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An i t e r a  

ABSTRACT 

i v e  re f inement  process f o r  ad jus  i n g  d e r i v a t i v e  
values i n  t h e  Hermite r e p r e s e n t a t i o n  of  a p iecewise c u b i c  f u n c t i o n  
t o  produce v i s u a l l y  p l e a s i n g  i n t e r p o l a n t s  i s  descr ibed.  
d i f f i c u l t i e s  encountered a t  var ious  stages i n  t h e  development o f  
t h e  a l g o r i t h m  a r e  o u t l i n e d ,  and f u t u r e  research d i r e c t i o n s  a r e  
i n d i c a t e d .  

The 

1. I n t r o d u c t i o n .  

T h i s  s t u d y  was mot iva ted  by t h e  f a i l u r e  o f  s tandard c u b i c  s p l i n e  i n t e r -  

p o l a t i o n  procedures* t o  p r o v i d e  acceptable i n t e r p o l a n t s  f o r  c e r t a i n  da ta  s e t s  

used i n  rad iochemical  c a l c u l a t i o n s .  These da ta  a r e  t y p i c a l l y  reasonably  smooth 

( f ree  f rom s i g n i f i c a n t  exper imenta l  e r r o r )  and bounded between zero  and one. 

The number of da ta  p o i n t s  i s  g e n e r a l l y  f a i r l y  smal l  (10 t o  30).  I n  c e r t a i n  

cases, however, t h e  spacing o f  t h e  independent v a r i a b l e  i s  ex t remely  non- 

u n i f o r m  and t h e  dependent v a r i a b l e  ranges o v e r  many orders  of  magnitude. 

Several t y p i c a l  da ta  s e t s  a r e  d e p i c t e d  i n  F i g u r e  1.1. 

Because o f  t h e  d r a s t i c  changes i n  s lope i n  such da ta  se ts ,  t h e  c u b i c  

s p l i n e  i n t e r p o l a n t  f r e q u e n t l y  e x h i b i t s  unphys ica l  ''bumps" o r  "w igg les"  between 

t h e  da ta  values. I n  p a r t i c u l a r ,  the  i n t e r p o l a n t  may b a d l y  v i o l a t e  t h e  p h y s i c a l  

c o n s t r a i n t s  0 < f ( x )  

i n t e r p o l a n t s  a r e  shown i n  Sec t ion  3.1.) 

< 1, even though t h e  data do n o t .  (Some c u b i c  s p l i n e  

The o b j e c t  o f  t h i s  s tudy was t o  see i f  i t  i s  p o s s i b l e  t o  produce p iecewise 

c u b i c  i n t e r p o l a n t s  t h a t  a r e  more v i s u a l l y  p l e a s i n g  (hence, h o p e f u l l y  more 

"phys ica l  " )  than c u b i c  s p l  i n e s  f o r  such da ta  se ts .  A f t e r  some mathematical 

p r e l i m i n a r i e s  and a d i s c u s s i o n  o f  p r e v i o u s l y  e x i s t i n g  methods, problems w i t h  

even t h e  b e s t  method a r e  descr ibed.  There f o l l o w s  a s tep-by-step t rea tment  of 

t h e  development o f  an i t e r a t i v e  re f inement  procedure f o r  producing " improved" 

*Such as IMSL Subrout ine ICSICU[5]. [Not ice :  Reference t o  a company o r  
p roduc t  name does n o t  i m p l y  approval  o r  recommendation o f  t h e  produc t  by 
t h e  U n i v e r s i t y  o f  C a l i f o r n i a  o r  t h e  U.S. Department o f  Energy t o  t h e  
e x c l u s i o n  o f  o t h e r s  t h a t  may be s u i t a b l e . ]  
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Figure 1.1 Some Typical Data Sets  
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in te rpolan ts .  We conclude w i t h  an ou t l i ne  o f  the overal l  process,  a 

discussion o f  pros and cons f o r  the method, and an indicat ion of possible 

fu ture  developments. 

values for a l l  data s e t s  shown i n  this report .  

For completeness, we give i n  an appendix numerical 
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2. Mathematical P r e l i m i n a r i e s .  

Th is  s e c t i o n  con ta ins  b a s i c  d e f i n i t i o n s  and in t roduces  t h e  mathematical 

n o t a t i o n  t o  be used th roughout  t h i s  r e p o r t .  

2.1. Piecewise Cubic I n t e r p o l a n t s .  We assume t h a t  we a r e  g iven n da ta  

p o i n t s  (xi,fi), i = l ( h  

p ( x )  w i t h  k n o t  sequence Ix,, . . . , xn) has t h e  form 

where x, < x2 < ... < xn. A p iecewise  c u b i c  f u n c t i o n  

(2.1) p ( x )  = C i (X ) ,  x i  x < x i + y  

where c i (x)  i s  a cub ic  polynomial .  

c u b i c  i n t e r p o l a n t  t o  the  data (xi, fi) i f  i t  s a t i s f i e s  

(2.2) p(xi) = fi , i = l ( 1 ) n .  

(Such a piecewise cub ic  f u n c t i o n  i s  assumed t o  be cont inuous a t  t h e  da ta  p o i n t s ,  

o r  kno ts . )  

Such a f u n c t i o n  i s  s a i d  t o  be a p iecewise  

See F i g u r e  2.1, f o r  example. 

c1 

c2 

.. .. 

... . . 

x1 x2 x3 'n-1 'n 

F i g u r e  2.1 Piecewise Cubic I n t e r p o l a n t  
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2.2. The Hermite Representat ion.  A cub ic  polynomial  c ( x )  i s  u n i q u e l y  

determined by i t s  f u n c t i o n  and d e r i v a t i v e  values a t  two d i s t i n c t  p o i n t s .  

x1 # x2, c (x l )  = fl, c ( x 2 )  = f2, c ' ( x l )  = dl, ~ ' ( x , )  = d2. 

(2 .3)  

where t h e  H .  a r e  t h e  cub ic  po lynomia ls  w i t h  the  p r o p e r t i e s  

L e t  

Then 

c ( x )  = flH1(x) + f2H2(x) + dlH3(x) + d2H4()0, 

J 
I 

H1(xl) = 1; H1(x2) = H1(xl) = H;(x2) = 0; 

H2(x2) = 1; H2(x1) = H;(xl) = H;(x2) = 0; 

H l ( x  3 1  ) = 1; H3(x1) = H3(x2) = H\(x2) = 0; 

H ' ( x  4 2  ) = 1; H4(x1) = H4(xZ) = H i ( x l )  = 0. 

( 2 * 4 )  

The po lynomia ls  H. (x ) ,  which a r e  i l l u s t r a t e d  i n  F i g u r e  2.2, a r e  r e f e r r e d  t o  as 

the  Hermite b a s i s  func t i ons  f o r  [xl,X2]. Equat ion ( 2 . 3 )  i s  t h e  Hermite rep re -  

s e n t a t i o n  of c ( x ) .  

J 

If p ( x )  i s  a con t inuous ly  d i f f e r e n t i a b l e  piecewise cub ic  f u n c t i o n  

w i t h  kno t  sequence {x, ,...,x 1 ,  x .  # xi when j # i, then p ( x )  i s  un ique ly  n~ 
determined by i t s  f u n c t i o n  and d e r i v a t i v e  values a t  t he  knots .  

di = p ' ( x i ) ,  then the  Hermite r e p r e s e n t a t i o n  o f  p ( x )  i s  g iven  by (2.1) w i t h  

( 2 . 5 )  

where the  H ( " ( x )  a re  t h e  Hermite bas i s  func t i ons  f o r  the i - t h  s u b i n t e r v a l  
j 

[ X ~ , X ~ + ~ ] ,  i = l ( 1 ) n - 1 .  (See F igu re  2.3.)  We s h a l l  use t h i s  Hermite 

r e p r e s e n t a t i o n  throughout t h i s  r e p o r t .  

I f  fi = p(xi) ,  

c i (x)  = f . H  1 1  ( " ( x )  + fi+lH2(i)(x) + diH3( j ) (x)  + di+lH4(i)(x), 
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0 - 
H ( X I  

Lt 
H r x )  

3 

F i g u r e  2.2. Tlie t l e :m i te  B a s i s  Func t ions  

---- d 
, .I t. - -? i+l_ 

3 ,  .- ci ( x )  

~ 

I 
I 

, 

fi+l 
di i 

'i 'i +1 

F igu re  2.3 The Hermi t e  Representa t i  on 
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3. E x i s t i n g  I n t e r p o l a t i o q  Methods. 

I f  we a r e  g iven b o t h  f u n c t i o n  values fi and d e r i v a t i v e  values di a t  

t h e  da ta  p o i n t s  xi, then t h e  p iecewise c u b i c  Hermite i n t e r p o l a n t  i s  u n i q u e l y  

determined by (2.1) and (2.5).  I n  most a p p l i c a t i o n s ,  however, d e r i v a t i v e  

values a r e  n o t  a v a i  ab le.  

a t  o u r  d isposa l ,  an w i l l  s tudy v a r i o u s  ways t o  approximate them t o  produce 

t h e  "bes t "  i n t e r p o l a n t .  

We s h a l l  assume t h a t  t h e  d e r i v a t i v e  values di a r e  

3.1 Cubic Sp l ines .  A cub ic  s p l i n e  t h a t  i n t e r p o l a t e s  t h e  da ta  (xi,fi) i s  

a p iecewise c u b i c  f u n c t i o n  w i t h  k n o t  sequence Ex, ,. . . ,xn3 t h a t  s a t i s f i e s  (2.2) 

and has cont inuous f i r s t  and second d e r i v a t i v e s  a t  t h e  i n t e r i o r  knots  

x 

parameters r e q u i r e d  t o  comple te ly  determine a c u b i c  s p l i n e  i n t e r p o l a n t  (see [2]).  

These a r e  g e n e r a l l y  determined by s p e c i f y i n g  t h e  f i r s t  o r  second d e r i v a t i v e  

values a t  t h e  boundary p o i n t s  xl, xn. 

..., x ~ - ~ .  By c o u n t i n g  parameters, one can see t h a t  t h e r e  a r e  two f ree  
2 '  

Cubic s p l i n e s  have become q u i t e  popu lar  i n  r e c e n t  years .  However, they  

can e x h i b i t  q u i t e  unphysica! o s c i l l a t i o n s  f o r  c e r t a i n  types o f  problems, as 

i l l u s t r a t e d  i n  F i g u r e  3.1. While d i f f e r e n t  endpo in t  c o n d i t i o n s  g i v e  

d i f f e r e n t  i n t e r p o l a n t s ,  t h e r e  s i m p l y  i s  n o t  enough freedom a v a i l a b l e  i n  a 

c u b i c  s p l i n e  t o  e l i m i n a t e  t h e  o s c i l l a t i o n s .  To do t h i s ,  we s h a l l  have t o  

g i v e  up second d e r i v a t i v e  c o n t i n u i t y .  

3.2. F i n i t e  D i f fe rence Approximat ions.  One commond method f o r  

i n  (2.5) i s  t o  use f i n i t e  d i f f e r e n c e  approx imat ing t h e  d e r i v a t i v e s  d 

formulas.  

( q u a d r a t i c  approx imat ion)  i s  sometimes c a l l e d  o s c u l a t o r y  i n t e r p o l a t i o n .  

Whi le bumps and w igg les  a r e  s t i l l  p resent ,  t h e y  t e n d  t o  be l o c a l i z e d  i n  

reg ions  where t h e  da ta  e x h i b i t s  r a p i d  changes i n  s lope.  

i 
The r e s u l t  o f  approx imat ing di i n  terms o f  fi 1, fi, fi+l 

(See F igure  3 .2)  
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F igu re  3.1. Cubic Sp l i ne  I n t e r p o l a n t s  
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3.3. Akima's Formulas. 

f o r  de termin ing  the  d e r i v a t i v e s  d. t h a t  i s  in tended t o  approximate t h e  s o r t  

o f  curve a t r a i n e d  draf tsman might  draw through t h e  g iven data p o i n t s .  Th is  

i s  implemented, f o r  example, i n  IMSL subrout ine  IQHSCU [5], where t h e  method 

I n  1970, H. Akima [l] int roduced a new method 

1 

i s  r e f e r r e d  t o  as quasi -Hermi te  i n t e r p o l a t i o n .  

good j o b  on most o f  t h e  data se ts  under cons ide ra t i on .  

Th is  method does a r a t h e r  

F igure  3.3 shows t h e  

Akima i n t e r p o l a n t s  f o r  t he  data we have been cons ider ing .  

f u n c t i o n  o f  F igu re  3.3(c)  i l l u s t r a t e s  the  behavior  o f  Akima's formulas i n  an 

extreme case, where no o t h e r  method t e s t e d  t o  date g i ves  acceptable r e s u l t s .  

Note t h a t  t h e  s tep-  

3.4. Other Methods. We ment ion b r i e f l y  two o t h e r  methods t h a t  were 

t r i e d  on these da ta  se ts  and abandoned. 

tens ion  [3], which are  p iecewise f u n c t i o n s  whose d e f i n i t i o n  i nvo l ves  a " tens ion  

parameter". When t h i s  parameter i s  zero (no tens ion ) ,  t h e  s p l i n e  under tens ion  

reduces t o  an o r d i n a r y  cub ic  s p l i n e ;  when the  tens ion  approaches i n f i n i t y  t he  

One method i s  t o  use s p l i n e s  under 

s p l i n e  under tens ion  converges t o  a p iecewise l i n e a r  i n t e r p o l a n t .  The idea i s  

t o  choose t h e  tens ion  parameter l a r g e  enough t o  e l i m i n a t e  extraneous bumps and 

wiggles.  Un fo r tuna te l y ,  f o r  these da ta  a tens ion  parameter l a r g e  enough t o  do 

the  j o b  tended t o  make the  curve n e a r l y  p iecewise l i n e a r  i n  reg ions  where t h e  

o r d i n a r y  s p l i n e  was "good". 

p iecewise polynomia l ,  so i s  much more expensive t o  eva lua te  than an o r d i n a r y  

s p l i n e .  

Furthermore, t h e  s p l i n e  under tens ion  i s  - n o t  a 

The second method t r i e d  was a da ta  smoothing process whereby a cub ic  

s p l i n e  i s  a l lowed t o  depar t  somewhat from the  i n t e r p o l a t i o n  c o n d i t i o n s  (2.2) 

i n  o r d e r  t o  produce a ''smoother'' curve. 

i n  IMSL subrout ine  ICSMOU [5]. 

s p l i n e  t o  depar t  s i g n i f i c a n t l y  f rom the  data i n  o rde r  t o  smooth o u t  t h e  

extraneous bumps and wiggles.  

and t h i s  was s imp ly  t h e  a p p l i c a t i o n  o f  an i n a p p r o p r i a t e  method. 

Th is  method i s  implemented, f o r  example, 

I n  t h i s  case, i t  was necessary t o  a l l o w  t h e  

The problem i s  - n o t  t h a t  t he  data has noise,  
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F i g u r e  3 . 3 .  I n t e r p o l a n t s  from Akima's F o r m u l a s  
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4. Problems w i t h  Akima's Method. 

As we have seen, t h e  Akima method does a good j o b  on a g r e a t  v a r i e t y  o f  

da ta  sets .  It was n o t  u n t i l  i t  had been a p p l i e d  t o  severa l  hundred such da ta  

se ts  t h a t  i t  was found t h a t  i t  i s  n o t  t h e  u n i v e r s a l  answer. Several types o f  

probleths were encountered, and they  a r e  discussed separa te l y .  

need t o  e x p l i c i t l y  d i s p l a y  t h e  formulas t h a t  a r e  used. 

But f i r s t  we 

4.1. Akima's Formulas. L e t  ml, m2, m3, m denote the  s lopes o f  t h e  

chords formed by f i v e  successive da ta  p o i n t s .  (See F i g u r e  4.1.) 

F i g u r e  4.1. Akima's N o t a t i o n  

We wish t o  approximate t h e  d e r i v a t i v e  d a t  t h e  c e n t e r  p o i n t  by a convex 

combinat ion o f  t h e  sur round ing  slopes: 

(4.1 ) 'Zm2 + A3m3, A2+ A 3  # 0. 
A2 + A3 

d =  

Akima d e f i n e s  t h e  we igh ts  dk by d i f fe rences  of  s lopes: 

I m  -m I ,  A 3  = I m  -m I .  A2 = (4.2) 4 3  2 1  
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T h i s  choice i s  j u s t i f i e d  g e o m e t r i c a l l y  i n  [l]. U n f o r t u n a t e l y ,  (4.2) can 

produce cases i n  which A2 = A3 = 0, so t h a t  (4 .1 )  cannot be used. 

case, Akima uses 

I n  t h i s  

1 d = - (m2+m3), A2 i- A = 0 . (4.3)  2 3 

To comple te ly  de f ine  a l l  o f  t h e  d e r i v a t i v e s ,  something s p e c i a l  needs t o  

be done f o r  t h e  end d e r i v a t i v e s  dl , d2, dn-l dn (where t h e r e  do n o t  e x i s t  

two da ta  p o i n t s  on e i t h e r  s i d e  o f  t h e  one a t  which t h e  d e r i v a t i v e  i s  t o  be 

approximated.)  

Y 

Akima computes f o u r  f i c t i t i o u s  data p o i n t s  a t  x - ~  , xo, x ~ + ~  , 

The x-values x - ~ ,  xo, x2, x3 a r e  l o c a t e d  symmet r ica l l y  about xl, and t h e  n+2 ' X 

f - v a l u e s  a t  x - ~  and xo a r e  computed f rom t h e  q u a d r a t i c  t h a t  passes 

(xi,fi), i = 1, 2, 3. A s i m i l a r  q u a d r a t i c  e x t r a p o l a t i o n  procedure 

a t  t h e  r i g h t  end. T h i s  t u r n s  o u t  t o  be e q u i v a l e n t  t o  s e t t i n g  f i c t  

s lopes accord ing  t o  

mo = 2ml - m2 ; m-l = 2m - m 0 1  = 3ml - 2m2 ; 

(4.4) 

through 

i s  a p p l i e d  

t i o u s  

- 
mn 2mn-l-mn-2 ; mn+l = 2mn - m n-1 - 3mn-l - 2mn-2 ; 

- - 

and then a p p l y i n g  (4.1) - (4.3) a t  a l l  n data p o i n t s  xl, ..., xn. 

4.2 Endpoint  Problems. 

method was an endpo in t  problem. 

4.2(a),  where we have at tempted t o  i n t e r p o l a t e  a s tep  f u n c t i o n  s i m i l a r  t o  t h e  

one i n  F igure  3.3(c)  except  t h a t  t h e r e  a r e  now o n l y  two da ta  p o i n t s  a t  t h e  t o p  

o f  t h e  " c l i f f " .  

a good approx imat ion o f  t h e  a c t u a l  behav io r  o f  t h e  data.  

The f i r s t  problem d iscovered w i t h  t h e  Akima 

T h i s  i s  most s t r i k i n g l y  i l l u s t r a t e d  i n  F igure  

The d i f f i c u l t y  here i s  t h a t  t h e  q u a d r a t i c  e x t r a p o l a n t  i s  n o t  

(We expect  a monotonic 

f u n c t i o n .  ) 

T h i s  problem can be e l i m i n a t e d  by u s i n g  l i n e a r  e x t r a p o l a t i o n .  

by u s i n g  

Th is  i s  

= m  = m  
n n-1 m = mo = ml ; mn+l (4.5) -1 

i n s t e a d  o f  (4 .4) .  The r e s u l t i n g  i n t e r p o l a n t  i s  shown i n  F i g u r e  4 .2 (b)  

achieved 
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F igu re  4.2 Endpoint  Problem w i t h  F i x  

As i t  t u r n s  o u t ,  however, (4.5) i s  n o t  a u n i v e r s a l  f i x  e i t h e r .  I n  

f i g u r e  4.3 we have an example i n  which t h e  o r i g i n a l  Akima formulas (4.4) 

produce a much more acceptable i n t e r p o l a n t  (a )  than do (4.5), where a "bump" 

has appeared (b) .  

cond i t i ons .  

Hence, more s tudy  i s  needed t o  produce approp r ia te  end 

4.3. Bumps. Our f i r s t  example of an Akima i n t e r p o l a n t  w i t h  a bump 

was F igu re  4.3(b).  

prone t o  extraneous bumps and w igg les  than t h e  o t h e r  p iecewise cub ic  i n t e r -  

p o l a t i o n  methods considered here, F igu re  4.4 g i ves  two examples t o  demonstrate 

t h a t  bumps a re  n o t  s t r i c t l y  an endpo in t  problem, b u t  can occur  whenever a 

computed d e r i v a t i v e  va lue  a t  one of t h e  endpoints  o f  a s u b i n t e r v a l  i s  very  

much l a r g e r  than t h e  s lope o f  t h e  cord.  

While we have seen t h a t  t h e  Akima method i s  much l e s s  
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(4.1) and (4.3). I t  turns out  t h a t  (4 .1) ,  considered a s  a function o f  A2 and 

A3, has an e s sen t i a l  s i n g u l a r i t y  a t  ( A 2 , A 3 )  = (0,O). Suppose the point  

I (+A3) approaches the o r ig in  along a l ine w i t h  s lope B/a (a,8#0). 

Subs t i tu t ing  “A3 = 8A2 i n t o  (4.1) and assuming A2 # 0 we obtain 
I 

4.4. Discontinuous Behavior. In attempting t o  construct  sample data  

sets which e x h i b i t  bumps, another problem w i t h  the Akima formulas was 

encountered. 

function such a s  i n  Figure 3.3(C). 

bottom) we expected a bump t o  appear. 

point  was exac t ly  half-way u p ,  two bumps appeared (Figure 4.5(a)) .  

deepened when i t  was discovered t h a t  any change a t  a l l  i n  the loca t ion  of  the 

point again produced an acceptable in te rpolan t  (Figure 4 .5 (b ) ) .  

The idea was t o  add a data  poin t  partway up the c l i f f  of  a s t e p  

As the poin t  gets c lose r  t o  the top  ( o r  

To our surprise, however, when the 

The mystery 

I I  

I o -  

0 .9  

0 . 8  

$ 0 7 -  

t 
_1 0 

,” 0.6 
I - 
- 
B 0 5 -  

t: O L I -  

D * 
r 

~ 

I ENO = I i N T  = LI 

, 

‘1 
~ 

- 

- 

(a 1 
Figure 4.5. Discontinuous 

(b)  
Behavior of  In te rpolan t  

The source of  this  d i f f i c u l t y  can be discovered by examining formulas 

(4.6) 
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The q u a n t i t y  on t h e  r i g h t  i n  (4.6) i s  independent o f  A2, so i s  t h e  l i m i t  

as  (A2,A3) -+ (0,O) a long t h e  l i n e  aA3 = pa2. 

values f o r  d i f f e r e n t  values o f  B/a, (4 .1)  has an e s s e n t i a l  s i n g u l a r i t y  a t  (0,O). 

Akima's formula (4.3) corresponds t o  t h e  cho ice  B/a = 1, which happens t o  be 

very  i n a p p r o p r i a t e  f o r  t h e  p a r t i c u l a r  s e t  o f  da ta  i n  F igure  4.5. While t h i s  

d iscont inuous  change o f  i n t e r p o l a n t  behav io r  w i t h  changes i n  t h e  da ta  i s  a 

very  ser ious  de fec t  mathemat ica l ly ,  i t  i s  ext remely u n l i k e l y  t h a t  i t  w i l l  

cause d i f f i c u l t y  i n  p r a c t i c e .  

problem a r e  b o t h  taken care  of by t h e  process designed t o  e l i m i n a t e  bumps.) 

Since t h i s  c l e a r l y  has d i f f e r e n t  

(As i t  t u r n s  out ,  t h i s  problem and t h e  endpo in t  

5. An Idea and I t s  Refinement. 

5.1. The I d e a -  I t e r a t i v e  D e r i v a t i v e  Improvement. The germ o f  an idea 

i s  generated by s tudy  o f  F i g u r e  5.1, where a c l o s e  l o o k  i s  taken a t  an i n t e r v a l  

c o n t a i n i n g  a bump. 

F igure  5.1. Close-up of  a Bump 



I f  we v 

shape of t h e  

-18- 

ew t h e  s lope dk as a "knob" t h a t  can be tu rned t o  a 

curve, i t  i s  i n t u i t i v e l y  appea l ing  t o  cons ider  what 

t e r  t h e  

would happen 

as we ' ' t u r n  down" t h e  va lue o f  dk. 

smal le r .  

i t  appears t h a t  an acceptable i n t e r p o l a n t  should be achievable f o r  some 

It seems t h a t  t h e  bump should become 

I f  dk i s  t o o  smal l  ( say, zero) ,  we w i l l  i n t r o d u c e  a wiggle.  Thus 

i n t e r m e d i a t e  va lue o f  dk. 

Th is  h e u r i s t i c  d i s c u s s i o n  suggests t h a t  we use t h e  Akima formulas o n l y  

t o  generate i n i t i a l  guesses f o r  an i t e r a t i v e  procedure. 

o f  badness f o r  such a p iecewise c u b i c  i n t e r p o l a n t ,  use some o p t i m i z a t i o n  

Given some measure 

procedure t o  a d j u s t  t h e  d e r i v a t i v e s  t o  min imize t h e  "badness" o f  t h e  i n t e r -  

p o l a n t .  Whi le t h e  i d e a  seems s imple,  t h e r e  were many hurd les  t o  be leaped 

b e f o r e  a success fu l  implementat ion was achieved. These form t h e  s u b j e c t  

m a t t e r  f o r  t h e  r e s t  o f  t h i s  s e c t i o n .  

5.2. Measures o f  Badness. The most d i f f i c u l t  problem, and t h e  most 

i n t e r e s t i n g ,  i s  t o  determine a q u a n t i t a t i v e  model f o r  t h e  badness o f  a curve.  

We need t o  be a b l e  t o  compute some measure t h a t  v a r i e s  c o n t i n u o u s l y  w i t h  t h e  

d e r i v a t i v e  values di and which becomes l a r g e r  when a human observer  dec la res  

t h a t  t h e  curve has g o t t e n  "worse". 

i n t o  t h e  computer f o r  t h i s  f u n c t i o n  e v a l u a t i o n .  ) 

(No, we a r e  n o t  w i l l i n g  t o  p l u g  a human 

Since "badness" appears 

t o  be a ( r e l a t i v e l y )  l o c a l  p r o p e r t y  o f  a p iecewise c u b i c  i n t e r p o l a n t ,  we 

choose t o  ass ign  a badness measure bi (di ,di+l) t o  each s u b i n t e r v a l  [xi ,xi+l], 

i = l ( 1  )n-1. Note t h a t  bi depends o n l y  on two o f  t h e  d ' s .  

badness o f  a p iecewise c u b i c  i n t e r p o l a n t  i s  then some norm o f  t h e  v e c t o r  

b = (bl, ..., b 

The o v e r a l l  

). We w r i t e  t h i s  norm i n  t h e  fo rm n-1 
n-1 

b ( d )  = (5.1) & 

i=l 
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where t h e  wi a r e  some weights  . /h ich  a r e  a t  our  d isposa l  and CY, >/ 1 .  W L 

assume bi?O f o r  a l l  i. 

norm; w - 1 and CY, = 1, t he  L1-norm.) 

(Thus, wi 5 1 and c1 = 2 g i ves  t h e  o r d i n a r y  Eucl idean 

i -  
Thus we have t o  n o t  o n l y  choose t h e  fo rm f o r  t h e  i n d i v i d u a l  badness 

measures b 

deal  o f  e x p r i m e n t a t i o n  i t  was determined t h a t  t he  L1-norm, 

(5.2) b ( d )  ('I , bi(didi+,), 

works a s  w e l l  a s  any, and i s  e a s i e r  t o  compute than the  general form (5 .1 ) .  

b u t  a l s o  the  we igh ts  wi and t h e  power c1 i n  ( 5 . 1 ) .  A f t e r  a good i ' 

ri- 1 
r,- 1 

i .- I 

(The reader  i s  i n v i t e d  t o  t r y  o t h e r  norms i f  tt1e.y seem a p p r o p r i a t e  f o r  h i s /  

he r  app l i ca t . ion .  ) 

Many measures o f  badness were t r i e d ,  and we a re  n o t  y e t  s a t i s f i e d  t h a t  

ou r  " f i n a l "  cho ice  i s  " r i g h t " .  Among these were: 

o Area between chord and curve.  

F r a c t i o n  o f  i n t e r v a l  over  which s i g n  o f  d e r i v a t i v e  d isagrees  w i t h  

s i g n  o f  chord.  

@ Arc lengt-h o f  curve.  

8 R a t i o  o f  leng th  o f  curve t o  l e n g t h  of  chord. 

The cho ice  t h a t  f i n a l l y  proved success fu l  was 

'i - 1  , s .  c .  

C 
__ b . =  i -  1 = 

1 
( 5 . 3 )  

i C i 

where s 

the chord. 

i s  t he  l e n g t h  o f  t he  cub ic  over  [ X ~ , X ~ , . ~  ] and ci i s  t he  l e n g t h  o f  i 

5 . 3 .  Local  M in im iza t i on .  The procedure d iscussed above, us ing  a general 

i rnconst ra ined r r i in imizat ion r o u t i n e ,  exper ienced severe convergence d i f f i c u l t i e s .  

- - -  - 

It was then dec ided t o  t r y  an i t e r a t i v e  l o c a l  m i n i m i z a t i o n .  I f  the  k - t h  i n t e r v a l  

i s  "wors t "  ( t h a t  i s ,  bk > b i  f o r  a l l  i ) ,  we min imize  the  sum o f  badness measures 

over  t h e  t h r e e  i n t e r v a l s  whose badness i s  a f f e c t e d  by dk and dk+l: 
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(5.4) 

where we o m i t  t h e  f i r s t  term i f  k = 1, t h e  l a s t  i f  k = n-1. 

and dk+2 a r e  h e l d  f i x e d  d u r i n g  t h i s  two-dimensional o p t i m i z a t i o n .  

then s e l e c t  t h e  i n t e r v a l  t h a t  i s  now wors t .  I f  i t  i s  s t i l l  t h e  k - th ,  we 

Here d k - l  

We 

t ry  t o  improve t h e  nex t -wors t  b e f o r e  g i v i n g  up. 

measure i n  (5.3),  was moderately successfu l ,  b u t  something was s t i l l  wrong. 

T h i s  procedure, w i t h  t h e  

5.4. The measure (5.3) i d e n t i f i e d  t h e  i n t e r v a l  w i t h  t h e  

obvious bump i n  F i g u r e  4.4(b)  as worst ,  a l l  r i g h t ,  b u t  n o t  by a s i g n i f i c a n t  

margin over  o t h e r  o b v i o u s l y  "good" i n t e r v a l s .  A c l o s e r  examinat ion o f  t h i s  

s i t u a t i o n  revea led  a s c a l i n g  problem. 

t h i s  data s e t  ranges o v e r  [0,12], w h i l e  t h e  dependent v a r i a b l e  i s  c o n s t r a i n e d  

t o  [0,1], t h e  bump t r u l y  i s  smal l  on t h e  o r i g i n a l  sca le .  On t h e  s c a l e  o f  o u r  

p l o t s ,  however, t h e  bump i s  s i g n i f i c a n t .  The s o l u t i o n  i s  t o  s c a l e  t h e  x- and 

y-va lues needed t o  compute bi i n  (5.3) as f o l l o w s .  

Since t h e  independent v a r i a b l e  i n  

A A 

x = x/Ax; f = f / A f  (5.5) 

where t h e  s c a l e  f a c t o r s  a r e  g i v e n  by 

( 5 . 6 )  min * 
- = X  - X *  A f = f m a x - f  Ax = 'max 'min n 1 '  

( A f  = 1 f o r  most da ta  s e t s  under c o n s i d e r a t i o n  here . )  A sample c a l c u l a t i o n  

5.2, f o r  t h e  w o r s t  i n t e r v a l  i n  t o  i l l u s t r a t e  t h i s  e f f e c t  i s  g iven  i n  F i g u r e  

F i g u r e  4.4(b) .  

o f  f o u r  chords. 

1 i n  e i t h e r  case. 

Here we approximate t h e  a r c  

Note t h a t  t h e  s m a l l e s t  poss 

ength by t h e  sum o f  t h e  lengths  

b l e  va lue  f o r  the  r a t i o  si/ci i s  

Wi th  t h i s  m o d i f i c a t i o n ,  t h e  procedure o u t l i n e d  i n  t h e  prev ious  s e c t i o n  

i s  q u i t e  successfu l  i n  e l i m i n a t i n g  undes i rab le  bumps and wiggles f rom a p iece-  

wise c u b i c  i n t e r p o l a n t .  Some examples a r e  g iven i n  F i g u r e  5.3. These 
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Figure 5.2(a) .  Calculation i n  o r ig ina l  coordinates  
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- .  _ _  
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j 
As ^ 2  

j 
A; AS 

j j 
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0.001 74 0.02064 0.02238 0.14939 
0.001 74 0.00001 0.00175 0.041 79 
0.001 74 0.00316 0.00490 0.06997 

0.05528 0.001 74 0.0031 2 0.00306 
A 

* 0.31663 =)-A;j 'i L 

7- - - .  
h 

= chord ( m o d i f . )  = ', ( 2  /12)2 + (0.99864-0.94374) 0.02778+0.00301 = 0.17348 
'i t 

A A A  

s i / c i  ~ 1 . 8 0 4 3 7 ;  b i  EO. 80437 

I 
N 

I 
d 

Figure 5 . 2 ( b ) .  Calculation in Scaled Coordinates, A x  = 12, Af = 1 .  
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correspond t o  F igures 4.2(a), 4.4(a),  4.4(b), and 4.5(a),  r e s p e c t i v e l y .  

Th is  procedure was even ab le  t o  improve on Akima's method f o r  t h e  t h i r d  

sample da ta  s e t  i n  Akima's paper [l]. This i s  i l l u s t r a t e d  by t h e  before-  

a f t e r  sequence i n  F i g u r e  5.4. 

( 4  ( b )  
F i g u r e  5.4. Akima's T h i r d  Data S e t  

Note: 

d e c i s i o n  t o  use l o c a l  o p t i m i z a t i o n  w i t h  (5.3) was done b e f o r e  s c a l i n g  was i n t r o -  

duced, i t  may w e l l  be t h a t  some of these o t h e r  o p t i o n s  should be re-examined. 

5.5. Standard Curve. J u s t  as we had become hopefu l  f o r  t h e  end t o  o u r  

Since much o f  t h e  exper imenta t ion  r e p o r t e d  e a r l i e r  t h a t  r e s u l t e d  i n  the  

search f o r  an acceptable p iecewise cub ic  i n t e r p o l a t i o n  scheme, t h e  examples 

i n  F i g u r e  5.5 were discovered. 

and 3 .3(d) )  appear t o  be " b e t t e r "  than t h e  '' improved" ones. 

Here t h e  o r i g i n a l  Akima i n t e r p o l a n t s  (F igure  3.3(b)  

A c a r e f u l  examinat ion 

suggests t h a t  we have succeeded i n  making t h e  curves t o o  f l a t  on t h e  wors 

Val by u s i n g  t h e  chord as s tandard curve. We must search f o r  a ' ' rounder" 

curve  whose a r c  l e n g t h  i s  s t i l l  easy t o  compute. I t s  a r c  l e n g t h  w i l l  r e p  

- i n t e r -  

s tandard 

ace 
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i n  (5 .3) .  Since the numerator can now become negative,  must we a l s o  i n t r o -  ‘i 

duce an absolute  value, t o  penalize curves t h a t  a r e  too f l a t .  

i _ i _ L - l _ - - . l - - A  
r n m o - 2 ” ! ? e ‘ ” E  . .  

0 ,” 0 0 0 m 0 Ln D * 0 0 0  - - N ru m m J f Ln 0 w 10 f. 

- -  
PWClNl4B ]END i Lt I i N l  = 4 IEND = I I I N T  = ’t 

PWCINT+B 

F A C T I  i 0 05000 FACT,? i 0 5000C FUZZ = I.OOE-07 P E N L l Y  = 0 F A C l I  = 0 05000 F A C T 2  = 3 . 5 0 0 3 0  FUZi = I . 0 0 E - 0 7  PENLiY = 0 

(b 1 (a 1 

Figure 5.5. “Improved” In te rpolan t  Looks Worse 

Our choice of standard curve f o r  the k - t h  subinterval  i s  as  follows: 

I f  we a r e  i n  an end in t e rva l  ( k = l  or k = n - 1 )  o r  i f  the four  points  

Pi  = ( x i , f i ) ,  i = k- l ( l )k+2 do not form a convex q u a d r i l a t e r a l ,  use 

the cord; 

( a )  

( b )  I f  Pk- lPkPk+lPk+2 i s  a convex q u a d r i l a t e r a l ,  then use t h a t  c i r c l e  t h a t  

passes through P k  and P k + l y  which is  tangent t o  one of the segments 

P k - l P k  o r  Pk+lPk+2, and which has the l a rge r  radius .  See Figure 5.6, 

where the  s o l i d  c i r c l e  i s  chosen as  the standard curve. 
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i 

J 
e 'k+l 

'k- 1 

F igure  5.6. The Tangent C i r c l e s  

C .  i s  t h e  c e n t e r  o f  t h e  c i r c l e  tangent  a t  P 
j '  J 

This  proves t o  be n o t  t o o  compl icated a c a l c u l a t i o n .  Use o f  t h e  

l e n g t h  of  t h i s  m o d i f i e d  s tandard curve i n  (5.3) r e s u l t s  i n  t h e  i n t e r p o l a n t s  

p l o t t e d  i n  F igure  5.7. These correspond t o  F igures  5 .5 (a) ,  5 .5(b) ,  5 .3 (b) ,  

and 5 .3(c ) ,  r e s p e c t i v e l y .  

5 .3(d)  and 5.4 a r e  i n d i s t i n g u i s h a b l e  f rom t h e  e a r l i e r  p l o t s .  

The new i n t e r p o l a n t s  corresponding t o  F igures  5 .3 (a) ,  

5.6 Const ra in ts .  One f i n a l  adjustment was needed b e f o r e  F igure  5 .7 (a)  

c o u l d  be produced. 

a i g g l e s  about t h e  chord, r a t h e r  than s t a y i n g  above it. 

t h a t  w i t h  t h e  l e n g t h  of some curve  o t h e r  than t h e  chord i n  (5.3) t h e  o b j e c t i v e  

(5.4) can have more than one l o c a l  minimum. 

procedure had s imp ly  converged t o  t h e  wrong one. 

On t h e  f i r s t  a t tempt  an i n t e r p o l a n t  was produced which 

The d i f f i c u l t y  i s  

Our unconst ra ined o p t i m i z a t i o n  
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Figure 5.7. Results o f  Iterative Improvement Using Tangent Circle 
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Adding t h e  s imple bound c o n s t r a i n t s  

(5 .7 )  I m k - l I  < I d  k (‘lmkl, k = z ( l ) n - I ,  

tends t o  f o r c e  t h e  cub ic  t o  l i e  i n  the  t r i a n g l e  determined by PkPk+l and 

the  i n t e r s e c t i o n  o f  t he  extended segments Pk-IPk’  pk+,Pk+2 as dep ic ted  i n  

F igu re  5.8. (Unfor tunate ly ,  these a re  o n l y  necessary, n o t  s u f f i c i e n t  

cond i t i ons .  ) 

requ i  r e  

Rather than f i x i n g  the  end d e r i v a t i v e s ,  we ( q u i t e  a r b i t r a r i l y )  

( 5 . 8 )  

k m 

k- 1 m 

- P  
k- 1 

F igu re  5.8. Cons t ra in t  J u s t i  f i  c a t i o n .  
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6. Summary o f  t h e  O v e r a l l  I t e r a t i v e  Improvement Process. 

I n  F i g u r e  6.1 i s  a f l o w c h a r t  t h a t  summarizes t h e  o v e r a l l  i t e r a t i v e  

improvement process. A few observa t ions  a r e  i n  o rder .  

6.1. I n i t i a l  Guesses. 

t h e  Akima formulas t o  generate i n i t i a l  values f o r  t h e  d e r i v a t i v e s ,  t h e  

process i n  F i g u r e  6.1 i s  r e a l l y  independent o f  t h e  source of  t h e  i n i t i a l  

guesses. 

i f  t h e  c u b i c  s p l i n e  i n t e r p o l a n t s  o f  F igure  3.1 a r e  used f o r  t h e  i n i t i a l  

guesses. 

t h e  s p l i n e  d e r i v a t i v e s  t o  s a t i s f y  t h e  c o n s t r a i n t s ,  w h i l e  t h e  r i g h t - h a n d  

p i c t u r e  i s  t h e  f i n a l  i n t e r p o l a n t .  

3 . l ( a )  and 3 . l ( b ) .  

Whi le we have been t h i n k i n g  i n  terms o f  u s i n g  

For  example, one o b t a i n s  r e s u l t s  such as those i n  F igure  6.2 

Here t h e  l e f t - h a n d  p i c t u r e  i n  each p a i r  i s  t h e  r e s u l t  o f  a d j u s t i n g  

The i n i t i a l  curves were g iven i n  F igures  

6.2 I t e r a t i o n  Parameters. As i s  usual w i t h  such an i t e r a t i o n  procedure,  

t h e r e  a r e  a number o f  i t e r a t i o n  parameters t h a t  the  user  (or code d e s i g n e r )  

can a d j u s t  t o  ' ' tune" t h e  a l g o r i t h m  t o  a p a r t i c u l a r  c l a s s  o f  problems. 

Among these a r e  t h e  f o l l o w i n g .  

have been determined by exper iment ing w i t h  many da ta  se ts  o f  t h e  type  shown 

The d e f a u l t  va lues (g iven i n  b rackets  [I) 

i n  t h i s  r e p o r t .  

FACT1: C u t o f f  bi-value f o r  "bad" i n t e r v a l s  (see f i r s t  t e s t  i n  f l o w c h a r t )  

[0.05]. 

Minimum r e l a t i v e  r e d u c t i o n  i n  o b j e c t i v e  (5 .4 )  r e q u i r e d  i n  o r d e r  FACT2: 

f o r  improvement t o  be considered successfu l  C0.51. 

Fuzz t o  be used i n  t e s t s  a g a i n s t  zero  i n  computat ion o f  t h e  l e n g t h  

of  t h e  s tandard curve  [l.OE-71. 

FUZZ : 
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A d j u s t  t o  l i e  w i t h i n  

c o n s t r a i n t s  (5.7),  (5.8) 

i f  necessary 

T 

1 

Improve 
s e l e c t e d  no 
i n t e r v a l  

0 

I 4 

I I 

Try t h e  I next-worse t h e  nex t -wors t  

,’ 

F i g u r e  6.1. The Overa l l  I t e r a t i v e  Improvement Process 
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PENLTY: F a c t o r  t o  be a p p l i e d  t o  a p e n a l t y  term*, which i s  an 

approx imat ion t o  t h e  area o f  t h e  curve o u t s i d e  t h e  range 

fmin< p ( x )  2 fmax, added t o  t h e  o b j e c t i v e  (5 .4 )  

Convergence c r i t e r i o n  used i n  t h e  two-dimensional 

m i n i m i z a t i o n  procedure [l .OE-3]. 

Maximum number o f  o b j e c t i v e  e v a l u a t i o n s  a l lowed i n  any 

-I- a p p l i c a t i o n  o f  t h e  two-dimensional m i n i m i z a t i o n  [ Z O O ] .  

[O. ] .  

CONVC: 

MAXFN: 

* T h i s  i s  an a t t e m p t  (not o v e r l y  s u c c e s s f u l )  a t  imposing t h e  c o n s t r a i n t  
f 5 ( p ( x )  5 fmin on t h e  i n t e r p o l a n t .  max 

t A c t u a l l y ,  t h e  number o f  e v a l u a t i o n s  used i s  g e n e r a l l y  i n  the  range 
10-30. 
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7. Pros and Cons. 

We a t tempt  t o  l i s t  here a number o f  t h e  good and bad fea tu res  o f  t h e  method 

descr ibed here. 

Pros : 

o Produces v i s u a l l y  p l e a s i n g  p i c t u r e s .  

I n t e r p o l a n t  does n o t  e x h i b i t  s i n g u l a r  behav io r  w i t h  smal l  changes i n  data 

values. 

Cons : 

o We have g i ven  up second d e r i v a t i v e  c o n t i n u i t y .  

0 The a l g o r i t h m  i s  r a t h e r  compl icated. 

e The a l g o r i t h m  i s  q u i t e  expensive i n  terms o f  code requ i red ,  s to rage  space, 

and execu t ion  t ime. 

The l a s t  o b j e c t i o n  i s  m i t i g a t e d  somewhat by two observa t ions .  F i r s t  o f  a l l ,  

i f  t h e  Akima formulas a r e  used f o r  t h e  i n i t i a l  guesses, t h e  l a r g e  amount o f  

e x t r a  expense i m p l i e d  by  execu t ing  t h e  procedure i n  F i g u r e  6.1 occurs o n l y  

f o r  those excep t iona l  da ta  s e t s  on which t h e  Akima method f a i l s .  (Otherwise, 

t h e r e  a r e  no "bad" i n t e r v a l s . )  The o n l y  e x t r a  expense i n  t h i s  case i s  t h e  

computat ion o f  t h e  i n i t i a l  badness measures bi. Even i n  those excep t iona l  

cases t h e r e  a r e  g e n e r a l l y  o n l y  one o r  two i n t e r v a l s  t h a t  r e q u i r e  improvement. 

Secondly, t h e  procedure can be conven ien t l y  separated i n t o  two p a r t s  as 

i n d i c a t e d  by t h e  dashed l i n e  i n  F i g u r e  6.1. I n  many a p p l i c a t i o n s  t h e  c a l -  

c u l a t i o n  o f  t h e  d e r i v a t i v e  values ( i n t e r p o l a t i o n  c o e f f i c i e n t s )  can be done 

i n  a set-up phase, w i t h  o n l y  t h e  f i n a l  d e r i v a t i v e  values passed on t o  t h e  

p r o d u c t i o n  code t h a t  eva lua tes  t h e  i n t e r p o l a n t  a t  thousands o f  p o i n t s .  I n  

t h i s  case, t h e  e x t r a  expense i n v o l v e d  may be i n s i g n i f i c a n t .  

.. 
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8. Fu tu re  Developments 

We conclude by i n d i c a t i n g  a number of  areas i n  which f u r t h e r  research  m igh t  

be wor thwh i le .  

1. Is i t  p o s s i b l e  t o  d e r i v e  bounds on t h e  d e r i v a t i v e  values t h a t  guarantee: 

a. That t h e  i n t e r p o l a n t  s tays  w i t h i n  t h e  t r i a n g l e  o f  F i g u r e  5.8? 

b. That t h e  i n t e r p o l a n t  i s  monotone when t h e  da ta  i s ?  

c. That t he  i n t e r p o l a n t  i s  convex (concave) when the  data i s ?  

d. That t h e  i n t e r p o l a n t  s tays  w i t h i n  p r e s c r i b e d  bounds when t h e  data does? 

Is (5.3) t h e  " r i g h t "  measure o f  badness? Is t h e  tangent  c i r c l e  t h e  " r i g h t "  

s tandard  curve? 

Can t h e  m i n i m i z a t i o n  be done a n a l y t i c a l l y ?  

I f  not,  can a more e f f i c i e n t  m i n i m i z a t i o n  procedure be designed? 

Given a p p r o p r i a t e  assumptions about t h e  f u n c t i o n  f rom which t h e  da ta  were 

generated, can we e s t a b l i s h  any e r r o r  bounds f o r  t he  f i n a l  i n t e r p o l a n t ?  

A f f i r m a t i v e  answers t o  some of these ques t ions  shou ld  s i m p l i f y  t h e  procedure 

2. 

3. 

4. 

5. 

out1 i n e d  here, o r  even make t h e  i t e r a t i v e  improvement unnecessary. 
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Appendix. L i s t i n g  o f  t he  Data Values 

I d e n t i f i c a t i o n :  LOG RPN 12 I d e n t i f i c a t i o n :  RPN 12 

I X ( I )  Y(I) 
1 7.99 -4.7435660 
2 8.09 -2.3515516 
3 8.19 -1.9778674 
4 8.7 -3.628957E-02 
5 9.2 -8.317490E-03 
6 10. -2.8651 00E-03 
7 12. -6.562200E-04 
8 15. -1.1001 00E-04 
9 20. -1.200000E-05 

1 X ( I )  Y ( I )  
1 7.99 8.707540E-03 
2 8.09 9.522130E-02 
3 8.19 0.138364 
4 8.7 0.964361 
5 9.2 0.991717 
6 10. 0.9971 39 
7 12. 0.999344 
8 15. 0.999890 
9 20. 0.999988 

I d e n t i f i c a t i o n :  RPN 14 I d e n t i f i c a t i o n :  RPN 15 

1 X ( I )  
1 7.99 
2 8.09 
3 8.19 
4 8.7 
5 9.2 
6 10. 
7 12. 
8 15. 
9 20. 

Y ( I )  
0. 
2.764290E-05 
4.374980E-02 
0.169183 
0.469428 
0.943740 
0.998636 
0.99991 9 
0.999994 

1 X ( I )  
1 7.99 
2 8.09 
3 8.19 
4 8.7 
5 9.2 

7 12. 
8 15. 
9 20. 

6 10. 

y ( 1 )  
0. 
4.785400E-02 
5.558730E-05 
0.238983 
0.4331 76 
0.8081 65 
0.997843 
0.999952 
0.999998 

I d e n t i f i c a t i o n :  RPN 29 I d e n t i f i c a t i o n :  RPN 30 

I X ( I )  Y ( I )  
1 7.99 0. 
2 8.09 0. 
3 8.19 0. 
4 8.7 0. 
5 9.2 0. 
6 10. 0. 
7 12. 1. 
8 15. 1. 
9 20. 1. 

1 X ( I )  Y ( I )  
1 7.99 0. 
2 8.09 0. 
3 8.19 0. 
4 8.7 0. 
5 9.2 0. 
6 10. 0. 
7 12. 0. 
8 15. 1. 
9 20. 1. 
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Identi  f i c a t i  on : TEST 50000 

3 1.5 0. 
4 1.6 0.50000 
5 1.7 1. 
6 2.0 1. 
7 2.3 1. 

Iden t i f i ca t ion :  T PROT 24 

1 x ( 1 )  
1 0.8 
2 0.9 
3 1.0 
4 1.25 
5 1.5 
6 2.0 
7 -2.5 
8 3. 
9 4. 

10 5. 
11 6. 
12 7. 

y(I 1 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
8.8397E-13 
1.4016E-11 
1.312%-10 

Ident i  f i c a t  i on : TEST 50001 

2 1.0 0. 
3 1.5 0. 
4 1.6 0.50001 
5 1.7 1. 
6 2.0 1. 
7 2.3 1. 

Iden t i f i ca t ion :  AKIMA 3 

2 2. 
3 3. 
4 5. 
5 6. 
6 8. 
7 9. 
8 11. 
9 12. 

10 14. 
11 15. 

10. 
10. 
10. 
10. 
10. 
10.5 
15. 
50. 
60. 
85. 
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