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ABSTRACT

An iterative refinement process for adjusting derivative
values in the Hermite representation of a piecewise cubic function
to produce visually pleasing interpolants is described. The
difficulties encountered at various stages in the development of
the algorithm are outlined, and future research directions are
indicated.

1. Introduction.

This study was motivated by the failure of standard cubic spline inter-
polation procedures* to provide acceptable interpolants for certain data sets
used in radiochemical calculations. These data are typically reasonably smooth
(free from significant experimental error) and bounded between zero and one.
The number of data points is generally fairly small (10 to 30). In certain
cases, however, the spacing of the independent variable is extremely non-
uniform and the dependent variable ranges over many orders of magnitude.
Several typical data sets are depicted in Figure 1.1.

Because of the drastic changes in slope in such data sets, the cubic
spline interpolant frequently exhibits unphysical "bumps" or "wiggles" between
the data values. In particular, the interpolant may badly violate the physical
constraints 0 < f(x) < 1, even though the data do not. (Some cubic spline
interpolants are shown in Section 3.1.)

The object of this study was to see if it is possible to produce piecewise
cubic interpolants that are more visually pleasing (hence, hopefully more
"physical") than cubic splines for such data sets. After some mathematical
preliminaries and a discussion of previously existing methods, problems with
even the best method are described. There follows a step-by-step treatment of

the development of an iterative refinement procedure for producing "improved"

*Such as IMSL Subroutine ICSICU[5]. [Notice: Reference to a company or
product name does not imply approval or recommendation of the product by
the University of California or the U.S. Department of Energy to the
exclusion of others that may be suitable.]
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interpolants. We conclude with an outline of the overall process, a
discussion of pros and cons for the method, and an indication of possible
future developments. For completeness, we give in an appendix numerical

values for all data sets shown in this report.




2. Mathematical Preliminaries.

This section contains basic definitions and introduces the mathematical
notation to be used throughout this report.

2.1. Piecewise Cubic Interpolants. We assume that we are given n data

points (Xi’fi)’ i =1(1)n, where X] <Xy <l <X A piécewise cubic function

p(x) with knot sequence {x], v xn} has the form

(2.7)  px) = ci(x)s X5 <X < Xj495

where ci(x) is a cubic polynomial. Such a function is said to be a piecewise

cubic interpolant to the data (x;, f.) if it satisfies
(2.2) P(Xi) = fi s 1=1(1)n.
(Such a piecewise cubic function is assumed to be continuous at the data points,

or knots.) See Figure 2.1, for example.

&
\’W“\\\
C2 (;_.l
e
¢
« f
‘ 2 -
f] "] fn
| ]
—- - l [
X1 X2 X3 Xn-1 *n

Figure 2.1 Piecewise Cubic Interpolant
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2.2. The Hermite Representation. A cubic polynomial c(x) is uniquely

determined by its function and derivative values at two distinct points. Let

X] # Xos c(x]) = fis c(xz) = 1), c'(x]) = dys c'(x2) = dy. Then

(2.3) c(x) f]H](x) + szz(x) + d]H3(x) + d2H4(x),

where the Hj are the cubic polynomials with the properties

1
o
we

Hy () = 15 Hy(x) = H (%)) = H(xp) =
Hy(xy) = 13 Hy(x7) = Hy(x]) = Hy(x,)

]
o
e

(28 Hi(x)) = 15 Hylxg) = Hylx,) = Hylxp) = 0
Ha(xy) = 15 Hy(xq) = Hy(x,) = Hy(x;) = 0.

The polynomials Hj(x), which are illustrated in Figure 2.2, are referred to as

the Hermite basis functions for [x],xz]. Equation (2.3) is the Hermite repre-

sentation of c(x).

If p(x) is a continuously differentiable piecewise cubic function
with knot sequence {x],...,xn}, X; # X when j # i, then p(x) is uniquely

determined by its function and derivative values at the knots. If fi = p(x

)

' i
di = p'(xi), then the Hermite representation of p(x) is given by (2.1) with
(2.5) ey = £ 00+ g, 00+ a0 + a0,

(1)(

where the Hj x) are the Hermite basis functions for the i-th subinterval

[Xi’xi+1]’ i =1(1)n-1. (See Figure 2.3.) We shall use this Hermite

representation throughout this report.
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Figure 2.2. The He.mite Basis Functions

R e
~es(x) ]
4 ¢
|
fi ifi+1
i i
X Xi41

Figure 2.3 The Hermite Representation



3. Existing Interpolation Methods.

If we are given both function values fi and derivative values di at

the data points X then the piecewise cubic Hermite interpolant is uniquely

determined by (2.1) and (2.5). In most applications, however, derivative
values are not available. We shall assume that the derivative values d1 are
at our disposal, and will study various ways to approximate them to produce
the "best" interpolant.

3.1 Cubic Splines. A cubic spline that interpolates the data (xi’fi) is

a piecewise cubic function with knot sequence {x],...,xn} that satisfies (2.2)
and has continuous first and second derivatives at the interior knots
x2, -++s X 7. By counting parameters, one can see that there are two free
parameters required to completely determine a cubic spline interpolant (see [2]).
These are generally determined by specifying the first or second derivative
values at the boundary points Xps X

Cubic splines have become quite popular in recent years. However, they
can exhibit quite unphysical oscillations for certain types of problems, as
illustrated in Figure 3.1. While different endpoint conditions give
different interpolants, there simply is not enough freedom available in a
cubic spline to eliminate the oscillations. To do this, we shall have to
give up second derivative continuity.

3.2. Finite Difference Approximations. One commond method for

approximating the derivatives di in (2.5) is to use finite difference

formulas. The result of approximating di in terms of fi-l’ fi’ fi+]

(quadratic approximation) is sometimes called osculatory interpolation.

While bumps and wiggles are still present, they tend to be localized in

regions where the data exhibits rapid changes in slope. (See Figure 3.2)
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3.3f Akima's Formulas. In 1970, H. Akima [1] introduced a new method

for determining the derivatives-di that is intended to approximate the sort
of curve a trained draftsman might draw through the given data points. This
is implemented, for example, in IMSL subroutine IQHSCU [5], where the method

is referred to as quasi-Hermite interpolation. This method does a rather

good job on most of the data sets under consideration. Figure 3.3 shows "the
Akima interpolants for the data we have been considering. Note that the step-
function of Figure 3.3(c) illustrates the behavior of Akima's formulas in an
extreme case, where no other method tested to date gives acceptable results.

3.4. Other Methods. We mention briefly two other methods that were

tried on these data sets and abandoned. One method is to use splines under

tension [3], which are piecewise functions whose definition involves a "tension
parameter". When this parameter is zero (no tension), the spline under tension
reduces to an ordinary cubic spline; when the tension approaches infinity the
spline under tension converges to a piecewise linear interpolant. The idea is
to choose the tension parameter large enough to eliminate extraneous bumps and
wiggles. Unfortunately, for these data a tension parameter large enough to do
the job tended to make the curve nearly piecewise linear in regions where the
ordinary spline was "good". Furthermore, the spline under tension is not a
piecewise polynomial, so is much more expensive to evaluate than an ordinary
spline.

The second method tried was a data smoothing process whereby a cubic

spline is allowed to depart somewhat from the interpolation conditions (2.2)
in order to produce a "smoother" curve. This method is implemented, for example,
in IMSL subroutine ICSMOU [5]. In this case, it was necessary to allow the

spline to depart significantly from the data in order to smooth out the

extraneous bumps and wiggles. The problem is not that the data has noise,

and this was simply the application of an inappropriate method.
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4, Problems with Akima's Method.

As we have seen, the Akima method does a good job on a great variety of
data sets. It was not until it had been applied to several hundred such data
sets that it was found that it is not the universal answer. Several types of
probleris were encountered, dnd they are discussed separately. But first we
need to explicitly display the formulas that are used.

4,1. Akima's Formulas. Let Mmys My, Mg, My denote the slopes of the

chords formed by five successive data points. (See Figure 4.1.)

Figure 4.1. Akima's Notation

We wish to approximate the derivative d at the center point by a convex
combination of the surrounding slopes:

(4.1) By * B3M3 A+ a7 0.
T 2

Akima defines the weights‘Ak by differences of slopes:

d

(4-2) Az = 'm4-m3l 3 A3 = Imz-m.I' .
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This choice is justified geometrically in [1]. Unfortunately, (4.2) can
produce cases in which By = A3 = 0, so that (4.1) cannot be used. In this

case, Akima uses

(4.3) d=1 (mymy),

5 + A, =0

2 3

To completely define all of the derivatives, something special needs to
be done for the end derivatives d], d2, dn-], dn (where there do not exist
two data points on either side of the one at which the derivative is to be
approximated.) Akima computes four fictitious data points at X120 %00 Xp41°

X The x-values X_1> Xg» Xp» X3 are located symmetrically about SE and the

n+2’

f-values at X_1 and Xg are computed from the quadratic that passes through

(xi’fi)’ i=1, 2, 3. A similar quadratic extrapolation procedure is applied

at the right end. This turns out to be equivalent to setting fictitious
slopes according to

my = Zm] =My s my = 2mO -mo= 3m] - 2m2 5
(4.4)

m

n 2mn—1—mn-2 LS B 2mn RS B My - 2mn-2 ;

and then applying (4.1) - (4.3) at all n data points Xps e X

4.2 Endpoint Problems. The first problem discovered with the Akima

method was an endpoint problem. This is most strikingly illustrated in Figure
4.2(a), where we have attempted to interpolate a step function similar to the
one in Figure 3.3(c) except that there are now only two data points at the top
of the "cliff". The difficulty here is that the quadratic extrapolant is not

a good approximation of the actual behavior of the data. (We expect a monotonic
function.)

This problem can be eliminated by using linear extrapolation. This is achieved
by using

(4.5) mq=mg=m 3m 4 =m=m_,

instead of (4.4). The resulting interpolant is shown in Figure 4.2(b).
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As it turns out, however, (4.5) is not a universal fix either. 1In
figure 4.3 we have an example in which the original Akima formulas (4.4)
produce a much more acbeptab]e interpolant (a) than do (4.5), where a "bump"
has appeared (b). Hence, more study is needed to produce appropriate end
conditions.

4.3. Bumps. = Our first example of an Akima interpolant with a bump
was Figure 4.3(b). While we have seen that the Akima method is much less
prone to extraneous bumps and wiggles than the other piecewise cubic inter-
polation methods considered here, Figure 4.4 gives two examples to demonstrate
that bumps are not strictly an endpoint problem, but can occur whenever a
computed derivative value at one of the endpoint§ of a subinterval is very

much larger than the slope of the cord.
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In attempting to construct sample data

4.4, Discontinuous Behavior.

sets which exhibit bumps, another problem with the Akima formulas was

encountered. The idea was to add a data point partway up the cliff of a step

function such as in Figure 3.3(c). As the point gets closer to the top (or

bottom) we expected a bump to appear. To our surprise, however, when the

point was exactly half-way up, two bumps appeared (Figure 4.5(a)). The mystery

deepened when it was discovered that any change at all in the location of the

point again produced an acceptable interpolant (Figure 4.5(b)).

o
~
—

INITIAL  TEST 50000 INTERPOLANT
o
)

T *v—A}
——

INITIAL TEST 5000f INTERPOLANT
o
o
—

PWCINTYE

I / ] Df _J 1
N A | |
B oo s
IEND = 4 FINT = 4
(a) (b)
Figure 4.5. Discontinuous Behavior of Interpolant

The source of this difficulty can be discovered by examining formulas

considered as a function of A2 and

(0,0).

(4.1) and (4.3). It turns out that (4.1),
A3, has an essential singularity at (AZ’A3) = Suppose the point
(AZ’AS) approaches the origin along a line with slope B/a (a,8#0).
Substituting ads = A, into (4.1) and assuming A, # 0 we obtain

d(Az"A3)lqA3=-BA2 =

o+ B8
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The quantity on the right in (4.6) is independent of Az, so is the limit

as (AZ’AB) + (0,0) along the line oA, = BA Since this clearly has different

3 2°
values for different values of B/a, (4.1) has én essential singularity at (0,0).
Akima's formula (4.3) corresponds to the choice B/a = 1, which happens to be
very inappropriate for the particular set of data in Figure 4.5. While this
discontinuous change of interpolant behavior with changes in the data is a
very serious defect mathematically, it is extremely unlikely that it will

cause difficulty in practice. (As it turns out, this problem and the endpoint

problem are both taken care of by the process designed to eliminate bumps.)

5. An Idea and Its Refinement.

5.1. The Idea — Iterative Derivative Improvement. The germ of an idea

is generated by study of Figure 5.1, where a close Took is taken at an interval

containing a bump.

fi frsl )

-1 %k X4 k+2

Figure 5.1. Close-up of a Bump
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If we view the slope dk as a "knob" that can be turned to alter the
shape of the curve, it is intuitively appealing to consider what would happen
as we "turn down" the value of dk. It seems that the bump should become

smaller. If d, is too small ( say, zero), we will introduce a wiggle. Thus

k
it appears that an acceptable interpolant should be achievable for some
intermediate value of dk'

This heuristic discussion suggests that we use the Akima formulas only
to generate initial guesses for an iterative procedure. ‘Given some measure
of badness for such a piecewise cubic interpolant, use some optimization
procedure to adjust the derivatives to minimize the "badness" of the inter-
polant. While the idea seems simple, there were many hurdles to be leaped
before a successful implementation was achieved. These form the subject

matter for the rest of this section.

5.2. Measures of Badness. The most difficult problem, and the most

interesting, is to determine a quantitative model for the badness of a curve.
We need to be able to compute some measure that varies continuously with the
derivative values di and which becomes larger when a human observer declares
that the curve has gotten "worse". (No, we are not willing to plug a human
into the computer for this function evaluation.) Since "badness" appears

to be a {relatively) local property of a piecewise cubic interpolant, we

choose to assign a badness measure bi(dj,dj+]) to each subinterval [xi,xi+1],
i =1(1)n-1. Note that bi depends only on two of the d's. The overall
badness of a piecewise cubic interpolant is then some norm of the vector

.,b_ ;). We write this norm in the form

n-1

n-1

(5.1) b(d) = ) Wilbs(donde 1)),
i

=1
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where the W, are some weights which are at our disposal and a > 1. We

assume bizo for all i. (Thus, Wi = 1 and o = 2 gives the ordinary Euclidean
norm; W, - 1 and o = 1, the L]—norm.)

Thus we have to not only choose the form for the individual badness
measures bi’ but also the weights W and the power o in (5.1). After a good
deal of experimentation it was determined that the L]—norm,

n-|

[

(5.2) b(d) = ) , bi(didi+1)’
works as well as any,]é:d is easier to compute than the general form (5.1).
(The reader is invited to try other norms if they seem appropriate for his/
her application.)

Many measures of badness were tried, and we are not yet satisfied that
our "final" choice is "right". Among these were:

@ Area between chord and curve.

® Fraction of interval over which sign of derivative disagrees with

sign of chord.
@ Arc Tength of curve.
® Ratio of length of curve to length of chord.

The choice that finally proved successful was

(5.3) b= %i- %= Cio-1

where 5. is the length of the cubic over [xi,xi+1] and C. is the length of
the chord.

5.3. Local Minimization. The procedure discussed above, using a general

unconstrained minimization routine, experienced severe convergence difficulties.
[t was then decided to try an iterative local minimization. If the k-th interval

is "worst" (that is, bP > bi for all i), we minimize the sum of badness measures

over the three intervals whose badness is affected by dk and dk+1:
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k+1
(5.4) dk,gli] | b, (dd. ),
i=k-1
where we omit the first term if k = 1, the Tast if k = n-1. Here dp
and dk+2 are held fixed during this two-dimensional optimization. We
then select the interval that is now worst. If it is still the k-th, we
try to improve the next-worst before giving up. This procedure, with the
measure in (5.3), was moderately successful, but something was still wrong.
5.4 Scaling. The measure (5.3) identified the interval with the
obvious bump in Figure 4.4(b) as worst, all right, but not By a significant
margin over other obviously "good" intervals. A closer examination of this
situation revealed a scaling problem. Since the independent variable in
this data set ranges over [0,12], while the dependent variable is constrained
to [0,1], the bump truly is small on the original scale. On the scale of our

plots, however, the bump is significant. The solution is to scale the x- and

y-values needed to compute bi in (5.3) as follows.

(5.5) x = x/Ax; f = f/Af
where the scale factors are given by
(5.6) AX = Xpax ™ Xmin T % 7 Xy AT Toine

(Af = 1 for most data sets under consideration here.) A sample calculation
to illustrate this effect is given in Figure 5.2, for the worst interval in
Figure 4.4(b). Here we approximate the arc length by the sum of the lengths
of four chords. Note that the smallest possible value for the ratio si/ci is
1 in either case.

With this modification, the procedure outlined in the previous section
is quite successful in eliminating undesirable bumps and wiggles from a piece-

wise cubic interpolant. Some examples are given in Figure 5.3. These



2 2 2
= f, . A As As
xJ c(xJ) = fJ Af Ax fj ;
10.0 0.94374
0.14368 0.25 0.02064 0.27064 0.52023
10.5 1.08742
0.00378 0.25 0.00001 0.25001 0.50001
11.0 1.09120
-0.05622 0.25 0.00316 0.25316 0.50313
11.5 1.03498
-0.03634 0.25 0.00312 0.25132 0.50132
12.0 0.99864

s. == 2.02471 =) As.
1 PN

it o e e i v e e e

)2 )2 £\ 4.+0.00301 = 2.00075

c; = chord (orig.) =\E(]2‘_]0‘ + (0.99864-0.94374

si/ci::1.01198; bi =:0.01198

Figure 5.2(a). Calculation in original coordinates
AX, . . .
xJ AfJ AsJ AsJ
0.00174 0.02064 0.02238 0.14939
0.00174 0.00001 0.00175 0.04179
0.00174 0.00316 0.00490 0.06997
0.00174 0.00312 0.00306 0.05528

S, ~0.31663 =) As.
1 — ]

(2 /12)2 + (0.99864-—0.94374)2 5\/0.02778+O.00301 = 0.17348

c; = chord (modif.) =",
¥

Si/c1¢:1.80437; bi::0‘80437

Figure 5.2(b). Calculation in Scaled Coordinates, Ax = 12, Af = 1.
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Figure 5.3 Results of Iterative Improvement
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correspond to Figures 4.2(a), 4.4(a), 4.4(b), and 4.5(a), respectively.
This procédure was even able to improve on Akima's method for the third
sample data set in Akima's paper [1]. This is illustrated by the before-

after sequence in Figure 5.4.

90 l:
——_——————————— e T T T
a0 - b

80
80 |-

70

70 -

60 k

INTERPOLANT

INTERPOLANT

S0

50

40

AK[MA 3

wl . ol
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. | -
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N L i —d— S N —
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o o
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INITAL

o w T © @

RS S U S S N e
=] Y ES © [ o W e ' PWCINT4B
- - - 1END = 4 TINT = &
PHCINT4B FACT!I = 0.05000 FACT2 = 0.50000 FUZZ = 1.00E-07 PENLTY = O
1END = 4 PINT = &

(a) (b)
Figure 5.4. Akima's Third Data Set

Note: Since much of the experimentation reported earlier that resulted in the
decision to use local optimization with (5.3) was done before scaling was intro-
duced, it may well be that some of these other options should be re-examined.

5.5. Standard Curve. Just as we had become hopeful for the end to our

search for an acceptable piecewise cubic interpolation scheme, the examples

in Figure 5.5 were discovered. Here the origina] Akima interpolants (Figure 3.3(b)
and 3.3(d)) appear to be "better" than the "improved" ones. A careful examination
suggests that we have succeeded in making the curves too flat on the worst inter-
val by using the chord as standard curve. We must search for a "rounder" standard

curve whose arc length is still easy to compute. 1Its arc length will replace
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c; in (5.3). Since the numerator can now become negative, must we also intro-

an absolute value, to penalize curves that are too flat.

s —T T ™ T T — T —
T
/ te
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-
/ z
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j 1 & /
1 &
/ -
/ Q
4 ] s / 1
o
g /
[N
Lo £ /
/ /
/ : /
0 —0—\_’/
E-11
- -t L 4 [ L P L n L
2] =4 = b4 b ot o e = 2 e g o o o " o n o n =Y n = n o
. PWCINTYR - n n L M x 3 0 ['a] w w in
= FACT 152056026 ;Cg‘ i T 00E-07 PENLTY = 0 [ - INT =
FACT)! = 0.05000 ACTZ = Q. L= 1. 7 . FACT1 = 0.05000 FACT2 = 3.50000 FUZZ = 1.DOE-07 PENLTY = 0.

(a)

Figure 5.5. "Improved" Interpolant Looks Worse

Our choice of standard curve for the k-th subinterval is as follows:
If we are in an end interval (k=1 or k=n-1) or if the four points

P; = (x;,f5)s 1 = k-1(1)k+2 do not form a convex quadrilateral, use
the cord;

If Pk-IPkPk+1Pk+2 is a convex quadrilateral, then use that circle that
passes through Pk and Pk+]’ which is tangent to one of the segments
Pk-]Pk or Pk+]Pk+2’ and which has the larger radius. See Figure 5.6,

where the solid circle is chosen as the standard curve.
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Figure 5.6. The Tangent Circles

Cj is the center of the circle tangent at Pj'

This proves to be not too complicated a calculation. Use of the
length of this modified standard curve in (5.3) results in the interpolants
plotted in Figure 5.7. These correspond to Figures 5.5(a), 5.5(b), 5.3(b),
and 5.3(c), respectively. The new interpolants corresponding to Figures 5.3(a),
5.3(d) and 5.4 are indistinguishable from the earlier plots.

5.6 Constraints. One final adjustment was needed before Figure 5.7(a)

could be produced. On the first attempt an interpolant was produced which
wiggles about the chord, rather than staying above it. The difficulty is

that with the 1ength of some curve other than the chord in (5.3) the objective
(5.4) can have more than one local minimum. Our unconstrained optimization

procedure had simply converged to the wrong one.
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Figure 5.7. Results of Iterative Improvement Using Tangent Circle
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Adding the simple bound constraints

(5.7) Im 1< ld [<Im [,k = 2(1)n-1,

tends to force the cubic to Tie in the triangle determined by PkPk+] and

the intersection of the extended segments Pk—1pk’ Pk+1pk+2 as depicted in
Figure 5.8. (Unfortunately, these are only necessary, not sufficient
conditions.) Rather than fixing the end derivatives, we (quite arbitrarily)

require

1 1
(5.8) iy I<layI< 2lm |5 Hm o 1<ld [<2lm .

Figure 5.8. Constraint Justification.
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6. Summary of the QOverall Iterative Improvement Process.

In Figure 6.1 is a flowchart that summarizes the overall iterative
improvement process. A few observations are in order.

6.1. Initial Guesses. While we have been thinking in terms of using

the Akima formulas to generate initial values for the derivatives, the
process in Figure 6.1 is really independent of the source of the initial
guesses. For example, one obtains results such as those in Figure 6.2

if the cubic spline interpolants of Figure 3.1 are used for the initial
guesses. Here the Teft-hand picture in each pair is the result of adjusting
the spline derivatives to satisfy the constraints, while the right-hand
picture is the final interpolant. The initial curves were given in Figures
3.1(a) and 3.1(b).

6.2 Iteration Parameters. As is usual with such an iteration procedure,

there are a number of iteration parameters that the user (or code designer)
can adjust to “tune" the algorithm to a particular class of problems.

Among these are the following. The default values (given in brackets [])
have been determined by experimenting with many data sets of the type shown

in this report.

FACT1: Cutoff bi—va1ue for "bad" intervals (see first test in flowchart)
[0.05].
FACT2: Minimum relative reduction in objective (5.4) required in order

for improvement to be considered successful [0.5].
FUZZ: Fuzz to be used in tests against zero in computation of the length

of the standard curve [1.0E-7].



-29-

S —— i
Adjust to lie within J

constraints (5.7), (5.8)
if necessary

Get in1t1a1_guesses VM—]

Are
there any
"bad" intervals

/'/ IS \
Improve the worst ™
selected no , N
interval interval the same L
P
as before -
4
E/////// |
|
yes !
i
|
Have |
Try the we tried f
next-worse the next-worst !

interval

Evaluate interpolant
at desired points

Figure 6.1. The Overall Iterative Improvement Process




[— T T S B T T T T A S f—— T YT T T S Semmmamninl Sh e A S L Smntteis R A |
\
1.0 b \,,.,k—/ 1.0 F s
0.9 1 0.9
[} 0.8t
5 .
z 071 1 zZ 0.7} J
- )
o [=]
o o
o o
¥ oo0.8 | b P 0.6 R
zZ z
8.5t 1 0.9 -
o n
z z
a a
x 0.4 t b x 0.4 r -
o [a]
g g
0.3k b 2 0.3 g
> ['4
2 Q
[=] b
< —
g.2 Bl 0.2 4
0.1 E 0.1 ]
ot - ot J
b L . ) T U Wu— s s s L L . L L L N
o o o =} [ il ks w0 ® @ o - a M £ 0 © ~ @® a e
PUC INTHE PWC INTUYB .
JEND = 2 TINT = 1END = 2 (@1 AS L
FACTI = 0.0%000 FaCTE = 0.50000 FUZZ = .00E-07 PEM TY = 0.
1 ™ T T T T T T T T T
1.0 r B
0.9 B
0.8 ]
=
z 0.7} b -
J 4
= <
a -
: g
W 0.6 J g
z i
zZ =
z
a.h B
0
o n
z n
@ 0.4 z
a
o
[al
¥ oo o
n N -4 S
2 >
g o
[=] o
< a
0.2 4 =
0.1 B
0 l\\ 4
- DU - [ Spp— D S L
™ » m + w ©
o ful a - n [} T II: LE l:_ @ 2 a
PUCINTYB - - - - -
1END = & LINT = 1 PWC INTYB
[END = 2 LINT =

1
Facty = 0.05000 FACT2 = 0.50000 Fyzz = 1.00E-07 PENLTY = O.

(c) | (d)

Improvement of Cubic Spline Interpolant



-31-

PENLTY: Factor to be applied to a penalty term*, which is an
approximation to the area of the curve outside the range

f

nins p(x) < f y» added to the objective (5.4) [0.].

ma

CONVC: Convergence criterion used in the two-dimensional
minimization procedure [1.0E-3].

MAXFN: Maximum number of objective evaluations allowed in any

application of the two-dimensional minimization [ZOO]T

* This is an attempt (not overly successful) at imposing the constraint
fmax < (p(x) < f.ip ON the interpolant.

t Actually, the number of evaluations used is generally in the range
10-30. v
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7. Pros and Cons.

We attempt to 1ist here a number of the good and bad features of the method

described here.

Pros:

® Produces visually pleasing pictures.

o Interpolant does not exhibit singular behavior with small changes in data
values.

Cons:

® We have given up second derivative continuity.

e The algorithm is rather complicated.

¢ The algorithm is quite expensive in terms of code required, storage space,
and execution time.

The last objection is mitigated somewhat by two observations. First of all,
if the Akima formulas are used for the initial guesses, the large amount of
extra-expense implied by executing the procedure in Figure 6.1 occurs only
for those exceptional data sets on which the Akima method fails. (Otherwise,
there are no "bad" intervals.) The only extra expense in this case is the
computation of the initial badness measures bi‘ Even in those exceptional
cases there are generally only one or two intervals that require improvement.

Secondly, the procedure can be conveniently separated into two parts as
indicated by the dashed line in Figure 6.1. In many applications the cal-
culation of the derivative values (interpolation coefficients) can be done
in a set-up phase, with only the final derivative values passed on to the
production code that evaluates the interpolant at thousands of points. 1In

this case, the extra expense involved may be insignificant.



-33-

8. Future Developments

We conclude by indicating a number of areas in which further research might
be worthwhile.
1. Is it possiblie to derive bounds on the derivative values that guarantee:
a. That the interpolant stays within the triangle of Figure 5.8?
b. That the interpolant is monotone when the data is?
c. That the interpolant is convex (concave) when the data is?
d. That the interpolant stays within prescribed bounds when the data does?
2. Is (5.3) the "right" measure of badness? Is the tangent circle the "right"
standard curve?
3. Can the minimization be done analytically?
4. If not, can a more efficient minimization procedure be designed?
5. Given appropriate assumptions about the function from which the data were
generated, can we estabiish any error bounds for the final interpolant?
Affirmative answers to some of these questions should simplify the procedure

outlined here, or even make the iterative improvement unnecessary.
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Appendix. Listing of the Data Values

Identification: LOG RPN 12 Identification: RPN 12

I X(1) Y(1) I X(1)  v(I)

1 7.99 -4.7435660 1 7.99 8.707540E-03

2 8.09 -2.3515516 2 8.09 9.522130E-02

3 8.19 -1.9778674 3 8.19 0.138364

4 8.7 ~3.628957E-02 4 8.7 0.964361

5 9.2 -8.317490E-03 5 9.2 0.991717

6 10. -2.865100E-03 6 10. 0.997139

7 12. -6.562200E-04 7 12. 0.999344

8 15. -1.100100E-04 8 15. 0.999890

9 20. -1.200000E-05 9 20. 0.999988
Identification: RPN 14 Identification: RPN 15

I X(1) Y(I1) I X(I) Y(I)

1 7.99 0. 1 7.99 0.

2 8.09 2.764290E-05 2 8.09 4.,785400E-02

3 8.19 4.374980E-02 3 8.19 5.558730E-05

4 8.7 0.169183 4 8.7 0.238983

5 9.2 0.469428 5 9.2 0.433176

6 10. 0.943740 6 10. 0.808165

7 12. 0.998636 7 12. 0.997843

8 15. 0.999919 8 15. 0.999952

9 20. 0.999994 9 20. 0.999998
Identification: RPN 29 Identification: RPN 30

I X(I) Y(I) I Xx(I) Y(I)

1 7.99 0. 1 7.99 0.

2 8.09 0. 2 8.09 0.

3 8.19 0. 3 8.19 0.

4 8.7 0. 4 8.7 0.

5 9.2 0. 5 9.2 0.

6 10. 0. 6 10. 0.

7 12. 1. 7 12. 0.

8 15. 1. 8 15. 1.

9 20. 1. 9 20. 1.
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Identification: TEST 50000 Identification: TEST 50001

I X(I) Y(I) I X(I) Y(I)

1 0.5 0. 1 0.5 0.

2 1.0 0. 2 1.0 0.

3 1.5 0. 3 1.5 0.

4 1.6 0.50000 4 1.6 0.50001
5 1.7 1. 5 1.7 1.

6 2.0 1. 6 2.0 1.

7 2.3 1. 7 2.3 1.

Identification: T PROT 24 Identification: AKIMA 3

I X(1) Y(l) I x(1) Y(I)

1 0.8 0. 1 0. 10.

2 0.9 0. 2 2. 10.

3 1.0 0. 3 3. 10.

4 1.25 0. 4 5, 10.

5 1.5 0. 5 6. 10.

6 2.0 0. 6 8. 10.

7 2.5 0. 7 9, 10.5

8 3. 0. 8 11. 15.

9 4, 0. 9 12 50.
10 5. 8.8397E-13 10 14 60.
IR 6. 1.4016E-11 11 15 85.
12 7. 1.3125E-10
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