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1. Introduction

It is well known that highly structured systems of linear

algebraic equations arise when Helmholtz's equation
(1.1) -Au+cu =T , ¢ = constant ,

is discretized by finite difference or finite element methods using
uniform meshes. This is true, in particular, for problems on a
region O which permits the separation of the variables. Very fast
and highly accurate numerical methods are now readily available to
solve separable problems at an expense which is comparable to that
of a few steps of any simple iterative procedure applied to the
linear system; see Bank and Rose [2,3], Buneman [5], Buzbee, Golub
and Nielson [8], Fischer, Golub, Hald, Leiva and Widlund [16],
Hockney [24,26], Swarztrauber [50,51], Swarztrauber and Sweet
[52,53] and Sweet [54]. Adopting common usage, we shall refer to
such methods as fast Poisson solvers.

The usefulness of these algorithms has been extended in
recent years to problems on general bounded regions by the develop-
ment of capacitance matrix, or imbedding, methods; see Buzbee and
Dorr [6], Buzbee, Dorr, George and Golub [7], George [19], Hockney
[25,27], Martin [35], Polozhii [40], Proskurowski [41,42,43],
Proskurowski and Widlund [44,45], Shieh [46,47,48] and wWidlund
[571. We refer to Proskurowski and Widlund [44] for a discussion
of this development up to the beginning of 1976. All of the
numerical experiments reported in those papers were carried out

for regions in the plane. Strong results on the efficiency of



certain of these methods have been rigorously established.through
the excellent work of Shieh [46,47,48]. Algorithms similar to
those which we shall describe have recently been implemented very
successfully for two-dimensional regions by Proskurowski [42;43]
and Proskurowski and Widlund [45]. In that work, a new fast
Poisson solver, developed by Banegas [1l ], has been used exten-
sively; see Section 5. We note that the performande of computer
programs implementing capacitance matrix algorithms depends very
heavily on the efficiency of the fast Poisson solver, and if
properly designed, they can be easily upgraded by replacing that
module when a better one becomes available.

In this paper, we shall extend the capacitance matrix method
to problems in three dimensions. The mathematical framework, using
discrete dipole layers in the Dirichlet case, is an extension of
the formal discrete potential theory developed in Proskurowski and
Widlund [44]. We note that these algorithms must be quite
differently designed in the three-dimensional case. As in two
dimensions the fast Poisson calculations strongly dominate the
work. The number of these calculations necessary to meet a given
tolerance remains virtually unchanged when the mesh glze 1is
refined. We have developed a FORTRAN program for Cartesian co-
ordinates and the Dirichlet problem, which turns out to be techﬁi—
cally more demanding than the Neumannlcase. This program has been
designed to keep storage requirements low. ~The number of storage-
locations required is one or two times N, the number of mesh points

in a rectangular parallelepiped in which the region is imbedded,

and a modest multiple of p, the number of mesh points which belong




to the region (O and are adjacent to its boundary. A further sub-
stantial reduction of storage can be accomplished for very large
problems by using the ideas of Banegas [ 1], see further Section 5.

In the second section, we discuss the imbedding idea.
Following a review of classical potential theory, we derive our
capacitance matrix methods in Section 3. Section 4 focuses on
algorithmic aspects which are of crucial importance in the develop-
ment of fast, reliable and modular computer code. We solve the
capacitance matrix equations by conjugate gradient methods. These
methods, originally used in a similar context by George [19], are
reviewed in that section. We also discuss how spectral informétion
and approximate inverses of the capacitance matrices can be
obtained and used at a moderate cost in computer time and storage.
The fast Poisson solver which is used in our program is described
in Section 5. It is numerically stable even for negative values of
the coefficient ¢ of the Helmholtz operator. Finally, we give
detéils on the organization of our computer program and results
from numerical experimehts. These tests were designed to be quite
severe and the method hags proved efficient and reliable.

A listing of our program is provided as an appendix. It has
been checked by the CDC ANSI FORTRAN verifier at the Courant
Matﬁematics and Computing Laboratory of New York University. It
has been run successfully on the CDC 6600 at the Courant [nstitute,
a CDC 7600 at the Lawrence Berkeley laboratory and the Amdahl

470V/6 at the University of Michigan.
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help with this project.



2. Discrete Helmholtz Problems and Imbedding

2.1. The Imbedding of the Discrete Problem

In this section, we shall discuss how discretizations of the

problem

-Au+cu = T on O ,

with a boundary condition and data given on 30, can be imbedded in
problems for which fast Poisson solvers can be used. In the second
subsection, we describe in detail how these ideas apply to the
finite difference scheme which we have used in our numerical
experiments.

The efficiency of capacitance matrix methods depends on the
choice of appropriate finite difference and finite element meshes.
Interior parts of the mesh should be made regular in the sense that
the linear equations at the corresponding mesh points match those
of a fast Poisson solver. We denote the set of these mesh points
by Oh where h is a mesh width parameter. The set of the remaining,
irregular mesh points is denoted by_boh. These points are typi-
cally located on or close to the boundary o0 and the discrete equa-.
tions assoclated with them are computed from local information on
the geometry of the region. For efficiency, the number of unknowns

associated with the points in o0, should be kept small, since the

h
equations and other information required at the regular mesh points
are inexpensive to generate and can be stored in a very compact

form.

If we work in Cartesian coordinates it is natural to imbed our

open, bounded region () in a rectangular parallelepiped and to use




a rectangular mesh. Other choices which permit the separation of
the variables on the larger region, can equally well be chosen. On
the larger region a mesh suitable for a fast Polsson solver is intro-
duced which coincides with the regular part of the mesh previously
introduced for the region 0. The position of the larger region
relative to O is largely arbitrary but when using discrete dipoles
(see Section 3), we need a layer of exterior mesh points, one mesh
width thick, outside of Qh}JBOh. We shall use some or all of the
discrete equations at exterior mesh points to expand our original
linear system into one which is of the same size as the one which
is solved by the fast Poisson solver. The set of mesh points
corresponding to these equations i1s denoted by Coh.

Before we describe how these larger systems of equations
are derived, we shall show by two examples how these sets of mesh
points can be constructed. We first consider a Dirichlet problem
solved by a classical finite difference scheme on a rectangular
mesh. The values of the approximate solution are sought at the
mesh points which belong to 0. The discretization of the Helmholtz
operator on the larger region induces, for each mesh point, a
neighborhood of points used by its stencil. A mesh point in (O be-
longs to Oh if and only if all its relevant stencil neighbors are
in O,and aoh is the set of the remaining mesh points in 0. The set

CO, is the set of all mesh points which belong to the complement

h
of 0. It thus includes any mesh point which is on the boundary Q0.
As a second example, consider a Neumann problem for Laplace's

equation in two dimensions solved by a finite element method with

piecewise linear trial functions. The region is approximated by a



union of triangles using a regular triangulation, based on a uni-
form mesh, in the interior of the region. The set Oh will then
correspond to the set of equations which are not affected by the

. particular geometry of the region. Values of the discrete solution
are also sought at the vertices on the boundary. These points
normally fail to lie on a regular mesh. They belong to BOh to-
géther with certain mesh points which are close to the boundary.
Each irregular point can be assigned to a close-by mesh point of
the regular mesh which covers the larger region and we then define
Coh as the set of remaining,exterior mesh points. There are a
number of permissible ways in which this assignment can be made.
Similar constructions can be carried out for higher order accurate

finite element methods; see Proskurowski and Widlund [45] for

further details.

Let us write the expanded linear system in the form
(2.1) Au = b

where u is the vector of values of the discrete solution at the
mesh points and the components of b are constructed from the func-
tion f and the data given on o0. By construction, our formulas for
the interior and irregular mesh points do not involve any coupling

to exterior mesh points, and the matrix is therefore reducible,

i.e. there exists a permutation matrix P such that




The block matrix All represents the approximation of the problem
on()htjaoh. It is clear from the structure of this system that the
restriction of the solution of the system (2.1) to this set is
independent of the solution and the data at the exterior points.
Our methods also produce values of a mesh function for the points
of Coh but they are largely arbitrary and useless. Similarly, we
must provide some extension of the data to the set Coh, but the
performance of the algorithms is only marginally affected by this
choice.

Let B denote the matrix representation of the operator
obtained by using the basic discretization at all the mesh points.
Only those rows of A and B which correspond to the irregular mesh
points differ provided the equations and unknowns are ordered in

the same way. We can therefore write

A =B+uzl

wheré U and Z have p columns, with p equal to the number of ele-
ments of the set BOh. It is convenient to choose the‘columns of U
to be unit vectors in the direction of the positive coordinate axes
corresponding to the points of aoh. The operator U is then an
extension operator which maps any mesh function, defined only on
Boh, onto a function defined on all mesh'points. The values on Bnh
are retained while all the renaining values are set equal to zero.
The transpose of'U, UT, is a restriction, or trace, operator which
maps any mesh function defined everywhere onto its restriction to

o0 The matrix ZT can, with this choice of U, be regarded as a

0
compact representation of A-B, obtained by deleting the zero rows




corresponding to the equations for the mesgh points in Oh}JCOh. It
is important to note that Z and U are guite sparse, a reflection

of the sparsity of A and B.

In Sections 3 and 4, we shall discuss efficient and stable

ways of solving the linear system (2.1).

2.2. The Shortley-Weller Scheme

We shall now discuss the finite difference scheme which has
been used in our numerical experiments to solve the Dirichlet
problem and also describe how the necessary information on the
geometry of the boundary 1is handled.

The second order accurate Shortley-Weller formula (see
Collatz [ 9], Chap. 5.1 or Forsythe and Wasow [17], Sec. 20.7) can
be understood as the sum of three point difference approximations
for the second derivative with respect to each of the three inde-
pendent variables. The value at the nearest mesh neighbor in each
positive and negative coordinate direction is used unless this
neighbor belongs fo the set Coh. In that case the Dirichlet data
at the point of intersection of the mesh line and the boundary 1is
used.

As an example, suppose that the mesh spacings in the x, y and
z directions are all equal to h. Consider an irregular mesh point,

with indices (i,j,k), which has two exterior neighbors in the x

s O and

direction and one in the positive y direction. ILet &_ tx

X

6+y be the distances to the boundary, in the respective coordinate

directions, measured in units of the mesh size h and let 8_y» gix

and g+y be the Dirichlet data at the corresponding points on the




boundary o). Then our approximation to -Au +cu = f at this

irregular point is,

(‘2/(6+x6_x) + 2/6+y + 2 4+ ch

- (2/(l-+6+y))ui,j_1,k - uij,k+1 - uij,k—l

- ner

))g

2
* (2/(6+X T 00 k) )8y

1k

(2/(62, + 0,8 )8 + (2/(65 b, ))e,

+x0-x y

At the‘regular points the formula reduces to a simple seven point
approximation.

The Shortley-Weller formula has a matrix of positive type.
This permits the use of the classical error estimates based on a
discrete maximum principle, as in the references given above. The
only information required on the geometry of the region is the
coordinates of the irregular mesh points and the distances along
the mesh lines from each such point to the boundary. This appears
to be close to the minimum information required by any method with
more than first order accuracy. See Proskurowski and Widlund [447,
Pereyra, Proskurowski and Widlund [39] and Strang and Fix [49] for
more details. This geometrical information is also sufficient to
construct higher order accurate approximations to the Helmholtz
equation, as in Pereyra, Proskurowski and Widlund [39] where a
family of methods suggested by Kreiss is developed. These methods
have proven quite effective for two dimensional problems but their

usefulness is limited by the requirement that each irregular mesh
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point must have several interior mesh neighbors along each mesh
line. This requirement is met by shifting the. region and refining
the mesh if necessary. Although this is practical in two dimen-
sions, it is much more difficult for three dimensional regions.

We are free to scale the rows of the matrix A which corre-
spbnd to the irregular mesh points. The choice of scaling is
important since it affects the rate of convergence of our iterative

j method. Based on the analysis given in the next section, the
j experience in the two dimensional case (see Proskurowski and-

Widlund [44]) and our numerical experiments, we have chosen to make

all diagonal elements of A equal to one.
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3. Potential Theory and Discrete Dipoles

%3.1l. The Continuous Case

In this section, we shall give a brief survey of certain
results of classical potential theory and also develop an analo-
gous, formal theory for the discrete case. We shall mainly follow

the presentation of Garabedian [18] when discussing the continuous

. case, specializing to the case of ¢ = 0. A discrete, formal theory

has previously been developed by Proskurowski and Widlund [44] but
our presentation in Sections 3.2 - 3.4 will be more complete in
several respects.
We first introduce the volume, or Newton, potential
(5.1) up(x) = (/%) [ 2(e)/r at
R
where x = (X, %X,% ), & = (E1,6,,6;) and r = ((x- )%+ (x5-£,)%
12 %02 %5/ 1252753 17 %1 2”52

2,1/2

v (g - 85)2) Y2,

tion of the operator -A, i.e.,

We note that (1/47)(1/r) is a fundamental solu-

—Auv =1 .

A single layer potential, with a charge density p, is given by,

(3.2) Vix) = (1er) [ p(e)/r o
o0

and a double layer potential, with a dipole moment density u, by

(3.3) Wx) = (1/em) | w(€)(3/3v,)(1/r)do
o0

Here v denotes the normal of the boundary o directed towards the
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interior of Q. By"y% and 9*7, we denote the limits of <% when

the boundary is approached from the outside and inside respectively

and similar notations are also used for the limits of’}’l/.~ The func-

tions ‘¥ and %/'are real analytic functions in the'complement

of 30. By using a Green's formula one can establish that 2° and

3W/3v are continuous and that jump conditions hold for 37%%/dv

and 7% ; see Garabedian [18]), Chapter 9. Thus, for a region with a

smooth boundary,

2‘,+ = k’L-i"

224(+) /3y

(3) o + (1/2r) [ p(d/ov,)(1/r)ac

N

w*) =y us ren [ e/ (1/r)a0
o0

N /v = dW /v .

With the>aid of these relations the Neumann and Dirichlet problems

can be reduced to Fredholm integral equations. For the interior

Neumann problem,

- we make the Ansatz,

-Au = T in Q ,

gy on AN ,

Q/
[
N
Q/
b
I

u(x) = u_v'.(x) + 04 (x)

The boundary condition is satisfied by choosing p such that
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2% /ov = -p + (1/2r) | pld/v,)(1/r)do
.

(3.4) gy - (a/aV)uV’a;) =g .

-g, where K is a compact

i

This equation can be written as (I-K)p
operator defined by the formula above. It is a Fredholm integral
equation of the second kind with a simple zero eigenvalue. Since
K is.compact in L2 the integral operator I-K is bounded in L2 and
it has an inverse of the same form on a space of codimension one.
Equation (3.4) is solvable if g is orthogonal.to the left eigen-
function of (I-K) corresponding to the zero eigenvalue. In this
case this simply means that E should have a zero mean value. By
using the same Ansatz for the exterior Neumann problem, we obtain
an integral equation with the operator I+K.

If we use the same single layer Ansatz for the interior
Dirichlet problem, with data 8ps we get an integral equation of the

first kind,

(l/gﬂ“a[o p/r" do = gy - Uy .

This operator does not have a bounded - inverse in L,. The use of
an analogous Ansatz for the discrete Dirichlet problem éives rise
to capacitance matrices which become increasingly ill-conditioned
as the mesh is refined.

The Ansatz

u(x) = uy(x) +Wix) ,

which employs a double layer potential, leads to a Fredholm
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integral equation of the second kinds

o+ (1/2r) [ u(3/av,)(1/x)a0
N

°D uvlao .

’)‘y’—

1

(3.5)

The integral operator is now I+KT, where KT is the transpose of the
operator introduced when solving the Neumann problems. We shall
obtain well-conditioned capacitance matrices when using a discrete
analogue of this approach.

The close relationship between the integral equations for the
interior Dirichlet and exterior Neumann problems is used to
establish the solvability of the Dirichlet problem; see Garabedian
[18], Chapter 10. A similar argument is given in Section 3.3 for
a discrete case.

The integral operator K is not symmetric except for very
special regions. Nevertheless it has real eigenvalues; see e.g.
Kellogg [32], p. 309. For future reference; we also note that
there exist variational formulations of the Fredholm integral equa-

tions given in this section; see Nedelec and Planchard [37]1. It

can be shown that the mapping defined by the single layer potential

Y is an isomorphism from H_l/z(ao)/Po to the subspace of Hl(())/PO

of weak solutions of Laplace's equation. Here Hl(o) is the space

of functions with square integrable first distributional deriva-
tives, Hl/g(ao) the space of traces of Hl(o), H_l/z(&d) the space
dual to Hl/Z(BO), and P_ the space of constants. By substituting
the single layer potential into the standard variational formula-

tion of the interior Neumann problem and using a Green's formula,
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an alternative formulation is obtained. The resulting bilinear
form is coercive on H'l/z(ao)/PO and is equivalent to equation
(3.4).

Before we turn to the discrete problems, we note that, in the
theory Jjust developed, the function (1/4w)(1/r) can be replaced by
other fundamental solutions of the Laplace operator. In particular,
we can use a Green's function for a rectangular parallelepiped in
which the region () is imbedded. The theory can also be extended,
in a straightforward way, to Helmholtz's equation with a nonzero

coefficient c.

5.2. Discrete Potential Theory

We now return to the solution of Au = b, (equation (2.1))
with A = B~+UZT. Gulded by the theory for the continuous case, we
shall develop two algorithms, one suitable for the Neumann and the
other for the Dirichlet case.

We shall assume that B is invertible. This is not a very
restrictive assumption since we have a great deal of freedom to
choose the boundary ‘conditions on the larger region.

We recall from Section 2.1 that the columns of U were chosen
to be unit vectors corresponding to the irregular mesh points. If.

we order the points of Oh first, followed by those of boh and CQh,

we can obtain the representation,
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where I is a pXp identity matrix. Let us, in analogy to the con-

tinuous case, make the Ansatz
(3.6) u = Gb + GWs

where the vector s has p components, G is the inverse of B, and W

has the form

The operator G plays a role very similar to that of-a fundamental
solution for the continuous problem. The second term GWs corre-
sponds to a single or double layer potential. For additional
flexibility, we have introduced the mesh function % which colncides
with b except possibly at the irregular points of aoh. In particu-
lar, if the Helmholtz equation hags a zero right hand side, we can
often choose g = 0, eliminating the first term of the Ansatz. To

arrive at an equation for the vector s, we calculate the residual,

b-Au = b - (B+U2ZL)(aB + cws)

T T

= (b-B) - UZ'GD - (I+ UZG)Ws .

From the form of %, U, and W, we have the following result:

Lemma 3.1. The residuals for the system (2.1) corresponding to the
points of O, are zero for any choice of the vector s in (3.6). If

the matrix W3 is zero they also vanish at all points of Ooh.

We now demand that the residuals vanish on the set BOh:

T T

T

(b -Au) = UL (b-D)- 27ab - UTAGHS .
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This gives us a system of p equations:

T T T

(3.7) Cs = UAGWs = (U'W+Z °GW)s = U T

T(p-%) - 2z%D

where C is the capacitance matrix. We ignore the residuals

on the set CO, since the extension of the data to this set is

h
largely arbitrary. It follows from the reducible structure of A
that if the capacitance matrix C is nonsingular the restriction of
the mesh function u, given by formula (3.6), solves the discrete
Helmholtz equation. We shall now discuss two choices of the matrix
W and study the invertibility of the resulting matrices.

For a Neumann problem, our choice of W should correspond to
a single layer Ansatz. We therefore choose W = U and note that the

T

capacitance matrix C. = U AGU is then the restriction of AG to the

N
subspace corresponding to the set Boh. Using equations (3.6) and

(3.7), we find,

u = b -cu(utacy) T(zTed - uT(b-3)) .

This is, for P = b, the well known Woodbury formula; see
Householder [29]. For completeness, we give a proof of the

following result.

Theorem 3.1. The capacitance matrix C, is singular if and only if

N
the matrix A is singular. For b = b the equation (3.7) fails to

have a solution if and only if b does not lie in the range of A.

Proof: ILet ¢ be a nontrivial element of the null space of C

Then since CN = I-FZTGU, the vector

N

zTaud = -¢



is nonzero and therefore GU¢ cannot vanish identically. But
AGU = UCN¢ = 0 and therefore A is singular. Let now ¥ belong to

the null space of C§ and assume that

v (zTab) = (W 2Ta ) £ o .

Then b does not belong to the range of A since

T

T Trzuvhelzy = 20 = O .

aTetzy = (BT +zu

Finally given data for equation (2.1), which does not belong to the
range of A, equation (3.7) cannot be solvable since otherwise formula A
(3.6) would provide a solution of equation (2.1).

The Woodbury formula is popular for computation, especially
when the rank p of A-B is-small. In our application, p is usually
very large, often exceeding 1000. This precludes the computation
and storage of the dense, nonsymmetric matrix CN' We must there-

fore solve the pX p linear system,

(3.8) ¢ s = UL (b-5) - 276D

by an iterative method which does not require the explicit calcu-

lation of the elements of C see further Section 4. We see from

N;
equation (3.6) that in addition to solving the system (3.8 ), we
need only to solve at most two simple Helmholtz problems on the

entire mesh in order to complete the calculation of the solution u.

Our main task is therefore the efficient solution of equation

(3.8).
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The efficiency of the iterative solution of equation (3.8)
depends crucially on the distribution of the singular values of CN.
The choice W = U is suitable for Neumann problems, since it is

based on a single layer Ansatz,but it gives rise to increasingly

problems.

An alternative to the Woodbury formula gives well-conditioned
capacitance matrices for the Dirichlet problem. We shall special-
ize to a case of a uniform rectangular mesh; cf. Section 2.2. Our
choice of W should correspond to a double layer potential. ILet
W = VD, where D is a square diagonal matrix of nonzero scale fac-
tors and each column of V represents a discrete dipole of unit
strength associated with an irregular mesh point. The solution to

our problem is then

T

u = 6% - ovD(uTagyD) T (2Teb - uT(b-D))

and the capacitance matrix is CD = UTAGVD.

|
ill-conditioned capacitance matrices if applied to Dirichlet

We would like to construct the discrete dipoles by placing a
positive unit charge at an irregular mesh point and a negative unit
charge at another point located on the exterior normal through the 1
irregular point. Since the data for the fast Poisson solver must
be given at mesh points only, we instead divide this negative
charge and place it on three mesh points. As an example, consider
an irregular mesh point with indices (i,J,k), for which the
exterior normal through this mesh point lies in the positive

octant. Iet the distances, measured in units of the mesh size, to

the boundary along the three positive coordinate axes be 6+l’ 6+2
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and 6+ respectively. Let further O < b ) We find

3 +1 = %42 2 6+3‘
the first of the three mesh points for the negative charges by
moving in the positive xl—direction, the direction of the smallest
distance, to the point (i+l,j,k). The weight for this point is

-(1 -8 We then proceed in the x,-direction, the direction

+1/6+2)'
of the medium distance, to the point (i+l, j+1,k) which is given the

weight —(6+1/6+2 - 6+1/6+3) and we finally go to the point (i+l,

j+1,k+1) which is given the weight '6+1/6+3' We note that all these

are nonpositive and that their sum equals -1. Assuming that the
boundary o0 is smooth enough, we find by expanding the expression

vlv in a Taylor series, that it equals ha(Bv/Bv)+-o(h) where

-2 -2 -2,1/2

(3.9) hy = ho (6 +5 >

5 +1

For future reference, we note that the area, A of the triangle

6)
with vertices at the intersections of the boundary and the mesh

lines through the irregular mesh point is

.2 -2 -2 -2.,1/2
Ay = (07/2)8,18, 50, 5(6, 1 " 40,5 "+8,577)

For a region with a smooth boundary none of the mesh points
used in the discrete dipole construction belong to the set()h pPro-
vided that the mesh is fine enough. We shall assume that this
condition is satisfied and reject any problem which violates it.
For an irregular mesh point which, along the same mesh line, is
within h of the boundary in both the positive and negative direc-
tions, we use the smaller distance of the two in the dipole con-

struction, resolving a tie in an arbitrary way.
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3.3, The Invertibility of the Matrix CD

An attempt to prove that C. is nonsingular, modeled strictly -

D
on the proof of Theorem 3.1, is not successful and some additional
ideas must be introduced. The proof of the following theorem is in

an important part due to Arthur Shieh.

Theorem 3.2. Assume that the discrete Helmholtz problem is

uniquely solvable, that ¢ > O, and that the matrix B is of positive
type. Assume further that any mesh function of the form GUy takes
on a maximum or a minimum. Then the capacitance matrix CD is

invertible.

Remark. The last assumption of this theorem is of course always

\
satisfied if the number of mesh points is finite. It must be veri- -
fied for fast solvers on regions with an infinite number of points;

cf. Section 5.

Proof: We begin as in our proof of Theorem 3.1. To simplify our
notations, we choose D = I. Suppose that there exists an eigen-
vector ¢ such that CD¢==UTAGV¢ = 0. The mesh function AGV$ there- ‘
fore vanishes on Boh and by Lemma 3.1, it also vanishes on.oh. |
Since the discrete problem represented by the matrix All is
uniquely solvable, the mesh function GV$ vanishes for all
X € OhLJBQh. Conversely if there exists a nontrivial vector ¢ such
that GV$ is identically zero on,Oh}JBOh, then by the reducible
structure of A, CD¢ = 0.

To conclude, we must prove that there exists no nontrivial

discrete dipole potential which vanishes identically on Qh}Jaoh.

We shall work with a very primitive approximation of the Dirichlet
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problem, since the particular choice of the rows of A corre-
sponding to the points of Boh is of no importance in this context
and also use a simple approximation of an exterior Neumann problem.
After a suitable symmetric permutation, which we suppress in order
to simplify our notations, we write the discrete Helmholtz operator

on the entire mesh in the form,

By By, O
Byy  Boop  Bos
0 By, By .

Here the subscripts 1, 2 and 3 refer to the interior, irregular and
exterior mesh points, respectively. Our interior Dirichlet problem

is simply chosen so that

Bip By O
B, = | o I 0
o B B )
52 33

The dipole capacitance matrix is then

CD = G22V2+-G25V3 s

wWhere a discrete dipole layer is written as

0

<

Vu = é (VI

bﬁ

~

The matrices Gij’ i,j = 1,2,3, are the blocks of the inverse of B.
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The exterior Neumann problem is approximated by

Bj; By O
~ T T
K = |o v,V

Using a single layer Ansatz, the capacitance matrix becomes

T T
N = Voloo tV3G5, -

By the symmetry of the operator G, we obtaln

r\;T_m .
CD = CN ;

cf. the continuous case. By the arguments given in the proof of

~

Theorem 3.1 the matrix CN is invertible if

o,
K GUy = 0

only for ¢ = 0. Let ¢ = 0. Since, by assumption, GUy attains an
extremal value and XN clearly satisfies a discrete maximum princi-
ple, we can conclude that GU¥ is a constant and that then
BGUy = Uy = 0. This argument can easily be modified for the case
of ¢ > 0 and the proof is therefore concluded.

We note that the assumptions of this theorem, except for the

invertibility of the matrix A were used solely to prove that the

11’
null spaces of XN and B coincide. We also note that one of the
arguments given in a similar context in Proskurowski and Widlund
[441 is incorrect. The proof given above can be modified to give
rather crude, but still quite useful estimates of the condition

number of the matrix Cp, see Shieh [48].
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‘3.3. The Choice of Scale Factors

The capacitarice matrix equation (3.7) is solved by iterative

methods and it is therefore gquite important to use a suitable

scaling of the variables and the equations. When choosing the
scaling, we shall be guided by an interpretation of equation (3.7)
as approximations of the well conditioned continuous problems (3.4)
and (3.5). We shall only discuss the Dirichilet case, since a
discussion of the Neumann problem adds liitle new, and also
specialize to the case when ¢ = 0.

The scaling of C., 1s carried out by choosing the matrix D and

D
the row sums of UTA or equivalently the row sums of ZT. It is easy
to see that these are strictly positive in the special case con-
sidered in Section 2.2 and that this property holds for any other
consistent approximation of the Dirichlet problem for laplace's
equation. We shall now show that it is appropriaté to choose D=1
and to make the row sums of ZT equal to two.

With this choice of D the first term of the capacitance
matrix CD equals UTV; see (3.7). In the typiéal case where all the
mesh pbints corresponding to the negative weights belong to Coh,
UTV = T. When we turn to the other term, we first note that it can
be shown, by elementary arguments, that with the choice of scaling
of the matrix B consistent with the formulas in Section 2.2, h_lG,
regarded as a mesh function, approximates r{x,¢), a fundamental
solution of the Laplace operator. In Section 3.2, we have inter-
preted VT as a difference operator in the normal direction. We
find that (hha)_lZTGV formally converges to 26r/av€ since the opera-

tor ZT is a local difference operator with a combined weight equal
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to two; see (3.9). By using finite difference theory or by
studying the discrete fundamental solution directly, we can show
that this convergence is point-wise for any x # €. See Shieh [46]
or Thomee [55]. We note, however, that this convergence fails to
be uniform. See further discussion below.

We want to interpret the vector ZTGVu as a numerical quadra-

ture approximation of the corresponding term

(3.10) 2 f 2 /v udo
'@

of a Fredholm integral equation similar to equation (3.5). We note
that the factor 2 is appropriate since the function (1/27)(1/r)
appearing in that equation is twice a fundamental solution of the
Laplace operator. To verify that our choice of scalings gives é
formally convergent approximation, we must consider the density of
the discrete dipoles and the area elements to be assigned to them.
Since the distances between the dipoles vary in a highly irregular
way, we shall consider local averages over patches of the boundary
with a diameter on the order of /E. Over an area of that size the
direction of the normal can be regarded as a constant. We shall
specialize to the case discussed in Section 3.2, in which the dis-
crete dipoles were introduced, and use the same notations. In the
patch considered there is then cne irregular mesh point within a
distance of h to the boundary along any mesh line through the patch

parallel to the xl—axis. The area A previously computed, should

6’

therefore be compared with the area (h2/2)6 of the other rele-

+2%43

vant face of the polyhedron with vertices at the irregular point
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and the intersections of the mesh lines and the boundary. Each

dipole should therefore be assigned the weight,

-2 -2 -2

42045 (B 1 +0,5+0,5)

1/2 -2 -2 _-2.1/2

+ 0

2 41847 T8,5+0,3) = hg/h .

B =8

+1 /512043

Combining these observations, we see that ZTGVu formally converges
to the integral (3.10).

It 1s natural to ask 1f the singular values of C. converge to

D
those of the integral operator. This is not in general the case,
a fact intimately related to the non-uniform distribution of the

irregular mesh points. The study of this question is of very con-

siderable difficulty. Following Shieh [46,47,48], let

CD = Bh-I—Kh B

where Bh represents the coupling between irregular mesh points

which are within /h of each other. With the scaling introduced
above Kh converges pointwise to the correct integral operator.

However, the operator B, is not in general a formally convergent

h
approximation of the identity operator, but for certain important
finite difference schemes and general plane regions Shieh [46,47,
48] has been able to show that the spectral condition number of Bh
can be be bounded independently of h. These results, combined with
the crude estimates of the spectral condition number CD mentioned
in the previous subsection, suffice to show that the-number of con-
Jugate gradient steps required for a specific decrease of the error
grows only in proportion to log (1/h). See also Proskurowski [41,

b2 4371, Proskurowski and Widlund (44,451 and Section 6 of this

paper for numerical evidence.
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4. capacitance Matrix Algorithms

4.1. The Generation of the Capacitance Matrix

Wevhave previously pointed out that the central problem in
our work is the efficient solution of equation (3.7). In this
section, we shall examine various alternatives.

We shall first consider the cost of computing the capacitance

T

matrices CN = UTAGU and CD = U AGV respectively. These are pXp

dense nonsymmetic matrices where-p is the number of variables
associated with the set aohf Since the matrices UTA, UT and VT
have only a few non-zero elemenﬂs per row, the computation of an
individual element of CN or CD requires only a modest number of
arithmetic operations if the elements of G are known. Since the
order of G is at least as large as the number of mesh points 1n
Qh}Jaﬂh, the computation and storage of all its elements is out of
the question. Alternatively, columns of CN.or CD can be computed
oéne at a time using the fast solver once per column of GU or GV.
For problems in three dimensions the cost would be enormous.

The number of arithmetic operations can be'reduced drasti-
cally by using a device described already in Widlund [56]. The
separable problem can be made periodic dr the larger region can
otherwise be choéen without a boundary. In the absence of a
boundary, the problem becomes translation invariant in the sense
that the solution at any mesh point, due to a single point charge

at another mesh point, depends only on the difference of the co-

ordinates of the two mesh points. One use of the fast Poisson
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solver, with a discrete delta function as data, provides one column
of the matrix of G. By this observation, all elements of G are
then easily available from this one solution. Given a column of G,
the entire capacitance matrix can then be found at an expense
which grows in proportion to p2. This cost is thus of the same
order of magnitude as the evaluation of a numerical quadrature
approximation of the integral equations of the classical potential
theory (see, for example, (3.5)) employing a comparable number of
quadrature points. At an expense of pB/B multiplications and
additions, a triangular factorization of the capacitance matrix
can be computed by Gaussian elimination. The solution of the
capacitance matrix equation (3.7) can then be found at an
additional expense of p2 additions and multiplications.

If the capacitance matrix is available, the equation (3.7)
can also be solved by iterative methods at an expense of
between p2 and 2p2 additions and multiplications per step; see fur-
ther Proskurowski and Widlund [44]. When using an iterative
method of this kind, the elements of the capacitance matrix can
either be stored, possibly on a secondary mass storage device, or
they can be regenerated whehever they are needed.

In two dimenhsions the number of irregular mesh points typi-
cally grows only in proportion to Nl/2 while in three dimensions
the growth is proporticnal to NE/B. Many problems in the plane can
be solved satisfactorily using a value of p which is less than 200

but in three dimensions values of p in excess of 1000 occur even

for quite coarse meshes.  We must therefore find alternative
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algorithms which do not require the storage or direct manipulation
of the large capacitance matrices unless we are willing to accept

a very substantial number of arithmetic operations and the use of

out of core storage devices.

To put the methods discussed so far in some perspective, we
compare them with known results on symmetric Gaussian elimination
methods applied to standard finite difference problems in two and
three dimensions. For problems in two dimensions Hoffman, Martin
and Rose [28] have shown that the number of non-zero elements of
the triangular factors must grow at least in proportion to
N 1og2 N. George [20] has designed such optimal methods and also
shown that at least NB/2 multiplications and additions are required
to carry out the facvorization step. The corresponding best

L/3

bounds for three dimensional problems are on the order of N and
N2 respectively; see Eisenstat [13], Eisenstat, Schultz and
Sherman [ 147.

We shall now demonstrate that we can compute the product of
a capacitance matrix and any vector t at a much smaller expense.
In the next subsections, we shall show how such products can be
used in efficiently solving equatiorn (3.7) by iterative
methods. We note that in their original form these ideas are due
to George [19]. We shall specialize this discussion to the dis-
crete dipole case, CDt = UTAGVt, but similar remarks can be made
for the discrete Neumann problem.

We first note that the generation of the mesh function Vt

can be carried out using only on the order of p operations on a

three dimensional array initialized to zero. The fast Poisson
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solver is then applied to give GVt and only on the order of p

operations are then needed to obtain CDt=:UTA(GVt); Similarly C%

can be obtained, if so desired, by using a factored form of the

t

matrix. The sparse matrices UTA and V can be computed from the
coordinates of the irregular points and other local information on
the geometry of the region using only on the order of p arithmetic
operations. Since it is inexpensive to generate these matrices,
we can choose to recompute their non-zero elements whenever they
are needed but they could also be stored at a cost of on the order
of p storage locations. | |

We remark that when UTAGVt is computed from GVt only a small
fraction of the values of this mesh function is needed. Similarly
the vector Vt is very sparse. This has inspired the development of
fast Poisson solvers which exploit the sparsity inherent in

problems of this kind; see further discussion in Section 5.

L.2. The Use of the Standard Conjugate Gradient Method

We shall first review some material on conjugate gradient
methods and then discuss their use in solving equation (3.7).

Let Mv = ¢ be a linear system of equations with a gymmetric,
positive definite matrix M. The k-th iterate Vi of the conjugate

gradient method can then be characterized as the minimizing

element for the problém,

T

(4.1) : min vIMy - vic

V-V
OeS

| -

(k)

Here S<k) is the subspace spanned by the first k elements of the
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Krylov sequence,

2
r ,Mr , M r ,...
O’ O, o)

where r, = c--MvO is the initial residual and Vs is the initial
guess. See further Hestenes and Stiefel [23] or Luenberger [34].

The k-th iterate is thus of the form

v, = Vot P _ (M)r

k k-1

o) 2

where P is some polynomial of degree k-1l. The quadratic form in

k-1
(4.1) differs from the error functional

only by an irrelevant constant term. Here v is the exact solution.
The optimality result (4.1) and an expansion of the initial error

V-V in the eigenvectors of M easily leads to the estimate
(4.2) E(v

where o(M) is the spectrum of M. See further Daniel [ ], Kaniel
[31] or Luenberger [34]. This inequality remains valid if eigen-
values corresponding to modes absent from the initial error are
ignored when forming the maximum in (4.2). This is important since
it allows us the use of the method and the estimate for semi-
definite problems if the data and initial guess lie in the range of
the operator.

From inequality (4.2) and a special construction of the poly-

nomial Pk—l in terms of Chebyshev polynomials, the estimate
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(5.3)  E(vy) = (2(1-1/0)%/((1+ 1407+ (1- 1467 (v ) |

is easily obtained; see references given above. Here k¢ is the
spectral condition number of the operator M. When this ratio x of
eigenvalues of M is computed, we can again ignore eigenvalues
corresponding to modes which are absent from the initial error.

A convenlent way of implementing the conjugate gradient
algorithm is as follows:

Let Vs be an initial guess. Compute

(4.4) r,=c-Mv_

and set P, = T,
For k = 0,1,2,...:

Update the solution and the residual by

Virr T Vi TPy o

(4.5) Ty = T - 9 Mpy
where

_.T T
(4.6) ak = rkrk/PkMpk

provides the minimum of the error functional along the search
direction Dy -

Compute a new M-conjugate search direction by

(5.7) Pl = Tren PP

where

T T
(4.8) By = Tei1Tre1/Te
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We note that the use of this algorithm requires no a priori
information on the spectrum of M. By a standard result, the

residual vectors r, are mutually orthogonal; see Luenberger [34].

k
In order to use this algorithm to solve the Dirichlet

problem, we first form the normal equations equivalent to equation

(3.7) and obtain,

T T
CCps = CD(-Z

T - uT(B-b)) .

We expect that the new matrix CgCD will still be quite well
conditioned. The product of it and an arbitrary vector can be
obtained by the methods described in Section 4.1.

In our experience the inequality (4.3 ) gives realistic bounds
for Helmholtz problems with non-negative values of c¢. If a
negative value of ¢ 1is chosen so that the discrete Helmholtz
operator is almost singular, the capacitance matrix must have at
least one small singular value. By analogy with the continuous
case, we however expect that there will only be a few such values,
well separated from the rest of the spectrum. Bounds, much
improved in comparison with (4.3 ), can therefore be obtained from
inequality (4.2) by constructing polynomials which vanish at the
isolated small eigenvalues of M and are small over the interval
containing the rest of the spectrum. A similar idea was used by
Hayes [21], who proved that the conjugate gradient algorithm is
superlinearly convergent when applied to a Fredholm integral equa-
tion of the second kind. See Widlund [57] and Proskurowski

and Widlund [44] for further discussion . Such arguments are also

central in the work of Shieh [47]. He was able to prove that all
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except a fixed number of singular values of certain capacitance
matrices for problems in the plane lie in a fixed interval while
the remaining few are no closer than th, K and g constants,.from
the origin. A construction of polynomials as indicated above leads
to a bound for the number of iterations required to obtain a pre-
scribed reduction of the error. This bound grows only in propor-.
tion to log (1/h).

The algorithm described in this section can equally well be

used for the capacitance matrix equation (3.8).

4.3. An Alternative Conjugate Gradient Algorithm for Neumann

Problems

We shall now describe an alternative conjugate gradient
method, which can be used with the single layer Ansatz for discrete
Helmholtz problems with positive semi-definite symmetric coeffi-
cient matrices. It has the advantage that a normal equation formu-
lation of the éapacitance matrix equation can be avoided and the
cost per step is therefore reduced by a factor two. That such a
reduction is possible is not immediately apparent since the con-
tinuous analogue of the capacitance métrixkis a nonsymmetric opera-
tor. The search for a method of this kind was inspired by the
variational formulation of the Fredholm integral equations men-
tioned in subseétion 3.1. This algorithm has recently been
implemented successfully by Proskurowski and Widlund [45] for a

finite element approximation of the two dimensional Neumann problem.

Consider the solution of a linear systém of the form
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N ) . . . . .
where A is a positive semi-definite, symmetric operator. We make

the Ansatz

where 5 is a suitable, strictly positive definite symmetric opera-
tor. A new variable is now introduced by z = él/gy and the re-

1/2

sulting equation i1s multiplied by 5

BRI, - 2

The new operator is symmetric,bpositive semi-definite while KE in
general fails to be symmetric. The standard'conjugate gradient
algorithm is applied to this transformed system and the final
algorithm is then obtained by returning to the variablé Ve

Carrying out this substitution, we find that the formulas
given in Section 4.2 must be modified in two respects:

Replace the operator M by Ka'when calculating the residuals
by formulas (4.4) and (4.5). |

In the calculation of the parameters a, and Bk, in formulas

k
(4.6) and (4.8), replace the inner products rgrK and ngpk by
r’8r  and piGAG cctivel
K rk n ka ka respectively.

The error estimates (4.2) and (4.3 ) apply in this case. The

~
relevant spectrum is now that of the operator KGu
~

In our application A is the operator corresponding to the

discretization of the Helmholtz problem on the original region Q,

and E the restriction of the operator G to the set Ohljaoh. No

extension of the operator K to a larger region is necessary. If
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N then so will the

vector y, since the solution x can be expressed as a discrete

the right-hand side b vanishes on the set O

single layer potential. The iteration can therefore be organized
using only vectors with p components. A version of the algorithm
has been designed which requires only one application of operator
E in each step. For details see Proskurowski and Widlund [45].

In our problem the possibility of using the sparsity of the
vectors Vi gives this algorithm an advantage over the generalized
conjugate gradieﬁt algorithm considered by Concus, Golub and
O'Ieary [10] and others; see also Hestenes [22]. Their algorithm
is obtained from ours by using the iterates X = Eyk. The vectors
Xk fail to be sparse in our applications.

4.4, Estimates of the Singular Values and Approximate Inverses of

Capacitance Matrices

We have previously pointed out that the residuals Ty of the
conjugate gradient method are orthogonal. By combining formulas

(4.5) and (4.7), eliminating the vectors p,, we obtain,

I

Mr
0O

(4.9)
Mry = - (Lo )1y + (Lo 48y /o 3)my = (B 1/ 1 )7y

- (Lo )ry + (Lo )ry

Tet R(k) be a matrix with its k columns chosen as the normalized
residual vectors. Using the definition of the parameter Bk’ the

formulas (4.9) can be rewritten as,

MR(k) = R(k)J(K)— (/BEjZ/ﬁ(ak_llrkl))rkeg .
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Here €y is a unit vector in the direction of the positive k-th

coordinate direction and J(K) the symmetric, tridiagonal matrix,

( 1/a - VE;/GO , A

0
J(k) = - JE;/dO <l/dl-FBo/ao) —‘/Ezyal
3 ... .. ..)
Using the orthogonality of the residuals, we find that
708) _ g(E)Tp(x)
i.e. J(K) is a matrix representation of the restriction of the

operator M to the space spanned by the vectors Tseeas? This

k-1°
space can easily be shown to be the same as the Krylov subspace
s(8) imich was defined in Section 4.2. See further Engeli,
Ginsburg, Rutishauser and Stiefel [15].

We shall exploit these facts in two ways. Approximations of
the eigenvalues of M are obtained.from the eigenvalues of J(k).

The eigenvalues of J(k) interlace those of J(k+l)

and improved
estimates of the largest and smallest eigenvalues of M and a lower
bound for its condition number are therefore obtained in each step.
This procedure is in fact a variant of a well known eigenvalue
algorithm due to Lanczos [33]. The extreme eigenvalues of J<k)
often converge quite rapidly. See for example, Kaniel [31] and
Paige [38]. 1In our problems we quickly obtain realistic estimates
of the condition number of M. This idea has proven a very useful

tool in the development of our algorithms, in particular when

different scalings of the capacitance matrices were tested. The
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cost of computing the eigenvalues of J(k) is very moderate and

grows no faster than k2.

The analogy between the capacitance matrices and the Fredholm
integral operators of the second'kind inspired an attempt to com-
pute and use approximate inverses of these matrices of the form of
an identity operator plus a low rank operator. The information
contained in the matrices j(K) and R(k) was used as follows. We
suppose that these matrices have been retained from a previous
problem with the same coefficient matrix but with different data.
(k) can then

The component R<k)to of the new solution in the space S

be computed inexpensively by solving the tridiagonal system,

J(k)to =rE)Tg _8)

O

. where @O and ¢ are the initial guess and the data for the new
problem respectively. We can then start the conjugate gradient.

iteration from the initial point Go - (k>to

This procedure re-
quires kp +2k-1 additional storage locations. The computational
cost is modest since the improved initial guess essentially only
requires the calculation of k inner products of length p and the
linear combination R(k)to. The same improved initial guess could
also be obtained by using a variable metric algorithm for the first
set of data, with the identity matrix as a first approximation of
the Hessian, aﬁd then using the updated Hessian in the calculation
of the second solution. See Broyden [4 ], Huang [30] and Myers
[36]. We note that our method clearly retains only the minimum of
necessary information to obtain the projection of the new solution

(k)

on S .
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5. Fast Poisson Solvers in Three Dimensions

In this section, we shall describe several variantsvof a

- Fourier-Toeplitz method for the discrete Helmholtz equation on a
region for which the variables can be separated. We use a Fourier
transformation for two of the three wvariables and  solve the tri-
diagonal linear systems of equations, which result from this chaﬁge
of basis, by a Toeplitz method. See Fischer, Golub, Hald, Leiva
and Widlund [16] and Proskurowski and Widlund [44] for descriptions
of similar algorithms for two dimensional problems. As shown by
Proskurowski [43], for problems in two dimensions, the execution
time of a well written code of this kind can compare quite favor-
ably with those of good programs implementing other better known
methods. We also note that Wilhelmson and Ericksen [58] have
presented strong evidence which shows that methods based on Fourier
analysis should be chosen for problems in three dimensions. Our
methods are designed so that we can guarantee a very high degree

of numerical stability for all values of the coefficient c,
positive or negative.

We shall consider the solution of the Helmholtz equation
-Au +cu = T

on the unit cube, 0 <x <1, 0 <y =< l, 0 <z = 1l. Periodicity

conditions are imposed on the data and the solution by

f(x+l:Y:Z) = f(X’y+l:Z) = f(X:y:Z)
and
u(x+l,y,z) = u(x,y+l,z) = u(x,y,2)
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and a homogeneous Dirichlet condition is used at z = O,
u(x,y,0) =0

We also assume that f(x,y,0) = O. An additional boundary condition
is required at z = 1 and will be introduced below after a Fourier
transformation step. Our methods provide an extension of the solu-
tion to all positive values of z. The homogeneous condition at

z = 0 also allows us to extend the solution and the data to nega-

tive values of z by making them odd functions,

f(X:y"Z) = —f(X:y:Z)
and

—U(X,y,Z) .

u(X’yJ_Z)

When necessary, we extend the data f(x,y,z) by zero for |z| > 1.
In our experience, an alternative extension, which brings the data
more gradually to zero, offers no bénefits in our application.

We shall discuss in detail only the seven point difference
approximation and, to simplify our notations, we shall use the
same uniform mesh size h in the three coordinate directions. We
shall also, without loss of generality, concentrate on the case
when n = 1/h is an even number. The discrete Helmholtz problem can

be written as,

2

(6 +h"c)u,

ik~ M1, gk T %o, gk T Y, g+, kT Y, 5-1,k
" Uis kel " %g,k-1 - P Tigx

The same periodicity and boundary conditions are used for these

difference equations.
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It is well known that the undivided second centered
difference operator, operating on periodic functions, has the

normalized eigenfunctions
1/2 T 1/2 T
(1/n) / (1,1,...,1)" and (1/n) / (1,-1,...,=1)

corresponding to the simple eigenvalues 0 and 4, respectively, and
the (n-2)/2 double eigenvalues 2 -2 cos (2r4/n), £=1,2,...,(n-2)/2,

with the eigenfunctions

®§fﬁ = (2/n)l/2.sin (kgomr/n) ,
kK = 0,1,...,0-1
®(£) = (E/n)l/2 cos (kgom/n) ’ i
I1,k ’

The change of basis resulting in the diagonalization of the
centered difference operator can be carried out inexpensively by
a fast Fourier transform if n has many prime factors; see for
example, Cooley, Lewis and Welsh [11].

We choose to work with a partial Fourier transform, trans-
forming with respect to the two variables x and y. The resulting
operator can then be represented as the direct sum of n2 tri-
diagonal Toeplitz matrices which will be of infinite order if we
consider the problem for all positive values of z. The diagonal
elements of each of these matrices are equal to one of the numbers,

Ny = 6 +ch® -2 cos (2rg/n) -2 cos (2rm/n) , ﬁ,m==o,l,..;,n/2 ,

and the off diagonal elements equal -1.
Thus, these tridiagonal systems of equations can be represen-

ted by difference equations,
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~ N ~ P
(5.1) -u tAay -u g =h fK .
Here A = Az,m and fk and ﬁk are values at z=kh of the appropriate

components of the partial Fourier transform of the mesh functions

f and u. Since f(xX,y,z) = 0 for z > 1, § =0 for k > n. Once all

k
the components of U have been computed, the solution u can be found
for the desired values of z by an inverse fast Fourier transform.
It is well known that the fast Fourier transform algorithm is very
stable. |

We solve the tridiagonal systéms of equations by two differ-

ent methods.

case 1. If |A| > 2, we use a special simple factorization of the
matrix into triangular factors. We must first choose the addi-
tional boundary condition at z = 1. For k > n the difference equa-

tion {5.1) is homogeneous and for [A] > 2 its solution has the form

ﬁk = Auk-+Bu_k .
2 1/2 -1
Here A and B are constants and u = A/2 + (\°/4 -1) and @~ are

the roots of the characteristic equation. We note that |u| > 1.

It is natural to make A = O since the solution will then decay as

kK — +® . This is equivalent to the boundary condition an+l==“-lan
and the equation at z = 1 reduces to ua -0 = hg% . The
n n-1 n

resulting nXn tridiagonal matrix can be written as
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L 1
We have ordered the unknowns in order of decreasing indices
(Gn,...,ﬁl) and used the homogeneous Dirichlet condition at z = O
to obtain the last row of the matrix. This matrix has a most con-

venient factorization, as the product of two bidiagonal Toeplitz

matrices

The linear systems can therefore be solved by using very simple two
term recursion procedures which are highly stable since f[p| > 1.

The same procedure also works well for the case when Ia] = 2.

case 2. If |a| < 2, the roots of the characteristic equation fall
inside the unit circle and we can use the three term recursinn
formula (5.1) to compute ﬁk in a stable way. Before we can use
this marching procedure, we need to find a value of ﬁl to provide
a second initial value in addition to ao = 0. This can be done by

using the formula
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sin ({j+k[4¢) - sin (]j-k|4) .24

<D
I

!
-

which can easily be verified to give a solution of the difference
equation. Here ¢ = arccos (A/2). For j = 1, we find the simple

formula,

al _ %ﬁ; sin ((k+lg¢gi£s$n ((k-1)¢) hg%k _ %i; cos (k¢)h2%k )

There are other solutions of the difference equation (5.1), but the
present choice gives the same solution in the limit case IAN] =2 as
the method developed for Case 1. We therefore obtain a solution of
the Helmholtz problem which is a continuous function of the parame-
ter c. We also note that by our choice of boundary conditions,
instability has been avoided for all values of the parameter c.

The method requires nB(lﬁ-o(l)) storage locations and, if n
is a power of two, on the order of nB(loggn-+l) arithmetic opera-
tions.

Although quite efficient this algorithmidoes not fully
exploit the structure of our problem. During the conjugate gradi-
ent iteration the mesh functions representing the right hand sides
of the Helmholtz equation vanish except at mesh points used for
the construction of the discrete single or dipole layers.

Similarly dﬁring_this main part of the calculation, we need the
solution only at the points of the stencils of the irregular mesh
points. Thus on any line parallel to a coordinate axes only a few
source and target points have to be considered.

We shall now briefly describe a method due to Banegas [ 1].

For large problems the direct and inverse Fourier transforms with
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respect to one of the variables can be carried out more economi-
cally by computing inner products of sparse vectors and the basis
vectors of the new coordinate system. The fast Fourier transform
should be used for the second variable because after the first
Fourier transform step the arrays will no longer be sparse. The
main advantage of this variant is that it can be implemented using
only a two-dimensional work array if the necessary information on
the coordinates and values of the source and target points 1is
stored elsewhere. Only on the order of Ng/3 storage locations are
therefore required for the main iteration. See Banegas [1] and
Proskurowski [42] for more details and a discussion of the use of
a similar algorithm for Helmholtz problems in two dimensions. The
three.dimensional algorithm has not yet been implemented. The
savings in storage would not show dramatically for problems in
three dimensions unless a million words of storage 1s available.

The calculation of the space potential terms and the final
solution can also be carried out without using arrays with n3
elements. See Proskurowski [42] for a design of a third variant
of a Fourier-Toeplitz method. It requires access to all elements
of the right hand side twice but no intermediary results need to
be written on secondary storage devices. The primary storage
requirement can be reduced drastically at an expense of a modest
increase of the computational work.

We conclude this sectibn by proving a result needed in con-

nection with Theorem 3.2. We restrict ourselves to z >0 and

assume, as in that theorem, that c > O.
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Theorem 5.1. Let f have its support in 0 < z < 1 and let ¢ > O.

The mesh function u = Gf, defined by the Fourier-Toeplitz method

of this section, takes on a maximum or a minimum.

Proof. We first consider the case of c > 0. By construction all
modes of the solution decay as z — ® . The conclusion then follows
since we need to consider only a finite subset of the mesh.

For ¢ = 0, we partition the solution into two parts,
u = uo+-ul. The function U, corresponds to the lowest frequency
for which N = 2. It is easy to see that u, depends only on z and

that 1t reduces to a linear function for z > 1. wu, has a zero

1
average for each z and decays as z = . If u, is an unbounded
function the conclusion easily follows. If u, is constant for

z > 1, u takes on a maximum and a minimum on that set since any
non-trivial uq changes sign for each z and decays as z - . If

the maximum and minimum of u on 0 < 2z < 1 are also considered, an

extremal value of u on z > QO can be found.
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6. Implementation of the Algorithm and Numerical Results

6.1. The Program in Outline

We have implemented a capacitance matrix algorithm for the
three-dimensional Helmholﬁz equation as a FORTRAN program. The
Shortley-Weller approximation of the Dirichlet boundary condition
described in Section 2.2 is used, and a normal equation form of
the capacitance matrix equation is solved by using the conjugate
gradient method described in Section 4.2. Discrete dipoles are
used as‘in Section 3.2.

In designing the program, clarity and ease of modification
have been prime objectives with efficiency in execution time and
storage important but secondary. The program has been successfully
checked by the CDC ANST FORTRAN verifier on the CDC 6600 at the

Courant Institute. No machine dependent constants are used.

We shall only give an outline of the program and refer the
reader to the comments in the listing of the program for further
description of subroutine parameters and other details of organiza-
tion.

The main subroutine HEIM3D is the only subroutine with which
the user needs to have direct contact. The geometric information
necessary to describe the region, the data for the differential
equation, scratch storage space and'convergence tolerances are
passed to this routine.

. The coordinates of the irregular mesh points, altogether
3(IP1 +IP2) integer values, are needed. Here IPl is the number
of irregular points with at most one neighbor on or outside the
boundary in each coordinate direction, and IP2 is the number of

remaining irregular points.
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The signed distances from the irregular mesh points to the
boundary in the x, y and z directions, 3IP1l+ 6IP2 rgal values, are
also required. |

The data is entered by using four real arrays. The values of
the inhomogeneous term f at the mesh points are stored in a three-
dimensional array of dimension NXX NY X NZ where NX, NY and NZ are
the number of mesh points in the different coordinate directions in
the rectangular parallelepiped in which the region is embedded.
Values of this mesh function can be set arbitrarily at mesh points
on or outside of the boundary. The boundary data, i.e. the values
of the solution at the points where mesh lines cross the boundary,
are stored in three one-dimensional arrays requiring 3IP1+ 6IP2
real words of storage.

In total two real three-dimensional arrays of dimension
NXX NY X NZ and eleven one-dimensional arrays are used.
One of the one-dimensional arrays is real and of dimension
max(IPl +2IP2, NX XNZ, NYX NZ). The remaining four integer and
six real arrays arevof length IP1+ 2IP2. The need for array space
could be decreased by, among other things, packing the coordinates
of the irregular points into one array. If f is zero one of the
three-dimensional arrays is eliminated simply by not dimensioning
it in the calling program. In the general case this second array
could be kept on a secondary storage device with very little
degradation in the performance of the program. For a discussion
of further possible reduction of array space, see Section 5.

The conjugate gradiént iteration is controlled by two input

parameters NIT, the maximum number of iterations allowed, and EPS,
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a tolerance for the norm of the residual.

Upon termination the approximate solutions of the Helmholtz
and capacitance matrix equations and the residual of the capaci-
tance matrix equation are available. The values of the three-
dimensional array containing the solution at mesh points on or out-
side of the boundary are useless byproducts of the calculation.

The capacitance matrix solution can be refined, if so desired, by
additional calls of HEIM3D using current values of the dipole
strength and the residual.

A sample driver is provided in our program to illustrate the
use of the HEIM3D sgbroutine. _We note that we have found it rela-
tively convenienf to describe our regions in terms of inequalities.

HEIM3D calls other subroutines to set up the right-hand side
and solves the capacitance matrix equation. It is the only sub-
routine which needs to be modified in order to incorporate the
singular value estimates or the accumulation of an approximate
inverse discussed in Section 4.4. The right-hand side of the
capacitance matrix equation 1s calculated by the subroutine BNDRY.
The subroutines BNDRY, UTAMLT and UTATRN, all related to the finite
difference formulas near the boundary, must be changed if a differ-
ent approximation of the boundary condition is to be implemented.
The two subroutines VMULT and VTRANS depend on the discrete dipole
construction. Single layer versions of these subroutines should be
written if the program is modified to solve the Neumann problem.

The fast Poisson solver of Section 5 is implemented in sub-
routine CUBE. It uses two FFT subroutines RFORT and FORT provided

by Dr. W. Proskurowski, who has modified code written by Dr. J.

Cooley.
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The product of the capacitance matrix CD and an arbitrary
vector is formed by calling the subroutines VMULT, CUBE and UTAMLT.

Similarly, the product of CT

D and a vector is formed by using

UTATRN, CUBE and VTRANS.

The systew also has an error chécking module, HEIMCK. This
subroutine checks that enough storage space has been allocated,
that the indices of the irregular points are within range, that no
lrregular points are missing or listed twice and that the discrete
dipoles point out of the region.

One of the three-dimensional arrays, w, 1s used when checking
the geometric information for self consistency. For each irregular
point the corresponding element of w is set to indicate aoh-after
a check that this point has not been previously marked as irregular
or exterior. The current values of w at the six neighbors of the
point are checked for éonsistency by using the distances to the
boundary which are given as data. Appropriate elements of w are
then set to indicate that these points belong to Oh_uaoh or &jh.

Each line of points of the three-dimensional array.begins at
an outside point. 1In a second stage, we march across each line,
setting w to indicate Q)h until an indicator of Oh'(signalling an
error) or anh is encountered. We proceed along the line, setting
w elements to indicate Oh whénever appropriate, until we leave the
region via a point of aoh. In this way an array is created which

could be used to display the subsets O avh and Coh graphically.

h)
We then use this array and the data on the distances to the bound-
ary to check that no dipole charge falls on an interior mesh point;

see Section 3.2. Finally, we make sure that no interior mesh point

has an exterior neighbor.
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Our code could be modified to perform these checks locally,
without using a three-dimensional array.

The execution time could be reduced in several ways. In the
current program the coefficients for the difference equation at the
irregular mesh points and the dipole weights are recomputed every
time they are used. Storage of these elements would save. time.

The subroutine CUBE can be replaced by a faster Poisson solver.
Overhead in subroutine calls could be reduced through the use of

COMMON.

6.2. Numerical Experiments

Extensive numerical experiments have been carried out with
our program on the CDC 6600 at the Courant Institute and the Amdahl
L70V/6 at the University of Michigan. Dr. W. Proskurowski has also
kindly run some problems on a CDC 7600 at the Lawrence Berkeley
Laboratory. We report in detail only on experiments carried out
on the CDC 6600 using a FTN, OPT = 2, compiler and no more than
50000 words of storage for the arrays. In our experience, the
program runs about six times faster on a CDC 7600.

The runs reported have been made for problems with the solu-

2 and x2-+y2-222, but extensive experiments with

tions x2-+y2-+2z
other types of data make us confident that the performance of our
algorithm is virtually independent of the right-hand side. The
efficiency of our method as a highly specialized linear equation
solver can easily be studied for these simple solutions since there

is no truncation error. For the finest meshes, we consider only

homogeneous problems, i.e. f = 0, in order to save one three-
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dimensional array. The initial guess 1is always chosen to be zero.

The parameter EPS is used in the stopping criterion of the
conjugate gradient algorithm. The iteration is terminated when the
Euclidean norm of the residual of the capacitance matrix equation
drops below EPS):/T? where IP = IP1 +IP2. The condition number of
C%CD, K(CgCD), is estimated by using ideas from Section 4.4 and the
TQL1 subroutine of EISPACK. The time required for this calculation
is included in the tables.

Three regions have been used in these experiments and the
results are reported in Tables 1-3. The smallest recorded times
for the execution of the fast Poisson solver are .055, .432 and
2.757 seconds for 8xX8x9, 16x16x 17 and 32 x32 X 24 points
respectively.

When we examine the tables, we note the very modest growth
in the number of iterations when the size of the-problem increases.
The stability of our method is further illustrated by the very
accurate solutions obtained when the tolerance EPS is chosen to be
very small.

The experiments of Table 3 require some further comments.
Faster methods are of course available for rectangular regions.
This region has been chosen since the eigenvalues of the discrete
Laplace operator are known explicitly. We note that when c¢ is
large and positive, as in the application of our method to the
solution of a parabolic equation by an implicit method, the con-
vergence 1s extremely rapid. In such applications an excellent
initial guess i1s also normally available. Negative values of c

lead to more difficult problems. The smallest eigenvalue of the

]
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operator is %min = 52.337926 ... and another eigenvalue is equal
to 205.78497... . The values 34.892 and 77.91 approximate (;)xmin
and the average of the two smallest eigenvalues respectively. The
problems which are almost singular or indefinite are very 1ill
conditioned. However, only a few eigenvalues of CgCD are very
small and the conjugate gradient method is still relatively
successful; see further discussion in Proskurowski and Widlund [447.
Using the approximate inverse idea of Section 4.4, improved

initial approximations for the discrete dipole strength have been

obtained for a series of problems on a spherical region. To
illustrate the performance of this method, we consider the problem

of Table 1 with 1357 unknowns. The tolerance EPS was chosen to be

.1E-4 and 14 iterations were required. Eight vectors were saved

from this run and used to construct an initial approximation of the
discrete dipole layer for +two problems with solutions drastically
different from the previous one. For these subsequent problems

only 9 iterations were required to reach a comparable accuracy.

In implementing this method, precautions must be taken to

insure that round-off QOes not contaminate the computation. The
orthogonality of the residual vectors should be monitored and

vectors and parameters computed after loss of orthogonality must‘

be discarded. With careful implementation, this can be a very |

effective technique and can lead to substantial savings when many

problems are to be solved for the same region.



Table 1

Radius of 360 .424 Lok LT

Sphere

Number of
interior and 93 | 1357 7556 8796

irregular
points

Number of

irregular ' 1500 1698
points, IP 66 438 5 9

NX XNY X NZ 8% 8 %9 16 % 16 x 17  30%x 32 xolb 32 x32 x 2l

Condition

numbers 14.7 39.7 56.7 772
K(CDCD)

Tolerance, EPS |.1lE-2 .1E-5 .1E-2 .1E-5 .1E-8 .1E-2 .1E-5 .1E-8 .1E-2 .1E-5

Number of ) > o .
iterations 5 | 9 7 15 22 8 7 7

Maximum error 403E-2 .936E-5|.314E-1 .167E-5 .596E-8|.384E-1 .367E-L .2620E-7|.58LE-1 .548E-4

Total execution . . 1
time in seconds|'22° 1.58 9‘03 ~1r.9  25.9 | 58.5 117 173 58.8 16

Percentage of

time spent ' . . . ) m
using the fast 65.0 68.8 72.7 76.1 76.8 81.1 8L .3 85.5 80.1 83

Poisson solver

Experiments with spherical regions centered at (.5,.5,.5) with ¢ = 0.

7S




Table 2

Number of interior 2050 10464
and irregular points
Number of irregular
points, IP 1000 3172
NX X NY x NZ 16 x 16 x 17 32X 32 x24
Condition number, ¢ 4

T 02 55
K(CDCD)
Tolerance, EPS L1E-2 .1E-5 .1E-8 1E-2 .1E-5 .1E-8
Number of iterations 13 23 32 13 23 55
Maximum error .258E-1 .325E-4 .377E-7|.517E-1 .554E-3 .805E-7
Total execution
time in seconds 19.7 33.1 45.5 101 7l 255
Percentage of time
spent using the 62.3 63.3 63.5 75.3 77.1 77.6
fast Poisson solver

Experiments with ¢ =

0 and a cube with a sphere cut out, 0.1 < x < 0.9,

2 2

0.1 <y <0.9, 0.1 <z < 0.9 and x2+-y + z

> (0.2)°.

2

1]




Table 3

The

constant o 100 0 -34.892|-52.238 -77.91 -205.5
Condition

numger 2.39 27.1 4o.2 {6.07E+6 4 .35E+3 8.78E+5
K(QDCD)

gggeraﬂce’ .1E-3  .1E-5  1E-11 |.1E-3  .1E-5 .1E-11 |.1E-7 |.1E-7 |.1E-5 .1E-11 -
Number of

i terations 4 6 15 8 12 23 20 4o ,47 66 200
g?ﬁiﬁum .121E-2 .233E-4 .140E-10(.433E-2 .177E-4 .201E-10|.371E-6{.124E-6|.343E-4 .372E-10|.995E-5
Execution s

time in 6.76 9.43 20.2 11.4 16.4 30.0 27.9 52.3 60.0 85.6 259
seconds

Experiment with the region 0.125 <X <0.875, 0.125 <y < 0.875 and
0.125 < z < 0.875 and different values of c¢ and EPS.
interior and irregular points is 1331 and IP, NX, NY and NZ are 602,

16, 16 and 17, respectively.

time is used by the fast Poisson solver.

The number of

Between 70.3 and T4.1% of the execution

9%
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PROGRAM DPOLECINPUT,IUTPUT, TAPLY=INPUT,TAPESG=0UTPUT)

DIMENSION UU(1l6s16s17)s ULELTA(3»500)s 1COOKD(3,500)» INDOKD(500),
1S(500)s R(500)s P(50C)» aP(5G0)

DIMENSION V(16516,17)

LOGICAL IRREG

THIS IS A SAMPLE URIVER PRUGRAM T3 SULVE THE AdELMAOLTZ
EQUATION OR AN ARBITRARY BOUNDED 3 DIMENSIJINAL REGION
USING A MAIN SUBRUUTINE HELM3De THIS SaMPLEZ PRUGKAM IS
INEFFLICLENT IN THAT 1T T=z3TS EVERY MESH POINT IN A CUBks
IN WHICH THE REGION IS [MBEODEDs TO FIND THE IRRLGULAR
POINTS, IeBe THOSE MESH POINTS IN THt KzGION WHICH HAVE
EXTERIUR NZ1GHBUORSe A NeIGHBOR IS CONSIDERED EXTeR1IOR IF
IT FALLS ON OR QUTSIDE T+t BUOUNDAKY OF THE REGION.

IN THE DOCUMENTATION, H #ILL RcFER TO THe MESA wIDTH

HXs HYs OR HZ AS APPROPRIATE. FOR FURTHAER INFORMATIOGN,
SEE THdi COMMENTS IN SUBROUTINE HELM3D.

NXDIM=16
NYDIM=15
NZDIM=17
NIPDIM=50O
NAPDINMN=4GO
NIT=20
EPS=l.E~5%
READ (55130) NNXsNNY»NNZ,CC
WARITE (655110) NNXsNMYsNNZ»CC
HX=1eEOQO/FLOAT (NNX)
HY=z1,60/FLOAT(NNY)
HZ=14E0/FLUAT(NNZ=1)
>

2 2 2
REGION IS A(X-AL) + B(Y=8£) + C(Z=-GA) +LEe O

RKEAD (55140) A»BsCrsLsALr»BLsGA
WRITE (65120) A»BsCrUsALs3=ZsGA

TEST EACH MESH POINT iIN THE CUBE TO FIND THOSE
IN THE INTERIOR OF THz REGIDN WHICH HAAVE EXTeRIUR
NEIGHBORS. SET UP ARRAYS FOUR THESE JRREGULAR PUOINRTS,.

IPl=0

IP2=0

DO 20 K=1,NNZ
L=FLOAT(k=1)*HZ
T3sC*(I-GA) **¢2
DO 2G J=1pNNY
Y=FLOAT(J=1)*HY
T2=8%(Y~BE)#*%2
D0 20 I=1sNNX
X=FLUOAT(I=1)*HX
TisA%x(X=AL)%**2
IF ((T1+472+4T73).GE«D) GG TO 20

{(X»Y»Z) IS IN REGIONe TEST WwHETHER IT IS AN IRREGULAR POINT,
CALCULATE SIGNED DISTANCES TOU BOUNDARY IN COORDINATE
DIRECTIONS, IF ALL ARE «GTe H THEN THE PUINT [S REGULAR.

IF AN IKREGULAR McSH PUINT FALLS VERY CLOSt 7O THE

30UNDARYs THIS CODE MIGHT FAIL. TO HANDLE SUCH A CAScy

THE CODE NEEDS TO BE CHANGED SO THAT EITHER THE ABSOLUTE

VALUE OF EACH SMALL DELTA I35 INCKREASED wdlliz ITS S1GN

IS RETAINED, OR SMALL DELTAS ARE CUNSIDERED TO 8t ZERD

>PD>>PDP>>>>D>">D'P‘P>->DP»Db'bbP-b>>>b>!’b<b>-)b>>>>b>‘bPb'bbbb—bDD='D-PI>X>J>2>A>
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AND THAz COKRESPUNDING PULNT IS CUNSIUERED T3 BE EXTERIOR.
EITHER OF THESE MODIFICATIONS CORRESPONDS TO A SLIGHT

PERTURBATION OF THE BOUNDARYe FOR FURTHER ADVICE ON THIS,

SEE THE COMMENTS 1IN  HELM3D.

IRREG=e FALSE,
XT=RM=SQRT((D=T2=-T3)/A)
XDIST1l=XTERM+AL~X
XODIST2==-XTERM+AL~X

IF (ABSUXDIST1)elLEWHX) IRREG=4TRUL
IF (ABS{XDISTZ)elEarX) 1RREG=,TRUL,
YTERM=SART((D-T1-T3)/8)
YOLSTl=YTERM+BE=-Y
YOIST2==~YTERM+BE~-Y

IF (ABSCYDISTZ2)elZeHY) IRREGmSTRUE,
LTERM=SQRT((D-T1-T2)/C)
IDISTLI=ZTERM+GA-]
ID1ST2==2TERM+GA-L

IF (ABS(ZDIST1l)eLceHZ) IKREG=4TRUL.
IF (ABS(ZDIST2)elteBZ) IRREG=,TRUL
IF (+NOTSIRREG) GO TO 20

WE HAVE FOUND AN JRREGULAR POINT, STOKE CJICRDINATES AND
DISTANCES IN UNITS OF He

IF ((ABSUXDISTL)aliteHX)eANSW(ABSIXDISTZ)eLEWdX)) GO TO 10
IF ((ABS(YDISTL1)elEardY) e ANDS(ABSIYLISTZ2) o LEWrdY)) GO TU 10
IF ((ABS(ZDIST1)elteHZ)eANDS(ABS(ZDIST2)elEwdZ)) GO TO 10
IPl=1IP1+1

ICO0RO(L,IP1) =1

1CO0RD(2,1IP1) =y

ICUORD(3,1IP1)=K

XDIST=XDIST1

YDIST=YD1ST1

ZO1ST=1D1ST1

IF (ABSOXOISTZ) el Tas8S(XCLATL)) XDIST=XD1ST2

LF (ABS(YDISTZ2)elTes85(YDISTL)Y) YDIST=YDLISTZ2

IF (adS{ZDIST2)elTosdS(ZLISTL)) 2Z0DIST=LD)iST2
DELTA(L,1PL)=XDIST/HX

DELTA(Z2,1PL)=YDIST/HY

DELYA(3,IP1)=Z2DIST/HLZ

G3d TO 20

WE HAVE FOJND AN IRREGULAR POINT WITH EXTERIOR NELIGHBORS IN

BOTH THE PJISITIVE AND KeGATIVE DIKECTIGONS ALONG S0ME
AXISe STORE 1IT> INFORMATIGN AT THt ENC OF THE ICOORD
AND DZLTA AKRRAYS,

1P2=1P2+]
INDEXDsNIPDIM=2%IP2+1
INDEXI=NIPDIN-IPZ+1
JCOURD(L, INDEXI) =1
ICOORD (2, INDEXT Y=Y
ICOURC (3, INDEXI)=K

DELTA(L, INDEXKD)=XUIST1/HX
DELTA(2, INDEXD)=YDISTL/HY
DELTA(3,INDEXD)=ZDISTLI/HE
DELTA(Ls INDEXD+1)=xDIST2/AX
DELTA(2, INDEAU+L)=YUIST2/4Y
DELTA(3, INDEXD+L)=2D1IST2/AL
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20 CONTINUE A 125
MINSPC=IP1+2%]1P2 _ A 126
MINSP2=MAXO{MINSPCONNXENNZy NNYERNNLZ) . A 127
WRITE (55100) IPl,Ib2,NIPDIM)MINSPCHNAPDIMYMINSPZ A 128
IF (MINSP2.GToNAPDIM) STOP A 129
IF (MINSPCJGT.NIPDIM) STOP A 130

C A 131
C SHIFT THE INFORMATION ABOUT THt IRREGULAR POINTS A 132
C WITH EXTERIOR NETGHSORS iIN 40TH A& POSITIVE AND A 133
C NEGATIVE DIKECTION TO LOCATIONS 1P1+1 AND FULLOWING. A 134
C : A 135
IF (1P2.EQ.C) GO TO 4G A 136

DO 30 LL=1s1IP2 A 137
IPIPLL=IPl+LL A 138
INDEXDaNIPDIM=(IP2=LL)*Z—-1 A 139
INDEXI=NIPDINM=IPZ2+LL A 140
IDELT=IPl+2%L L -1 A 141

DO 30 KK=1,3 A 142
ICOORD(KK IPIPLL) =ICUORD (KK INDZX]) 4 143
DELTAUIKK» IDELT)=DELTA(KK INDEXD) A l44
DELTA(KK) IDELT+1)=DELTA(KKs INDEXD+1) A 145

30 CONTINUE A 145

40 Ip=IpPlelpP2 A 147

(o A 143
C STORE HZ**2 TIMES Gl IN Ve A 149
C STORE BOUNDARY CONDITIUNS AN Ry APs» ANU P A 150
C CALL THE SUBROUTINES A 151
C A 182
HZ2=HZ%HZ A 153

DO 50 K=1sNNZ A 154

DO 50 J=1sNNY A 155

D0 50 I=1sNNX A 1ts
VIIsJoK) =84 PORHI24CCHHZ2% ((FLOAT(I=1)%HAX)*%2¢ (FLOAT{J=1) %Y ) *%242 A 157
1eEO®(FLUAT{K=1)%HZ)%*2) A 153

50 CONTINUE A 159
DO 60 LKT=1l,[P A 160
L=LKT A 161
I=ICO0RD(1sL) A 162
J=ICGORD(2,L) A 163
K=ICOORD(3,L) : A 164
IF (LKTeGTL1P1) L=IPl42%(L=-IPl)~i A 165
XafFLOAT(1=-1)%nX A 1¢b
Y=FLOAT(J=1)%*HY A le7
2=FLOAT(K=1)%*HZ A 163
RIL)=(X+0ELTAC(L L )RHX) %324 Y XY 42 JEUXZ %] A 169
PL)®X®EX+(Y+DELTA(Z,)L ) %Y ) %%242 ECG¥1%*] A 170
AP(L)=X*¥X+Y4 Y42 E0*(L+DELTA(3sL)¥RL)*%2 A 171
IF (LeLELIPL) GO TO 50 A 172
RIL*+L)Is(X+DELTA(L oL+ L) #HX) %224 4Y42,50%2%7 A 173
POL+L)=X¥X+(Y+DELTA(Z2o L+l ) *HY) %42, 20% L% A 174
AP{L4L)sXEX4Y*XY+2 o E0*{Z+DELTA(3pL 41 ) *HL ) *%2 A 175

60 CONTINUE A 176
MODE=2 : A 177
CALL HELM3D (MOOEs»UUsVyNXDIMsNYDIMINZDIMy IPLs IP2oDELTAS NNXyNNY s NNLZ A 17¢

IsNIPDIMINAPDIM)ICOURD s INDORUSCCoNIT»EPS»SsRsPIAPSIER) A 1793
WRITE (65150) IER A 1&0Q

IF ((IEReEQel)eURe(1ERCEQS2)) STCP A 181

c A 182
C CHECK ANSWER A 183
C THE TRUE SOLUTION TO THIS SAMPLE PROsbleM IS A 1E&4
C UlXpYsl) s X%X + Y¥Y & 2[7%[, A 1€>5
c A 186
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EMAXN=0GEC A 1¢€7
0O 8C K=1,NNZ A 188
2=FLOAT{K=1)*HZ A 189
DO B0 J=1sNNY A 190
Y=FLUAT(J=1)*HY A 191
DO 70 I=1,NNX A 192
XeFLOAT(1=1)%HX A 163
UUCTIp oK) =XeX4YEY$2,£0%2%2-UU(1rJsK) A 194
A 195

" SET ERRKOR SWUUAL TO Zewl rFOR POINTS ON THE SOUNDARY OR A 196
QUTSIDE THE REGION TO INCREASE READABILITY OF THE OUTPUT. A 197

A 198

IF ((AR(X=AL)%*240%x(Y=Br ) #4244 {7=Ga)*22),GEsL) UU(IsJsK)=04ED A 199
A 200

COMPUTE THc MAXIMUM ERRUR. A 201

A 202

IF (ABSCLU(T»JsK) ) eGToeMAX) EMAX=ABS(UUCL»Js»K)) A 203
70 CONTINUE A 204
WRITE (6990) (UU(LsJdeK)si=L1lsiNX) A 205
§0 CONTINUFR A 206
WRITE (65160) EMAX A 207
A 208

IF MORE THAN ONEFE PROBLEM IS TO BE SOLVED IN A 209
THE SAME REGION, INSERT CUDE HEEREL TO SET MJIDEs, Vo A 210
Ry APy AND Pe ENTER THC BOUNDARY CONDITIONS IN THE CURRENT A 211
ORDER OF THE DELTAS, NOT NECESSARILY THE ORDER BEFORE A 212
HELM3D WAS CALLEDe DO NOT CHANGEL DELTAs ICOORDs INDGRDs A 213
NNXy NNYs» NNZs NXDIMy NYDIM» NZDIMy» NIPDIM, [PPL) A 214
OR IPPZe EPSs NIls» S» anD CC MAY BE CHANGED. Call THE A 215
SUBRDUTINE AS BuFUKCe A 216

A 217
STOP A 218

219
220
221
222
223
224
225

90 FORMAT (1X»16E8.1)
100 FORMAT (1Xs6HIPl = »17,7H 1P2 = »15s27H SPACE AVAILABLE (NIPDIM) =
19169234 MINIMUM SPACLE NEEDeD =»16/27Xs26HSPACE AVAILABLE (NAPDIM)
2% 16923H MINIMUM SPACE NEEDED =»16)
110 FORMAT (40H NNXp NNYs NNZp» AND HELMHOLTZ CONSTANT  »3175F20.7)
120 FORMAT (43H ELLIPSOLIDAL REGION WITH WELIGHTS A»BsCsD = »4FT7e3512H A
IND CENTER »3F743)
130 FORMAT (316»F2047)
140 FORMAT (7F6.3)
150 FORMAT (30HQ ON RETURN FROM HELM3D, IEK =513}
160 FORMAT (4CH MAXIMUNM DLVIATION FRUM TRUE SCLUTION »E20.7)
END
SUBROUTINE HELM3D (MUDs»wo GOGHNXDIMINYDIMINZDIM»IPPLloIPP2»DELTA Y NNX
LoNNYsNNZyNIPDLIMoNAPLIMy ICOOURD INDURKUSCCUINLITIEPS»S»RoPAPSIER)
INTEGER MODESNXDIMeNYDIMyNIDIM» IPPLs IPP2soNNXsNNY»NNZyNIPDIM» ICOORD
1(3,NIPDIM)» INDORD(INIPDOLM)SNLITY IER
REAL N(NXOIW;NYDIM:hZQIM))ub(NXDlM’NYDIM;NZDIM))DELTA(3;NIPDIM):LC
1oEPSsSINIPDIMISRINIPDIMIHPINIPDIM)»AP(NAPDIM)

THIS PKOGRAM WAS LDEVELOPEZD 3Y DIANNE P Q/LEARY AND OLOF wWIDLUND.
THIS IS AN AUGUST, 197€ VERSION

THIS PROGRAM SOLVES THE OIRICHLET PRUBLEM FOR THE
HELMHDLTZ EGUATIUN OVEK A GENERAL BOUNDED 3 ODIMENSIONAL
REGLION IMBEDOED IN A UNIT CUBE

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A 233~
8
B8
8
3
8
8
8
8
B8
B8
8
8
B
8
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-W - W - W + CL*W = G1 IN THE REGION 8 15
XX oYY 12 B 16

) 17

W = F ON THe BOUNDARY 8 18

8 19

WHERE F AND G1 AML GIVEN FUNCTIGNS OF X» Ys AND Zs» AND C€C IS 3 20
A REAL CONSTANT. THz BOUNDARY IS ARBITRARY, THE PRUGRAM 3 21
PROVIDES A SOLUTION OF THE WELL KNDWN SHORTLEY=-wELLER 8 22
APPROXIMATION OF THE DIFFERENTIAL EGQUATICN. THE MESH IS UNIFORM 8 23
IN EACH COURDINATE DIRECTION AND A SIMPLE SEVEN POINT FORMULA 8 24
IS USED FOR INTERIDR MuSH POINTSe A CAPACITANCE MATKIX B 2%
METHOD, WITH DISCrRETY DIPOLES» IS USEDe THE CAPACITANCE 8 26
MATRIX EQUATION 1S FORMULATED AS A LEAST SQUARES PRUBLEM 8 27
AND SOLVED USING THE CONJUGATE CKADIENT.METHDD. B 28
SEE PROSKUROWSKI AND wIDLUND MATrHe CUMPes» JULY» 1976 VOL 30 ) 29
PPe443-468sAN NYU=UDE R&PUORT AND POETHCOMING PAPERS 3Y B 30
O/LEARY AND WIDLUND,LBL REPUORTS BY PKISKURIWSKL AND B 31
TWO PAPERS BY SHIEHW IN NUMCEReMATHe» 197EsVULe29»PPe3CT=327 AND B 32
TO APPEAR, FOR DESCRIPTIONS OF SUCH NMETHIDS. 8 33
3 34

THIS PROGRAM SHOULU 8% CUNVERTEL TC DOUBL:Z PRECISION 8 35
If IT 1S TO BE USEC ON COMPUTERS wITH SHORT WOKD 8 35
LENGTH »SUCH AS IBM 360/370. B 37
8 33

In THLS DOCUMENTATLIOW, NN KEFERS Td  NNXs NNY» GR ANNZ 3 39
AS APPRUOPRIATE, AND SIMILARLY H KEeFERS TO Hx, HY» OR AL, 3 49Q
THE MESH PUINT (X»Ys»Z) IS SAI0 TG HAVE & NEIGHHORS; 3 41
(X+HXsYs2Z)p (X=HXsYs L)y (XoY+HYSZ)s (XsY=HY»l), 8 42
(XoYsZ+HZ)s ANU (XsYpl-HI). B 43

A MESHA POINT IS CaLLED IRREGULAR IF IT IS IN THE INTERIOR OF ] 44
THE REGION AND AT LEAST INRE UF ITS SIX NEIGSHHORS 1S OnN 0Ok B 45
OQUTSIDE T BOUNDAKY 8 46
B 47

ON INPUT o o & 3 43
-= MODE = 1 [F THE KEGION HAS BEEN CHANGED FROM THE PREVIOUS Call B 49
AND  Gl=0 8 5

2 IF THt KeGION AAS BEEN CHANGED FROM THE PREVIOUS CaLl 3 51

AND 61 IS WNONZERY 3 5

3 IF THE FEGLON IS TH: SAME AS ON THE PREVIUUS CaALL 8 53

AND G1=0C B 4

4 [F THE ReGION LS THE SAME A4S ON THE PREVIOUS Cali 3 £5

AND  G1 IS NUNZeRO >3 56

5 IF THE FROBLEM 1S THL SAME AS ON THE PREVIOUS CaLLs 8 57

Gl1l=0, EnD THZ ONLY CHANGE 1S TdAT £PS AND/OR NIT 8 £8

MAY HAYE BEEN CHANGED B 59

6 IF THE PROSLEM S THe SaMe A4S CON THE PReVIOUS CALLy 3 &0

Gl IS NONZERJy AND ThHe ONLY CHANGE 1S THAT  £PS 3 el

AND/OR  NIT  MAY HAVE BEcN CHANGED 3 €2

IF MODE = 35495y UK 6 0ELTAs 1CUURDy INDOKDs NWNXDiMy 3 €3
NYDIM, NZOIM, NN Xy NNY» NNZ» 1PPiy AND IPP2 MUST BE B 64
UNCHANGED FROM THI PRcvVIOUS ChalLe TAk CURKuNT VALUL OF S B €5
WILL BE USED AS THE INITIAL GUESS FOR THe DIPOLE STRENGTHAS, 3 &b
(S=0 WILL BEf USED IF MODewl UR Ze) 3 &7
TU IMPROVE THE ACCUKALY JF a PREVIOUSLY CALCULATED SCLUTLUNS B 65
USt HMODE=% OR MODE=6 IF ROUNDUFF IS NOT SUSPECTED. IF 8 €9
ROUNDUFF IS SUSPECTED, RCEINITIALIZE THE BIJUNDAKY VALUES InN Ky 8 70
AP, AND P» AN[ USE MODE = 3 TOU FOKCE TH: RESIGUAL TC 8¢ 3 71
RECOMPUTED; IF Gl IS NIONZERU» ADD G& TO THE SUOLUTION G S
RETURNED BY THEL SUBROUTINE. 3 73
3 T4

~= WINXDIMs NYDIMy NZDIM)} IS OUNINITIALIZED. 8 73
-= GGI(NXDIMy, NYDIM, NZDIM) INITIALIZED TO Gle®HZ®41 In THE 8 716
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RZGIONy WITH ARBITRARY VALUES GUTSIDE. 8 77

FOR I=lseeesrNNXsy J=zlsaeeesNNY, AND K=2lseeasNNZ»s 8 178
GG(IsdsK) CORRESPONGS TO GLUC1-1)%HX» (J=1)*HYs (K=1)*HZ)*Hi**¥2, B 79
IF MODE = 1s 3 OR 5y G1 MAY BE A DUMMY ARRAY (IeEes 8 80
IT NEED NOT 3E CIMENSIONED 8Y THE CALLING PRUOGKAM). 8 81

B &2

= IPP1 IS THE NUMBFR OF IRREGULAR PUOINTS wITH AT LEAST 1 B &3
INTERICOR NEIGHBOR IN EACH DIRECTIUGN Xs» Y» AND Z. 8 &4

-— IPP2 1S THE NUMBER 0OF IRREGULAK POINTS WHICH, ALONG B 85
AT LEAST ONE DIRECTIONs HAVE Twl EXTERJIOR NEIGHBORS., B8 86

B 87

IN THE EXCEPTIONAL CASE WHEN IPPL+IPP2etQ.0» THE KOUTINE 8 88
WiLL SOLVE THE PRCBLEM ON THE wHOLE CUBE WITH THE B 89
BOUNDAKY CONDITIONS; 8 90
Gl{Xs»Ysl) = & L JlLTe © Ok 2 «GTs 1 B 91
w(O0sY¥s2Z) = %(lsYsZ) AND WlXs0s2) = ¥WiXslsl) 8 92
WiXsYs0)=0 AND W(XsYs»Z) BOUNDED FOR ALL Z. B8 63

ARRAY GG MUST 8% INITLALIZED TO Gi*HZ*4Z AND MODE = 2. B 94
W MAY BE A DUMMY ARRAY. THE &NSWER wiLl 8E STODRED B 95
iN THE ARRAY GG IN THLS CASE. B 96
8 97

- OFLTA({3, NIPDIM) RELOKDS + OR = DISTANCE TO B0OUNDARY B 98
FROM INKREGULAR POINT L IN THE X» Y» AND £ B8 96
DIRECTIONS (3%IPPL + o*IPP2 VALUES)e THESE UISTANCES 8 1C0

AKE EXPRESSED AS MULTIPLES OF THE MESH SPACING; LeEes 8 101

IF A DELTA HAS TdAE vALUE Qs THE DISTANCE IS Q*He 8 102
THeRE ARE THRE: LelTAS FOR €alH OF THE (PPl  POINTS 3 103
FOR L=1,1IPPls B 104
DELTACLsL) = SHUSRTER O{STANCE TD BJUUNDARY LUNG X UIRECTION B 105
DeLTA(2sL) = SHOKRTER DISTANCE TO BUUNDARY ALONG Y DIRECTION B 106
UcLT2(3sL) = SHOKTER QISTANCE TU BOUNDARY ALONG 2 DIRECTION 8 1¢7
THERE ARE SIX DELTAS FUR cACH OF THY iPPZ PUINTS» 8 1G3
FORr L=1sIPP2 LL=1PPLl+2%L~1> 8 109
DELTA(LsLL) AND DELTA(LsLL+1) ARE THz DISTANCES TO THt 8 110
BOUNDARY aLDMG THe POSLITIVE AND NEGaTIVE X DIRECTIONS 8 111
DELTA(2sLL) AND DELTA(2sLL+1) ARE THE DISTANCES TO THE 3 112
BOUNDARY ALONG THE POSITIVE AND NEGATIVE ¥ DIRECTIONS 8 113
DELTA(3,0LL) AN UELTA(3sLL+1) ARE THE DISTANCES TO THE 8 114
BOUNDARY ALOMG THt POSITIVE AND NEGATIVe Z DIRECTIUNS 8 115

THi PROGRAM WILL INTok(CHAANGE DELTAS  IF NECESSARY SO THAT 8 116
FOR L=l [PP2 > LL=1IPP1l+2%L~1> B 117
ABSCOEtLTAISHLL)) oLEe ASS(DELTA(S,LL+1)), 8 118
NO DELTA CAN BE S3 CLUSE TO G AS 10 CAUSE UVERFLOW 8 119
UPCGN DIVISION BY a PRODUCT OF TwO DELTAS. SuCH SMaALL 8 120
DELTAS  SHUOULD BF AVDIU.D AY CHANGING THE ReEGIUN 3 121
SLIGHATLY JK BY SHIFTING IT INSiOL TdAt CU3c OR BY 8 122
USING ANOTHER MESH SIZE. g8 123
8 124

- NiiXy NANYs NNZ ARE THE NUMBER UF MESH POINTS IN THE Xs» Y» AND 2 8 125
DIRECTIONS,. 8 126

MAX(NNXsNNY) MUST %E oiLfe 296 UNLESS THE ERROR CHECK IN 8 127
HELMCK AND THE DIMeNSIONS OF I8 AND S IN COMMON FFT 8 128
(SUBRDUTINES CUBLsRFUORT aND FORT) ARE CHANGED. 8 129
THE MESH 3PACINGS will 37 CALCULATED TO 8t 8 130
HX = 1 / NNX 8 131

HY = 1 / NNY 8 132

AZ = 1L 4/ (NNZ = 1) B 133

NNA  AND NNY  MUST 8FE PUWERS GF 2 ANC «GEs 8B UNLESS 8 134
THE FFT ROUTINKES RFORT  AND FOKTF ARE REPLACED. B 135
3 136

- NIPLIMs THE DIMENSION OF THE UONE DINMENSIONAL ARRAYS) B 137
MUST BE oGLe IPPL42%]1PPZ2e 3 138
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NAPOIM » THE DIMENSION OF AP » MUST
BE oGEe MAX(IPPL+2%IPP2y NNX*NNZ» NNY®NNZ )
ICOORD(3,NIPDIM) RECORDS THt 3% (LPPL1+IPP2) INLICES UF
THE IKREGULAR PUINTSe THuSt INDICES MUST Lic BETWEeN
2 AND NN=1 INCLUSIVE.
INDORD (NIPDIM) 1S UNINLTIALIZEC. THE PROGRAM WILL
RECORD A CODE (1-5) FOR THE ORKDER UF THE DELTAS.
CC IS THE CONSTANT IN THE HELMHOLTZ EGUATION
NIT IS THE MAXIMUM NUMBER OF CONJUGATE GRADIGNT ITERATIONS
ALLOWED,
EPS IS THE TOLERANCE FCR THE EUCLIDEAN NORM COF
THE CAPACITANCE EZQUATION ReSIDUAL DIVIOeD BY THE
SQRT OF THt DIMENSION OF THIS VECTOR. -
TT T T
RESIDUAL = C U F = £ T S WHERE C = U AGV
IT IS DIFFICULT TU GIve A KELIABLE RULE OF
THUMB FOR THE CHOICE OF EPSe FOR MANY PROBLEMS
UNE TENTH OF Trt DESIRED ACCURACY FOK THi
SOLUTION Or THE OJXRIGINAL DISCKETE PRUBLEM IS A
SUITABLE VALUc.# SMALLER TULERANCE IS REQULIRED
WHEN THE DISCRETE AELMAGLTZ OFERATOR I3 CLOSE
TO SINGULAK,
S » P s R ARE OF DIMENSLION WNIPDLIN
AP IS OF DIMENSION NAPDINM
S IS UNINITIALL1ZED IF MODE = 1 OK 2.
IF MODE oLTe B » FOR L=1sIPPLle2%1PP2,
R{L) = F(X+DELTA(L,L)*HXy Y» )
PULY = FUXy YH+LELTA(ZHL)I*HY, 1)
AP(L) = F(Xy Yy Z40cLTA(3,L)%HZ)
WHERE X»Ys» AND Z avE THE CUORDINATES OF THE
IRREGULAR POINT CURRESPONDING TU TH: DELTAS.
THE VALUES OF R » P , ANO AP  ARE NOT USED IN TH:
CUMPUTATION 1F THt ABSCLUTE VALUE OF THE CIRRESPONDING
DELTA IS GREATER THAN 1,

TER IS UNINITIALIZED. THAb PROGKANM WillL RECORD AN ERKROR

cobz (Cc=-3).

THE USE OF CISCRETL DIPOLES IMPUScS A MILO KESTRICTION

ON THE GEOMETRY GF THt KcGIONe TH: THREE PUINTS, UBTAINED 3Y
STEPPING FROM AN IRREGULAR POINT IN THE CIRECTIGN OF THE
SMALLEST MAGNITUDE DELTAs FROM THERE IN THE OIReCTION OF
THE MEDI1UM, AND FROM THERE IN THE DIRECTION OF THE LARGEST,
MUST NOT Bt INTERIOR PUINTS OF THE REGIONe LF THE RESTRICTION
IS VIOLATED, A SUBROUTING HELMCK WILL KfTURN AN

tkROR FLAG IER = 2, A REFINEMENT OF THE MESH OR

A SLIGHT SHIFT OF THE k£GION IN THE UNIT CUBE MIGHT

RESGLVE THE PROBLEM.

ON GUTPUT o o o

W WILL CONTAIN VALUES OF Tdf SOLUTLON INSIDE THt
REGION AND USELZS3 VALUES GUTSIDc AND ON THE
BOUNDARY,

5 WILL RECORD DIPOLE 3TRENGTIHS. THIS IS Tt SOLUTION
VECTOR OF THE CAPACITANCE MATRIX £QUATIUN.

R WILL BE THE PESIDUAL OF THE CAPACITANCE EQUATION,

P s AP » AND GG WILL BE CHANGEDs AND THE DELTAS MAY
Bt REORDERED AS INDICATED ABGVE.

ERROR KETURNS;
IER=Q NO ERROR
=] ERFKOR IN [NTEGEK PARAMETER

139
149
lal
142
143
laq
145
140
147
148
149
150
151
152
153
154
155

55
iv?
15%
159
160
161
1e2
163
164
165
led
167
led
les
170
171
172
173
174
175
176
i17
173
179
180

“1lal

182
183
184
185
186
ie7
les
169
150
161
192
163
194
165
166
197
198
169
¢C0




AFTeR EACH ITERATIGN, THE FOLLOWING INFURMATION IS PRINTED;
== THt CONJJGATE GRADIENT PARAMETERS ALPHA AND BETA.

THE RO

Ly

COMMUN /SPACE/ HX»HYsHZsH2(3) s HXLsHY2sHL2s TWIPLsCONSTHCoCHZZsNXsNY

1sNZ»
Dous
DIME
LOGI
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DaTA
DATaA
DATA
DATA
DATA

71
=2 ERFCR IN ICOURD  UOR VIULATION OF DIPOLE
RESTRICTIIN OR 1KREGULAR POINT MISSING
=3 TOO MANY CTONJUGATE GKRADLENT ITERATIONS

WITHOUT CIONVERGENCE. ANSWER DOES NOT
HAvE Tre REQUESTED ACCURACY,

THIS INFORMATION CUULD BE USED TO £STIMATE THE
CONDITION nUMBER OF Tdt CAPACITANCE MATKIX.
== THE ZUCLIDEAN NORM OF Tdt RESIOUAL OF Tnc
CAPACITANCE MATRIX EQUATION,
TT7T T T
THE RESIDUAL=C U F=C €3 WHERE €= U AGV.

LeS OF THE SUBROUJUTINES;
HELM3D  CONTROLS THE CONJUGATE GRADLENT ITERATION
HELMCK  CHECKS TH: INPUT OATA FGUGR CORRECTNESS,

VMULT USES THE D1PULE STRENGTHS IN A ~NIPDIM ARRAY TO

SET UP THE DIPJLES IN A 3 DIMENSIUNAL ARRAY,
THIS SUBROUTINE TAUS DEFINES A LINEAR MAPPING

FROM A SPACE (OF 1-DIMENSIONAL ARRAYS TO A SPACE

OF  3-DIMiENSIUNAL ARRAYS,

VIRANS  DEFINES THE TRANSPUSE OF THE MAPPING DEFINED
8Y.  VMULT.

UTAMLT MaPS 3-DIMENSIUNAL AKRAYS INTO 1-DIMENSIONAL

ARRAYS BY USiNe A FINITE DIFFERENCE FORMULA wHiCH

CORRESPONDS TU A PART OF THE SHORTLEY=WiiLlER

APPROXIMATIONS THE KEMAINING PART IS HANDLED BY

INURY

UTATEN  DEFINES THE TRANSPOSE GF THE MAPPING DEFINED BY
UTAMLT.

BNDRY PROCcSSES THE OIRICHLEY DATA AnND Tre VALUES OF
CLOSE TO TH: SJUNUARY» PRODUCING U(TRANSPOSE)F

USE IN THE RIGHT HAND SIDE OF THE CAPACITANCE EQUATIOUN
CusE SOLVES THE HctMHDLTZ EQUATION GVER A CUBE USING A

FOURIER=TOEPLITZ ALGURITHHM,
KEQRT 1S A FAST FOURLIER TRANSFUORM ROUTINE DUE TO

Ao PROSKURDOWSKL wrl XKEVISeD A CCOE WRITTEN BY JoCOO0LEY,

IT IS USch BY SUBROUTINE CUBE.
FAORT 15 A SUBROUTIANE CaLLED BY RFORT.

CaL STORAGE

IPLs P2y IPsLOG2KXs LOG2ZNY»QXSQy»CYSQ
Le PRECISIUN DATAN
NSTION D(3)s IOR(3), 10RD(3,0)
CaL B8

I0RD(1s1)/1/

10RD(2s1) 12/

10RD(351)/3/

I0RD(1s2)72¢

10R0G(2,2) 73/

I0RCG(3s2) 171/

10RD(1»3)/73/

10RD(2,3)/1/

10RD(3,3) 72/

I0RD(1s4)/1/

I0RD(254)/73/

I0RD(3s4)/72/

201
2¢2
203
204
205
206
207
208
2G9
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
2217
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2438
249
259
251
252
253
254
255
256
257
258
259
260
261
262
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20

72

DATA [0RD(L1s32)/3/
DATA I0RD(2s5)172/
DATA 10RU(3,32)71/
DATA I0ORC(L1s6)/72/
DaTA 1ORU(2sH)/17
DATA 10RG(3,6)/73/

INITIALTZATION

IPalppleiprPP2

WEITE (59270) MODESEPS,NIT
IER=0

IF (MODECGTW5) IER=1

I¥ (MUDczeilTel) fEk=1

IF (IEReMEGO) RETURN

IF (MODECGTW%) GO TO 170
IF ((MODEWGES3) e ANDo(IPaGT40)) 6D TU 130
NX=NNX

NY=z=NNY

NZ=NNZ

IP1l=1IPP1

Ip2={PP2
HX=1eEO/FLOAT(NX)

HY=1 . £O/FLOATINY)
HZ=1sEO0/FLOATINZ~1)
HXx2sHX*AX

HY2=HY%®4Y

HZ2eHZ%*Hl

H2(1)=HXZ

H2(2)=HYZ

HZ (3)=H1¢
AXSQ=(HZ/HX) %%2
QYSQ=(HL/HY)®%2
TWOP1=8,00*%DATAN(LLDG)

CALCULATE LOG NX AND LOG NY

N=2

LOG2NX=1

LOG2nY=1

IF (NeLT«NX) LOGEZNX=LDG2NX+1

IF (NJLTNY) LOG2NY=L0G2NY+1

N=N*2

IF ((NXeGToN) e ORe (NYoGTaN)) GO TO 1C
IF (IP45T.0) GO TQO 29

CaCC

CONST=1l LO+LC*HLI2/24EC

CHZZ=(*HZ2

CALL CUBE (GGaNXDIMsNYDININZUIMINAPDIMsAP)
RETURN

DELTAS FOR THE IPPZ2 POINTS ARE REORDERLD 1F NECESSARY.

INDORD RECOKDS THE ORDER OF THt ABSOLUTE VALUES OF THt
DELTAS*H*H,

CONTINUE

XIPINV=SQRT(L.EQ/FLGAT(IP))

IF (IP2.£Q40) GO TO 00

DO %0 LL=1s1iP2

INDEXD=1P1+42%*LL~1

DO 50 KK=1,3

IF (ABS(DELTA(KK) INDEXD) ) o LESABS(DELTA(KK, INDEXD+1))) GO TO 50

263
264
265
266
267
268
269
270
271
272
273
274
275
2176
277
273
279
2890
281
282
2€3
284
285
286
287
288
289
290
291
292
293
294
295
296
297
268
299
300
301
302
303
304
365
3006
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324




IO 0

OO0

30

40

50
60

70

80

90

160

110
120

73

SHUFL=DELTA(KKs INDEXD)

DELTA(KK,) INDEXD)=DELTA(KK, INDEXD+1)
DELTA(KK INDEXD+1 ) =SHUFL

IF (KKekEQe2) GO TU 30

IF (KKeEQe3) GU TO 40
SHUFL=R(INDEXD)
ROINUEXD)=R(INDEXD+1)

ROINDEXD+1) =SHUFL

GO TO 50

SHUFL=P(INDEXD)
PUINDEXD)=P{INDEXD+1)
PUINDEXD+1)=SHUFL

GO TO 59

SHUFL=AP(INDEXD)
APCINDEXL)Y=APCINDEXD+])
AP(UINDEXD+1)=5HUFL

CONTINUE

DO 120 L=1,1IP

IOR(1)=1

I0R(2)=2

10R(3)=3

INDEXDs=L

IF (LeGToIP1) INDEXD=IPiI4(L-iPl)¥*2~1
D(1)=ABS(DELTA(Ll, INDE=XD))%®A4X2
D(2)=A8S(DELTA(2, INLEXD) ) *4Y2
D(3)=ABS(DELTA(3, INLEXD)})*ALLZ

IF (D{l)sLELD2)) G0 TU 70
10R(1)=2

ICR(2)=1

ISUB=10R(1)

IfF (D(ISUB)SLEED(3)) GO TO 4du
IOR{3)=I0R(1)

10R(1})=3

ISUBZ2=10R(2)

ISUB3=10R(3)

IF (D(ISUB2)LELDUISUB3)) GO TO 90U
ISsIDR(2)

IOR(2)=10R(3)

IOR(3)=1S

CONTINUE

DO 1i¢ LL=1,6

DO 100 KK=1,3

IF (IOR(KK)eNELIORD(KKyLL)) GO TO 1i¢
CONTINUE

INDORD(L)=LL

GO To 12¢

CONTINUE

CONTINUE

CALL HELMCK (wsDELTA» ICOGRD,1IORDy INDURDSNXDLIMsNYDIM) NZDIM)NIPDIMSN
14APDIM, IER)

WRITE (652B0) NNX,NNY,NNZsIPlsIP2
WRITE (65290) NXDIMsNYDIMpNZDIMsNIPDIMy NAPGIN
WRITE (69310) HXpHYsHZ

IFf (IER.NE<Q) RETURN

SOLUTION OF THE CAPACITANCE £QUATION
T T
CS=UF WHERE C = U AGV
USING THE CONJUGATE GRAUIENT ALGOKITHM ON THE SYSTEM
T TT
CCS =CU F.
INITIALIZE S = O FOR MUOUES 1 AND 2.

325
325
327
324
3293
3230
331
332
333
334
335
336
337
333
339
340
341
342
343
344
345
345
347
343
349
380
351
352
353
354
355
3556
3v7
354
353
360
361
362
3€3
364
365
366
3617
364
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
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INITIALIZE THE RESIDUAL
17 T
R =C UF-CZC S,

130 CONTINUE

140
15¢

160
176

1E8C

150

C=CC

CONST=1.E0+4LC*HZ2/2.E0

CHZZ=C*%*HZ2

8=, FALSE.

IF ((MODESCEQe2) eUR(MODFWtde4)) B8B=s TRUE,

CALL BNDRY (RsPrAPGOaNXUIMsNYDINMINLZDIM)NIPDIMY)DELTAS iCOORD» BB)
IF (JNOT.88B) GO TO 150

CALL CUBE (GGaNXDIMsNYDIMsNZDIMsNAPDIM,AP)

CALL UTAMLY (GGraPsNXDIMaNYDIM)NZOI Mo NLIPDIM)ODELTA» ICOURD)

B3 140 L=ly1P

R(LI=R{L)=-AP(L)

CONTINUE

CONTINUE

CALL UTATRN (EsWo NXDIMsNYDIM)NZDIMsNIPDIMSDELTA» ICOOQRD)

Call CUBE (WoNXDIMSNYDIMINIDIMINAPDIMoAP)

CALL VTRANS (WoRoNXDIMINYDIM)NZOIMoNIPDIMY) JORD Y INOORDSDELTAS ICOORD

1)

IF (MODELLEL2) GO TC 170

CALL VMULT (S»wWsNXDIMpNYUIMpNZDIMSNIPDOIM) ICRD» INDORDSDELTA» ICUOORD)
CALL CUBE (WsNXDIMsNYDIMp)NZOIMyNAPDLINM2AP)

CAlL UTAMLT (wrAPsNXDIMsNYDIM)NZDIMYNIPDIM)DELTAS ICOORD)

CALL UTATRN (AP»wyNXDIMsNYDIMINZDIM)NIPDIMSDELTA, ICOORD)

CALL CUBE (WaNXOIMsNYDIMsNZDIMSNAPDIMsAP)

CALL VTRANS (WsAPsNXUIMyNYDIM,NZDIMSNIPOIM) [ORDs INDURDsDELTA» ICOOR

10)

U0 160 L=1,1P
ROL)=R(L)=AP (L)

CONTINUE

RR=2G 400

DO 180 L=1,1IP
RR=KR+R(L)I*R(L)
PCL)Y =R (L)

IF (MODEeLES2) S(L)=GLEC
CONTINUE

HNJRM=SARTIRR)

WRITE (65,300) RNURM

IF (ENORM*XIPINV.LESEPS) 6J TO 230
WRITE (565250)

DO 220 KITslsNIT

CALCULATE RESIGUAL INCREMENT

CALL VMULT (P, wsNXDIMsNYUIMINZDIMINIPDIMy IORD» INOORDSICELTA»ICOURD)

CALL CUBE (WoNXDIMIKYDIMsNIZDIMINAPLLIMsAP)

CALL UTAMLT (WsAP,NXDIMsNYDIMoNZDIMsNIPOIM)DELTA» ICOORD)

CALL UTATRN (£PrwoNXDIMsNYDIM)NLZUIM)NIPDIM)OELTASICOORD)

CALL CUBE (WaNXDIMINYDIMINZDIMSNAPDIM,AP)

CALL VTRANS (WyAP,NXDIMs NYDIMINZLIMINLIPOIMNy iOR0» INDORD,DELTA, 1COUR

10)

CALCULATE STEP LENGTH

PAP=Ql.E0

LU 190 L=1,1IP
PAP=PAP+P(L)*AP(L)
ALPHA=RR/PAP

387
388
389
390
391
392
393
394
395
396

‘3687

398
369
400
401
402
403
4G4
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
443



o0

YOO

(o]

e NaNe

OO0

75
CALCULATE WNEW ITERATE AND RESIDUAL AND RESIUUAL NORM.

RROLU=RR
RR=0.t0
DO 200 L=1,1IP
S(L)Y=S(L)+ALPHA%P (L)
KOL)Y=R(L)—=ALPHAXAP(L)
RR=RR4R(LI*R(L)

200 CONTINUE
BETA=RR/RROLD

TERMINATE LF ANSWER SUFFICIENTLY ACCURATE.

RNORM=SQRT{RR)
WRITE (65260) KiTsALPHA»BETA»RNIRN
IF (RNORM#XIPINVeLT«cP3) 63 TO 230

CALCULATE nEwWw STEP DIkeCTLON,

DD 210 L=1s1IP
210 PLL)=R(L)+3ETA*P(L)
220 CONTINUE

1ER=3

230 CONTINUE
CALCULATE FINAL ANIWER

CALL VMULT (SoWsNXDIMRYCLIMsNZOIMoINIPDIM, IGRO» INDORDSOELTAS ICGUKRD)
CALL CUBE (WsNXDIMsNYDIM»NLODIMsNAPLIM»AP)
IF («NOT.BB) RETURN
D0 240 K=1,NZ
DO 240 J=1,NY
DO 24C [=1,NX
240 WIsJsK)=WlIaJdsKI4GG(1rJdrK)
RETURN

250 FORMAT (314 CONJUGATE GRADIENT ATERATION /71X iOHITERATION 92Xxs6H
JALPHA »5Xs5HBETA »7Xs14HR:ESIDUAL NGOGRM )

260 FORMAT (110,2E104397XsE1Ge3)

270 FORMAT (Z8HOHELM3D CALLED WITH MUDE = 157454 €PS =2£2065/57H MARI
IMUM NUMBER OF CONJUGATE GRADIENT JTERATLUNS (NIT)Y = ,17)

280 FORMAT (BH NNX s »I7s8KR NNY = 517984 NNZ =  i7/744H NUMBER OF IR
1REGULAR POINTS wITH AT MUEST 1L yRTHEXTERIOK AE1GABIR ALONG ANY CUO
ZROINATE DIRECTION (1PPLl) =I7/43H NUMBZR JF OTHzR IRKEGULAR PULNTS
3 (IPP2) = ,17)

290 FORMAT (45H THE THREE UIMENSIONAL ARKRAY HAS JIMeNSIONS 274 NXUIM
1) NYDIMy AND NZDIM = 53177434 THE OTHER ARRAYS Have DIMENSLIUN NIPD
2IM =  ,17512Hs NAPDIM= ,i7)

300 FORMAT (20H INITIAL RESIDUAL = sbXst2045)

310 FORMAT (41H THE MeSH SPACINGS wewt CAaLCULATED TO 8t »F2Uebs21H IN
1THE X DIRECTIONS 2741 Xp2F20e80251 IN THe Y DIRECTLIONs AND »/41lXsFcv
2e8922H IN THt Z DIRECTION. ) )

END .

SUBROUTINE HELMCK (WoDELTA» ICJURL» IGRU» INDGRDyNXDIMyNYDIMSNZOIMsNI
1PDIMsNAPUIMSIER)

COMMON /SPACE/ HXsRYsHZsH2(3) 9 AXZoHY2»HIZsTWIFL)CONSTHIC»CHLLaNXSNY
LoNZsIPLlyIP2s 1Py LUG2HNXaLIG2NY ) IXSTHQUYSQ

DIMENSTON WINXDIMyNYDIMINZDIM)s OELTA(I»NIPDIM)s 1COURC(3sNIPUIM))
1 10RD(3,6)s INDORD(NIPLIM)

%

IO W EmEE o E I T wEw oo e

4473
450
451
452
453
454
455
455
457
453
45§
460
4¢1
462
463
464
465
466
467
468
4€9
470
471
472
473
474
475
4756
477
473

479

480
481
4t2
4t3
Ghdh
485
485
487
488
489
460
4G1
4G2
463
494
495
4G5
4G7
463
499
500
£C1
502

403

564~
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DIMENSION IN£ELI(3),
DIMENSION IC(3)
LUGICAL QN

15TEP(3)

THIS SUBROUTINE CHECKS THAT;

1. NNXpNNY oGEe 8 ANU oLES 2850

Ze NIPDIM oGZe 1PL42%]IP2, :
NAPDIM «GEe MAX (IPL42#1P2» NX#NZy, NY*NZ )

3. NXUIM oGEe Ny NYDIM oGEs NY, NZDIM oGEs NZ

4. INDICES CF IFKEGULAR PUINTS ARE WITHIN RANGE

5 DIRECTION TO #IUNDARY FROM EACH IRKEGULAR POINT
POINTS 0OUTSLDt TAE REGION

b TAt LIST OF IRREGULAR POINTS IS COMPLETE.

AND ARt POWERS OF 2

IeR=0
PERT 1

IF (NXeLTe8) TER=]

IF (NY.LTW8) lER=1

[F (2%*¥L0G2NXeNEoNX) {ER=1
IF (2% %L UG2NYeNEaNY) IeR=1
IF (NNXeGTe296) 1iR=}

1F (NNY.GT.Zﬁ(J) [Er=1

PART 2
NOlsIPLl+c®*IP2 v
IF (NIPDIMJLTWNDY) 1Er=]
IF (NAPDIMeLTeMAXO(NDLINXENZy NY¥NZ)) TIzR=1

PART 3

IF (NXDIMeLToNX)
IF (NYDIMeLTWNY)
IF (NZDLFMeLTeNZ)
IF (ItR.EQel) ©O

lek=1
leR=1
ltk=1
TG 1480

PART 4 AND PART 5
Wi SET W = O [F THE POINT IS OUTSIDE THt REGLON
Or ON THE BOUNDARY
1 IF THy PIINT 1S AN IRREGULAR PUINT
2 IF THE POINT IS¢ INSIDE THE REGLION.
TO CHECK THt REGION
1 INITIALLIZE ALL W/75 TQ 3.
2 LHrCK EACH IREZGULAR POINT (1 TG iP)e IF ITS W HAS
ALKEADY BernN SET TO u OR 1 Wi HAVe AN ERROR
IF IT IS O wE HAVE RECEIVED CUNFLICTING DELTAS.
IF LT IS 1 WE HAVE TWG SETS OF DATA FOR THE SAME POINT,.
SET THt W OF THE BOUNDARY POINT TO 1 AND THE SIX NEIGHBOR
W/5 TO G 0% 2,DEPENDING ON THE VALUE OF THE DELTAS.
THE VALUE AT & NEIGA3O0R IS CHANGED ONLY IF IT 1S A 3. 1F
IT IS ALREADY O» 1» OR 2, THE VALUE IS CHECKED FOR
CONSISTENCY. 1/8 ARE CONSISTENT wWwiTH 2/5.
3 NOwWw REPLACE TH: w/5 WHICH REMAIN EQUAL TO 3. EACH NEW
R3w OF PUOINTS IN THZ CUBCS BEGINS OUTSIiDE THE REGIDN
Wwe MARCH ACRUSS, KEPLACING 3/S 8Y 0/3 UNTIL WE HIT A 1 OR 2.
THEN WL MARCH ACROSS RLPLACING 3/S BY 2/S UNTIL Wi ENCOUNTER
A Gs AT WHICH POINT WE AKRE UUTSIDE AGAIN., THE PROCEDURE
CONTINUES UNTIL EVERY PUINT HAS BEEN SET TO A VALUE 0s 1, OR
2

OGO OOOOOOOO0COO0OCBOOO0O0OCGBGOGOOOO0CO00O00000000O0HO000O0a0O0O00n

10
11
12
13
14
15
15
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

38
39
40
41
42
43
44
45
46
47
48
49
50

[
g

52
£3
54
595
56
57
£y

|
-

€0
6l
62
63
64
65
66
67
638
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4 CHECK THAT DIPOLES POINT UOUT OF THE R£G10N
5 FINALLYs CHECK THAT NO INTekIOK POINT AAS AN EXTERIOK
NEIGHBUR)y Tebes WU U fAS A 2 4S5 4 NELIGHEDR,

IF ALL OF THESE TESTS AKE PASSED, Tdf RzGLON 15 OK.

DO 10 K=1sNZ
DO 10 Js=slsNY
DD 10 I=1,NX
W(IlsJdsK)=3,E0
NXi1=NX=-1
NYil=NY=1
NZlsNZ~1
DELTMN=1.E0

SET W NEAR BOUNDAKY.

DO 100 LKT=1s1P

L=LKT

IF (LeGTL1P1) L=lPl4(L-IPLl)e2~]

DO 20C KK=1,3

IC(KK)=ICUIRD (KKy LKT)

ISTEP(KK) =1

IF (ABS(DELTA(KK, L)) eLToUELTMN) LELTMN=ABS (Dl TALKK, L))
IF (DELTA(KKsL) «LTaCatO) LSTEPUKK)E=]

IF ((IC(1)ebTe2)eJRa(IC(L)abTaNXI)) G0 TL 70
IF ((1C(Z) ol Te2) e UKe{ICIZ)aGTaNY1)) GU TO 70
IF ((IC(3)elTa2)eORa(IC(3)eGTanNZI)) GU TO 70
15UB1=1IC(1)

1SUBge=IC(2)

ISUB3=1IC(3)

IF ((W(ISUBL,ISUB2»ISUN3) anNEe3eEU) e ANDe (W{LISUBLYLSUBZ2»iSUB3)eNZ el
1£0)) G0 TO 80

W{ISUBl,ISUB2,1IS5UB3)=1.tC

G0 60 KK=1,3

INEI(1)=1C(1)

INEI(2)=1C(2)

INEI(3)=]C(3)

IF (ABS(DELTA(KK,L))eGTelakQ) GU TU 40

IF (LeLELIP1) GO TO 30

IF (ABSUDELTA(KK,L+1))e6TolsED) GG TO 30

TwO EXTERIOR NEIGHBORS IN KK-TH DIRECTION

INET(KK) =1C(KKI+ISTEP (KK)

ISUBL=INEI(1)

ISUB2=INEI(2)

ISUB3=INEI(3)

1F ((W(ISUBL,ISUB2,15UB3)¢2QeleEl)alRa(W(1SU3L,ISUB2,iSUB3)eiQe2et
10)) 60 TO 50

W(ISUBL1,)1SUB2,1SUB3)=04EC

INET(KK)=I1C(KK)=1STEP(KK)

ISUBL=INEL1(1)

ISUB2=INE1(2)

ISUB3=INEI(3)

IF ((W(ISUBL,ISUB2»I5UB3)eEQulaE0) e URe (W(ISUBL, [SUB2, ISUB3) ecQe24E
16)) 6O TO 50

W(ISUBLy1SUB2,ISUB3)=C.EC

GO TO 60

ONE DELTA JLEs 1 ONE CXTERIUR AND ONE INTERIJR NEIGHBOR
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INEI(KK)=IC(KK)+1ISTEP(KK)
ISuUBiI=INEI(L)
ISUBZ2=INEI(2)
15UB3=INEI(3)

IF ((W(LSUBL,1SUB2,I3UB3)euGaletl)sORe(WIISUBLIISUBZy»iSUB3)eEQe2at
ig)) 6G TO 50

W{ISUBL1,ISUB2,ISUB3}=C0.EC

INET(KK)=IC(KK)=ISTEP (KK)

ISUBLI=INEI(L)

ISuRZ=INETI(2)

I5UB3=INEI(3)

IF (W(ISUBLl,ISUB2,I5UB3)eENe04k0) GO TO 50

IF (WOISUBL,1SUB2s[50UB3)etQe34c0) W(ISUBL,ISUBZ»15UB3)=22,E0
GO TO &0

30Td NEIGHBCRS INTERIOH

INEI(KK)=ICUKK)+ISTEP (KK)

ISUBL=INEI(1)

I1SUBR2=INEI(2)

ISUB3=INEI(3)

IF (WlISUBL1sISUB2»ISUB3)ERQ.0.E0) GU TD 50

IF (WOISUBL1sISUB2,ISUB3)eitQe3deEDN) WUISUBLYISUBZ2»ISUB3)=2,E0
INEIT(KK)=IC{KK)=ISTEP(KK)

ISUBLI=INEI(L)

1SUB2=INcI(2)

ISUB3=INEI(3)

IF (W(ISUBLs12UB2»I5UB3)ec0e0,E0) GU TO 50

IF (w(ISUBLsiSUB2,ISUB3)acle3e0) W(ISUBL, LSUB2,iSUB3)=24E0
60 TO »0

WRITE (60220) INSIC(R)oINLIC2)»INEI(3)oLrIC(L)»IC(2)51IC(3)
lER=2

CONTINUE

GO TO 19¢

WRITE (H59200) LeIC(L)»1iC(2)»1C0(3)

60 TO 990

SKITE (55210) LolC3)iC2)10(3)

Jer=2

CONTINUE

IFf (LeReNEWO) RETURN

SET THE OTHER VALUES OF 4

DO 120 K=1sNZ

DO 120 J=1,NyY
IN=.FALSE.

00 12¢ T=1,sNX

IF (IN) GO TJ 110

QuTSIDE REGION
IF ((W(IsJsK)ebQolatl)eURel{W(InodsK)erQe24EU)) IN=4TRUES
IF (WlXsJoK)ebQe3eEC) WlispJdsK)sUWEC
GO0 TU 12¢
INSIDE REGLUN
IF (WlLsJsK)ebQoelialG) [N FALSES
1F (W({IsdpK)ekQe3abC) WlLlsdsrk)=24EL0
CONTINUE

DIPOLE CHECK
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DO 150 LslyIP

INDEXD=L

IF (LeGToIPY1) INDEXD=IPl4(L=IPl)*2-1

D0 130 KK=1,3

IC(KK)=ICOORD(KKs L)

ISTEP(KK) =1

IF (DELTA(KKs INDEXD) oL TeGoU) ISTLP(KK)==i
ISUS=INODRO(L)

11=I0xkD(1s15UB)

I2=10RD(2,ISUB)

I3=I0KD(3,1I5U8)

[ICCIL)=ICCIL1)+ISTEP(IL)

ISuBl=1C(1)

IsugesIc(2)

1suB3=1C(3)

IF (R(ISUBL,yISUBR2,ISUB3)ebbTeleV) GO TUO 14
ICII2)=1C(12)+415TzP(L2)

IsSusi=IC(1)

1SuB2=1C(2)

IsuB3=1C(3)

IF (WOISUBL,ISUB2sISUB3)eGTealekC) GO TU 14C
IC(I3)=1CLI3)+iSTcP(i3)

ISuUBl=IC(1)

ISUge=IC(2)

ISUB3=IC(3)

IF (WUISUBLeISUB2sISUBS)ecTelet0) GU TO 140
GO TO 15¢

WRITE (55230) LeI1COURD{LIsL)»{COURE(2oL) s ICCORD(3s L) s (UELTACKKY ANUE

IXD)sKK=1,3)

lEr=2
CONTINUE

PART &

ISIZEsIPl+IP2

DO 170 I=1lsnNX

DO 170G J=1sNY

D0 170 K=1sNZ

IF (WllsJdsK)eNEL2ZetG) GO TO 170
ISIZE=]JSIZE+]

lF (W‘(I’d)K"l)oEQoOoiO, (70 TU 10()
IF (W(IsJsK+1l)eECaCaebD) LI TU 16C
IF (W lsd=1sK)ebtCaCGeiC) G TU 160
IF (W(IsJ+isK)ebFGella0) GO TU 16U
IF (Wl I=1lrJsK)etECeOWED) U TU 160
IF (W(I+1pJd9K)efQaUa20) G TU 1o
G0 10 17¢

WRITE (65240) LroJoKow(loJdok=1)oWl(isJdoKtl)ow(lpd=ioK)lpwl(lsJtloK)snl

11-19JsK)owW(I+1sJsK)

IER=2

CONTINUE

wWRITE (65190) I51Zc,0cLThu
RETURN

WRITE (5925C) NXsNYsRZaNEiPOIMoNAFTIMy IPo i XDI4aNYOIMNNIDIN
WRITE (69260)
RETUKRN
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FORMAT (30H NUMBER 0F POINTS InN KECLION = 137194 SMALLEST DELTA =
FORMAT (45H #%%ERROR**%x  CUOBRIINATES OF IRREGULAR POINT »1I7»36H AR

1E OUT OF RANGts COURDINATES ARE 5318)

FORMAT (50 »»#LRROR#%%x  CINFLICTING BOUNDARY INFORMATION. 2 /13X
1s18H IRREGULAR POINT »Ics75n IS LISTED TWICE OR LISTED AS AN eXT&
CRIDK KclGHBOR UOF SOME IRFZGULAR PUINTS/13X»21H Trt CUOORDINATES ARE
3 »318)

FORMAT (47H #*#*ELROF#%%  CONFLICTING BUUNDARY INFUORMATION.»/12X»30
14 THE PUINT WITH CCORDIMATES »318,46H 1S 40GTH AN EXTERIOR AND A
2N INTERIUR POINTe 5713Xs60H ERRCOR DETECTED AHEN PROCESSING INFORM

3ATION FOR IRRLGULAR POINT »17,19H WITH COODRDINATES ,318)
FORMAT (434 **%ERROk*%%*  DIPULE KESTRICTION VIOLATED. 2364 Sc& DOC
IUMENTATICN FOR EXPLANATIONe /13%X,20H IRREGULAR PUJINT »I7514H CO

QURDINATES  931B/13Xe7H DELTA »3£1Ge3)

FORMAT (41H #**%cRRUOR*%**  TAfF POINT wiTH COORDINATES »31I8,314 SHOUL
1D BF LISTED AS IRRCLGULARG/12X»27H NELGHBORS IN Z DIRECTION s44H (
20 1IF QUTSIOEs 1 iF IRREGULARy 2 IF INSIDt)sl2F4eC»/13Xs27Hs NEIGHBO
IRS IN Y DIRECTION »2F440s27Hs NEIGHBORS IN X DIRECTION »2F440)

FORMAT (19H #**ERROF¥%%  NyKs »piT7s6H NuY= »iT7s6H NNZ= »47,9H4 NIPDI
1M= 517594 NAPDIM= s179/1XsdH IPP= »17s¢d NXDIM= »I17,6H NYDIM= 5,17,
28H NIDIA= ,17)

FORMAT (/14X 3THNEED NNXs NNY oGie 8 AND POWERS OF 2e9/713X227H
1 NNX AND NNY olte 25009 /13%X930H NIPDIM oGEe 1IPPL+2%]IPP2.,/13
2Xp4 8 NAGPUIM oGEe iPPL+2*1PFZy NX%¥NZy AND NY*NZes/713X»57H
3 NXDIM 40Gte NNX» NYDIM NNYs AND NZDIM oGce NNZo)

END

SUBROUTINE VMULT (Yo uWsNXUIMAPNYDIMANZDIMYNIPOLIMs JUKD» INDURD»DELTAY 1
1CO0rD)

COMMON /SPACE/ HXsHY»HZIsH2(3)»HX2sHY2yHIL2s TWIFL)CUNSToCHrCHZZoNXsNY
1sNZsIPLlr1P2s iPy LUGENX»LUGZ2NY»AXSUyQYSQ

DIMENSION W(INXTIMsNYSIMaNZOLM)» Y(NIPDIM)y ODSLTA(3sNIPDIM)Y
L1(3,NIPDIM)y INDORDI(NIPLIM)

DIMENSION IC(3)s ISTEP(3)

e e

iCOO0RD
LURD(3,0)

THIS SUBROUTINE COMPUTES w = V Y
SETTING W TC O AN THEN SETTING UP THE DIPOLES,

DO 10 K=1,NZ

DO 10 J=1,NY
DO 10 f=1sNX
W(IsJdsK)=0,E0
DD 30 LKT=1,1P
INDEXD=LKT

IF (LKYeGTelP1l) INDEXD=IPLl+(LKT=1P1)*2~-1
FOR £ACH IRKKEGULAK POINT,

DBTAIN COCRDINATES OF IRREGULAE POINT.
PUT TdE DIPULE IN PLACE.

ISUB=INDUORDI(LKT)

£1=10RD(1,1ISUB)

I2=TORD(2»ISUB)

[3=1I0RD(3,I5UB)

DO 20 KK=1,3

IC(KK)=TCO0RD (KK» LKT)

ISTEPIKK) =1

IF (DELTA(KKRPINDEXD) oL Tatec0) ISTEP(KK)==-1
RATLZ2=ABS((H2(I1)*DELTA(LIL,INDEXD) I/ (HZ(I2)*DELTA(IZ,INDEXD)))
RATLI3=ABS((HZ2(I1)*DELTACLL, INDEXD) Y/ (H2CI3)*DELTA(LI3,INDEXD)))
WT=Y(LKT)

1SuBl=1C({1)

OODOOOOOOUOUOOOOUUOUOOUOOOUOOUOCOOOﬁﬁnﬁﬁﬁﬁﬁﬁﬁnﬁﬂnnﬁﬁﬂﬂﬁﬁﬁﬁnﬁnﬁ
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1suB2=1C(2)

ISuB3=1C(3)

WETSUBL,ISUB2,ISUB3)=W(ISUBL,ISUB2siSUB3)+wT
IC(I1)=fC(L1)+1ISTEPLIL)

ISuUBl=ICH{1)

IsuB2=1C(2)

ISUs3=1C(3)

WOISUBL, ISUBZ2ISUB3)=aW{ISUBLsISUBLHLISUB3 )=wT%(leazU=RAT12)
IC(I2)=1C(I2)+ISTEPLLIZ2)

IsuBl=1C(1)

1SUB2=1L(2)

ISUB3=IC(3)

WOISUBL1sISUBZ2,ISUB3)=W(15UBLyISUB2y ISUB3)=wT#(RATIZ=-RAT13)
IC(I3)=1C(I3)+ISTEP(I3) '

ISuBl=14(1)

IsuBz=IC(2)

ISUB3=1C(3)

WOISUBLy ISUB2,ISUB3)=w(15U3LyISUBZsISUBI)=WwT*KRATL3

CONTLINUE

RETURN °

END

SUBRUUTINE VTRANS (Wo Yo NXOIMaNYDINMINZDIM» NIPOIMR)IORD 2 INDORDSDELT A
1IC00KD)

COMMON /SPATE/ HXsAYsHZsH2{3) s HXZo Y 2oHZZ2 s TRAIPLsCUNSTHCsCHZZoNXsNY
IsNZyIPlsIP2sIPsLOG2NXs LOG2NY»UXSGs0QYSQ

DIMENSION WINXDIMSNYDLIMaNZIIMYs YU(NIPDIM)s D:LTA(3»NIPDIM)y ICUOKD
1(3sNIPDIM)y INDURD(NIPUINM)» [ORD(356)

DIMENSION IC(3)» ISTEP(3)

T
THIS SUBROUTINE COMPUTLS Y = V W

USING UNDIVIDED DIFFERENCE FURMULAS DETERMINED 8Y THE DIPJLE
WEIGHTS.

DO 20 LKT=1,1P

INDEXOaLKT

IF (LKTeGToIP1) INDEXD=IPL+(LXT=IP1)*2~-1
ISUB=INDGRDI(LKT)

I1=I0R0O(1,1IS5U8)

12=I0RD(Z,1SUE)

I3=T0RD(3,I5U)

DO 10 KK=i,3

IC(KK)=ICOORO (KK, LKT)

ISTEP(KK) =1

IF (DELTA(RK)INDEXD)aiTeCWe0) ISTEP(KK)==]
RAT12=ABS((H2UIL)*DELTACILs INDEXD) Y/ (H2(I2)#DELTA(LIZ2,INDEXD)))
RAT13=ABS((H2(IL)#DELTACTL, INDEXD)) /{R2CI3)I*IELTA(L3,INDEXD)))
ISUB1=IC(1) :
IsuBz=IC(2)

ISUB3=IC(3)

WT=wW(lSUBLl,ISUBR2,ISUB3)
IC(I1)=1C(i1)+LSTEP(IL)

IsuBi=IC(1)

I1suge=1C(2)

ISuB3=IC(3)
SUM=(RAT12-1,E0)*w(1SUBL,»ISUB2,ISUB3)
ICUIZ2)=IC(I2)+ISTEP(I2)

ISuBl=IC(1)

I5uB2=1C(2)

1suUB3=1C(3)

SUM=SUM+ (RAT13=-RAT1IZ2)*W(15UBI,ISUBZsISUBS)
IC(I3)=IC(I3)+ISTEP(13)

mmefeEmMmme MMy T MM MMM MMM MM MMM MmO OO g0CoUodGoOoOuUr OO o ocoUuoo
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ISUBL=IC(1)

1SuB2=1C(2)

ISUB3=IC(3)

SUM=3UM=RATI3*W(ISUkL»1ISUB2,I5UB3)

YILKT)=3UM+wT

CONTINUE

KRETURN

END

SURKDOUTINE UTAMLT (wo Yo NXDLMINYDIMINZODIMsNIPDIMsDELTA, ICTUORD)

COMMON FSPACE/ HXpHYsHZpH2(3) 9 HX29HY2sHZ2, TWAP Ls CONSTSCoCHZZ)NXSNY

1sNZsIPLsiP2,iPsLOG2MXsLOG2NYSQAXS5Q,2YSQ

DIMENSION WINXDIMsNYDIMsNZUIM)» DELTA(3,NIPODIM)» ICOOKD(3,NIPDIM),

1 YONIPDINMI» D1(3)s D2(3)

T
THIS SUBROUTINE CUMPUTES Y = U A W
WHERE THE MaTRIX KOWS FURM THE SHORTLEY=WELLER APPRUXIMATICN
OF =LAP+CC USING DATA UONLY AT THt IRREGULAR PUOINT AND ITS
INTZRICK NETGH3ORS.  THE EQUATIONS
ARE SCALED SO THAT Toc MainN OIAGUNAL ELEMENT OF THE MATRIX
(Ietes THAd COAELFFICIcNT FIR TAE IRKELGULAR POINT ITSELF) IS 1.

ud 110 LKT=i,1P
L=lKT

GET CUCRDINATES AND ODL1STANCES FOR THLS IRREGULAR POINT.

[=ICO0X0(1IsL)

J=ICOGRD(2sL)

K=ICOURD(3,s1L)

IF (LeGTWIPL) L=IPl4(l~-IP1)*2-1
INCI=1

INCZ=]

INC3=]

TF (OELTA(LsL) elTeCoezD) INCl==1
IF (DcTa(2s0) el TalesC) INL2==1
IF (CELTA(3sL) elTedec0) INC3=-1l
DI{l)=ABS(DELTALL,L)
01(2)=28S(DELTA(Z,L))
DI(3)=A85(DELTA(3,L))

I (LeEaIPl) GU Ti) 10

D21 )=A3S(DELTACIsL+1) )
G2(21=A85{(DELTA(2Z2,L+1))
D2{3)=ABS(OLELTA(3,L+1))
CONTINUE

X INCREMENTS
IF (D1(1)eGTeleE0) GO TU 34
IF (LeLELIPL) GO TO 2¢
IF (D2(1)eGTeleEO) CO TO 29
BOUNDARY CUTS TwICE BEVWeEN TALS POINT AND ITS X NEIGHBOKRS
DIAG=2.C0%QXSG/(D1(1)%D2(1))
TERM=0LEC
GO TO 40
BOUNDARY CUTS ONCE BETwtiN THIS POINT ANDG ITS X NE1GHBURS.

CONTINUE
DIAG=24EC*QXSQ/0i (1)
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ISUB=I-INC1
TERM=W(ISUB»JsKI*24EC/ (1 d+01(1))
GO TO 40

BOUNDARY DO£3S NOT CUT

DIAG=2.EG*QXSQ
TeRMew(I=1sJsK)+W(I+1lrJyK)
SUM==TERM*UXSQ

Y INCREMENTS

IF (D1(2)eGTedetC) GO TA o0
IF (LeltelPl) GO TO 20
IF (D2(2)eGTel.E0) 6O T3 30

30UNDARY CUTS TwWlCi StTweeN THIS PUINT AND TS Y NELGHBORS

DIAG=DIAGH24t(*QYSQ/{0L(2)%D2(2))
TeRM=UeED
63 TO 70

BOUNDARY CUTS ONCE SETWLEN TAIS PUINT AND ITS Y NEIGHBORS

CONTINUE

DIAG=DIAG+2.£0%0YSO/01(2)
1suB=Jd~INnC2
TERM=wW(LsISUBSKI*Z,L0/(1eEu+DL(2))
G0 TO 70

BOUNDARY DOES NOT CuT

DIAG=DIAGC+2.50%QYSQ
TERM2W (1o J=1sK)+w(lyJ+1lsK)
SUM=SUM=TERM®QYST

Z INCREMENTS
IF (D1(3).GTelet¢) 6O TG 99

IF (LelZeIPl) GO TO &2
IF (D2(3)eGTedEC) GO TO 80

BOUNDARY CUTS TwlCEt #5TAienN THIS POINT ANJ JTS Z NELCHBORS

DIAGeDTAG+245C/{D1(3)%D2(3))
TE&”’O'EO .
GO TO 106

BOUKDARY CUTS ONCr BL£TWEeN TAILS POINT AND 1TS Z NeIGABURS

CONTINUE

DILG=UIAG+2,£CG/D1(3)

ISUB=K=INC3

TeRM=w (Lo ISLBI#Z2,60/(LelusDl(3))
GO TO 136

BOUNGARY DOES NIT CUT

DIAG=DIAG+24£C
TERM=w{lsJsK=1)4W(ipJsKe+l)

LU0 SUM=BSUM=TERM

T TTTTTHTTTITITTTTTTMMTTTTHNYT T T T T Tt T T Tert MY TN T TYTTMTTTTTYTT T T TNTTYTTTTTYTTTT T T TTTNTTT YT TTMTIYETMTMIITTTYT T T TN
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g0
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87
€9
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0
91
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3
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103

1G4

165
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SCALE=14E0/(DYAG+CHLZ) F 117
Y(LKT)=W(IsJrok)+SUMESCALL F 118
110 CONTINUE 119
RETURN F 120
END F l21=-
SUBKDUTINE BNDRY (BCXsBCY»BClrsGoNXDIMaNYDIMaNZIDIMAGNIPOIM)DELTALICO 6 1
10RDsBB) G 2
COMMON JSPACE/ HXSHYSHZyH2(3)ordX2oHY 2o HZ2s TP LsCONSTH»CoCHIZINXSINY 6 3
1»oNZsIPly1P2,1P» LOG2NX»LOG2NY»AXSQ»QYSQ G 4
DIMENSION BCX(NIPDIM)y BCYINIPDIM)Y), B8CLZI(NIPUIM)» DELTA(3,NIPDIM),» 5 5
1ICO0RU(3,NIPDIM)y D1(3)y D2(3)» GINXDIMsNYDIMHNZDIM) G 6
LOGICAL BB G 7
c : G |
c T G 9
C THIS SUBROUTINE CUKPUTES BCX = U F G 10
C USING BOUNDARY DATA STUR=D IN BCXs» BCY» AND B8CZ» 6 11
C AND THE DATA IN G G 12
c THIS IS TH:Z RIGHT HAND SiDE FOR THE CAPACITANCE MATRIX 6 13
C EQUATION. G 14
C THE RESULT IS DETERMINED BY APPLYING THE SHORTLEY- G 15
C WELLER APPRUXIMATIUN OF —-LaP+CC AT AN IRREGULAR G 15
C POINT AND DIVIDING BY 1AL SCALE FACTOR USZDL IN UTAMLT G 17
c AND UTATRN, G 18
C G 19
DO 11C¢ LKT=1,1IP G 20
C G 21
C GET CDORDINATES AND DISTANCES FUR THIS IRRcGULAR PUINT. G 22
C G 23
L=LKT G 24
I=ICOORD(1sL) (] 25
J=ICGORD(2,yL) G b
CK=ICOORD(3,L) e 27
IF (LeGTeIP1) L=IPi¢(l~-iPL)#2~1 G 23
D1(1)=A3S(DELTA(L,L)) 6 29
D1(2)=ABS(DELTA(Z,L)) G 39
D1(3)=A8S(DELTA(3,L)) G 31
IF (LoLELIPL) GO TG 10 G 32
D2(1)=ABS{DELTA(LsL+1)) G 33
D2(2)=ABS{DELTA(2sL+1)) G 34
D2(3)=A3S(DELTA(3,L+1i)) 5 35
10 CONTINUE G 36
TERM1I=0D.:0 G 37
TERM2=04,E0 & 33
C G 139
C X INCREMENTS G 40
C ' G 41
IF (Di(l)eSTeletw) GO TD 30 G 42
IF (LeLESIPL) GO TU 20 5 43
IF (D2(1)eGTeleE0) GO TO 290 G 4%
C G 43
C BOUNDARY CJTS TWICE BeTwéen THiS POINT AND LTS X NEIGHBORS G 46
C G 47
DIAGS2,EG*QXSQ/(D1(1)*02(1)) G 438
TERM1I=2.E0/¢{01(1)+02(1))*D1(1)) 5 49
TERM2=24£0/((01()+02(1))*02(1)) G 50
GO TO 40 G L
C G £
C BOUNDARY CUTS ONCE BETWCEEN THIS PUIRT ARD 175 x NEIGHBUKRS. G 53
C G 54
20 CONTINUE G 5
DIAG=2.E0%QaXSQ/D1(1) G o6
TERMLI=2E0/((1,EO0+DI(1)Y) %D (1)) amyb el

¢
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63 TO 440
BOUNDARY DOES nNOT CUT

DIAG=24c0%*QX50

SUM==TERMI*QXSG*BCX (L)

IF (TcRMZeNreCobtu) SUMSUM=TERM2%*QXSQ*BCX(L+1)
TERM1=0.E0

TERM2=D4t0

Y INCREMENTS

IF (D1(2)eGTeleEC) € TO 69
IF (LeLceIPl) GO TO 50
IF (D2(2)eGTelec0) 6O TO 59

BOUNDARY CUTS TwWiCe B8iTWezN THIS POINT AND ITS Y NEIGHBOKS

DIAG=D1AGH2+EC#QYSQ/(DL(2)*D2(2))
TERML=2.E0/C(D1(2)+L2(2))*%0l(2))
TERM2=2.E0/7((DL(2)+02(2))*D2(2))
60 TG 70

HSOUNDARY CUTS ONCE SETWEEWN TALS PUINT AND LTS Y NEIGHBORS

CONTINUE
DIAG=DIAG+2.£C*QYSQ/D1(2)
TERMi=2400/ (1 E0+03(2))%01(2))
Gd TQ 79

AOUNDARY DOcS NOT JUT

DIAG=DIAGH2,0*QYSQ

SUM=SUM-TERMI*QYSQ*alY (L)

IF (TERMZeNEWCGeEQ) SUM=SUH-TERM2*QYSQAxBCY(L+1)
TekmMl=0et0

TekM2=0480

L INCREMENTS
If (U1(3)eGTelelD) 63 TGO 90
IF (LelES1PI) GO TO 80
IF (D2(3)eGTelat:0) GO TD 80
BOUNDARY CuUTS TwICE 8ETwciN THIS POINT ANO ITS Z NEIGHBORS
Di86G=00aG+2.20/(D1(3)%0L2(3))
ToRMLI=2 L0/ C(01(3)402(3))%01(3))
TERMZ=2,E0/1(01(3)+402(3))+02(3))
6GC TO 190
BOUNDARY CUTS ONWCE BETWEEWN THIS POINT AND ITS Z NEIGHBORS
CONTINUE
DIAG=DTIAG+2.E0/01(3)
TERM1=2.E80/((1aE0+D1(3))%DL(3))
600 TO 10¢C
SOUNCARY DOES NOT CUT

DIAG=DIAG+2.c0
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110

10

290

30

1ORD(3,NIPDIN),

86

SUM=SUM=TERML*¥BCZ (L)

IF (TERM2eNEWOeED) SUMaSUM-TuRMZ*BCL(L+1)
SCALE=1.E0/(DIAG+CHIZ)

GTERM=0.ED

iSUB1=ICOORD(1,LKT)

ISUB2=ICO0RD(2,LKT)

ISUB3=ICOORD(3,LKT)

IF (B8) GTERM=G(ISUBL,ISUBZ,ISUBI)
BCX(LKT)=(~=SUM+GTERM)*SCaLE

CONTINUE

RETURN

END

SUBKOUTINE UTATRN (Yo wWsoNXDIMsNYDIMyNZDIM)NIPDIMsDELTA, ICUORD)
COMMON /7SPACCYS HX»AYSHZsH2(3) s HXZsHY 2o HZ2 s THOP Lo CUONSTHU s HLIZINXSNY

1sNZsIP1lsIP2sIPsLOG2NX» LOG2NY»QXSGsUYSQ

DIMENSION WINXDIMSNYDIMANZOIIN)y C£1i(3)s
Y{NIPTIN)
DIMENSION WINC(T)

D2{3)» DELTA(S,NLIPDIM), 1ICO

T T
THIS SUBROUTINEZ COMPUTES W = (U A) Y.
W IS INITIALIZED T3 O AnD ToeN THE WELGHTS> GETERMINED IN
UTAMLT ARt USED TG DISTRIBUTE Yo

DU 10 K=21,NZ
D0 10 J=lisNY
DO 10 I=1sNX
W(IsJsXK)}=0eEC
DO 130 LKT=1,5P

GET COUDRDINATES abD DISTANCES FUR TAlS IRREGULAK POINT,
L=sbLKT
I=ICOORD(1sL)
J=ICO0RD(2,L)
KsICUORD(3,s1L)
IF (LeGTeIPl) L={Pls(L-JPLi)x2-1
D1(1)=ABS(DELTA(L,L))
D1(2)=ABS(DELTA(2,1L))
D1(3)=ABS(DELTA(3,L))
IF (LeLEIP1) GO TO 20
D2(1)=ABS(DELTA(L,L+1))
D2(2)=A8S(DelTAl(2,L+1))
D2(3)=ABS(DELTA(3sL+1))
CONTINUE
INC1=1
INCZ =1
INC3=1
IF (UDELTACLsL) elTeuet)
IF (DELTA(Z2oL)elTeGetD)
IF (DeELTA(350)elT0ecQ)
DO 30 KK=1,7
WINC(KK)=0.ED

INCl==1
INC2==-1
INC3==-1]

X COUNTRIBUTIONS

(D1(1)sGT414E0) GG TO 50
(LeLE4IP1) 6D TO 40
(D2(1)e6Te14EQ) GU TO 40

IF
IF
IF

BOUNDARY CUTS TWwiC: BET#:EN THIS PUINT AND ITS X NELGHBOKS

I I T AT ITILI LAY ITIITIIIFliAirIllIITIAoLlrilldyIlslIIIlIIllIlIrITlLIIOGGONOOESOOOCG
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DIAC’L.tG*QXSO/(Ul(J)*02(1))
60 T3 60

BEOUNGARY CUTS ONCE BETWEEN THIS POINT AND ITS X NEIGHBORS,

CONTINUE

DIAG=2,420G%QX5Q/01(1)

ISUB=2-INC1
WINC(OISUB)==Q0XS5Q%2.LG/(1+E0+D1(1))
63 TO 60

BOUNDARY DDES NOT CUT

DIAG=2.E0%QXSQ
WINC(1)=-QXSQ
WikC(3)==-0XSQ

Y CONTRIBUTIONS

IF (D1(2)eGTeleECG) GJ TO 60
IF (LeLESIPL) GO TO 70
IF (D2(2)e5Telet0) T TC 7J

BOUNDARY CuUTS TwiCc BeTwekn THLIS PULNT AND JITS Y NEIGHBORS

DIAG=DIAG+2,50%QYSQ/{Di(2)*D2(2))
640 TO 990

BOUNDARY CUTS ONCE BETween THIS POINT AND ITS Y NEIGHBORS

CONTINUE

DIAG=DIAG+2.£0*QYS5Q/D1(2)
I1SUd=3=-[n{2

WINCOISUB) ==QYSQ*2,E4G/(Letu+D1(2))
GO 10 90

BOUNDARY DO:S NOT CuT

DIAG=DIAG+2.E0%QYSQ
WINC(Z)==QYSQ
WINC(4)==QYSQ

Z CONTRIBUTIONS

IF (D1(3)eGTeleEl) G0 TO 110
IF (LeLE.IPLl) GO TO 100
1F (DZ2(3)eGTalsED) GG T9 130

Z0URDARY CUTS TwlCt BETWEEN THiS POINT AND 1TS Z NEIGHBORS

DIAG-UIAC*Z.EO/(01(3)*02(3))
GO0 TO 120

BOUNDARY CUTS ORCL BETWEER THLS PUOINT AND ITS Z NELIGHSORS

CONTINUE

DIAG=0IAG+2.E0/D1L3)
ISUB=6-~INC3
WINCOLSUB)=~2,E0/(1,E0+01(3))
GO0 TO 1206 '
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120

130
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30
40
50

60
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BUUMDARY DOES n37 CUT

CIAG=DIAG#+2.EC

WINC(S5)==1,C0

WINC(7)=2=1.,E0

CONTINUE

FACT=Y(LKT)/(CIAG+CHLIZ)
W(IoJsK)=W(InsJdsK)+Y(LKT)

W {I=1rJdsR)eW(I=1sJsKI+FACT*WINC(1)
W {lpJd=loK)=W(1lpd=1sK)+FALTHWINC(2)
W{I+1loJdoK)=W(I+1ls JoK)+FACTH*WINC(3)
WS pJ+loK)=W(isJdtloK)+FACT*WINC(4)
W TIsJopK=0)aW{1sJoK=31)+FACT*WINC(E)
WlIsJdoK41)=W(1lsJdsKe1)+FACT*WINC(T)
CONTINUE

RETURN

END

SUBRBUTINE CUBEF (FyNXDINMsNYDIMaNZUDIMINAPDIMIRE)

COMMON FSPACEYZ HXsHY»HZsH2(3) s HXZ2HY2»HZ2s TWIP Lo CUONST»CHrCHZZoNXSNY

1oNZyIPLlsiP2sIPsLUGZNXoLOG2NY» QXSG QYSQ
DIMENSION FONXDIMsNYLIMpNZUIM)s RE(NAPULIM)
COMNON /JFFT/ S(64),18(250)

THIS SUBRJOUTINE SOLVES THE HELMHULTZ EQUATION UOVER & (CUBE;

-U - U - U
XX YY 12

+ C*J = F/(HZI*HZ)

wITH F=0 QUTSIDE TRHE CUse IN THE 2 DAiRECTION AND U
PERIODIC IN X AND ¥ wiTH PERIJDS 1.

THt ANSWER 1S STUKID IN Fo

ANY REAL VALUE OF C CAN ot HAANOLzD BY THlS FOURLER=-
TOcPLITZ MzTHOD.

RE IS USED AS W#OKKSPaCE TO INTERFACE
FFT ROUTIRES. THk

WiTH THc
DIMENSIONS UF S AND I8 MUST

BE «GE« N/4 AND N RESPECTIVELYs,wincRE N= MAXINX,NY).
[FSs=?
IF (NXeEG.l) GO TO 20
NZl=Nl~-1

CALL KFOKRT (RESLUGZNA»UsNZsNAPDIM)
DO 40 J=1sNY

L=0

00 20 K=1sNZ

D0 20 I=19NX

L=l+1

Re(L)=F(1pJdrK)

CALL KRFOKRT (REsLOG2kXs1FSsNZaNAPDIM)
L=0

DO 30 K=1lpsNZ

DO 30 I=1,NX

L=L+1

F(I,JsK)=RE(L)

CONTINUE

CONTINUE :

CALL RFOKT (RESLOGSENY» Oy NZyNAPDIM)
DO 80 IslyNX

L=0

DO 60 K=1lsNZ

PO 60 J=1sNY

LsL+l

RE(L)I=F(IsdsK)

h!HrﬁrdHiﬁhdﬁiﬁrﬂhﬂqFQHUHFNHbﬂhﬁHrﬂbtmidthr4»4m)ﬁwabqbtmDAF‘HDAF4HP4P4NP4I:1:E::I:t::I:EJ:I:r::l:rj:z
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CALL RFORT (RtsLOGZNYs IFS,HZsNaPDIM)
L=0

DO 70 K=1yNZ

DO 70 J=1isNY

L=L+1

FlIsJrKI)=RE(L)

CONTINUE

SOLVE THE TRIDIAGONAL SYSTEMS

IF (IFS«GT40) GO TO 220
NXDZ2=2%%(LOG2NX=1)

NYDZ2=2**x(LOG2NY=1)

DO 210 LY=1sNYD2Z
COSJ=COS(TWOPLI*FLOAT(LY-1)/FLOATINY))
D3 210 KTJd=1s2

JELY*24KTJ=2

DO 210 LX=1pNXD2
COSI=COS(TWOPI*FLOAT(LX=1)/FLIAT(NX))
DD 210 KTi=1,2

IsL X424KTI~2

LX = INTEGER PART OF (i-1)/2 + 1
LY = INTEGER PART OF (I-1)/2 + 4

TRIUDIAGONAL SYSTEM WITh
DIAGIONAL ELEMENTS T ls1) AND TINNZHNNL) = XLMBDA/Z
+ SQRTO(XLMEBDA/I2)%*%2 = 1)

THE OTHER DIAGUNAL ETLEMcNTS = XLMuBDA, =1 IN SUs= AND
SUPER=DIAGONAL.

THE TRIDIAGONAL SYSTeM |
TV =2_ G(K) = r{
STORE V IN F

53
isJsK) K=3lspeeesh?Z

COMPUTE XLMBDA

XLMBDA=CONST

IF (J=2) 110,905100
XLMBDA=XLMBDA+QYSQ*Z2.£0Q

GO TO 110
XLMBDASXLMBDA+QYSQA*(1.E0=CJSJ)
CONTINUE

IF (1I-2) 140,120,130
XLMBDA=XLMBDA+QAXSQ*2,4,5C

GO TUO 140G
XLMBDA=XLMBDA+OUXSQ* (L EC=-CIST)
XLMBDA=XLMBDA*2,.,£0
DISCR2=,2H5E0*XLMBUA*XLMBDA=-1450
IF (DISCR24GTe04EC) GO TO 4170

-2 oLEo XLMBDA oLEo 2

PHI = ARCCOS(XLMBLA / Z2)

FCIsdrpK) = V(J) = SUMIF(IsJsK) SIN(PHI*ABS(I=J)))/
{2 SIN(PHI))

WHERE SINCIN#1)PHI) / SIN(PHI) = UN(X) =
N=TH CHEBYSHEV POLYNOMIAL
AND X = XLMBDA / <.

Hpui‘-—&Hp—&r——‘HMHMN_H‘—«‘M'—¢MHHNL-@MHMHMHH%—(HMHHMHHHHHNHM$<h—nr—;mmy-ewmv—(.i—r-q‘r—tt—i,-a'»db—-,s-dgvs'r«vy_nH

4b
47
48
49
50
i
52

£
-

54
55
£
57
63
59
60
61
62
63
&4
€5
66
67
63
&9
70
71
72
73
74
75
76
717
73
79
D]
E1
82
53
84
85
E6
87
es
g9
0
51
92
93
94
95
96
97
93
99
100
101
102
13
104
105
1C6
167



90

V(K+1l) = XLMBDA V(K) = VvI(K-=1} - G(K)

OO0

UCMi=1.EC
UCaXLMBDA/2.EC

V=F(IsJrl)*UC 113
DO 150 K=2sN1Z 114
UCH2=UCM1 115
UCM1=uC 116
UC=XLMBODARUCMI-UCHM2 117

VaV+UC*F(Is JrK)
150 COKTINUE

GeF{lsds2)

FlIpJs2)=XLHBDAXN=F(1sJdsl)

F{Isdsl)=V

D0 160 K=3yNZ

G2sF(isJdsK)

FULIsJdsoK)=XLMBDA*F (1o JsK=1)=-FllpdsK=2})=C
160 6=G62

GO TO 20¢C

XLMBDAGTe2 OR oL Te =¢

SOLVE THE FACTORED SYSTEM

o NeNeRNaNel

170 DISCK=SQkT(DiSCR2)
1F (XLMBUAGTe04E0) LISCR==DISCR
BEL=oSEO®XLMBOA+DISCR

FORWARD SUBSTITUTION

OO0

L0 180 KK=1,NZ1
KeNZ=KK
180 F(IodoK)I=F(IaJdsKI+F(lsJsK+]1)*3EL

BACKWARD SUBSTITUTION

OO

FCLlsJsl)sF(1sdsl)%x8f1
DI 19C¢ K=2yNZ
19C F(IsdsKIa(F(IsJoKI+F(IsJsK=1))*BE1
200 CONTINMUE
210 CONTINUE
IFS==]FS
IF (iFS.GT.0) 68 TO 190
220 CONTINUE
RETURN
END
SUBROUTIN: RFOURT (AyMsLFS»MMeNAPDIM)
DIMENSION A(NAPDIM)
COMMON /JFFT/ S(64%)s18(256)

THIS IS AN AUGUST 1978 VERSLUNsA SLIGHT KEVISLON OF
A PKOGKAM OBTAINED FROM We PROSKUROWSKILKIS CODE IS
BASED ON A CODE DUL TO JCUOLEY.

THIS SUBROUTINE SIMULTANSUSLY CUMPUTES THz REAL FFT
OR THE INVcRSE FFT OF MM VECTOURS OF LENGTH NoHERE
MM IS AN ANBLITKARY POSITIVE INTELGER AND Nz2#%M WITH
M AN INTEGER oGke 3¢THt ARKAY A IS5 OF LENGTH N#*MM,
N*#MM MUST BE oLEe NAPDIHM.

‘¢
w
L &

OO0

IFS IS5 A PARAMuTER SET 8Y THE USER.
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FOR IFS=0, THE ARRAYS S AND IB ARE GEnERATED o5 IS
A TABLE OF SINE VALUES AND IB A REPRESENTATIGN OF A

PERMUTATION USED IN THEt 3B3INARY RKEUGKDERING 3F THt DATA.

THE ARRAY A IS UNAFFECTED 8Y THIS CALCULATION.

FOK IFS==2,tACH SUBSARRAY OF A,0F LENGTH N» IS REPLACED

BY ITS FFT.THE COSINE CUOcFFICIENTS ARE STIRED »IN OKDER
OF INCKEASING FREGUENCYs IN PUSITIORS 193550 eeesN=1 AND

2eTHE SINE COEFFICIENTS ARL IN POUSITIONS 456se0es9Ne
FOR IFS=2,THE INVEXSE FFT 1S SIMILARLY OJBTAINED,
THIS SUBROUTINE USES & SOMPLEX FFT KIUTINE FORT.

IF (IFSeNE«O) GO TO 10
CALL FIORT (A,MsyQyMMsNAPDIN)
RETURN ‘
CONTINUE

N=2 % %M

N2 =2 *N

MV2=N/2

NVZ2M2=NVZ2=2

MMl=p=1

NP=N

MP=M

KD=NP /N

NPV4&=NP/4

IF (IFS.GT.0) GO TO 4¢
CALL FORT (AsMMls=2sMMoNaPuiM)
KMIN=2

KMAX=aNV2NM2

LN=N

DU 30 L=1l,MM

KT=KD

D0 20 KsKMINsKMAX»Z

JsL K=K

AlR=A(K+1)+A(J+1)
AlL=A(K+2)=A(J+2)
A2RaA(K+2)+A(J+2)
A2I=A(J+1)=-A(K+1)
KKT=NPV4-KT

AWk =AZR®S(KKT)I+AZI*S(KT)
AWIsAZI*S(KKT)=A2R*S(KT)
A(K+1)=2(AlR+AKR)*(425
A(K+2)=({AalI+anwl)*0.25
A(J+1)=(AlR=AWR )} %0425
A(J+2)=(AWI=-ALL)*0e2%
KT=KT+KD

T=A(KMIN=1)
A(KMIN=1)=(T+A(KMIN))I*GWE
ACKMIN) = (T=A(KMIN) ) #0a5
NK=NV2+KMIN
NK1=NV2+KMIN=-1
A{NK1l)=45*A(NK1)
A(NK)=s=g 5%A(NK)
KMIN=KMIN®N

KMAX=KMAX+N

LN=LN+N2

CONT INUE

RETURN

CONTINUE
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50

60

g2

KMIN=2

KMAX=NV2M2

LN=N

DO 60 L=1sMM

KT=KD

DO 50 K=KMINsKMAX,»Z

JelL N=K

AlR=A(K+1)+A{J+]1)
AlI=zA(K+2)=A{J+2)
AWR=A(K+1)=A(J+1)
AWI=A(K+2)+Aa(J+2)
KKT=NPV4-KT
A2R=AWRRS(KKT)=~AwI*S(KT)
A21=AWRES(KT)I+AWI #S(KKT)
A(K+1)=AlR-A2]
A(K+2)=A1I+A2R
A(J+1)=A1R+A2]
A(J+2)=AZR=-A1l

KT=KT+KD

T=A(KMIN=-1)

I=A(KMIN)

A(KMIN=1)=T+Z
A(KMIN)=T=Z

NK=MVZ+KMIN
NK1=NV2+KMIN=-1
A(NKL)=22,0%4 (NK1)
A(NK)==2,0%A(NK)
KMIN=KMIN+N

KMAX=KMAX+N

LN=LN#N2

CONTINUE

CALL FORT (A»MiA1lr 29 MMy NAPDIN)
RETURN

END

SUBROUTINE FORT (AskplvrSsrMaNAPDIM)
DIMENSION A(NAPDIM)
DOUBL: PRECISION DATAN
COMMON /7FFT/ S(564)518(2506)

THIS IS AN AUGUST 1978 VERSIONsA SLIGAT REZVISION OF
A PROGRAM OBTAINEL FROM WePROSKURUWSKI.HIS CODE IS

BASED OGN A CODE DUt TO JoCOOLEY.

THE COMPLEX EFT OR THE IWVERSe CUMPLIX FFT

TABLE IS CUMPUTED.SEL FURTHER THE
SUBROUTINE RFORT.

Ne2 %% :
IF (IFSeNEWO) GO T3 90
THETA=DATAN(1.DO)
NT=N/4

MT=M=2

1F (MTeLE4D) GO TO b0
JSTEP=NT

JDIF=NT/2
S(JDIF)=SIN(THETA)

IF (MT.LTe2) GO TO 30
DO 20 L=2,MT
THETA=THETA*0.5
JSTEP2=JiTEP
JSTEP=JOIF
JDIF=JDIF/2
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85
85
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13
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SCJDIF)=SIN(THETA) K 29
JC1l=NT=JOIF K 30
S{JCL)=COS(THETA) K 31
JLAST=NT=~JSTEP2 K 32
IF (JLAST.LT.JSTEP) 6O TC 20 K 33
DO 10 J=JSTEP»JLASTJISTEP K 34
JCaNT=J K 35
JO=J4JDIF v K 36
10 SEJD)=S(JI*S{JCLI+S(UDIF)I*SLJC) K 37
20 CUNTInUE K 38
30 CONTINUE K 39
DO 40 Is=isN K 40

40 i8(1)=0 K 41
NZ=N/2 K 42
J=2 K 43
NM2=N=2 K 44

DO 70 I=2,NM2,2 K 45
IF (IeGEed) GO T 5C K 46
Is(I)=J K 47
50 K=N2 K 48
60 IF (KeGEedJd) GO TO 70 K 49
J=J=K K 50
K=K/Z K 51

G0 TO o0 K &

70 J=J+K K 53
BC CONTINUE K 54
RETURN K &5

906 CONTINUE K §
N2=2%N K &
NT=N/2 K 58
MNZ2=MM*N2 K 59

03 110 I=2sNZy2 K €9

IF (18(1)eEQ.0¢) GO TO 11¢C K 61
IR=C K 62

00 10uv L=1sMAM K 63
JEIB{1)+1R K 64
K=l+IK K 65
T=A(K) K 66
AlK)=a(J) K 67
ALd) =T K 68
T=A(K-1) K 69
AlK=1)=Aa(J=1) K 70
A(d=1)=T K 71
IR=JIR+N2 K 72
100 CONTINUE K 73
110 CONTINUE K 74
IF (IFS.GT.0) GO T3 130 K 75
FN=N K 76
FNz1sG/FN K 77

DO 120 I=2,MNds2 K 78
A(I=1)=A(]=1)%FN K 79
120 A(1)==A(1)*FN K &0
130 DU 140 I1=2,MNZy4 K 81
T=A(1i-1) K 82
A(I=1)=T+A(1+1) K 83
ACI+1)=T-A(I+1) K 84
T=a(1) K 85
AlI)=T+a(1+2) K &6
14U A(I+2)=2T=A(1+2) K 87
LEXP1=2 K 838
LzXP=u K 89
NPLszas(m=1) K 60




150

160
170

180
190

200

210

DO 200 L=2,M

DO 15C I=2sMN2sLEXP
I11=1+LEXP1
12=11+LEXPL
I3=I2¢LEXPL

T=A(1~-1)
ACI-1)=T+A(I2-1)
Alle=1)=T=A(I2~1)
T=A(1)

A{I)=T+A(]I2)
A(I2)=T=-A(12)
T==A(13)

TIsA(13-1)
A{I3=-1)=A(11-1)~T
A{I3)=A(11)-T1
A(TI=1)=2(11=1)+T
A(L1)=A(I1)+T}

IF (LeEQ.2) GU TO 19U
JMAX=LEXPL

DO 180 JMIN=4,MN2,N2
KLAST=N2=LEXP

JJ=NPL

DO 170 J=JdMINy)JMAXy?2
NPJJ=NT=JJ

UKk=S (NP JJ)

Ul=S(JJ)
ILAST=J+KLAST

DO 160 I=JsILASTyLEXP
I1=1+LEXP1
I2=xI1+LEXP1
I3=12+LEXPL
T=A(12=1)*%UR=A(I2)*U]
TI=A(]2=1)*Ui+A(12)%*UR

A(I2=1)sA(I=-1)-T

A(IZ)=A(])~-T1
A(I-1)sA(I=1)+T
A(I)=A(I1)+T1i
Te=A(13=1)*UIl=-A(13)%UR
TI=A(I3-1)%UR=-A(13)*U]
A(I3=-1)=A(I1=1)~T
A{I3)=A(11)=-Ti
A(Il=i)=A(11=1)+T
A{Il)=A(11)+TI
Jd=JJ+NPL

JMAX=JMAXENZ

CONTINUE

LEXP1=2%[EXP1
LEXP=2%{EXP

NPL=NPL/Z

IF (IFSeGTa0) RETURN
DO 210 I1I=2sMNZ2y2
Al(l)==-A(1)

RETURN

END
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This report was prepared as an account of
Government sponsored work. Nelther the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A, Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained. in thls report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any llabilities with respect to
the use of, or for damages resulting from
the use of any informatlon, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalfl
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract with the Administration, or his
employment with such contractor.




