM HELM30, IER =,I3) A 231
160 FORMAT (4OH MAXIMUM DEVIATiON FROM TRUE SOLUTION ,E20.7) A 232

END A 233-
SUBROUTINE HELM30 (MODE,W, GG,NXDIM,NYDIM,NZDIM,IPPl,IPPZ,DELTA,NNX 8  1

1,NNY,NNZ,NIPDIM,NAPDl M, ICOORD, INDORD,CC, NlT,EPS, S,R, P,AP, IER) 8     2

INTEGER MODE, NXDIM,NYOIM,NZDIM,IPPi,IPPZ,NNX,NNY,NNZ,NIPDIM, ICOORD 8     3

1(3,NIPDIM),INDORD(N]POIM),NIT,IER 8     4

REAL W(NXOIM,NYDIM,NZOIM),GG(NXDIM, NYDIM,NZDIM},DELTA(3,NIPDIM),CC  8   5
1,EPS,SCNIPDIM),R(NIPDIM),PCNIPDIM),AP(NAPDIM) 8     6

C                                                                                                            87
C       THIS PROGRAM WAS DEVELOPED BY DIANNE P 0/LEARY AND OLOF WIDLUND.  8   8
r       THIS IS AN AUGUST, 1978 VERSION. 8    9

8  10
2       THIS PROGRAM SOLVES THE DIRICHLET PROBLEM FOR THE 8  11
C       HELMHOLTZ EQUATION OVER A GENERAL BOUNDED 3 DIMENSIONAL B  12
C       REGION IMBEDDED IN A UNIT CUBE 8  13
C                                                                            8  14
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C -W -W -W + CC*W = Gl IN THE REGION 8  15
C          XX    YY    ZZ                                                   B  16
C                                                                       8  17
C W=F ON THE BOUNDARY 8  18
C                                                                       8  19
C       WHERE F AND Gl AWL GIVEN FUNCTIONS OF X, Y, AND Z, AND CC  15    8  20
C       A REAL CONSTANT. THE BOUNDARY IS ARBITRARY. THE PROGRAM 8  21
C       PROVIDES A SOLUTION OF THE WELL KNOwN SHORTLEY-*ELLER 8  22
C       APPROXIMATION OF THE DIFFERENTIAL EQUATION. THE MESH IS UNIFORM 8  23
C       IN EACH COORDINATE DIRECTION AND A SIMPLE SEVEN POINT FORMULA B  24
C       IS USED FOR INTERIOR MLSH POINTS. A CAPACITANCE MATKIX 8  25
C METHOD, WITH DISCRETE DIPOLES, IS USED. THE CAPACITANCE 8  26
C       MATRIX EQUAl ION IS FORFULATED AS A LEAST SQUARES PROBLEM 8  27
C       AND SOLVED USING THE CONJUGATE GAADIENI.METHOD. B  28
C       SEE PROSKUROWSKI AND AIDLUND MATH. COMP., JULY, 1976 VOL 30 8  29
C       PP.443-468,AN NYU-DOE *EPORT AND FORTHCOMING PAPERS dY 8  30
C       0/LEARY AND WIDLUND, LBL REPORTS BY PRJSKUROWSKi AND B  31
C       TWO PAPERS BY SHIEH IN NUMER.MATH.,1976,VOL.29, PP.307-327 AND B  32
C       TO APPEAR, FOR DESCRIPTIONS Of SUCH METHODS. 8  33
C                                                                         8  34
C       THIS PROGRAM SHOULD BE JUNVERTED TO DOUBLE PRECISION B  35
C       IF IT IS TO BE USED ON COMPUTERS wITH SHORT WORD 8  36
C       LENGTH ,SUCH AS IBM 300/370. 8  37
C                                                                            8  38
C       IN THIS DOCUMENTATION, AN REFERS TJ NNX, NNY, OR NNZ 8  39
C       AS APPROPRIATE, ANO SIMILARLY H REFERS TO HA, Hi, OR HZ. 8  40
C       THE MESH POINT (X, Y, Z) IS SAID TO HAVE 6 NEIGHBORS; 8  41
C          (X+Hx,Y,Z), (X-HX,Y,Z), (X,Y+HY,Z), (X,Y-HY,2), 6  42
C          (X, Y,Z+HZ), AND (X,Y,Z-HZ). 8  43
C       A MESH POINT IS CALLED IRREGULAR IF IT IS IN THE INTERIOR OF 8  44
C       THE REGION AND AT LEAST ONE OF ITS SIX NEIGHBORS IS ON Ok 8  45
C       OUTSIDE THE BOUNDARY. 8  46
C                                                                       B  47
C   ON INPUT . . . 8  46
C    -- MODE = 1 IF THE REGION HAS BEEN CHANGED FROM IHE PREVIOUS CALL 8  49
C AND 61=0 B  50
C            2 IF THE REGION HAS BEiN CHANGED FROM THE PREVIOUS CALL B  51
C AND Gl IS NONZERO 8  52
C               3 IP THE REGION IS THE SAME AS ON THE PREViOUS CALL 8  53
C AND Gl=0 8  54
C               4 IF THE AEGION IS THE SAME AS ON THE PREVIOUS CALL 8  55
C                 AND  Gl  IS NONZcRO 8  56
C               5 IF THE PROBLeM IS THL SAME AS ON THE PREVIOUS CALL,    8  57
C Gl=0, AND THE ONLY CHANGE iS THAT EPS AND/OR NIT 8  58
C                 MAY HAVE BEEN CHANGED 8  59
C               6 IF THE PROBLEM IS THc SAM£ 45 ON THE PREVIOUS CALL, 8  60
C Gl IS NONZiRJ, AND THe ONLY CHANGE lS THAT EPS 9  61
C AND/CR NIT MAY HAVE BEEN CHANGED 8  62
C        IF  MODE = 3,4,5, Ok 6 DELTA, ICOURD, INDORD, NXDiM, 8  63
C NYDIM, NZOIM, NNX, NAY, NNZ, 1PPi, AND IPPZ MUST BE 8  64
C        UNCHANGED FROM THI PREVIOUS CALL. THE CURRLNT VALUE OF S 8  65
C        WILL BE USED AS THE INITIAL GUESS FOR THt DIPOLE STRENGTHS. 8  66
C        (S•0 WILL BE USED IF MOOt•1 OR 2.) 3  67
C        TO IMPROVE THE ACCURACY OF A PkEVIOUSLY CALCULATED SOLUTION, 8  68
C USE MODE=5 OR MODE=6 IF ROUNDOFF IS NOT SUSPECTED.  IF        8  69
C        ROUNDOFF IS SUSPECTED, REINITIALIZE THE BOUNDARY VALUES IN R, 8  70
C AP, AND  P,  AN[ USE MODE = 3 TO FOACE THE RESIDUAL TO da 8  71
C        RECOMPUTED; IF Gl IS NONZERO, ADD GG TO THE SOLUT]ON 8  72
C        RETURNED BY THE SUBROUTINE. 8  73
C                                                                            8  74
C    -- W(NXDIM, NYDIM, NZDIM) IS UNINITIALIZED. 8  75
C    -- GG(NXDIM, NYDIM, NZDIM) INITIALIZED TO Gl*HZ*12 1N THE 8  76
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C                               REGION, WITH ARBITRARY VALUES OUTSIDE. 8  77
C FOR I=1,...,NNX, J=1,...,NNY, AND K=1,•••'NNZ, 8  78

66(I,J,K) CORRESPONDS TO Gl((1-1)*HX,(J-1)*HY,(K-1)*HZ)*HZ**2. 8  79
C         IF  MODE = 1, 3 OR 5,  Gl  MAY BE A DUMMY ARRAY (I.E., 8  80
C         IT NEED NOT dE DJMENSIONED BY THE CALLING PROGRAM). 8  81
C                                                                            8  82
C       IPPI IS THE NUMBER OF IRREGULAR POINTS WITH AT LEAST 1 8  83
C            INTERIOR NEIGHBOR IN EACH DIRECTION X, 1, AND Z. 8  84
C       IPPZ IS THE NUMBER OF IRRcGULAR POINTS WHICH, ALONG 8  85
C            AT LEAST ONE DIRECTION, HAVE TWO EXTERIOR NEIGHBORS. 8  86
C                                                                         8  87
C       IN THE EXCEPTIONAL CASE WHEN IPPI+IPP2.60.0, THE ROUTINE 8  88
C       WILL SOLVE TME PRIBLEM ON THE WHOLE CUBE WITH THE 8  89
C       BOUNDARY CONDITIONS; 8  90
C             Gl(X,Y,Z) = 0 Z .LT. 0 Ok Z .GT. 1 B  91
C             *(O, Y,Z) = ;(1,Y,Z) AND W(A,O,Z) = W(X, 1,Z) 8  92
C             W{X,1,0)=0 AND W(X,Y, Z) BOUNDED FOR ALL Z. 8  93
C       ARRAY GG MUST Bi: INITIALIZED TO 61*HZ*HZ AND MODE • 2. 8  94
C       W  MAY BE A DUMMY ARRAY. THE ANSWER WILL BE STORED 8  95

C       i N THE ARRAY GG IN THIS CASE. B  96
C                                                                    B  97
C       DELTA(3, NIPDiM) RECOPOS + OR - DISTANCE TO BOUNDARY 8  98

C            FROM IRREGULAR PolNT L  IN THE  X,  Y,  AND Z 8  99
C DIRECTIONS (3*IPPl + 6*IPPZ VALUES). THESE DISTANCES 8 100

C            AkE EXPRESSED AS MULTIPLES OF THE MESH SPACING; I.E., 8 101
C            IF A DELTA HAS THE VALUE  Q,  THE DISTANCE IS Q*H. 8 102
C        TH=RE ARE THREt DELTAS FOR EACH OF THE IPPl POINTS B 103
C FOR L=l, IPPl, B 104
C         DELTA(l,L) = SHORTER OISTANCE TO BOUNDARY ALONG X DIRECTION 8 105
C         DELTA(2,L) = SHORTER DISTANCE TO BOUNDARY ALONG Y DIRECTION 8 106
C         DcLTA(3, L) = SHOHTER DISTANCE TO BOUNDARY ALONG Z DIRECTION B 107
C        THERE ARE SIX DELTAS FOR EACH OF THE IPP2 POINTS, 8 108

C FOR L=1,IPPZ LL=IPP1+2*L-1, 8 109
C DELTA(l,LL) AND DELTA(l,LL+1) AkE THE DISTANCES TO THE 8 110
C            BOUNDARY ALOAG THE POSITIVE AND NEGATIVE X DIRECTIONS 8 111
C DELTA(2,LL) ANO DELTA(2,LL+1) AkE THE DISTANCES TO THE 8 112
C            BOUNDARY ALONG THE POSITIVE AND NEGATIVE Y DIRECTIONS B 113

C DELTA(3,LL) AND DELTA(3,LL+1) ARE THE DISTANCES TO THE 8 114
C            BOUNDARY ALOAG THL POSITIVE AND NEGATIVE Z DiRECTIONS 8 115

C        THE PROGRAM WILL INTLACHANGE DELTAS IF NECESSARY SO THAT 8 116
C FOR L=l,IPP2 LL=IPPI+2*L-1, 8 117
C        ABS(DkLTACS,LL)) .LE. AHS(DELTACS,LL+1)). B 118
C NO DELTA CAN Hi SO CLOSE TO 0 AS 10 CAUSE OVERFLOW 8 119
C        UPON DIVISION BY A PRODUCT OF TAO DELTAS. SUCH SMALL B 120
C DELTAS SHOULD RE AVOIOcD AY CHANGING THE REGION B 121
C        SLIGHTLY Ok BY SHIFTING IT INS1DL THE CU36 OR BY 8 122
C        USING ANOTHER MESH SIZE. 8 123

8 124C
C       NNX, NNY, NNZ ARE THE NUMBER OF MESH POINTS IN THE X, Y, AND Z 8 125

C DIRECTIONS. B 126
C       MAX(NNX,NNY) MUST bE .LE. 256 UNLESS THE ERROR CHECK IN 8 127

C       HELMCK AND THE DIMeNSIONS OF IB AND S IN COMMON FFT 8 128

C       (SUBROUTINES CUBE,RFORT AND FORT) ARE CHANGED. 8 129

C        THE MESH SPACINGS wiLL bc CALCULATED TO BE 8 130

C H>=1/NNX 8 131

C                 HY =1/ NNY B 132

C H Z,1/ (NNZ - 1) B 133

C ANA AND NNY MUST BE POwERS OF 2 AND .GE. 8 UNLESS 8 134

C        THE FFT ROUTINES RFORT AND FORT ARE REPLACED. 8 135
3 136C

C       NIPOIM, THE DIMENSION OF THE ONE DIMENSIONAL ARRAYS, B 137
C              MUST BE .GL. IPPi+2*IPP2. 8 138
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I C NAPOIM , THE DIMEhSIOA OF AP , MOST 8 139
I C BE .GE. MAX(IPPI+2*IPP2, NNX*NAZ, NNY*NNZ ). 8 140

C ICOORD(3,NIPDIM) RFCORDS THS 3*(IPPl+IPPZ) INDICCS OF 8 141
1 C THE IRREGULAR POINTS. THtfi INDICES MUST Llc BETWEcN 8 142

C              2 AND NN-1 INCLUSIVE. 3 143
C       INDORD (NIPDIM) lS UNINITIALIZED. THE PROGRAM WILL 8 144
C              RECORD A CODE (1-5) FOR THE ORDER OF THE DELTAS. 8 145
C CC IS THE CONSTAAT 1N THE HELMHOLTZ EQUATION. 3 146
C     NIT IS THE MAXIMUP NUMBER OF CONJUGATE GRADIENT ITERATIONS 3 147
C ALLOWED. B 148
C       EPS IS THE TOLERANCE FOR THE EUCLIDEAN NORM OF 8 149
C              THE CAPACITANCE EOUATION RESIDUAL DIVIDED BY THE 8 150
C              SORT OF THE DIMENSION OF THIS VECTOR. 8 151
C                                                    T  T          T                                T                                           3  1 5 2
C              RESIDUAL *C U F-C C S WHERE C a L AGV . 8 153
C               IT IS DIFFICULT TO GIVE A RELIABLE RULE OF B 154
C              THUMB FOR THE CHOICE OF EPS. FOk MANY PROBLEMS 8 155
C              ONE TENTH OF THE DESIRED ACCURACY Fok THE 8 156
C              SOLUTION 04 THE ORIGINAL DISCRETE PROBLEM 15 A 8 151
C              SUITABLE VALUE.A SMALLER TOLERANCE lS REQUIRED 8 158
C              WHEN THE DISCRETE HELMHOLTZ OPERATOR IS CLOSE 8 159
C              TO SINGULAR. 8 160
C S,P,R ARE OF DIMENSION NIPDlM . 8 161
C AP IS OF DIMENSION NAPDlM 8 162
C              S IS UNINITIALIZED IF MODE • 1 OR 2. 8 163
C              IF MOUE .Ll. 5 , FOR L=l,IPP1+2*1PP2, 8 164
C               R(L) = F(X+DELTA(l,L)*HX, Y, Z) 8 165
C               P(L) = F(*, Y+DELTA(2,L)*HY, Z) 8 166
C               AP(L) = F(X, Y, Z+DELTA(3,L)*HZ) B 167
C       WHERE *,Y, AND Z ARE THE COORDINATES OF THE B 169
C       IRREGULAR POINT CORRESPONDING TO THc DELTAS. 8 169
C       THE VALUES OF R , P ,AND AP ARE NOT USED IN THE 8 170
C       COMPUTATION lF THE ABSCLUTe VALUE OF THE CJRRESPONDING 8 171
C DELTA IS GREATER THAN 1. 8 172
C                                                                         8 173
C       IER IS UNINITIALIZED. THE PROGRAM WILL RECORD AN ERROR 8 174
C       CODE (0-3). 8 175
C       THE USE OF DISCRETC DIPOLES IMPOS:S A MILD RESTRICTION 8 176
C       ON THE GEOMETRY OF THE RDGION. THE THREE POINTS, OBTAINED BY 8 177
C       STEPPING FROM AN IRREGULAR POINT IN THE DIRECTION OF THE 8 178
C       SMALLEST MAGNITUDE DELTA, FwOM THtRE 11 THE DIRECTION OF 8 179
C       THE MEDIUM, ANO FROM THERE IN THE DIRECTION OF THE LARGEST, 3 180
C       MUST NOT BE INTERIOR POINTS OF THE REGlON. IF THE RESTRICTION 8 181
C       IS VIOLATED, A SUBROUTINE HELMCK WILL RETURN AN 3 182
C       ERROR FLAG ILR • 2. A REFINEMENT OF THE MESH OR 8 183
C       A SLIGHT SHIFT Of THE k EGION 16 THE UNIT CUBE MIGHT 8 184
C       RESOLVE THE PROBLEM. 8 185
C                                                                       8 186
C   ON OUTPUT . . . 8 le7
C         W  WILL CONTAIN VALUES OF THE SOLUTION INSIDE THE 8 188
C                REGION AND USELESS VALUES OUTSIDc AND ON THE 8 189
C BOUNDARY. B 190
C         S  WILL RECORD DIPOLL STRENG1HS. THIS IS THE SOLUTION 8 191
C                VECTOR OF THE CAPACITANCE MATRIX EQUATION. 8 192
C       R WILL BE THE RESIDUAL OF THE CAPACITANCE EQUATION. 8 193
C                                                                       8 194
C      P , AP , AND GG WILL BE CHANGED, AND THE DELTA3 MAY B 195
C         BE REORDERED AS INDICATED ABOVE. 8 196
C                                                                       8 197
C       ERROR RETURNS; 8 198
C IER-0 NO tRROR 8 199
C              =1      ERROR IN INTEGER PARAMETER 3 200
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C =2 ER#OR IN 1COORD OR VIOLATION OF DIPOLE B 201
C                       RESTRICTIJN OR IRREGULAR POINT MISSING 8 202
C               =3      TOO MANY CONJUGATL GRADIENT ITERATIONS 8 203
C WIlHOUT CONVERGENCE. ANSWER DOES NOT B 204
C                       HAVE THE REQUESTED ACCURACY. 8 205
C                                                                         8 206
C                                                                         B 207
C       AFTcR EACH ITERATION, THE FOLLOWING INFORMATION IS PRINTED; B 208
C          -- THE CONJOGATE GRADIENT PARAMETERS ALPHA AND BETA. B 209
C               THIS INFORMATION COULD BE USED TO ESTIMATE THE B 210
C            CONDITION NUMBcR OF THE CAPACITANCE MATRIA. B 211
C          -- THE EUCLIDEAN NORM OF THE RESIDUAL OF TME 8 212
C             CAPACITANCE MATRIX EQUATION. B 213
C                               T T   T              T                    8 214
C                  THE RESIDUAL=C U F-C CS WHERE C= U AG V. 8 215
C                                                                         8 216
C   THE ROLES OF THE SUBROUTINES; 8 217
C HELM30 CONTROLS THE CONJUGATE GRADIENT ITERATION. 8 218
C HELMCK CHECKS TH2 INPUT OATA FOR CORRECTNESS. 8 219
C VAULT USES THE DIPOLE STRENGTHS IN A NIPDIM ARRAY TO 8 220
C                  SET UP THE DIPJLES IN A 3 DIMENSIONAL ARRAY. B 221
C                  THIS SUBROUTINE THUS DEFINES A LINEAR MAPPING 3 222
C                  FROM A SPACE OF 1-DIMENSIONAL ARRAYS TO A SPACE 8 223
C OF 3-DIMENSIONAL ARRAYS. B 224
C VTRANS DEFINES THE TRANSPOSE OF THE MAPPING DEFINED 8 225
C                  BY VMULT. 8 226
C UTAMLI MAPS 3-DIMENSIONAL ARRAYS INTO 1-DIMENSlONAL B 227
C                  ARRAYS BY USING A FINITE DIFFERENCE FORMULA WHICH 8 223
C                  CORRESPONDS TO A PART OF THE SHORTLEY-WELLER 8 229
C APPROXIMATION. THE REMAINING PART IS HANDLED BY 8 230
C YNDRY. 8 231
C UTATKN DEFINES THE TRANSPOSE OF THE MAPPING DEFINED BY 8 232
C UTAMLT. 6 233
C BADRY PROCESSES THE DERICHLET DATA AND THE VALUES OF Gl B 234
C                  CLOSE TO THE BOUNDARY, PRODUCING U(TRANSPOSt)9 FOR B 235
C                  USE IN THE RIGHT HAND SIDE OF THE CAPACITANCE EQUATION 8 236
C CUBE SOLVES 1Ht HELMHOLTZ EQUATION OVER A CUBE USING A B 237
C                  FOURIER-TOEPLITZ ALGORITHM. 8 238
C RFORT IS A FAST POIRIER TRANSFORM ROUTINE DUE TO 8 239
C                  W.PROSKUROWSKI WHO REVISED A CCOE WRITTEN BY J.COOLEY. 8 240
C                 IT IS USED BY SUBROUTINE CUBE. 8 241
C FORT IS A SUBROUTINE CALLED BY RFORT. 8 242
C                                                                         B 243
C       LOCAL STORAGE 3 244
C                                                                         8 245

COMMON /SPACE/ HX,HY,HZ,HZ(3),H*2,HYZ,HZZ,TWOPI,CONST,C,CHZZ,NX,NY 8 246
1,NZ, IPl,1PZ,IP,LOG2NX, L062NY, QXSO,QYSO 8 247

' DOUBLE PRECISION DATAN 8 248
DIMENSION D(31, IOR(3), IORD(3,6) 8 249
LOGICAL 88 B 250
DATA IORD(1,1)/1/ B 251
DATA IORD(2,1)/2/ 8 252
DATA IORD(3,1)/3/ 8 253
DATA IORD(1,2)/2/ 8 254
DATA IORD(2,2)/3/ B 255
DATA IORD(3,2)/1/ B 256
DATA iORD(1,3)/3/ 8 257
DATA lORD(2,3)/1/ 8 258
DATA lORD(3,3)/2/ 8 259
DATA IORD(1,4)/1/ 8 260
DATA IORD(2,4)/3/ 8 261
DATA IORD(3,4)/2/                  '                                   8 262
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DATA IORD(1,5)/3/ 8 263
DATA lORD(2,5)/2/ B 264
DATA IORD(3,5)/1/ B 265
DATA IORD(1,6)/2/ 8 266
DATA IORD(2,61/1/ B 267
DATA IORD(3,6)/3/ 8 268

C                                                                       8 269
C INlTIALIZAT1ON B 270
C                                                                       8 271

IP,IPPI+IPPZ 8 272
WRITE (6,270) MODE,EPS,NlT 8 273
IER=O B 274
IF (MODE.GT.6) IER=1 8 275
If- (MODc.LT.1) iER=1 8 276
IF (IER.NE.0) RETURN 8 277
IF (MODE.GT.4) GO TO 170 8 278
IF ((MODL.GE.3).AND.(IP.GT.0)) GO TO 130 8 279
NX=NN* 8 280
NY=NNY B 281
NZ•NNZ 8 282
IPl=IPPl 8 283
IPZ=IPPZ 8 284
HX=1.EO/FLOAT(NX) B 285
HY•1.LO/FLOAT(NY) B 286
HZ=1.EO/FLOAT(NZ-11 B 287
H*2=HX*HX 8 288
HY2=HY*HY B 289
HZ 2 =HZ*HZ 8 290
H2(1)=H*2 8 291
HZ(2)=HY2 8 292
H2(3)=HZ2 8 293
QXSQ=(HZ/HX)**2 B 294
QYSe=(HZ/HY)**2 9 295
TWOPI=8000*DATAN(1.DO) 8 296

C                                                                         8 297
C       CALCULATE LOG NX AND LOG NY 8 298
C                                                                       8 299

N=2 8 300
LOG2Nk=1 B 301
L062NY=1 8 302

10 IF (N.LT.NX) LOG2NX=LOGZNX+1 B 303
IF (N.LT.NY) L0G2NY*L0G2Af+1 8 304
N=N*2 B 305
iF ((NX.GT.N).OR. (NY.GT.N)) GO TO 10 8 306
IF (IP.GT.0) GO TO 20 8 307
C=CC 8 308
CONST=1.LO+CC*H22/2.EC 8 309
CHZZ=C*HZ2 B 310
CALL CUBE (GG, NXDIM,NYDIA,NZDIM,NAPDIM, AP} B 311
RETURN 8 312

C                                                                       8 313
C       DELTAS FOR THE IPPL POINTS ARE REORDERLD IF NECESSARY. B 314
C       INDORD RECORDS THE ORDER OF THL ABSOLUTE VALUES OF THE B 315
C                 DE·LTAS *H*H. 8 316
C                                                                       8 317

20 CONTINUE B 318
XIPINV=SQRT(1.EO/FLOAT(IPI) 8 319
IF (IPZ.EQ.0) GO TO 60 B 320
DO 50 LL=l, IPZ B 321
1NDLXD=IP1+2*LL-1 B 322
DO 50 KK=1,3 B 323
IF (ABS(DELTACKK, INDEXO)).LE.ABS(DELTACKA, 1NOEXD+11)) GO TO 50 8 324
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SHUFL=DELTACKK, INDEXD) 8 325
DELTACKK, INDEXD)=DELTA (KK, INOEXO+1) 8 325
DELTACKK, INDEXD+1)=SHUFL 8 327
IF (KK.EW.2) GO TO 30 B 328
IF (KK.EQ.3) GO TJ 40 8 329
SHUFL=R(INDEXD) 3 330
R(INDEXD)=R(1NDEXD+1) B 331
R(INDEXD+1)•SHUFL 8 332
GO TO 50 B 333

30 SHUFL=P(JNDEXD) B 334
P(INDEXD)=P(INDEXD+1) B 335
P(INDEXD+1)=SHUFL 3 336
GO TO 50 8 337

40 SHUFL•AP(INDEAD) 8 338
AP(INDEXC)=AP(INDEXD+1) 3 339
AP(INDEXD+1)=SHUFL B 340

50 CONTINUE 9 341
60 DO 120 L=l, IP 8 342

IOR(1)=1 8 343
IOR(2)=2 B 344
lOR(3)=3 8 345
INDEXD.L 8 345
IF (L.GT.IPI) INDEAD=IPI+(L-iPI)*2-1 8 347
D{1)=ABS(DELTA(l, INDLXD))*1*2 B 348
0(2)=AdS(DELTA(2, INLEXD))*HYL 8 349
D(3)=ABS(DELTA(3, INDEXD))*322 8 350
IF (0(1).LE.D(2)) GO TU 70 8 351
IOR(1)=2 3 352
IOR(2)*1 3 353

70 ISUB=10*(1) 8 354
IF (D(ISUB).LL.0(3)) GO TO 80 8 355
IOR(3)*IOR(1) 8 356
lOR(1)=3 8 357

80 ISUB2=IOR(2) B 353
ISUBJ=lOR(3) 8 359
IF (D(ISUBZ).LE.OCISUB3)) GO TO 90 8 360
IS•IOR(2) 8 361
IOR(2)=IOR(3) B 362
IOR(3)=IS B 363

90 CONTINUE 8 364
DO 110 LL=1,6 8 365
DO 100 KK=1,3 3 366
IF (IOR(KK).NE.IORD(KK,LL)) GO TO 110 B 367

100 CONTINUE 8 368
INDORD(L)=LL 8 369
GO TO 120 8 370

110 CONTINUE 8 371
120 CONTINUE 8 372

CALL HELMCK (w,DELTA, ICOORD,lORD, INDORD,NXDIM,NYDIA,NZDIM,NIPDIM,N B 373
1APDIM, IER) 8 374
WRITE (6,280) NNX,NNY,NNZ,IPl, IPZ 8 375
WRITE (6,290) NXDIM,NYDlh,NZDIM,NIPDIM,NAPOIM 3 376
WRITE (6,310) HX,HY,HZ B 377
IF (IER.NE.0) RETURN B 378

C                                                                         3 379
C       SOLUTION OF THE CAPAC1TANCE EQUATION 8 380
C                                                                T                                                      T                                                  B   3 8 1

C S=U f wHERE C=U AGV 8 382
USING THE CONJUGATE GRADIENT ALGORITHM ON THE SYSTEM 8 383

C                               T TT 8 384
C C C S=C U F. 8 385
C        INITIALIZE S•0 FOR MODES 1 AND 2. 3 386



74

C                         T T     T                                       8 388
C        INITIALIZE THE RESIDUAL 8 387

C R=C U F-C C S. 8 389
C                                                                       B 390

130 CONTINUE 8 391
C•CC B 392
CONST*1.EO+CC*HZ2/2.EO B 393
CHZZ=C*HZ2 8 394
86=.FALSE. B 395
IF ((MODE.EQ.2).OR.(MODE.EQ.4)) 88=.TRUE. 8 396
CALL BNDRY (R,P,AP,GG,N*DIM,NYDIA,NZDIM,NIPDIM,DELTA,ACOORD,88) 8 397
IF (.NOT.88) GO TO 150 B 398
CALL CUBE (GG,NXDIM,AYDIM,NZDIM,NAPDIM,AP) B 399
CALL UTAMLT (GG,AP,NXDIM,NTDIM,NZDih,NiPOIM,DELTA,ICOORD) 8 400
DO 140 L*l, IP 8 401
RIL)=R(L)-AP(L) 8 402

140 CONTINUE B 403
150 CONTINUE 8 404

CALL UTATRN (R,W,NXDIM,NYDIM,NZDIM,NIPDIM,DELTA, ICOORD) 8 405
CALL CUBE (W,NXDIM,NYDIM,NZDIM,NAPDIM,AP) B 406
CALL. VTRANS (W,R, NXEiM,NYDIM,NZOIM,NiPDIM, IORD, INDORD,DELTA, ICOORD 8 407
1)                                                                    8 408
IF (MODE.LE.2) GO TO 170 B 409
CALL VMULT (S,W,NXDIM,NYD,IM,NZDIM,NIPDlM, IORD, INDORD,DELTA, ICOORD) 8 410
CALL CUBE (W,NXDIM,NYDIM,NZDIM,NAPDIM,AP) 8 411
CALL UTAMLT (W,AP,NXDIM,NYDIM,NZDIM,NIPDIM,DELTA,ICOORD) B 412
CALL UTATRN (AP,W,NMDIM,NYDIM,NZDIM,NIPDIM,DELTA,ICOORD) B 413
CALL CUBE (W,NXDIM,NYDIM,NZDIM,NAPDIM,AP) 8 414
CALL VTRANS (w,AP,N*DIM,NYDIM,NZDIM,NIPOIM, IORD,INDORD, DELTA,ICOOR 8 415

10) 8 416
DO 160 L=l, IP 8 417

160 R(L)=R(L)-AP(L) 8 418
170 CONTINUE 8 419

RR•O.cO B 420
DO 180 L=l,IP 8 421
RR=RR+R(L)*R(L) 8 422
P(L)=RCL) B 423
IF (MODE.LE.2) S(L)•0.60 8 424

180 CONTINUE 8 425
KNORM.SORT(RR) 8 426
WRITE (6,300) RNORM B 427
IF (KNORM*XIPINV.LE.EPS) GJ TO 230 B 428
WRITE (6,250) 8 429
DO 220 KIT•l,NIT B 430

C                                                                       8 431
C      CALCULATE RESIDUAL INCREMENT B 432
C                                                                       8 433

CALL VMULT (P,W,NXDIM,NYUIM,NZDIM,NIPOIM,IORD, iNDORD,DELTA, ICOORD) B 434
CALL CUBE (W,NXDIM,NYDIM,NLDIM,NAPOIM,AP) B 435
CALL UTAMLT (W,AP,NXDIM,NYDIMeNZDIM,NIPOIM,DELTA, ICOORD) B 436
CALL UTATRN (AP,w,NMDIM,f·YOIM,NZDlM,NIPDIM,DELTA, ICOORD) 8 437
CALL CUBE (W,NXOIM,NYDIM,NZDIM,NAPDIM,AP) 8 438
CALL VTRANS (W,AP,NXOIM, NYDIM,NZDIM,NiPOIM, iORD,INDORD,DELTA,1COOR 8 439

l D) B 440
C                                                                       B 441
C CALCULATE STEP LENGTH 8 442
C                                                                       8 443

PAP=O.EO 8 444
DO 190 L=1,IP 8 445

190 pAP=PAP+P(L)*AP(L) 8 446
ALPHA=RR/PAP 8 447

C                                                                       3 448
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C       CALCULATE NEW ITERATE AND RESIDUAL AND RESIDUAL NORM. B 449
C                                                         -               8 450

RROLD=RR 8 451
RR•O.EO 8 452
DO 200 L=1, IP 8 453
S(L)=S(L)+ALPHA*PCL) 8 454
R(L)=R(L)-ALPHA*AP(L) B 455
RR•RR+R(L)*R(L) 8 456

200 CONTINUE 8 457
BETA=RR/RROLO 8 458

C                                                                         8 459
C        TERMINATE lF ANSWER SUFFICIENTLY ACCURATE. 8 460
C                                                                         8 461

RNORM=SORT(RR) 8 462
WRITE (6,260) KlT,ALPHA,BETA,RNORM 8 463
IF (RNORM*XIPINV.LT.EPS) GO TO 230 8 464

C                                                                         8 465
C        CALCULATE NEW STEP DIKECTION. 8 466
C                                                                         3 467

DO 210 L*l, IP 8 468
210 P(L)=R(L)+BETA*PCL) B 469
220 CONTINUE 8 470

IER=3 8 471
C                                                                         8 472

230 CONTINUE 8 473
C                                                                         8 474
C CALCULATE FlhAL ANSWER 8 475
C                                                                         8 475

CALL VMULT (S,W,NXDIM,NYDIA,NZOIM,NIPDiM, IORD,INDORD,DELTA, ICOORD) B 477
CALL CUBE (W,NXOIM,NYDIM,NLDIM,NAPLIM,APJ 8 478
IF (.NOT.88) RETURN 8 479
DO 240 K=l,NZ 8 460
DO 240 J=l,NY 8 421
DO 240 I=l,NX 8 482

240 W(I,J,K)•W(I,J,K)+GG(I,J,K) 8 483
RETURN 8 484

C                                                                         B 485
C                                                                         8 486
C                                                                      8 487

250 FORMAT (31H CONJUGATE GRADIENT ATEAATION //IX,iOHITERATION ,2A,GM 8 488
1ALPHA ,5*,5HBETA ,7*,14HRESIDUAL NORM ) 8 469

260 FORMAT (110,2 E10.3,7*,El<r.3 )                             8 490
270 FORMAT (2BHOHELM30 CALLED 4ITH MODE = ,15/64 rPS =,E20.5/57H MAAI 8 491

1MUM NUMBER OF CONJUGATE GRADIENT ITERATIONS (hiT) = ,17) 8 492
280 FORMAT (80 NNX = ,17,8H NNY - ,17,ed NNZ = ,il/44H NUMBER OF 1R 8 493

1REGULAR POINTS KITH AT MOST 1 ,57HEXTERIOR NEIGHBOR ALONG ANY COO 8 494
2RDINATE DIRECTION (1PPl) =,I7/43H NUMBER OF OTHER IRREGULAR POINTS B 495
3 (IPP2) = ,I7) 3 490

290 FORMAT (451 THE THREE DIMENSIONAL ARRAY HAS DIMENSIONS ,27H NXOIM  8 497
1, NYDIA, AND NZOIM * ,317/430 THE OTHER ARRAZS HAVt DIMENSION NIPD 8 498
2IM = , I 7,1 2 H, NAPDIM= ,i 7) 8 499

300 FORMAT (2OH INITIAL RESIDUAL = ,EX,E20.5) 8 500
310 FORMAT (41H THE MtSH SPACINGS WEAL CALCULATED TO BE ,F20.8.21H IN 8 501

1THE X DIRECTION, ,/41X,F20.8,250 IN THE Y DIRECTION, AND ,/41*,F20 8 502
2.8.22H IN THE Z DIRECTIO . 1 B 503
END 8 504-
SUBROUTINE HELMCK (W, DELTA, ICJORD,IORD,INDORD,NXUlM,NYDIA,NZJIM,NA  C   1

1PDIM,NAPOIM, IER) C     2

COMMON /SPACc/ HY,HY,HZ,HZ(3),HXZ,HY2,422,TWOPI,CONST,C,CHLZ,NX,NY C     3

1,NZ, IPl, IP2,IP,LOGZNx,LOGZNY, JXSO,QYSU C     4

DIMENSIJA W(NXDlM,NYDIM,NZDIM), DELTA(3,NIPDIM), iCOURD(3,NIPDAM),  C   5
1 IORD(3,6), IADORD(NIPUIM) C     6
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DIMENSION INE1(3), 1STEP(31 C     7
DIMENSION IC(3) C     8
LOGICAL IN C     9

C                                                                         C  10
C       THIS SUBROUTINE CHECKS THAT; C  11
C           1.   NNX,NNY .GE. 8 AND .LE. 250 AND ARE POWERS OF 2 C  12
C           2.   NIPDlM .69. 1Pl+2*IP2, C  13
C                NAPDIM .GE. MAX (IPI+2*1P2, NX*NZ, NY*NZ ) C  14
C           3.   NXDIM .GE. NX, NYDIM .GE. NY, NZDIM .GE. NZ C  15
C           4.   INDICES Of IRkEGULAR POINTS ARE WITHIN RANGE C  16
C           5.   DIRECTION TO BOUNDARY FROM EACH IRREGULAR POINT C  17
C                POINTS OUTSIDE THE RLGION C  18
C           6.   THE LIST OF IRREGULAR POINTS IS COMPLETE. C  19
C                                                                       C  20

IER=0 C  21
C                                                                            C  22
C       PART 1 C  23
C                                                                         C  24

IF (NX.LT.8) IER-1 C  25
IF (NY.Ll.8) lER=l C  26
IF (2**LOG2NX.NE.NX) IER=1 C  27
IF (2**LOGZNY.NE.NY) ILR=1 C  28
IF (NNX.GT.256) It**1 C  29
lF (NNY.GT.256) IER=1 C  30

C                                                                         C  31
C       PART 2 C  32
C                                                                         C  33

NDl•IP1+2*IP2 C  34
IF (NIPDIM.LT.Nul) lER=l C  35
IF (NAPDIM.LT.MAXO(kul,NX*NZ,NY*NZ)) IER=l C  36

C                                                                       C  37
C       PART 3 C  38
C                                                                    C  39

IF (NXDIM.LT.NX) IER=1 C  40
IF (NYDIM.LT.NY) IER=1 C  41
IF (N201M.LT.NZ) LE#=1 C  42
IF (IER.EQ.l) GO TO 180 C  43

C                                                                       C  44
C       PART 4 AND PART 5 C  45
C                                                                       C  46
C       WE SET 4=0 IF THE POINT IS OUTSIDE THt REGION C  47
C                      OR ON THE BOUNDARY C  48
C                    1  IF THE POINT IS AN IRREGULAR POINT C  49
C                    2  IF.THE POINT IS INSIDE THE REGION. C  50
C      TO CHECK THE REGION C  51
C        1  INITIALIZE ALL W/5 TO 3. C  52
C        2  CHECK EACH IRREGULAR POINT (1 TO IP). IF ITS w HAS C  53
C           ALkEADY BEEN SET TO v OR 1 W: HAVE AN ERROR C  54
C              IF IT IS 0 wE HAVE RECEIVED CONFLICTING DELTAS. C  55
C              IF IT IS 1 kE HAVE TWO SETS OF DATA FOR THE SAME POINT. C  56
C           SET THt W OF THE BOUNDARY POINT TO 1 AND THE SIX NEIGHBOR C  57
C           W/S TO 0 OR 2,DEPEAOING ON THE VALUE OF THE DELTAS. C  58
C           THE VALUE AT A NEIGHBOR IS CHANGED ONLY IF IT IS A 3.  lF     C  59
C           IT IS ALREADY 0, 1, OR 2, THE VALUE IS CHECKED FOR C  60
C           CONSISTENCY. 1/S ARE CONSISTENT WITH 2/5. C  61
C        3  NOW REPLACE THE 4/5 WHICH REMAIN EQUAL TO 3. EACH NEW C  62
C        RDA OF POINTS IN THE CUBE BEGINS OUTSIDE THE REGION. C  63
C           WE MARCH ACROSS, REPLACING 3/S BY 0/S UNTIL WE HIT A 1 OR 2. C  64
C           THEN WE MARCH ACROSS REPLACING 3/S BY 2/S UNTIL WE ENCOUNTER C  65
C           A 0, AT WHICH POINT WE ARE OUTSIDE AGAIN. THE PROCEDURE C  66
C           CONTINUES UNTIL EVERY POINT hAS BEEN SET TO A VALUE 0, 1, OR C  67
C           2.                                                            C  68
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C        4  CHECK THAT DIPOLES POINT OUT OF THE REGION. C  69
C        5  FINALLY, CHECK THAI NO INTERIOR POINT HAS AN EXTERIOR C  70
-           NEIGHBOR, I.E., NO 0 HAS A 2 AS A NEIGHBOR. C  71

C  72
C      IF ALL OF THESE TESTS ARE PASSED, THE REGION lS OK. C  73
C                                                                            C  74

DO 10 K=l,NZ C  75
DO 10 J-l,NY C  76
DO 10 I=1,NX C  77

10 W(I,J,K)=3.EO C  78
NX1=NX-1 C  79
NYl-NY-1 C  80
NZ1=NZ-1 C  81
DELTMN=l.EO C  82

C C  83
C       SET W NEAR BOUNDARY. C  84
C                                                                               C  85

DO 100 LKT=1,1P C  86
L=LKT C  87
IF (L.GT.1Pl) L=1Pl+(L-IPiI*2-1 C  &8
DO 20 KK=1,3 C  89
IC(KK)=ICOORD(KK, LKT) C  90
ISTEP(KK)=1 C  91
IF (ABS(DELTACKK,L)).LT.DELTMN) DELTMN=ABS(OELTACKK,L)) C  42

20 IF (DELTACKK,L).LT.C.tO) ISTEP(KK)=-1 C  93
IF ((IC(1).LT.2).OP.(IC(1).Gl.Nil)) 50 TO 70 C  94
IF ((10(2).LT.2).OR.(IC(2).GT.AYl)) GO TO 70 C  95
IF ((IC(3).LT.2).OR.(IC(3).GT.NZ1)) GO TO 70 C  96
1SUBl=IC(1) C  97
ISUB2=IC(2) C  96
ISU83*IC(3) C  99
IF ((W(ISUBl,ISUBZ,ISUB3).WE.3.ED).AND. (*(IS081,1SUBZ,ASU83).NE.2. C 100

1EO)) GO TO 80 C 101
W(ISUBl, ISUBZ, ISUB3)=1.EC C 162
DO 60 KK=1,3 C 103
INEI(1)•1((1) C 104
INEI(2)=IC(2) C 105
INEI(3)*IC(3) C 106
IF (ABS(DELTACKK,L)).67.1.EO) GO TO 40 C 107
IF (L.LE.IPl) GO TO 30 C 108
IF (ABS(DELTACKK,L+1)).GT.1.EO) GO TO 30 C 109

C                                                                         C 110
C       TWO EXTERIOR NEIGHBORS IN KK-TH DlkECTION C 111
C                                                                         C 112

INEI(KK)=IC(KK)+ISTEP(KK) C 113
ISUBl•INEI(1) C 114
ISU82=INEI(2) C 115
ISUB3=INEI(3) C 116
IF ((W(ISUBl,1SUB2,1SUB3).20.1.Eu).OR.(W(ISUBl,ISUB2,1SUB)).LO.2.E C 117

10)) GO TO 50 C 118
W(ISUBl,]SUBZ, ISUB))=0.Et C 119
INEI(KK)*IC(KK)-ISTEP(KK) C 120
ISUBl=INE1(1) C 121
ISUB2=INEI(2) C 122
ISUB3*INEI(3) C 123
IF ((W(ISUBl,ISUBZ,ISU83).EQ.1.EO).OR. (4(ISUBl, ISUB2, ISUB3).EQ.2.E C 124

10)) GO TO 50 C 125
W(ISUBl, 1SUBZ,ISUB3).0.EO C 125
GO TO 60 C 127

C                                                                         C 128
C ONE DELTA .LE. 1 ONE EXTERIOR AND ONE INTERIOR NEIGHBOR C 129
C                                                                         C 130

--
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30 iNEI(KK)=IC(KK)+ISTEP(KK) C 131
ISUBl=INLI(1) C 132
ISUBZ=INEI(2) C 133
ISUB3=INEI(3) C 134
lF ((w(ISUBl,1SU82,ISUB3).cu.1.80).OR.(W(ISU31,1SU82,1SUB3).EQ.2.2 C 135

10)) GO TO 50 C 136
W(ISUBl, ISUBZ,ISUB3)=C.EO C 137
INE I (KK)=IC(KK)-ISTEP (KK) C 138
ISUBl=INEI(11 C 139
ISUR2*INLI(2) C 140
1SUB3=INEI(3) C 141
IF (W(ISUBl, ISUBZ,ISU83).EQ.0.£:0) GO TO 50 C 142
IF (w(ISU81,1SUB2,15683).EV.3.20) W(ISUal,ISUBZ,1SU83)=2.EO C 143
GO TO 60 C 144

C                                                                       C 145
C       BOTH NEIGHBORS INTERIOP                  '                          C 146
C                                                                       C 147

40 INEICKK)=IC(KK)+ISTLP(KK) C 148
ISUBl=INEI(1) C 149
ISUB2=INEI(2) C 150
1SU83=INEI(3) C 151
IF (w(ISUBI,ISUBZ,ISU83).EQ.O.EO) GO TO 50 C 152
iF (W(ISUBl,ISUB2,ISUB)).20.3.EO) wilSUBl,ISUB2,ISUB3)=2.EO C 153
INEI(KK)=IC(KA)-ISTi P(KK) C 154
ISUBl=INE 1(1) C 155
1SUBL•INEI(2) C 156
ISUB3=INEI(3) C 157
IF (W(ISUBl,ISUBZ,ISUB3).EQ.O.EO) GO TO 50 C 158
IF (w(ISUal,ISUBZ,1SU83).60.3.tO} W(LISUBL,1SUB2,£SUB3)=2.EO C 159
GO TO 50 C 160

50 ARITE (6,220) INEi(1),IN,I(2),iNE 1(3),L,1C(1),IC(2),IC(3) C 161
lER=2 C 162

60 CONTINUE C 163
GO TO 100 C 164

70 WRITE (6,200) L,IC(1),IC(2),IC(3) C 165
GO TO 90 C 166

80 WHITE (5,210) L,JC(1),IC(2),1((3) C 167
90 IER=2 C 168

100 CONTINUE C 169
If (lER.NE.0) RETURN C 170

C                                                                       C 171
C       SET THE OTHER VALUES OF W C 172
C                                                                       C 173

DO 120 K=l,NZ C 174
DO 120 J=l,NY C 175
IN=.FALSE. C 176
DO 120 I-l,NX C 177
IF (IN) GO TJ 110 C 178

C                                                                       C 179
C       OUTSIDE REGION C 180
C                                                                       C 181

IF ((W(I,J,K).EQ.1.LO).OR.(w(I,J,K).LO.2.80)) IN=.TRUE. C 182
IF (W(I,J,K).EQ.3.EC) W(i,J,K)=0.Eo C 183
GO TO 120 C 184

C                                                                       C 185
C       INSIDE REGION C 186
C                                                                       C 187

110 IF (W(I, J,K).60.0.CO) iN•.FALSE. C 188
1< (w(I,J,K).EQ.3.EC) W(t,J,K)=2.tt, C 189

120 CONTINUE C 190
C                                                                       C 191
C       01POLE CHECK C 192
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C                                                                         C 193
DO 150 L•l,IP C 194
INDE*D=L C 195
IF (L.GT.IPl) INDEXD=IP1+(L-IPl)*2-1 C 196
DO 130 KK=1,3 C 197
IC(KK)-ICOORD(KK, L) C 198
ISTEP(KK)=1 C 199

130 IF (DELTACKK, INDEAD).LT.0.0) ISTLP(KK)=-4 C 200
ISUD=INOORO(L) C 201
Il=IORD(1,ISUB) C 202
I2=IORD(2,ISUB) C 203
I3=IORD(3,ISUB) C 204
IC(Il)=IC(Il)+ISTEP(Il) C 205
ISUBl=IC(1) C 206
ISUB2•IC(2) C 207
15683=IC(3) C 20-
IF (W(ISUBl,ISUB2,IBU83).Gr.1.20) 60 TO 140 C 209
IC(I2)=IC(12)+ISTrP(12) C 210
ISUBi=IC(1) C 211
ISUBZ•IC(2) C 212
ISUB3=IC(3) C 213
IF (W(ISUBl,ISUBZ,ISU83).Gr.1.EO) GO TO 140 C 214
IC(13)=IC(I3)+ISTLP(13) C 215
ISU81*IC(1) C 210
ISU82*IC(2) C 217
ISU83=IC(3) C 2ld
IF (W(ISUBl,ISUBZ,ISu83).GT.1.£0) GO TO 140 C 219
GO TO 150 C 220

140 WRITE (6,230) L,ICOORD(l,L),ICOOKO(2,L),1CO040(3,L),(DELTACKK,iNDE  C 221
1XD),KK-1,3) C 222
lER=2 C 223

150 CONTINUE C 224
C                                                                         C 225
C       PART 6 C 226
C                                                                         C 227

ISIZE•IP1+IP2 C 228
DO 170 I*l,NX C 229
DO 170 J=l,NY C 230
00 170 K=l, NZ C 231
IF (W(I,J,K).NE.2.LO) GO TO 170 C 232
ISIZE-1SIZE+1 C 233
IF (W(I,J,K-1).EQ.0.20) GO TO 160 C 234
IF (W(I,J,K+1).EQ.O.EO) 60 TO 160 C 235
IF (W(I,J-1,K).EC.0.80) GO TO 160 C 236
IF (W(I,J+1,K).FQ.0.20) GO TO 16C C 237
IF (W(I-1,J,K).Ee.0.EO) GU TO 160 C 238
IF (W(I+1,J,K).EQ.0.20) GJ TO 160 C 234
GO TO 170 C 240

160 WRITE (6,240) 1,J,K,w(l,J,K-1),WIi,J,K+1),ICI,J-1,K),w(l,J+1,K),wI C 241
11-1,J,K),W(I+1,J,K) C 242
IER=2 C 243

170 CONTINUE C 244
WRITE (6,190) ISIZE,OELTMN C 245
RETURN C 246

C                                                                      C 247
C                                                                         C 248

180 WRITE (6,250) EX,NY,NZ,NiPOIM,NAPDIM,IP,14*Dil,NYDIM,NLDIM C 249
WRITE (6,260) C 250
RETURN C 251

C                                                                         C 252
C                                                                         C 253
C                                                                         C 254
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190 FORMAT (30H NUMBER OF POINTS IN REGION = ,18/19H SMALLEST DELTA = C 255
1 ,E20.7) C 256

200 FORMAT (45H ***ERROP*** COORDINATES OF IRREGULAR POINT ,I7,36H AR C 257
lE OUT OF RANGE. COORDINATES ARE ,318) C 258

210 FORMAT (50H ***ERROR***  CJNFLICTING BOUNDARY INFORMATION. ,/13X C 259
1,18H IRREGULAR POINT ,Id, 75H IS LISTED TWICE OR LISTED AS AN EXTE C 260
2RIOR NEIGHBOR OF SOME 1RPEGULAR POINT./13X,21H THE COORDINATES ARE C 261
3 ,3IB) C 262

220 FORMAT (47H ***ERROR*** CONFLICTIAG BOUNDARY INFORMATION.,/12X,30 C 263
1H THE POINT WITH COORDINATES ,318,460 i S BOTH AN EXTERIOR AND A C 264
2N INTERIOR POINT. ,/13*,66H ERROR DLTECTED AHEN PROCESSING INFORM C 265
3ATION FOR IRREGULAR POINT ,I7,19H WITH COORDINATES ,318) C 266

230 FORMAT (43H ***ERROR*** 01POLE RESTRICTION VIOLATED. ,36H ScE DOC C 267
lUMENTATION FOR EXPLANATION. /13*,2OH IRREGULAR PJINT ,I7,14H CO C 268
20RDINATES ,318/13X,7,1 DELTA ,3£10.3) C 269

240 FORMAT (41H ***ERROR*** THE POINT wiTH COORDINATES ,3I8,31H SHOUL C 270
ID BE LISTED AS IRREGULAR./12*,27H NEIGHBORS lN Z DIRECTION ,44H C C 271
20 lF OUTSIDE, 1 lF IRREGULAR, 2 If INSIDE),2F4.0,/13X,27H, NEIGHBO C 272
3RS IN Y DIRECTION ,2F4.0,27H, NEIGHBORS IN X DIRECTION ,2F4.0) C 273

250 FORMAT (19H ***ERROR*** WYX= ,17,6H NNY= ,17,6H NNZ= ,17,9H NIPOI C 274
lM= *17,9H NAPDIM= ,17,/lA,aH IPP= ,17, dH NXDIM= ,I7,8H NYDIM= ,I7, C 275
28H NZDIM= , 17) C 276

260 FORMAT (/14X,37HNIED NNX, NNY .66. 8 AND POWERS OF 2.,/13*,27H C 277
1  NNX AND NNY .LE. 256.,/13X,3OH NIPDIM .GE. IPPi+2*IPP2.,/13 C 278
2*,4(jH NAPOIM .GE. iPPI+2*1PP2, NX*NZ, AND NY*NZ.,/13X, 570 C 279
3  NXDIM .GE. NNX, NYDIM .GE. NNY, AND NZDIM .GE. NNZ.J C 280
END C 281-
SUBROUTINE VMULT CY,w,N*LIM,NYDIM,NLDIM,NlPOlM, IORD,INDORD,DELTA, 1 D    1

1COORD) 0    2
COMMON /SPACE/ HX,HY,HZ,HZ(3),HXZ,H¥2, HZZ,TWJPl,CONST,C,CHZZ,NA,NY  D   3

1,NZ,IPl,1PZ,IP,LOGZAX,LOGLNY,UXSQ,QYSO D    4
DIMENSION 1(NXOIM,NYJIM,NZOIM), Y(AIPDIM), DELTA(3,NIPDIM), ICOORD  D   5
1(3,NIPDIM), INDORD(NIPDIM) 0    6
DIMENSION IC(3), ISTEP(3), 10RD(3,61 D     7

C                                                                                                                         08

C      THIS SUBROUTINE COMPUTES w=V Y D    9
C       SETTING W TO 0 AND THEN SETTING UP THE DiPOLES. D  10
C                                                                            D  11

DO 10 K=1,NZ D  12
DO 10 J=l,NY D  13
DO 10 1=1,NX D  14

10 W(I,J,K)=O.EO D  15
DO 30 LKT=l, IP 0  16
INDEXD=LKT 0  17
IF (LKT.Gr.1Pl) INDE*D=IP1+CLKT-1Pl)*2-1 0  18

C                                                                         D  19
C       FOR EACH IRREGULAP POINT, D  20
C       OBTAIN COORDINATES OF IRREGULAR POINT. D  21
C       PUT THE DIPOLE IN PLACE. D  22
C                                                                         D  23

ISUB=INDORD(LAT) D  24
Il=IORD(1,ISUB) D  25
I2•IORO(2,ISUB) D  26
I3=IORD(3,ISUB) D  27
DO 20 KK=1,3 D  28
iC(KK)=ICOORD(KK,LKT) 0  29
ISTEP(KK)=1 0  30

20 IF (DELTA.(KK,INDEXD).LT.O.EO) ISTEP(KK)=-1 D  31
RAT12=ABS((H2(Il)*DELTA(11,INDEXD))/(H2(12)*DELTACIZ,INDEXD))) D  32
RAT13=ABS((HZ(Il)*DiLTA(11,INDEXD))/(HZ(13)*DELTA(13,INDEXD))) 0  33
WT=YCLKT) D  34
ISUBl=1((1) D  35



81

ISUB2=IC(2) D  36
ISUB)=IC(3) D  37
W ( 1 SU8 1, i SUBZ, ISU83 ) = W ( 1SUBl, ISU62, i SU83 1 +*T D  38
IC(Il)•IC(Il)+ISTEP(11) 0  39
ISUBl=IC(1) 0  40
ISUB2=IC(2) D  41
ISU83=IC(3) D  42
W(I SUBl, ISUB2,ISUB3).W(1SUBI, I SUB2,1SUB3 1-AT*(i .- D  4320-RAT12)
IC(IZ)=IC(IZ)+ISTEP(12) 0  44
ISUBl=IC(1) D  45
ISUB2=IC(2) D  40
ISUB3•IC(3) D  47
W (ISUBl, I SUB 2, I SU 83 ) = w ( 1 SU31, ISU62, i S UB3 ) -4 T* ( RA T12-K AT 13 ) 0  43
IC(I3)=IC(I3)+ISTEP(13) D  49
ISUBl=IC(1) D  50
ISUB2•IC(2) D  51
ISUB3=IC(3) D  52
W(ISUBl,ISUBZ,ISUB3)=#(15Udl,ISUBZ,13UB3)-WT*RATI3                  D  53

30 CONTINUE 0  54
RETURN                                                          0  55
END 0  56-
SUBROUTINE VTRANS (W, Y,NAOIM,NYDIM,NLDIM,NIPOIM,10*D,INDORD,DELIA, E     1

lICOOKD) E     2

COMMON /SPACE/ HX,HY, HZ, H2(3),HXZ,HYZ,HZZ,TWJPI,COAST,C,CHZZ,NX,NY  E   3
1,NZ, 1Pl, IP2, IP, LOGZAX,LOGZNY,UXSQ,OYSQ E      4

DIMENSION W(N*DIM,NYUIM,NZJIM), 1(NIPDIM), DELTA(3, NIPDiM), ICOORD  E   5
1(3,NIPDIM), INDORD(NIPDAM), fORD<3,6) E     6

DIMENSION IC(3), ISTEP(3) E      7

C                                                                                                      68
C                                                       T                                                    E     9

C       THIS SUBROUTINE COMPUTLS Y.V W. E  10
C       USING UNDIVIDED DIFFERENCE FORMULAS DETERMINED BY THE DIPOLE E  11
C WEIGHTS. E  12
C                                                                         E  13

00 20 LKT=l,i P E  14
INDEXD-LKT E  15
IF (LKT.GT.IPl) INDEXO=lfi+(LK[-1Pl)*2-1 E  16
ISUB=INDORD(LKT) E  17
Il=IORO(l, ISUB) E  18
12=IORD(2,ISUB) E  19
I3=IORD(3,ISUB) E  20
DO 10 KK=1,3 2  2i
IC(KK)=ICOOROCKK, LKT) E  22
ISTEP(KK).1 E  23

10 IF (DELTACKK,INDE*D).LT.0.0) ISTEPAKA)=-1 E  24
RAT12=ABS((H2(11)*DELTA(11, iNDEXD))/(H2(i2)*DELTACIZ,INDEAD))) E  25
RAT13=ABS ( (H2(Il)*DELTA (li,INDEXO))/(HZ(13)*DELTA(13,iNDEXD)) 1 E  26
ISUBl=IC(1) E  27
ISUB2•IC(2) E  28
ISUBB=IC(3) E  29
WT=W(ISUBl, ISUB2, ISUB31 E  30
IC(Il)=IC(Il)+ISTEP(Il) E  31
ISUBl=IC(1) E  32
ISUB2*IC(2) E  33
ISUB3=IC(3) E  34
SUM=(RAT12-1.LO)*w(1SUBl, ISUBZ,ISUB3) 8  35
IC(IZ)•IC(I21+ISTEP(I2) E  36
ISUBl=IC(1) E  37
ISUB2*IC(2) E  38
ISUB3=IC(3) E  39
SUM-SUM+(RAT13-RAT12)*W(iSUBl,ISUB2,ISUB)) E  40
IC(I3)=IC(I))+ISTEP(13) E  41
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ISUBl=IC(1) E  42
IS U 8 2=IC (2) E  43
ISUB)=IC(3) E  44
SUM=SUM-RAT13*W(ISUbl,1SUBZ,ISUB3) E  45
YCLKT)=SUM+Wl E  46

20 CONTINUE E  47
RETURN E  48
END E 49-
SUBROUTINE UTAMLT (w,Y,NADIM,NYDIA,NZDld,NiPOlM,DELTA,ICUORD) F     1

COMMON /SPACE* HK,HY,HZ,HZ(3),HXZ,HYZ,HZ2,TWOPI,CONST,C,CHZZ,NX,NY F     2

1,NZ, IPl,IP2,IP,LOG2AX,L062NY,QXSQ,OYSQ F     3

DIMENSION W(NXDIM,NYDIM,NZOIM), DELTA(3,NIPOIM), ICOORD(3,NIPOIM), F     4

1 Y(NIPD1MJ, 01(3), (2(3) F     5

C                                                                                                                  F     6

C                                                          T                                                       F     7

C       THIS SUBROUTINE COMPUTES Y=U A W F     8

C       WHERE THE MATRIX POWS FORM THE SHORTLEY-WELLER APPROXIMATION F     9

C       OF -LAP+CC USi NG DATA ONLY AT THE IRREGULAR POINT AND ITS F  10
C       INTERIOR NEIGHBORS. THE EQUATIONS F  11
C       ARE SCALED SO THAT THc MAIN DIAGONAL ELEMENl OF THE MATRIX F  12
C       (I.E., THE COEFFICIENT FOR THE IRREGULAR POINT ITSELF) IS i. F  13
C                                                                         F  14

00 110 LKT=l,IP F  15
L•LKT F  16

C                                                                         F  17
C       GET COORDINATES AAD DISTANCES FOR THIS IRREGULAR POINT. F  18
C                                                                         F  19

1=ICOORD(1,L) F  20
J=ICOORD(2,L) F  21
K=ICOORD(3,L) F  22
IF (L.GT.Ipl) L=IP1+(L-IPI)*2-1 F  23
1NC1=1 F  24
INC2=1 f  25
INC3=1 F  26
IF (OELTA(1,L).LT.O.CO) 1NCI =-1                                     F  27
IF (OcLTA(2,6}.LT.O.LO) 1NCZ=-1 F  28
IF (DELTA(3,L).LT.0.€O) 1103 --1                                     F  29
01(1)•ABS(DELTA(l,L); F  30
Dl(2)=ABS(DELTA(2,L)) F  31
01(3)=ABS(DELTA(3,L)) F  32
IF (L.LE.IPl) GO TO 10 F  33
62(1)=ABS(DELTA(l,L+1)) F  34
D2(2)=ABS(DELTA(2,L+i)) F  35
02(3)=ABS(JELTA(3,L+11) F  36

10 CONTINUE F  37
C                                                                         F  38
C      X INCREMENTS F  39
C                                                                         F  40

IF (01(1).GT.1.EO) GO TO 3J F  41
IF (L.LE.IPl) GO TO 20' F  42
IF (02(1).GT.1.EO) 60 TO 20 F  43

C                                                                         F  44
C       BOUNDARY CUTS TwICE BETWEEN THIS POINT AND ITS X NEIGHBORS F  45
C                                                                         F  46

DIAG=2.EO*0*56/(01(1)*02(1)) F  47
TERM=O.EO F  48
GO TO 40 F  49

C                                                                       F  50
C       BOUNDARY CUTS ONCE BET*EEN THIS POINT ANC ITS X NEIGHBORS. F  51
C                                                                         F  52

20 CONTINUE F  53
DIAG=2.EC*QXSQ/01(1) F  54
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ISUB=I-INCl F  55
TERM•w(ISUB,J,K)*2.EC/(1.EJ+01(1)) F  56
GO TO 40 F  57

F  58
C      BOUNDARY DOES NOT CUT                                              F  59
C                                                                                  F  60

30 DIAG=2.EO*QXSQ F  61
TERM.w(I-1,J,K)+W(I+1,J,K) F  62

40 SUM=-TERM*OXSQ F  63
C                                                                            F  64
C      Y INCREMENTS F  65
C                                                                         F  66

IF (01(2).GT.1.EG) 60 TO 00 F  67
IF (L.LE.IPl) GO TO 50 F  68
IF (02(2).GT.1.EO) 60 TO 50 F  69

C                                                                                  F  70
C       BOUNDARY CUTS TWICE BETAcEN THIS POINT AND ITS Y NEIGHBORS F  71
C                                                                               F  72

DIAG=DI AG+2.E(.*QY SQ/(01(2 )*02(2)) F  73
TERM=O.EO F  74
GO TO 70 F  75

C                                                                            F  76
C      BOUNDARY CUTS ONCE BETWLEN THIS POINT AND ITS Y NEIGHBORS F  77
C                                                                               F  78

50 CONTINUE F  79
DIAG=DIAG+2.EO*OYSQ/01(21 F  80
ISUB=J-INC2 F  61
TERM=w(l,ISUB,K)*2.20/(1.Eu+01(2))           ·                        F  82
GO TO 70 F  83

C                                                                            F  84
C                                                                            F  85
C       BOUNDARY DOES NOT CUT F  86
C                                                                    F  87

60 DIAG=DIAG+2.EO*OYSQ F  88
TERM.W(I,J-1,K)+w(I,J+1,K) F  89

70 SUM=SUM-TERM*OYSO F  90
C                                                                      F  91
C      Z INCREMENTS F  92
C                                                                         F  93

IF (Dl(3).GT.1.LG) GO TO 90 F  94
IF (L.LE.IPl) GO TO 80 F  95
IF (D2(3).GT.1.EO) GO TO do F  96

C                                                                         F  97
C       BOUNDARY CUTS TnICE BET#teN THiS POINT ANJ JTS Z NEIGHBORS F  98
C                                                                            F  99

DIAG•DIAG+2.EC/(01(3)*D2(3)) F 100
TLRM=O.EO f 101
GO TO 100 F 102

C                                                                         F 103
C    BOUNDARY CUTS ONCE BETWEEN THIS POINT AND 1TS Z NEIGHBORS F 104
C                                                                         F 105

80 CONTINUE F 106
DIAG=DIAG+2.EO/01(3) F 107
ISUB=K-INC3 F 108
TERM=W(l,J,ISUB)*2.&0/(1.Eu+01(3)) F 109
GO TO 100 F 110

C                                                                         F ill
BOUNDARY DOES NOT CUT F 112

F 113
90 DIAG=DIAG+2.LO F 114

TERM=w(I,J,K-1)+W(i, J,K+1) F 115
100 SUM=SUM-TERM                           -                              F 116
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SCALE=1.EO/(DIAG+CHLZ) F 117
YCLKT)=W(I,J,K)+SUM*SCALE F 118

110 CONTINUE F 119
RETURN F 120
END F 121-
SUBVOUTINE BNDRY (BCX,BCY,8CZ,G,NXDAM,NYDIM,NZOI,l,NIPOIM,DELTA,iCO G  1

lORD,88) G    2
COMMON /SPACE/ HX,HY,HZ,HZ(3),HX2,HY2,HZ2,T*OPI,CONST,C,CHZZ,NX,NY  G   3

1,NZ,IP1,1P2, IP,LOG2NX,LOGZNY,QXSO,QYSQ G    4
DIMENSION BCXCNIPDIM), BCY(NIPDIM), BCL(NIPOIM), DELTA(3, NIPDIM),   G   5
lICOORD(3,NIPDAM), 01(3), 02(3), 6(NADIM,NYDIM,NZOIM) G    6
LOGICAL BB G    7

C                                                                                                       GS
C                                                       T                                               G    9
C       THIS SUBROUTINE COMPUTES BCX =b F G  10
C       USING BOUNDARY DATA STORED IN BCX, BCY, AND BCZ, G  11
C       AND THE DATA IN G. G  12
C       THIS IS THE RIGHT HAND SIDE FOR THE CAPACITANCE MATRIX G  13
C EQUATION. G  14
C       THE RESULT IS DETERMINED Br APPLYING THE SHORTLEY- G  15
C       WELLER APPROXIMATION OF -LAP+CC AT AN IRREGULAR G  16
C       POINT AND DIVIDING BY THE SCALE FACTOR USED IN UTAMLT G  17
C       AND UTATRN. G  18
C                                                                       G  19

DO 110 LKT•1,1P 6  20
C                                                                         G  21
C       GET COORDINATES AAD DISTANCES FOR THIS IRREGULAR POINT. G  22
C                                                                       G  23

L=LKT G  24
I=ICOORD(l, L) G  25
J=ICOORD(2,L) G  26
K=ICOORD(3,L) G  27
iF (L.GT.1Pl) L=IPi+(L-IPl)*2-1 G  2d
Dl(1)*A3S(DELTA(1,L)) G  29
Dl(2)=ABS(DELTA(2,L)) G  30
Dl(3)=ABS(DELTA(3,L)) G  31
iF (L.LE.IPl) GO TO 10 G  32
02(1)=ABS(DELTA(l,L+1)) G  33
D2(2)=ABS(DELTA(2,L+1)) G  34
DZ(3)=A3S(DELTA(3,L+i)) G  35

10 CONTINUE G  36
TERM1*0.60 G  37
TERM2=O.EO G  38

C                                                                       G  39
C      X INCREMENTS G  40
C                                                                         G  41

IF (Di(1).GT.1.FO) GO TO 30 G  42
IF (L.LE.IPl) GO TO 20 G  43
lF (02(1).GT.1.EO) GO TO 20 G  44

C                                                                         6  42
C       BOUNDARY CJTS TWICE BETWEEN THJS POINT AND ITS X NEIGHBORS G  46
C                                                                    G  47

DIAG-2.EO*QXSQ/(Dl(11*02(11) G  48
TERM1=2.EO/((01(1)+[2(1))*01(1)) G  49
TERM2*2.EO/((01(1)+02(1))*02(1)) G  50
GO TO 40 G  51

C                                                                       G  52
C       BOUNDARY CJTS ONCi BETAEEN THIS POINT AND ITS A NEIGHBORS. G  53
C                                                                            G  54

20 CONTINUE G  55
DIAG=2.EO*QXSQ/Dl(1) G  56
TERM1=2.EO/((1.EO+01(1))*01(1)) .,MJ9 02/
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GO TO 40 G  58
C                                                                               G  59
C      BOUNDARY DOES NOT CUT G  60

G  61
30 DIAG=2.20*OXSQ G  62
40 SUM=-TERM1*QXSO*BCX(L) G  63

IF (TERM2.Nt.0.£0) SUM=SUM-TERM2*QXSQ*BCX(L+1) G  64
TERM1*O.EO G  65
TERM2=O.EO G  66

C                                                                               G  67
C      Y INCREMENTS G  68
C                                                                         G  69

IF (Dl(2).GT.1.EO) GO TO 60 G  70
IF (L.LE.IPl) GO TO 50 G  71
IF (D2(2).GT.1.cO) 60 TO 50 G  72

C                                                                               G  73
C       BOUNDARY CUTS TWICE B:TW,EN THIS POINT AND ITS Y NEIGHBORS G  74
C                                                                            G  75

DIAG=DIAG+2.EO*QYSQ/(01(2)*02(2)) G  76
TERMl=2.EO/((Dl(2)+D2(2))*01(2)) G  77
TERM2=2.EO/((01(2)+02(2))*02(2)) G  78
GO TO 70 G  79

C                                                                            G  80
C      BOUNDARY CUTS ONCE dETwLEN THIS POINT AND ITS Y NEIGHBORS G  81
C                                                                            G  82

50 CONTINUE G  83
DIAG=DIAG+2.EO*OYSQ/Dl(2) G  84
TERMi•2.20/((1.tO+01(2))*01(2)) G  85
GO TO 70 G  66

C                                                                                  G  87
C                                                                            G  88
C       3 OUNDARY DOES NOT LUT G  89
C                                                                         G  90

60 DIAG=DIAG+2.ce*QYSQ G  91
70 SUM=SUM-lERMI*QYSO*BCY(L) G  92

IF (TERM2.NE.O.EO) SUM=SUM-TERM2*QYSQ*BCYCL+ll G  93
TERMl=0•fO G  94
TERMZ=O.tO G  95

C                                                                               G  96
C      Z INCREMENTS G  97
C                                                                         G  98

IF (01(3}.GT.1.EO) GO TO 90 G  99
IF (L.LE.1Pl) GO TO 80 G 100
IF (D2(3).GT.l.£0) GO TO 80 G 101

C                                                                         G 102
C       BOUNDARY CUTS TWICE BETwgEN THIS POINT ANO ITS Z NEIGHBORS G 103
C                                                                         G 104

01AG=DIAG+2.20/(Dl(3)*02(3)) G 105
TERMi=2.EO/((Dl(3)+02(3))*01(3)1 G 106
TERM2=2.60/((61(3)+02(3))*02(3)) 6 107
GO TO 100 G 108

C                                                                         G 109
C     BOUNDARY CUTS ONCE BETWLEN THIS POINT AND ITS Z NEIGHBORS G 110
C                                                                         G 111

80 CONTINUE G 112
DIAG=DIAG+2.EO/01(3) G 113
TERM1=2.EO/((1.EO+Dl(31)*Dl(3)) G 114
GO TO 100 G 115

G 116
C      BOUNDARY DOES NOT CUT G 117
C                                                                         G 118

90 DIAG=DIAG+2.EO G 119
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100 SUM=SUM-TERM1*BCZ(L) 6 120
IF (TERMZ.NE.O.EO) SUM=SUM-TuRM2*BCZ(L+1) G 121
SCALE=1.EO/(DIAG+CHZZ) G 122
GTERM=O. EO G 123
iSUBl=ICOORO(1,LKT) G 124
ISUBZ=ICOORD(2,LKT) G 125
ISUB3=ICOORD(3,LKT) G 126
IF (88) GTERM=G(ISUBi,ISUBL,ISU83) G 121
BCX(LKT)=(-SUM+GTERM)*SCBLE G 128

110 CONTINUE G 129
RETURN 6 130
END G 131-
SUBROUTINE UTATRN CY,W,NADIM,NYDIM, NZDlM, NIPOIM,DELTA,ICOORD) H    1
COMMON /SPACE/ HX,HY,HZ,HZ(3),HXL,HYL,HZ2,TWUPl,CONST,C,CHZZ,NX,NY  4   2

1,NZ,IPI,IP2,IP,LOG2NX,LOG,LNY,QXSe,QYSQ H    3
DIMENSION W(NXDIM,NYDIM,NZOIM), Cl(3), 02(3), uELTA(3,NiPDIM), iCO  H   4
lORD(3,NIPDIM), Y(NiPOIM) H    5
DIMENSION WINC(7) H    5

C H    7
C TT H    8
C       THIS SUBROUTINE COMPUTES w = (U A) Y. H    9
C       W IS INITIALIZED TO 0 AND THEN THE WEIGHTS DETERMiNED IN H  10
C       UTAMLT ARE USED TO DISTRIBuTE Y. H  11
C                                                                            H  12

DO 10 K=l,NZ H  13
DO 10 J•l,NY H  14
DO 10 I=l,NX H  15

10 W(I,J,K)=O.EO H  16
DO 130 LKT=1,1P H  17

C                                                                       H  18
C       GET COORDINATES AND DISTANCES FOR THIS IRREGULAR POINT. H  19
C                                                                            H  20

L=LKT H  21
I=ICOORD(1,L) 1  22
J=ICOORD(2,L) 8  23
K-ICOORD(3, L) H  24
IF (L.GT.IPl) L=IPI+CL-1Pi)*2-1                                       H  25
01(1)=ABS(DELTA(l,L)) H  26
01(2)=ABS(DELTA(2,L)) H  27
Dl(3)•ABS(DELTA(3,L)) H  28
IF (L.LE.IPl) GO TO 20 H  29
02(1)=ABS(DELTA(1,L+1)) H  30
02(2)*ABS(DELTA(2,L+1)) H  31
02(3}*ABS(DELTA(3,L+1)) H  32

20 CONTINUE H  33
INC1=1 H  34
INC2=1 H  35
1NC 3=1 H  36
IF (DELTA(1, L).LT.u.EO) 1NCi•-1 H  37
IF (DELTA(2,L).LT.G.EO) iNCZ=-1 H  38
IF (DELTA(3,L).LT.0.20) IN63=-1 H  39
DO 30 KK=1,7 H  40

30 WINC(KK)•0. EO H  41
C                                                                          H  42
C                                                                         H  43
C      X CONTRIBUTIONS H  44
C                                                                         H  45

IF (01(1).GT.1.EO) 60 TO 30 H  46
If (L.LE.IPl) GO TO 40 3  47
IF (02(1).GT.1.EO) GO TO 40 H  48

C                                                                               H  49
C       BOUNDARY CUTS TWICE BETWEEN THIS POINT AND ITS X NEIGHBORS H  50
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C                                                                                  H  51
DIAG=2.EO*QXSQ/(01(11*92(11) H  52
GO TO 60 H  53

H  54
4      BOUNDARY CUTS ONCE BETWEEN THIS POINT AND ITS X NEIGHBORS. H  55
C                                                                            H  56

40 CONTINUE H  57
DIAG=2.60*OXSQ/01(1) H  58
ISUB=2-INCl H  59

I WINC(1SUB)=-QXSQ*2.EG/(l.EO+Dl(11) H  60
GO TO 60 H  61

C                                                                      H  62
C      BOUNDARY DOES NOT CUT H  63
C                                                                         H  64

50 DIAG=2.EO*OXSO H  65
WINC(i) =0 QXSQ H  66
WINC(3)=-QXSQ H  67

C                                                                         H  68
C      Y CONTRIBUTIONS H  69
C                                                                                  H  70

60 IF (Dl(2).GT.1.EO) GO TO dj H  71
IF (L.LE.IPl) GO TO 70 H  72
IF (02(2).GT.1.EO) GO TO 71 H  73

C                                                                         H  74
C       BOUNDARY CUTS TWICE BETWEEN THIS POINT AND ITS Y NEIGHBORS H  75
C                                                                            H  76

DIAG=DIAG+2.EO*OYSQ/(Di(21*02(2)) H  77
GO TO 90 H  78

C                                                                               H  79
C      BOUNDARY CUTS ONCE BETWEEN THIS POINT AND ITS Y NEIGHBORS H  80
C                                                                               H  81

70 CONTINUE H  82
DIAG=DIAG+2.66*QYSQ/Dl(21 H  63
1SUA=3-INCZ H  84
WINCCISUB)•-OYSQ*2.LO/(1.-.u+01(2)) H  85
GO TO 90 H  86

C                                                                         H  87
C      BOUNDARY DOES NOT CUT H  88
C                                                                         H  89

80 DIAG=DIAG+2.LO*QYSQ H  90
WINC(2)=-QYSQ H  91
WINC<4)=-QYSO H  92

C                                                                            H  93
C      Z CONTR18UTIONS H  94
C                                                                            H  95

90 IF (01(3).GT.1.EO) 60 TO 110 H  96
IF (L.LE.IPl) GO TO 100 H  97
l F (02(3).GT.1.EO) GO TO 100 H  98

C                                                                            H  99
C       BOUNDARY CUTS TWICE BETWEEN THIS POINT AND 1TS Z NEIGHBORS H 100
C                                                                         H 101

DIAG=DIAG+2.EC/(01(3}*02(3)) H 102
GO TO 120 H 103

C                                                                         H 104
C      .BOUNDARY CUTS ONCE BETWEEN THIS POINT AND ITS Z NEIGHBORS H 105
C                                                                         H 106

100 CONTINUE H 107
DIAG=DIAG+2.EO/Dl(3) H 108
ISUB=6-INC3 H 109
41NCCISUB)=-2.EO/(1.EO+01(3)) H 110
GO TO 120 H 111

C                                                                         H 112



88

C       BOUNDARY DOES NOT CUT H 113
C                                                                       H 114

110 DIAG=DIAG+2.EO H 115
WINC(5)•-1.20 H 116
WINC(7)=-1.EO H 117

120 CONTINUE H 118
FACT=YCLKT)/(DIAG+CHZZ) H 119
W(I,J,K)=W(I,J,K)+Y(LKT) H 120
W(I-1,J,k)•W(1-1,J,K)+FACT*WINC(11 H 121
W(I,J-1,K)=Wil,J-1,K)+*=ACT*WiNC(21 H 122
W ( I+1, J,K)=W (I+1, J,K)+F AC T*WINC (3) H 123
W(l,J+1,K)=W(l,J+1,K)+FACT*WINC(4) H 124
W(I,J,K-i).Wil,J,K-i)+FACT*WINC(5) H 125
w(I,J,K+1)=W(l,J,K+1)+FACT*WINC(7) H 126

130 CONTINUE H 127
RETURN H 128
END H 129-
SUBROUTINE CUBE (F,NXDIM,NYDIM,NZDIM,NAPDIM,RE) I     1

COMMON /SPACE/ Hk,HY,HZ,H2(3),H*2,HYZ,HZZ,TwJPl,CONST,C,CHZZ,NX,NY  I   2
1,NZ,IPl,iP2, IP,LOGZAX,LOGLNY,0*Su,QYSQ I      3

DIMENSION F(MADIM,NYDIM,NZDIM), RE(NAPDIM) I     4

COMMON /FFT# S(64),18(250) I      5

C                                                                                                                   I     6

C       THIS SUBROUTINE SOLVES THE HELMHULTZ EQUATION OVER A CUBE; I      7

C                                                                                                                   IB

C -U -U . U   + C*U = F/(HZ*HZ) 1     9

C XX YY 22 I  10
C                                                                         1  11
C       WITH F=O OUTSIDE lHE CUat iN THE 2 DIRECTION AND U 1  12
C       PERIODIC IN X AND Y WITH PERIODS 1. I  13
C       THt ANSKER 15 STOkED IN F. 1  14
C     ANY REAL VALUE OF C CAN dE HANDLED BY THIS FOURlER- I  15
C       TOEPLITZ METHOD. I  16
C RE IS USED AS AORKSPACE TO INTERFACE WITH THE 1  17
C FFT ROUTINES. THE DIMENSIONS Of S AND Id MUST I  18
C       BE .GE. N/4 AND N RESPECTIVELY,WHLRE N= MAX(NX,NY). I  19
C                                                                         I  20

IFS=-2 I  21
10 IF (NX.EO.l) GO TO 50 I  22

N 2 1 = N 2-1 I  23
CALL kFORT (RE,LOGZNX,O,hZ,NAPDIM) 1  24
DO 40 J=l,NY I  25
L=O 1  26
DO 20 K=l,NZ 1  27
00 20 I=1,NX I  28
L=L+1 I  29

20 RECL)=F(l,J,K) I  30
CALL AFORT (RE,LOGZNX, iFS,NZ,NAPOIM) I  31
L=0 I  32
DO 30 K=l,NZ I  33
DO 30 I=1,NX I  34
L*L+1 I  35

30 F(I,J,K)=RE(L) I  36
40 CONTINUE I  37
50 CONTINUE 1  38

CALL WFORT (RE, LOG2NY,0, NZ,NAPDIM) I  39
DO 80 I•l,NX I  40
L=0 I  41
DO 60 K=l,NZ I  42
DO 60 J=1,NY I  43
L•L+1 I  44

60 RE(L)=F(I,J,K) 1  45
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CALL RFORT (RE,LOG2NY, IFS,AZ,NAPDIM) I  46
L=0 I  47
DO 70 K•l,NZ I  48
DO 70 J=i,NY i  49
L=L+1 I  50

70 F(I,J,K)=RE(L) I  Li
80 CONTINUE I  52

C 1  53
C      SOLVE THE TRIDIAGONAL SYSTEMS I  54
C                                                                            I  55

IF (IFS.GT.0) GO TO 220 I  16
NXD2=2**(LOG2NX-1) 1  57
NYD2*2**(LOG2NY-1) i  58
00 210 LY=1,NYDZ 1  59
COSJ=COS(TWOPI*FLOAT(LY-1)/FLOAT(NY)) 1  60
DJ 210 KTJ=1,2 1  61
J=LY*2+KTJ-2 I  62
DO 210 LX=l,NXD2 1  63
COSI=COS(TWOPI*FLOATCLX-1)/FLOAT(NX)) I  64
DO 210 KTI=1,2 I  65
I•LX*2+KTI-2 I  66

C                                                                         1  67
C     LX = INTEGER PART OF (1-1)/2 + 1 I  63
C     LY = INTEGER PART OF (I-1)/2 + 1 1  69
C                                                                            I  70
C                                                                         I  71
C       TRIDIAGONAL SYSTEM WITH I  72
C DIAGONAL ELEMENTS T(1,1) AND T(NNZ,NNZ) = XLMBOA/2 1  73
C                    + SQRT((XLKBOA/2)**2 - 1). I  74
C       THE OTHER DIAGONAL ELEM NTS = ALMBOA, -1 IN SU3- AND I  73
C SUPER-DIAGONAL. 1  70
C       THE TRIDIAGONAL SYSTEM IS; I  77
C         T V=G G(K) = r(i,J,K) K=l,•••,NZ I  78
C      STORE V IN F I  79
C                                                                            I  BO
C       COMPUTE XLMBDA 1  81
C                                                                            1  82

XLMBDA.CONST I  83
IF (J-2) 110,90.100 I  84

90 XLMBDA=XLMBDA+QYSQ*2.EO 1  85
GO TO 110 I  86

100 XLMBUA•XLMBDA+OYSQ*(1.80-CJSJ) I  87
110 CONTINUE I  89

IF (I-2) 140,120,130 I  89
120 XLMBDA=XLMBDA+QXSQ*2.EO 1  90

GO TO 140 I  91
130 XLMBDA=XLMBDA+QXSQ*(l.El-COSI) I  92
140 XLMBDA=XLMBDA*2.EO i  93

DISCRZ=.25EO*XLMBDA*XLMBDA-1.EO 1  94
IF (01SCR2.GT.O.EO) GO TO 170 I  95

C                                                                            1  96
C       -2 .LE. XLMBDA .LE. 2 I  97
C                                                                            I  98
C                                                                            I  99
C       PHI = ARCCOS(XLMBDA / 2) I 100
C                                                                         I 101
C       F(I, J,K) = V(J) • SUM(F(I,J,K) SIN(PHI*ABS(I-J)))/ 1 102

2 (2 SIN(PHI)) 1 103
C                                                                         I 104
C       WHERE SIN((N+1)PHI) / 51*(PHI) = UNCA) = I 105
C             N-TH CHEBYSHEV POLYNOMIAL 1 106
C       AND X * XLMBDA / 2. I 107
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C                                                                       I 108
C        V(K+1) = XLMSDA VCK) - VCK-i) - 6(K) I 109
C                                                                       1 110

UCM1=l.EO I 111
UC=XLMBOA/2.EG I 112
V=9(I, J,1)*UC I 113
DO 150 K=2,NZ I 114
UCM2=UCM1 I 115
UCM1•UC I 116
UC=XLMBDA*UCM1-UCM2 I 117
V=V+UC*F(I, J,K) I 118

150 CONTINUE I 119
G=F(I,J,2) I 120
F(I,J,21*XLMdDA*4-F(l,J,1) 1 121
F(I,J,1)=V I 122
DO 160 K=3,NZ I 123
62•fil,J,K) I 124
F(l,J,K)=*LMBDA*Fil,J,K-1)-f(l,J,K-2)-G 1 125

160 G=GZ I 126
GO TO 200 1 127

C                                                                       1 128
C        XLMBOA.GT.2 OR .LT. -2 I 129
C                                                                       I 130
C      SOLVE THE FACTORED SYSTEM I 131
C                                                                       1 132

170 DISCA=SQkT(DiSCR2) I 133
19 (XLMBOA.GT.O.EO) DISCR--DISCR I 134
BEI=.5EO*XLMBOA+DISCR I 135

C                                                                         I 136
C       FORWARD SUBSTITUTION I 137
C                                                                       I 138

P.0 180 KK=1,N21 I 139
K•NZ-KK I 140

180 F(I,J,K)=F(I,J,K)+F(i,J,K+1)*3El 1 141
C                                                                         I 142
C       BACKWARD SUBSTITUTION 1 143
C                                                                       I 144

F(I,J,1)•F(I,J,1)*diI I 145
DO 190 K=2,NZ 1 146

190 FII,J,K)=(F(I,J,K)+F(I,J,K-1))*BEI I 147
200 CONTINUE I 148
210 CONTiNUE I 149

IFS=-1FS 1 150
IF (IFS.GT.0) GO TO 10 I 151

220 CONTINUE I 152
RETURN I 153
END I 154-
SUBROUTINE RFORT (A,M,IFS,MM,NAPDIM) J     1

DIMENSION A(NAPDIM) J     2
COMMON /FFT/ 5(64),18(256) J      3

C                                                                                                                         J     4

C       THIS IS AN AUGUST 1978 VERSION,A SLIGHT REVISION OF J     5

C       A PROGRAM OBTAINED FROM W. PROSKUROWSKI.HIS CODE IS J      6

C     BASED ON A CODE DUE TO J.COOLEY. J     7

C                                                                                                            J     8

C       THIS SUBROUllNE SJKULTANOUSLY COMPUTES THE REAL FFT J      9

C       OR THE INVERSE FFT OF MM VECTORS OF LENGTH N.HERE J  10
C       MM IS AN ARBITRARY POSITIVE INTEGER AND N*2**M WITH J  11
C       M AN INTEGER .GE. 3.THE ARRAY A IS OF LENGTH N*MM. J  12
C       N*MM MUST BE .LE. NAPDIM. J  13
C                                                                       J  14
C       IFS IS A PARAMETER SET dY THE USLR. J  15
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C                                                                         J  15
C       FOR IFS=O, THE ARRAYS S AND IB ARE GENERATED .S IS J  17
r       A TABLE OF SINE VALUES AND IB A REPRESENTATION OF A J  18

PERMUTATION USED IN THE BINARY REORDERING OF THE DATA. J  19
4     THE ARRAY A IS UNAFFECTED BY THIS CALCULATION. J  20
C                                                                         J  21
C       FOR IFS=-2,EACH SUBARRAY OF A,OF LENGTH N,IS REPLACED J  22
C       BY ITS FFT.THE COSINP COEFFICIENTS ARE STORED ,IN ORDER J  23
C       OF INCREASING FREQUENCY, IN POSITIONS 1,3,5,...,N-1 AND J  24
C     2.THE SLNE COEFFICIENTS ARE iN POSITIONS 4,6,...,N. J  25
C                                                                            J  26
C       FOK IFS=2,THE iNVERSE FFT IS SIMILARLY OBTAINED. J  27
C                                                                         J  28
C THIS SUBROUTINE USES A COMPLEX FFT ROUTINE FORT. J  29
C                                                                            J  30

IF (1FS.NE.0) GO TO 10 J  31
CALL FORT (A,M,O, MM,NAPDIM) J  32
RETURN J  33

10 CONTINUE J  34
N=2**M j  35
N2=2*N J  35
NV2=N/2 J  37
NV2M2•NV2-2 J  38
MM1=M-1 J 39
NP=N J  40
MP=M J  4i
AD-NP/N J  42
NPV4=NP/4 J  43
IF (IFS.GT.0) GO TO 40 J  44
CALL FORT (A,MMl,-2,MM,RAPuiM) J  45
KMIN=2 J  46
KMAX=NV2M2 J  47
LN=N J  48
DO 30 L=l,MM J  49
KT=AD                                                                 J  50
DO 20 K-KMIN, KMAX,2 J  51
J=LN-K J  52
Alk=ACK+1)+A(J+1) J  53
All=ACK+2)-A(J+2) J  54
AZR=ACK+2)+A(J+2) J  55
AZI-A(J+1)-ACK+1) J  56
KKT=NPV4-KT J  57
AWR=A2R*S(KKT)+A21*S(KT) J  Se
AWI•A2I*S(KKT)-AZR*SCKT) J  59
ACK+1)=(AlR+AIR3*0.25 J  60
ACK+2)=(AlI+AWI)*0.25 J  61
A(J+1)=(AlR-AIR)*0.25 J  62
A(J+2).(AWI-Ali)*0.25 J  63

20 KT=KT+KD J  64
T=ACKMIN-1) J  65
ACKMIN-1)=(T+ACKMIN))*0.5 J  66
ACKMIN)=(T-ACKMIN))*0.5 J  67
NK=NV2+KMIN J  68
NKl=NV2+KMIN-1 J  59
A(NKl)=.5*A(NKl) J  70
A(NK).-.5*A(NK) J  71
KMIN=AMIN+N J  72
KMAX=KMAX+N J  73
LN=LN+N2 J  74

30 CONTINUE J  75
RETURN J  76

40 CONTINUE J  77
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KMIN=2 J  78
KMAX=NV2M2 J  79
LN.N J  80
DO 60 L=l,MM J  81
KT*KD J  82
00 50 K=KMIN,KMAX,2 J  83
J=LN-K J  84
AlR=ACK+1)+A(J+1) J  85
AlI=ACK+2)-A(J+2) J  86
AWR=ACK+1)-A(J+1) J  87
AWI=ACK+2)+A(J+2) J  88
KKT=NPV4-KT J  69
AZR=AWR*S(KKT)-AKI*S(KT) J  90
A21=AWR*S(KT)+AWI*S(KKT) J  91
ACK+1)*AlR-A21 J  92
ACK+2)=AlI+AZR J  93
A ( J+1 ) = Al R+A 2 I J  94
A(J+2)=AZR-All J  95

50 KT•KT+KD J  96
T=A(KMIN-1) J  97
Z=ACKMIN) J  98
ACKMIN-1)=T+Z J  99
ACKMIN)•T-Z J 100
NK=NVZ+KMIN J 101
NKl=NV2+KMIN-1 J 102
A(NKl)=2.0*A(NKl) J 103
ACNK)*-2.0*A(NK) J 104
KMIN=KMIN+N J 105
KMAX=KMAX+N J 106
LN=LN+N2 J 107

60 CONTINUE J 108
CALL FORT (A,MM1,2,MM,NAPOIM) J 109
RETURN J 110
END J 111-
SUBROUTINE FORT (A,M,1FS,MM,NAPOiM) K    1
DIMENSION A(NAPDIM) K     2

DOUBLE PRECISlON DATAN K    3
COMMON /FFT/ 5(64),18(256) K 4

C                                                                                                                  Ko

C       THIS IS AN AUGUST 1978 VERSION,A SLIGHT .REVISION OF K    6
C       A PROGRAM OBTAINED FROM W.PROSKUROWSKI.HIS CODE IS K    7
C       BASED ON A CODE DUE TO J.COOLEY. K     d

C                                                                                                            K     9

C       THE COMPLEX FFT OR THE ilVERSc COMPLEX FFT OR A SINE K  10
C       TABLE IS COMPUTED.SEE FURTHER THE COMMENTS Of 4  11
C       SUBROUTINE RFORT. K  12
C                                                                            K  13

N*2**M K  14
IF (IFS.NE.0) GO TO 90 K  15
THETA=DATAN(1.DO) K  16
NT=N/4 K  17
MT=M-2 K 18
lF (MT.LE.0) GO TO be K  19
JSTEP•NT K  20
JDIF=NT/2 K  21
S(JDIF)=SIN(THETA) K  22
IF (MT.LT.2) GO TO 30 K  23
DO 20 L=2,MT - K  24
THETA=THETA*0.5 K  25
JSTEP2=JSTEP K  26
JSTEP=JOIF K  27
JDIF=JDIF/2 K  28



93

S(JDIF)=SIN(THETA) K  29
JC1=NT-JDIF K  30
S(Jul)=COS(THETA) K  31
JLAST•NT-JSTEP2 K  32
IF (JLAST.LT.JSTEP) GO TO 20 K  33
DO 10 J=JSTEP,JLAST,JSTEP K  34
JC=NT-J K  35
JD=J+JDIF K  36

10 S(JD)=S(J)*SCJC1)+S(JDIF)*S(JC) K  37
20 CONTINUE K  38
30 CONTINUE K  39

DO 40 I=l,N K  40
40 18(I)*0 K  41

N 2=N/2 K  42
J=2 K  43
NM2=N-2 K  44
DO 70 I=2,NM2,2 K  45
IF (I.GE.J) GO TO 50 K  46
IB(I)=J K  47

50 K=N2 K  48
60 IF (K.GE.J) GO TO 70 K  49

J=J-K K  50
K=K/2 K  51
GO TO 60 K  52

70 J=J+K K  53
80 CONTINUE K  54

RETURN K  55
90 CONTINUE K  56

N2=2*N K  57
NT=N/2 K  58
MN2*MM*N2 K  59
00 110 I=2,N 2,2 K  60
IF (18(I).EQ.0) GO TO tle K  61
IR=O K  62
00 100 L=1,MM K  63
J=IB(1)+IR K  64
K=I+IR K  65
T-ACK) K  66
ACK)*A(J) K  67
A(J)=T K  68
T=ACK-1) K  69
ACK-1)*A(J-11 K  70
A(J-1)=T K  71
IR=IR+N2 K  72

100 CONTINUE K  73
110 CONTINUE K  74

IF (IFS.GT.0) GO TO 130 K  75
FN=N K  76
FN=1.0/FN K  77
DO 120 I=2,MNZ,2 K  78
A(I-1)•A(I-1)*FN K  79

120 A(1)=-A(1)*FN K  80
130 DO 140 I=2,MN2,4 K  81

T=A(1-1) K  82
ACI-1)=T+ACI+1) K  83
ACI+1)=T-ACI+1) K  84
T=ACI) K  85
4(1)=T+A(I+2) K  86

140 ACI+2)*T-A(1+2) K  87
LEXPl=2 K  88
LEXP=8 K  89
NPL=2**(M-1) K  90
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DO 200 L-2, M K  91
DO 150 I=2,MN2,LEXP K  92
Il=I+LEXPl K  93
12=11+LEXPl K  94
I3-I2+LEXPl K  95
T=A(1-1) K  96
ACI-1)=T+A(22-1) K  97
4(12-1)=1-ACI2-11 K  98
T=A(I) K  99
ACI)=T+ACI2) K 100
ACI2)=T-ACI2) K 101
T=-A(I 3) K 1 C 2
TI*A(13-1) K 103
ACI3-1)=A(11-1)-1 K 104
ACI3)=A(Il)-Tl K 105
A(Il-1)=A(11-1)+T K 100

150 A(11)*A(Il)+Tl K 107
IF (L.EQ.2) GO TO 190 K 108
JMAX=LEXPl K 109
DO 180 JMIN=#,MN2,N2 K 110
KLAST=N2-LEXP K ill
JJ-NPL K 112
DO 170 J=JMIN,JMAX,2 K 113
NPJJ=NT-JJ K 114
Uk=S(NPJJ) K 115
Ul•S(JJ) K 116
ILAST=J+KLAST K 117
DO 160 I=J,ILAST,LEXP K 118
11=I+LEXPl K 119
I2=Il+LEXPl K 120
I3=I2+LE*Pl K 121
T=A(12-1)*UR-A(12)*bI K 122
TI=A(I2-1)*Ul+A(12)*UR K 123
ACI2-1)•ACI-1)-T K 124
A(I2)=A(I)-TI K 125
ACI-1)=ACI-1)+T K 126
A(I)=A(I)+Ti K 127
T=-ACI)-1)*UI-A(13)*UR K 128
TI=ACI3-1)*UR-A(13)*UI K 129
ACI3-i)=A(Il-1)-1 K 130
A(13)=A(11)-Ti K 131
ACIi-i)=A(11-1)+T K 132

160 A(Il)=A(Il)+Tl K 133
170 JJ=JJ+NPL K 134

JMAX=JMAX+N2 K 135
180 CONTINUE K 136
190 LEXPl=2*LEXPl K 137

LEXP=2*LEXP K 138
200 NPL=NPL/2 K 139

IF (IFS.GT.0) RETURN K 140
DO 210 I•2,MN2,2 K 141

210 ACI)=-A(1) K 142
RETURN K 143
END K 144-

11
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This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A.  Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B.  Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.


