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ABSTRACT

When a fluid flows inside a tube, the deformations of the tube can interact with the fluid
flowing within it and these dynamic interactions can result in significant lateral motions
of the tube and the flowing fluid.

The purpose of this report is to examine the dynamic stability of a spinning tube
through which an incompressible frictionless fluid is flowing. The tube can be considered
as either a hollow beam or a hollow .ble. The analytical results can be applied to spinning
or stationary tubes through whicl fluids are transferred; e.g., liquid coolants, fuels and
lubricants, slurry solutions, and high explosives in paste form.

The coupled partial differential equations are determined for the lateral motion of a
spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid.
The beam, which spins about an axis parallel to its longitudinal axis and which can also
be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a
massless, uniform elastic foundation that spins with the beam. Damping for the beam and
foundation is considered by using a combined uniform viscous damping coefficient. The
fluid, in addition to being incompressible, is frictionless, has a constant density, and flows
at a constant speed relative to the longitudinal beam axis.

The Galerkin method is used to reduce the coupled partial differential equations for
the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary
differential equations for the generalized heam coordinates. By simplifying these equations
and examining the roots of the characteristic equation, an analytical solution is obtained for
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the lateral dynamic instability of the beam (or cable). The analytical solutions determine
the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed,
in terms of the physical parameters of the system.

When the beam (or cable) is not spinning, a certain fluid speed results in a dynamic
instability that is analogous to static buckling (divergence), and consequently there are no
oscillatory lateral motions associated with the dynamic instability. In this case, when the
fluid speed equals (or exceeds) the minimum critical fluid speed, the lateral stiffness of the
beam is zero (or negative) and dynamic buckling occurs. For this case the critical speed
for the fluid is independent of the viscous damping factor for the beam and foundation.

On the other hand, when the beam is spinning with a certain constant angular speed
and the viscous damping factors for the beam and foundation are zero, the dynamic in-
stability is identical to resonance. In this case, as the fluid speed increases, the natural
frequencies associated with lateral motion of the beam decrease and small spin speeds of
the beam can result in violent self-excited vibrations. When the fluid speed equals or
exceeds the minimum critical fluid speed, resonance occurs for any spin speed greater than
zero.

For each mode of lateral vibration, resonance can occur at two critical spin speeds
provided the fluid speed is less than or equal to the minimum critical fluid speed. The two
apparent resonant frequencies for the N** mode of lateral vibration consist of a certain
combination of the two critical spin speeds associated with resonance for the N** mode of
vibration. The critical spin speeds are determined in terms of the natural lateral frequencies
for a nonspinning beam (or cable), the fluid speed, and the ratio of fluid mass to beam
mass.
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NOMENCLATURE

offset distance
acceleration vector for fluid
cross-sectional area of beam

n'* combined viscous damping coefficient for beam and founda-

tion per unit length
modulus of elasticity

generalized beam coordinates for the y and z directions, respec-
tively

unit vectors along the body fixed z,y, z axes,
respectively

area moment of inertia of beam cross-section (symmetrical)
about y or z axes originating at centroid of beam cross-section

area moment of inertia of beam cross-section about y and 2
¢ xes, respectively, originating at centroid of beam cross-section

foundation stiffness per unit length

foundaticn stiffness per unit length in the y and 2 directions,
respectively

beam length

mass of beam or cable per unit length
mass of fluid per unit length

number of generalized beam coordinates

constant axial force applied at the end of a beam in the
x direction through the centroid of the cross-section

minimum static buckling load (defined as static buckling load)
magnitude of the Euler buckling load
nondimensional axial force

generalized beam coordinate



w

We

nWzeri

B=V/v

,Hcr = Vcr/V
-k

T = EI(n/l)?
2T El

V=" m

beam loading function vector per unit length
fluid loading function vector per unit length

index representing the number of generalized coordinates for the
beam or number of comparison functions

position vector for fluid within tube

position vector from origin of fixed frame to origin of body fixed
frame

time

translational displacement of beam origin along X axis

beam displacement in y direction

fluid speed

minimum critical fluid speed (defined as critical fluid speed)
beam displacement in z direction

mass density

position along z axis of bean:

ratio of fluid mass per unit length to beam mass per unit length
angular velocity vector

rotational speed, angular speed, spin speed of beam or cable
rotating about its longitudinal axis

it* critical spin speed of beam or cable associated with lateral

resonant vibration of the nt* mode
v

speea ratio

critical speed ratio

foundation stiffness per unit length, nondimensional

wave speed of a sinusoidal flexural wave of wavelength £



én = gﬁwn n** damping factor for beam and foundation or ratio of the nt*
viscous damping coeflicient to the critical viscous damping coef-
ficient for the n** mode

Wy =

\/-E—I(err)4[n4 + nzﬁ- + 9] n** undamped natural circular frequency of lateral vibration for

m
a uniform, simply supported beam on an elastic foundation with

a positive (tensile) axial force applied at its end

1Q%’p‘"em, gﬂcﬁ’parem first and second circular frequencies associated with the N
mode of lateral vibration for the beam (or cable)

Ony, ON: natural bending cicular frequencies associated with the N't*
mode of lateral vibration for the beam (or cable) in the y and
z directions, respectively, when the fluid is flowing along the
beam with a constant speed V (V < V.,) and the beam is not
spinning (i.e., w; = 0); e.g.,

2 ..a(Nrn/8)2V?
QNyz\/wNJI a(N=/t)

1+a
() differentiation with respect to time, t
() diflerentiation with respect to the space coordinate, z
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INTRODUCTION

When a fluid flows over the external surfaces of a structure, dynamic interactions
between the fluid and structure can occur that can result in significant motions of the
structure. Some examples are the vibration of bridges, tall chimneys and towers, electri-
cal transmission lines and the “flutter” of aircraft wings.

When a fluid flows inside a tube, the deformations of the tube can interact with the
fluid flowing within it and these dynamic interactions can result in significant lateral mo-
tions of the tube and flowing fluid.

The purpose of this report is to examine the dynamic stability of a spinning tube,
with a symmetrical noncircular cross-section, through which an incompressible friction-
less fluid is flowing. The tube can be considered as either a hollow beam or a hollow ca-
ble. The analytical results can be applied to spinning or stationary tubes through which
fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, high
explosives in paste form, etc. Fluids transferred from one location to another along the
spin axis of a spinning body such as an artillery projectile is another example.

An analytical solution is obtained that determines the critical fiuid speed as a func-
tion of the physical parameters for the system. Also, the critical angular speeds for res-
onance as well as the frequencies associ .ted with resonant lateral vibration are deter-
mined in terms of the system’s physical parameters and a specified fluid speed.

When the tube is not spinning, a certain fluid speed results in dynamic instability,
which is analogous to static buckling (divergence) and consequently, there are no oscilla-
tory lateral motions associated with the dynamic instability. In this case, when the fluid
speed equals (or exceeds) the minimum critical fluid speed, the lateral stiffness of the
tube is zero (or negative) and dynamic buckling occurs. For this case, the critical speed
for the fluid is independent of the damping factor for the beam and foundation.

On the other hand, when the tube is spinning with a certain constant angular speed
and the viscous damping factors for the beam and foundation are zero, the dynamic in-
stability is identical to resonance. In this case, as the fluid speed increases, the natural
frequencies associated with lateral motion of the tube decrease and small spin speeds or
angular speeds of the tube can resuli in violent self-excited vibrations. When the fluid
speed equals or exceeds the minimum critical speed, resonance occurs for any spin speed
greater than zero. If damping is present, large amplitude lateral vibrations can occur at
or near the critical spin speeds.

For each mode of lateral vibration, resonance can occur at two critical spin speeds
provided the fluid spee- is less than or equal to the minimum critical fluid speed. The
apparent resonant frequencies for the N* mode of lateral vibration consist of a certain
combination of the two critical spin speeds associated with resonance for the N* mode
of vibration.

The critical spin speeds are determined in terms of the natural lateral frequencies
for a nonspinning beam (or cable), the fluid speed, and the ratio of fluid mass to beam
mass.

11



EQUATIONS OF MOTION

Idealized System

The idealized system is shown in Figure 1 and consists of a fluid flowing through an
elastic tube of constant cross-section. Consider the case where the tube cross-section is
symmetrical with respect to the rotating body fixed y and z axes but the lateral stiff-

nesses in the y and z directions are different; e.g., a beam with an elliptical or rectangu-
lar cross-section. ‘

“y/— BODY FIXED COORDINATE SYSTEM

BEAM ~ / m,f,-,V
A1 : .|

y "o : g
x . Z
(e BEAM CROSS-SECTION

FIXED COORDINATE SYSTEM

Figure 1. ldealized syste...

The tube is modeled as a straight, simply supported, Bernoulli-Euler beam of finite
length supported on a continuous, linear-elastic foundation. The beam is continuous,
homogeneous, and isotropic with a linear constitutive relationship between stress and
strain. The foundation modulus is constant and the force per unit length exerted on
the beam by the foundation is directly proportional to the transverse beam deflection.
The mass of the foundation is neglected. Constant viscous damping coefficients are as-
sumed for the beam and foundation and the daraping forces are linear with respect to
the transverse beam velocity. The beam and foundation are rotating with a constant an-
gular speed w; as well as translating with a constant speed, U. In addition, the beam is
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subjected to a constant axial force P applied at the end of the beam through the cen-
troid of the cross-section in the z direction.

The fluid is flowing in the z direction at a constant speed V relative to the longitudi-
nal beam axis. In addition, the fluid is incompressible and has a constant density. Fric-
tion as well as gravity is neglected. The fluid i1s supplied from a reservoir and is always
flowing at a constant speed during the time of interest.

Partial Differential Equétions of Motion For The Beam

The partial differential equations which describe the lateral motions of the beam, in
the body fixed y and z directions, are derived in Reference 1 and are expressed as !

ELv" — [P+ pLw" + [ky — mwiv + mi — pl 3"
4 O - 2mwlh = maw? 4+ (2, 1) (1)

EIyw"" ~ [P 4 pLwkw" + [k, — mwilw + mwb — plw"
+ Crh + 2w, = g,(z,t) (2)

The lateral displacements of the beam, v and w, in the y and z directions, respec-
tively, are functions of the space coordinate ¢ and time %, and

(=2 =%

Also, gy(z,t) and g,(z,t) represent the beam loading functions per unit length in the
positive y and z dircctions, respectively. Noie that Eqs. (1) and (2) are coupled due to
the Coriolis effect.

The boundary and initial conditions associated with Eqs. (1) and (2) are expressed
by the following set of equations:

At z = 0:

0
=0 (3)
0
0

! Note that when I, and I, equal zero, Egs. (1) and (2) reduce to those for a uniform
fixed-fixed cable. That is, the beam bending stiffness is zero.
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At z = €

v(4,t) =0 ‘
v"(4,1) = 0 (4)
w(f,t) =0
w'(£,t) =0
At t =0:
v(z,0) = g1(z)
(2,0) = g2(z) (5)
w(z,0) = hi(z)
u')(m,O) = hZ(m)

Acceleration of the Fluid and the Loading Function for the Beam

Significant dynamic interactions can occur between the flowing fluid and the beam
deformations. To determine these interactions i* is necessary to examine the kinematics
of the fluid while the fluid is in contact with the beam.

The absolute acceleration of the center of mass of a fluid element located at any po-
sition ( along the beam axis is given by

XF) (6)

€}

as :7!50+w‘°‘><7r‘+2w><7"‘,el+‘}"‘,el+wx (
The acceleration of the origin of the body fixed zyz system is given by

.

Ro=5x B+ 20 x R, + Ro,, + 3 % (@ x R,) (7

where, for the particular case under consideration,

R, =Ui+aj
_Orcl - U;
E“ral =0 (8)
w= wz;
& =0



The position vector from the origin of the zyz system to the center of mass of a fluid
element located at any position along the beam axis is given by

F=(l4 v+ wk (9)

Since the fluid lateral displacements v and w depend on z and ¢,ie. v = v(z,t) and
w = w(z,t), the expressions for 7,¢; and 7, for the fluid in contact with the beam are
given by

. d(~ rOvd{ Ovy- [Owd( Owis
Trel = g [6mdt+6t]‘7+{6m a " at]k (10)
- d*¢. 0% /d(\?2 %v d¢  Ovd*¢ O~
=i+ |52 (%) * 2ev s * aam * ) (1)
8w sd(\2 w d¢ Owd¢ Owi-
|57 (%) *25mia e )
where i
a7’
the constant velocity of the fluid element relative to the beam along the ¢ axis, and
d*¢
@ =

the acceleration of the fluid relative to the beam along the z axis.

Some explanation of the terms appearing in Eqgs. (10) and (11) may be helpful. Con-
sider the components of velocity and acceleration of the fluid element in the y direc-
tion in Eqs. (10) and (11). That is, the terms associated with the coefficient of the unit
vector j. The first term in the coefficient in Eq. (10) is equal to the y component of V
and results from the slope of the beam; the second term results from the velocity of the
beam in the y direction. In equation (11), the first term in the j coefficient is due to the
centripetal acceleration of the fluid which results from a change in the direction of V and
is cauced by the curvature of the beam. The second term is due to the Coriolis accel-
eration which arises because the fluid is moving with a velocity V relative to the beam
while the beam element has an angular velocity {jg;. The third term is equal to the y

component of V and is zero in this particular case since the acceleration of the fluid rel-
ative to the beam along the = axis is zero. The fourth term results from the acceleration
of the beam in the y direction. Similar statements can be made for the components of
velocity and acceleration of the fluid in the z direction,

The force per anit length acting on the fluid is given by
qs(e,t) =msay (12)
and the force per unit length act’".g on the beam is given by
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Gp(z,t) = —gs(z,1) (13)

where

T(z,1) = gy(z,t)] + g:(z, )k (14)

provided the fluid is in contact with the beam.

Substitution of Eqs. (7) through (11) into Eq. (6) and utilizing Eqgs. (12) through
(14) results in the loading function per unit length for the beam, g,(z,t). The compo-
nents of the loading function for the beam in the y and z directions are expressed by
Eqgs. (15) and (16), respectively, and will subsequently be used in Egs. (1) and (2). Re-
call that ¢ locates the center of mass of a fluid element along the x axis of the beam be-
tween 0 <z < [.

gy(z,t) = mswla + mywlv + 2myw Vw' + 2m jw i

- Tnfvzv” —- 2me'l')' - mfi} (15)

q:(z,t) = mfwiw = 2myw, V' — 2mpw,t — mezw"
—2mVu' — my (16)

Also recall that the speed V of the fluid is constant.

Reduction of the Partial Differential Equations of Motion for the Beam-Fluid
System to 2N, Second Order, Coupled, Ordinary Differential Equations

Substitution of Egs. (15) and (16) into Eqs. (1) and (2) results in the equations be-
low, which describe the motions of the beam-fluid system in the y and z directions, re-
spectively, for 0 <z <fand t > 0.

ELV" — [P + pLw? — m;V* " + [ky — (m + m f)w?]v
—pLL," + (m+m U+ Cp0 — 2wy(m + mp)w
p f )

+2m Vo' = 2myw, V' = aw?(m +my) (17)
EIw" — [P+ plyw? — m;V2w" + [k, — (m + m s )w?]w
~pLyi" + {m + mp)o + Coth + 2we(m +my)o

+2m V' 4 2mw, Vo' =0 (18)
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The lateral displacements of the beam are approximated by

}i smf‘—"ffn( t) (19)
= prz

w = Z smmé——q,,(t) (20)
p—.

Equations (21) und (22) result from utilizing the Galerkin method to represent the mo-
tion of the beam as a 2N degree-of-freedom sysiem

lm ~mp)+ oL () ]f,( )+ Cofo(2)

T é r I rmw ? ’ 2
«A{EI,(T) - [P~ 2Ll - m)? (\—é—) ~ lky = (m = m )t} £ (1)
) 4 , nw :
—2we(m -+ my)g.(t) — me‘ Z ( { )(,,-/[\( Z)f"(t)
n=1]
A’

4 S pr 2r 2 [ ]
—_— Wz ] = Qi 4= —_ 1
i V Z;;( >(1r 00 p2)q”(t) awz(m + my)[1 — cosrn] (21)

P‘

rTw

(m=my) -, ( 5) T4 (0) = Coi(t)

Lormat ey 2
{0 () I s () = =l
2w (1) 3 Vv = pT 2r .
+2we(m ~myg)f,(t) ~ me :4;:’1 (T) O = pz)qp(t)
n=N
4 L /nm 2r
- Zmp| >:§ (\T) e =0 (@)
r=1,23,..... N

where the last two terms on the left hand side of the equal sign in Eqs. (21) and (22) are
nonzero only if {r — n} and (r — p) are odd numbers.

If the off-diagonal term- i Eqs. (21} and (22) are neglected and the N** terms along
the diagunal are considered (1.e. n = p = r = N), the homogeneous form of Egs. (21)
and {22) can be simplified and expressed as



[1 +a-+ %(A/ ) IN(t) + 2w, En, fn (2)

O R T

~2wz(1 + a)gn(t) =0

I, (Nx\%] . .
[1 +as Py (-”—-) J‘M'(t) + 2wy, €N, N ()

Nx\?% I, /Nx\?
R ER S LR G|

+2we(1 + @) fn(t) = 0

where
a=2L
2
Py = EL(3)
2
Pe: = E1,(3)
k-—-—-
YW= EL
k

= B[N+ N <)
wh, =BRGP NY + N )]
€N, = gt
€N, = 2—,,%:-‘-

Since the dynamic stability of Eqs. (21) and (22) is of interest, it is only necessary to

consider the homogeneous form of these equations.
The initial conditions associated with Egs. (23) and (24) are given by

18
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=0
(23a)
z=L
fnQ@) = %/ qz(m)szn-{vﬂda)
=0
2 =t Nme
gn(0) = —/ hi(z)sin dz
14 r=0
(24a)
gn(0) = -2-/ hz(:c)sm]\ 7T b
£ .= ¢

For reasonable values of N, the terms involving the rotary inertia and the change
in direction of the angular momentum, for an element of beam cross-section, are ne-
glected. That is, (pI/m)(Nm/€)? is very small compared to unity for reasonable values
of N, where I = I, or I = I,. Consequently, the terms involving (pI/m)(Nm/£)? in
Eqgs. (23) and (24) are neglected.
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RESULTS

Divergence for a Nonrotating Beam

When the angular speed of the beam is zero (i.e., w; = 0), the simplified equations
(23) and (24) are not coupled by the Coriolis effect. For this case, dynamic instability
in the form of a divergence rather than a resonance will occur when the fluid speed V
equals or exceeds a critical fluid speed V,,. The incipient critical fluid speed (i.e., on the
boundary between stability and instability) is determined by requiring that one of the
roots to the characteristic equation, for either Eqgs. (23) or (24), equal zero. T'ie other
root is negative since the viscous damping factor is not zero. Since there are no repeated
zero roots to the characteristic equation (i.e., ény # 0 and €y, # 0), divergence occurs
when one of the roots is real and positive.

It is important to note that the simplified equations (23) and (24) will each yield a
critical fluid speed and that these critical fluid speeds will, in general, not be the same
since they depend upon Iy, I;,vy,7. and N. The minimum critical fluid speed is of in-
terest in this analysis and it is assumed that wy is less than wy,. This is an arbitrary
choice and in actual practice both frequencies need to be determined since the natural
bending frequencies are influenced by parameters other than the moments of inertia of
area for the beam cross-section. Henceforth in this analysis, the mini~wum critical fluid
speed is defined as the critical fluid speed V. and is determined {from Eq. (23).

Therefore, for incipient divergence the minimum cri‘ical fluid speed, V., is deter-
mined from Eq. (23) and is obtained from

—2wyyény £ { <2wNyENy>2 - 4(1 + 0) [w.%’y - a (%E)zvrz] }1/2 =0 (25)

or
¢ 1
Vor = 7enny/ 5 (26)
where o is not zero and wy, is given by
EL (4 P9
[ =2 = 4 2
w,vy_\/m(e) v +Npey+7y]. (264)

Equations (26) and (26a) are not useful unless the value of N is known since the
lowest critical speed may occur with N =1, 2, 3, ..., depending upon the values of the
other parameters in Egs. (26) and (26a). Since divergence of the beam occurs with no
oscillatory motion, (i.e., the roots to the characteristic equation are real and not com-
plex conjugates) it appears that the beam behaves as if it were under the inuence of
its static buckling load when the speed of the fluid V equals the critical speed V.. This
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suggests that the beam is buckling into one of its N modes and that the term contain-
ing V? in Eq. (23) is analogous to an equivalent static buckling load when V equals V,,.
This observation allows the value of N to be determined for use in Eq. (26).

In order to determine the value of N which makes the critical fluid speed V., a min-
imum, consider the special case when the nondimensional foundation stiffness 7y = 0.
Now, there is no resisting foundation and from Egs. (26) and (26a), N must equal 1. If
7y is very small but greater than zero, N still equals 1in Eqs. (26) and (26a). Thus, for
a very flexible foundation, the beam buckles without an intermediate inflection point.
By gradually increasing -y,, Vcr in Eq. (26) will eventually be smaller for N = 2 than
for N=1 (refer to Figure 3). At this value of v, the buckled beam will have an inflec-
tion point at £/2. The limiting value of v, at which the transition from N = 1to N = 2
occurs is found from the condition that at this limiting value of v, Eq. (26) should give
the same value of V., independent of whether N = 1 or N = 2. Therefore, a relation-
ship for the number of half-sine waves N in which the beam subdivides at V,, (dynamic
buckling) is obtained by equating V. for the Nt* mode to Ver for the (N + 1) mode for
Eq. (26).

This minimizes the critical speed in Eq. (26) for these inflection points and results in
the inequality

N} (N +1)?2 >+, (27)
where the nondimensional foundation stiffness is given by

ky

= ELL(x /) (28)

The first value of N which satisfies the inequality (27) is the N which is used in
Eq. 26) to determine V;,. Table I illustrates the use of the inequality (27).

TABLE 1.
USE OF THE INEQUALITY IN EQ. (27).
Value of Nonndimensional Value of N for
Foundation Stiffness, -, use in Eq. (26)
0 < Yy <4 1
4 < vy < 36 2
36 < 7, < 144 3
144 < 5, < 400 4
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Defining v as the wave speed of a sinusoidal flexural wave of length £ and 3., as the
critical speed ratio, where

_2m |EI
V= 14 m
and
Ve
cr — T
1%

Equation (26) is expressed in nondimensional form as

1 P 0
—_ 2 —_— LY
Ber = \/4a [N st N2] (29)

where « is not zero. A positive value of P in Eg. (29) implies a tensile axial load acting
on the end of the beam as shown in Figure 1. Recall that the value of N to be used in
Eq. (29) is the first value of N which satisfies the inequality (27). That is,

NYN +1)? > 4. (30)

Also note that the critical speed ratio (¢ is independent of the damping factor {x,.
Equation (29) and the inequality (30) are illustrated in Figure 2 for P} = 7, = 0 and
in Figure 3 for P; = 0 and o = 2.

Static Buckling—1If divergence occurs when the critical speed ratio (8.r) equals
zero (for finite values of a), then the axial force P acting on the beam must equal the
static buckling load P.r. Therefore with 8., = 0, Eq. (29) yields the minimum static
buckling load for the beam shown in Figure 1:

2, 0
Po=-(N?+ )P, (31)
where Py = EI.(m/f)? and the inequality (30) applies. The minus sign in Eq. (31) im-
plies that P, is compressive and acts in a direction opposite to that shown in Figure 1.

The minimum static buckling load P, given by Eq. (31) represents static buckling of
the beam for lateral beam displacements which occur in the z — y plane. Recall that it is
assumed that wy, < wn,.

A larger second static buckling load, which can be determined in a manner analo-
gous to Eq. (31), represents static buckling of the beam for lateral displacements which
occur in the ¢ — z plane. However, the minimum static buckling load P, is of interest in
this analysis. Recall that in the case for dynamic instability the minimum critical fluid
speed V., is of interest and that wyy < wy,.
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Divergence of a Nonrotating Cable

Consider a uniform fixed-fixed cable not on an elastic foundation (i.e., 7y = 0 and
7z = 0) through which an incompressible frictionless fluid is lowing at a constant speed
V. The lateral natural frequencies for a uniform fixed-fixed cable not on an elastic foun-
dation can be determined from Eq. (26a) as

P
w,,:f‘-; ~  n=1,23..,N (32)

where P is a constant tensile force applied to the ends of the cable.

Note that when the uniform beam is very flexible (i.e., I, — 0 and I, — 0) but
subjected to a large axial tensile force P applied at its ends, the beam can be considered
as a uniform fixed-fixed cable and Eq. (26a) yields Eq. (32) provided 7y = v; = 0. The
critical speed of a fluid flowing along a uniforn: fixed-fixed cable not on an elastic foun-
dation is obtained by substituting Eq. (32) into Eq. (26) and results in Fq. (33).

VC?’ = 4 ‘1’£ (33)
Y am

where a is not zero. Equation (33) can be nondimensionalized with respect to the wave
speed in the cable by dividing V., by (P/m)"/%. That is,

Ber = 1/ =. (33a)

«

The critical speed of a fluid flowing along a uniform fixed-fixed cable supported on a
uniform elastic foundation is given by

Ver = \/?1:73{ {1 * P(:;!J)?] : (33b)

The inequality (27) is not applicable. For this case the minimum critical speed V, al-
ways occurs when N = 1. The critical speed ratio of the fluid is expressed by

Ber = \/(1; {1 + -]3-(—7%’7)5] : (33¢)
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Resonance for a Rotating Beam or Rotating Cable with Unequal Lateral
Stiffness in the y and » Directions

When the damping factors, {5y and €., are zero and the terms involving the rotary
inertia and the chunge in direction of the angular momentum for an element of beam
cross-section are neglected, the simplified equations of motion for the N** generalized
beam coordinates, Eqgs. (?3) and (24), reduce to

w?vy —a(Nxr/L)*v?

v+ [y W] IN(t) = 2oed(t) = 0 (34)
i) + [ = SNV 7000 + e y(0) = (3)
where
dy = () e g+l
Py = EI,(%)Z (34a)
k!/
W= EL(n/0)E
= E2 ) e )
2
Py = EIy(-E> ; (35a)
k

Here wyy and wpy, are the undamped natural bending frequencies associated with iat-
eral motion of the beam due to bending vibration in the y and z directions, respectively,
when the beam is not spinning (i.e., w; = 0) and the fluid mass per unit length, my,

is zero. Py and P, are the magnitudes of the Euler buckling loads in the y and - di-
rections, respectively. k, and k; are the foundation stiffnesses per unit length in the y
and z directions, respectively. I and I, are the centroidal area moments of inertia of the
beam cross-section about the y and z axes, respectively.

fn(t) and gn(t) are expressed by

fn(t) = Anernt (36)
gn(t) = ByeN! (37)
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Substituting Eqs. (36) and (37) into Eqs. (34) and v(35) and setting the determinant
of the coefficients equal to zero yields the characteristic equation for the spinning beam

(i.e., wy #0):

M+ [(0 —w?) + (%, - wl) + 42y + (9%, - w?) (%, - w?) =0 (38)

Rearranging Eq. (38) results in

(ng + Q§VZ>

Ay + 2[»——-—2—-—— + wz]xi, + (Qyy = W) (%, - wl) =0 (39)
where
Nx
Q2 = “’JZVy _ a(T)sz 40
Ny — 1+a ( )
and
2 Nry2yr2
The four roots to the characteristic Eq. (39) are given by
1/2 |
D =i{Cx = Dn ) or iy = (el
. 1/2 . apparent\1/2
2/\N:—Z{CN—DN} or AN = —i(1Qy )
(39a)
1/2 .
3AN:'L'{CN+DN} or 3)\N:i(2(2%’pamn )1/2
1/2 .
AN = -~i{cN + DN} or gAy = —i(;QaPPUTent)l/2
where
0% + 0%
On = [(JlT-’—V-> + wg} (39b)
02— 02 \2? p 1/2
Dy = [( o ”‘-) +2 i(ﬂ?v,, | ﬂ?v) (39¢)




i

and N = 1,2,8,...,r. Here Q, and (Qp, are the natural bending frequencies associated
with lateral motion of the beam in the y and 2 directions, respectively, when the fluid is
flowinz along the beam (or pipe) with a constant sveed ¥V (V < V,,) and the beam is not
spinning (i.e., w; = 0). »

Solving Eq. (39) for Ay results in the apparent tending natural frequencies associ-
ated with the free undamped lateral vibration for the spinning beam. These apparent
frequencies are expressed by |refer to Eqs. (39a), (39b), and (39¢c)]

03+ 0%, 0%, - 2%, \? Vi
 Qupparent _ {KJV_{_N_>+“J4_K_&§__{V_> +2wg(gg,y+n§\,z)} } (42)

’ N2+ 02 , N2~ N2 N\ 2 V21
29%’?””1 — {[( Ny 2————-N >+w;§:l + [(M) +2w3(ﬂ?vy+9?\{z)} } (43)

where N =1,2,3,...,7. Note that for each of the N bending modes associated with un-
damped free lateral vibration for the spinning beam, the amplitudes of vibration in the
rotating body fixed ¢ — y and z — z planes consist of an amplitude modulated sinusoidal
vibration where the amplitude is sinusoidally modulated by a combination of frequen-
cies composed of wz,In, and y,. Consequently, the free bending vibration of the Nt*
mode for the stpinning beam appears to be composed of two apparent bending frequen-
cies (; QFP™ and 20%'?“””) and neither of these apparent frequencies corresponds to
the N** natural bending frequency for the nonspinning beam.

Also, observe that the 2V apparent frequencies consist of a difference and a sum of
“wo frequencies” [refer to Egs. (42) and (43)] and that these “two frequencies” are not
as simple as those given by Egs. (46) and (47). That is, the “two frequencies” given by
Egs. (42) and (43) result from a combination of the natural frequencies for the beam
i.e., Qny and Qp.; refer to Eqgs. (40) and (41)] and the spin frequency w; of the beam.

For each mode of vibration, resonance occurs at two spin frequencies or critical spin
speeds. That is,

NWzerl = QNy (44)
or
e = [z a1 (440)
NWzcr) = 1+ o
and
NWzger) = QNz_ (45)
or
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wjz\]z - a(NW/E)zV?‘ 12

14+ a

(45a)

NWger2 =

where N = 1,2,3,...,r. Equations (44) and (45) result from Eq. (42) when ;Q3777*™ is
z€r0.

In general, it is not expected that the critical spin speeds (Nwzcriyt = 1,2) will equal
the beam natural bending frequencies associated with zero angular speed; that is Eqs.
(44) and (45). For example, consider a cantilevered beam with a large disk a‘tached to
its free end. When the beam is spinning about its undeformed longitudinal axis, the gy-
. sscopic effects of the disk (and to a much lesser extent the beam cross-sections) are ex-'
pected, for the most part, to stiffen the beam resulting in critical speeds (ywgcri) which
are, in general, higher than the natural frequencies (Qy, and Q) for the cantilevered
bheam.

Returning to Egs. (42) and (43), note that when Qny = Qn, = Qpn (orwyy, =
WN; = wN; €.g., a beam with circular cross-section resting on a uniform and equal elastic
foundaiiou), Egs. (42) and (43) reduce to Eqgs. (46) and (47), respectively.

IQ(]L\?parent — QN — Wy (46)

ZQ%’Parent — QN + wy (47)

with N = 1,2,3,...,r, where Qy is given by either Eq. (40) or (41) and wny or wpn; is
given by either Eq. (34a) or (35a). Also, when w, = 0, the apparent frequencies equal
the natural frequency, wy; the amphtude of v1brat10n is constant, and only one natural
frequency is associated with each mode of vibration.

Consider Egs. (46) and (47). When the spin speed of the beam, w;, is zero, the ap-

parent frequencies are identical for lateral vibration of the Nt mode in the y and z di-

t rent t
rections (i.e., ;NP = Qappa ™ = Qp). As w; is gradually increased, Q37"

Q}‘&’parem increases by w,. When w; eventually becomes equal to

decreases by w; and »
On (ie., 105P47*™ = 0) resonance occurs and the amplitudes of vibration of the N*

mode increase linearly with time and the resonant frequency of vibration for the N*
mode becomes equal to 2Q0y. That is, Jﬂappmem =0 and Qappmem - 20y at resonance.
Note that in this case ywzcr = {Iny where N =1,2,3,.

Now consider Egs. (42) and (43). When the spin speed of the beam, w;, is zero,
the apparent frequencies for lateral vibration of the N** mode in the y and 2 directions
are Qpny and Qp,, respectively. As w; is gradually increased and approaches (y,, res-
onance occurs and the resonant frequency of vibration for the N** mode, in the y and

z directions, equals 39%,}, + 0% ,. As w, is increased further and approaches Qy,, a

second resonance occurs for the N** mode and the resonant frequency of vibration for
the N** mode in the y and z directions, associated with the second resonance, equals

\/Q -+ 30%, [refer to Egs. (63) and (64)]. (Note that in the second paragraph of the

Results section, it is assumed that wy, < wn, and that this is an arbitrary choice.)
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Case 1: Fluid Mass is Zero—When the fluid mass per unit length, my, is zero
(i.e., @ = 0), resonance occurs when the angular spin speed of the beam (or tube), wy,
equals any of the 2NV natural bending frequencies, wy, and wy,. That is, re;onance oc-
curs when

NWzgcrl = WNy (48)

and

NWzer2 = WN2 (49)

and N =1,2,3,...,r.

Case 2: Fluid Speed is Zero— -V hen the fluid speed V along the tube equals zero
but the tube or pipe is filled with a fluid of mass my per unit length (i.e., @ # 0), reso-
nance occurs when

WN;,

= — 50
NWgcrl T a ( )
and
wN
NWger2 = 1—:& (51)

and N =1,2,3,...,».
Case 3: Fluid Spead is Less Than the Critical Fluid Speed—When the fluid
speed V is less than the critical fluid speed V. (i.e., vay > 0in Eq. (40); recall the as-

sumption that wy, < wy,), resonance occurs when

w¥ — a(Nr/L)2V?
— Ny
NWzerl = \/ ‘1 s (52)
and
2 212
_wy, —a(NT/EEV
N‘-Uzch'—\/ 1+ a ' (53)

and N = 1,2,3,...,r. In this case, if the fluid speed V is high enough, resonance can
occur at very low values of angular speed, w,.

Case 4: Fluid Speed Equals the Critical Fluid Speed-—When the fluid speed
V equals the critical fluid speed V¢, (i.e., 1y, = 0), resonance occurs. That is, when

V = V., where
14 1
Ver = S—wiyy/ = (54)
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and the inequality (27) applies, resonance occurs when

Nwger1 =0 l ‘ (55)
and

NWgero = QNZ (56)

where

Wl — w?
Nz Ny

On, =4/ ——~ 57
Nz 1+a ( )

and N = 1,2,3,...,7. When the beam bending natural frequencies (or the tube lateral
‘natural frequencies) are identical in the y and z directions (i-e., wny = wy;), resonance
occurs for any spin speed, w,, greater than zero.

Case 5: Fluid Speed Exceeds the Critical Fluid Speed— When the fluid speed
V along the tube exceeds the critical fluid speed V,, (i.e., Q}"Vy is negative), dynamic in-
stability occurs. That is, when V > V,,, where

14 1 | |
Ver = —]V—";wvy\/; (58)

and the inequality (27) applies, resonance occurs for any spin speed w, greater than
zero. However, if the spin speed w, is zero, a dynamic instability occurs which is anal-
ogous to static buckling (divergence) when V = V,,. Consequently, for this case there
are no oscillatory lateral motions associated with the dynamic instability and the crit-
ical speed for the fluid is independent of the viscous damping factor for the beam and
foundation.

In Eqgs. (48) through (58), wny and wy, for the beam shown in Figure 1 are given by

EI, (m\* P
2 z 4 2
wNy = m (Z) [N + N Pey + 71/
2
P., = EI, (12-) (59)
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N
w‘i’ = EI& (ﬂ) tﬁ.“\"‘ + .—‘\'2 il -z

N2

P., = Ely(%> (60)
ky

ﬂz:

" T EL(x/6)t

Recall the assumption that wyy, < wx,. Therefore, for the cable, it is assumed that
ky < k;. For a uniform fixed-fixed cable, wy, and wy, are given by

x | P k
WN, = N—=y/ - -+ P - ‘
Ny £\ m {1 .‘\""P(‘fr:’[)?} (61)
and
r P k.
wh, = N—=y —1|1+
N If\ m ILl .\QP(?T'[)?} (62)

and ¥ = 1.2,3.....r.

In Eqs. (61) and (62} P is a constant axial tensile force applied to the ends of the
cable and m is the cable mass per unit length. Use of Eqs. (61) and (62) in Eqs. (48)
through (57) will give the critical spin speeds, yw; ¢y, which result in resonance for a
rotating, uniform, fixed-fixed cable supported on an elastic foundation and conveying an
incompressibie, frictionless fluid moving at a constant speed V". For a cable the critical
fluid speed occurs when .V = 1 refer to Eq. (33b) and the inequality (27) is not appli-
cable.

Frequency of Lateral Vibration at Resonance—For each mode of undamped
lateral vibration. resonance can occur at two critical spin speeds provided the fluid speed
is less than or equal to the minimum crit:cal fluid speed 1,. The amplitude of lateral
vibration increases linearly with respect to time and the frequency of lateral vibration
for the N** mode at resonance is determined from equations (63) or (64); that is, Case A
or Case B. Note that the two apparent resonant frequencies for the N** mode of lateral
vibration consist of a certain combination of the two critical spin speeds associated with
resonance for the N** mode of vibration. {Refer to Cases 1 through 3 for the critical
speeds of interest.)

Case 4. Spin Speed Equal to First Critical Speed for N** Mode.

appurent
Nw'gert = Q_\'; (1e., EQ‘\?PU = O)

Frequency of lateral vibration at resonance:

opparent a0 0l S 1.0 4
NI S 304, -0, N =123 (63)
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or

29‘11\1:1’“"3” = ‘\(/3(Nw£cr1) - N“J2 M (630)

TCT &

Case B: Spin Speed Equal to Second Critical Speed for N** Mode.

: t
Nwzer2 = N, (1.e., lnﬁparen = 0)

Frequency of lateral vibration at resonance.

AP = 02 1302, N =1,2,3,... (64)

2P = [yl + 8wl ) (64a)

{Iny and Qp, are given by Egs. (40) and (41). For Case A or B, the 2N critical spin
speeds of interest, ywz¢rift = 1,2), are given in Cases 1 through 3. Note that wy, and
wN, are determmed by Egs. (59) and (€60) for a beam and by Eqgs. (61) and (62) for
cable.

or

When Qny = Qn. = Qn (or wyy = wN, = wy; e.g., a beamn with a circular
cross-section resting on a uniform and equal elastic foundation), the apparent frequency
of lateral vibration at resonance for Cases A and B is equal to 2 Q. That is,

29‘}"\?}’01‘871" - QQAT (65)
or
ren w3 — a(Nm/£)2V?
2QFPTEN = 2\/ X 1(+a/ ) (66)
where
. EI(w P
2 - (L 2°
YN m(f) { +Npe+7]
2
P. = EI (3) (67)

k
7= EI(x/e)
and N =1.2,3,...,r
Equations {66} and (67) can be simplified for application to a cable.
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Comparison Between Experimental Measurernents and Predicted Values

To illustrate the use of Eqs. (46) and (47), consider the foilowing brief description
of a field experiment and some associated measured results. For additional information,
refer to [2].

Figures 4 and 5 illustrate an 8-inch-diameter test projectile and the usual gun firing
environments. Figure 6 is an enlarged view of the forward beam within the test projec-
tile. The cylindrical disk on the end of the beam is used to tune the beam to a specified
natural frequency associated with the first mode of vibration due to bending.

As the gun-fired test projectile travels along the rifled gun tube toward the muzzle,
the beam and disk are subjected to an axial acceleration U, an angular acceleration w;,
and an angular velocity w,, which results in a nearly quasi-static response of the beam.

Almost immediately upon barrel exit the character of beamn response changes sud-
denly from quasi-static to dynamic (refer to Figure 7). Note that the beam vibration
shown in Figure 7 occurs in the body fixed £ — y plane. Due to the Coriolis cflect an
analogous vibration also occurs in t+ body fixed ¢ — z plane. The vibration which be-
gins at barrel exit is primarily caused by the sudden reduction (in about 0.2 millisec-
onds) of pressure acting on the projectile base. When this occurs, the rigid body axial
inertia loads acting on the beam and disk suddenly decrease to zero (drag is neglected)
and the bending moment in the beam at the strain gage location changes almost instan-
taneously relative to the fundamental period for lateral oscillation. Consequently, for the
forward beam, the sudden increase in the bending moment at the location of the strain
gage (358.5° and 1 inch from its fixed end) results in additional compressive strain in the
beain and its subsequent dynamic response.

The wave shape subsequent to barrel exit is composed of two apparent bending fre-
quencies, each associated with the first mode for lateral vibration. Figure 8 shows the
measured and predicted values for these frequencies. The first natural bending frequency
for the beam, when it is not spinning, is 393 Hz (refer to Appendix G in [2]) and the
spin frequency of the projectile is 183 Hz. Therefore, the two calculated apparent bend-
ing frequencies for the first mode are 210 Hz and 576 Hz. The measured frequencies are
213 Hz and 575 Hz. The agreement between the measured and calculated frequencies,
using Eqs. (46) and (47), is quite good.

In applying Eqgs. (46) and (47) to the beam shown ja Figure 6, note that there is no
fluid present (i.e., a = 0) and that Qy, = Qn, = wny = wy, = wy Where N=1.

When there is no axial load acting on the beam (P = 0) and the foundation stiff-
ness is zero (v = 0), the natural bending frequencies for the beam shown in Figure 6 are
given by

- Bi /E—f -
wi=E\ o i=12. N (68)

and 3; is determined from
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1+ b%a?8t + {—aﬂ3(a2 +b%) —af + g- [a?B%(a® + b?) — (1 + aaf?)?] } sin B cosh

-2 {aaﬁz + ﬁéﬁ] sin A sinh 8 + {1 - a?pt? - gf‘r—gﬁ—‘I(a2 + bZ)J cos 3 cosh 3

+ {aﬁ - aﬂ3(a2 + bz) + —Z— [(1 - cza;@z)2 - a254(a2 + bz)] } cos@sinh B =0 (69)

where

The following definitions apply for the terms in Eq. (70).

€ is the distance from the end of the beam to the mass center of a rigid disk attached
to the free end of a beam,

Jp is the mass moment of inertia of a rigid disk about the y or z axis originating at
the mass center of a disk.

Mp is the mass of a rigid disk.

k is the bending spring constant for a spring located at the “fixed” end (i.e., at
z = 0) of a beam.

The symbols used in Eqs. (68) and (69) are also defined in [2].

Equation (69) represents the characteristic equation for the Euler beam shown in
Figure 6 when the beam is not spinning (i.e., w, = 0). For a specified set of parameters
(i.e, a,b,@, and §), Eq. (69) will yield N roots §; and, consequently, N natural bending
frequencies for the beam.

Laboratory experiments on test beams indicate Eq. (69) accurately preidicts the nat-
ural frequencies for lateral vibration. Two beams were tested and the results are summa-
rized in Tables II and III.

If the modulus of elasticity, E, is 28 x10° 1b/in.? rather than 30 x 108 Ib/in.2, the
calculated natural frequencies are reduced by 3.39 %. Consequently, some of the differ-
ences listed in the fourth column in Tables II and III could be due to material property
variations.

Equation (69) is applicable for other boundary conditions; for example, a cantilever
beam without a disk attached to its free end. For this case
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a:—r—r;-e———O
ke
=
E1

and Eq. (69) reduces to

1+ cosfBcoshf@ = 0.

‘ TABLE II.
RESULTS OF LABORATORY TESTS ON FIRST BEAM.

Beam parameters: £ = 4.0in.,, D = 0.40in.,,2¢ = 1.0in.,, Dp = 1.20in.,
E =30 x 108 1b/in.2.

Nondimensional parameters: a = ¢/£ = 0.125,0> = Jp/Mpt? = 0.010833,
a=Mp/m€ =225 = 22727 x 103,k == 21.42 x 10° in.-1b/rad.

Mode Measured Natural Calculated Natural Percent

No. Frequency (Hz) Frequency (Hz) Difference
1 183.3 186.7 1.85
2 1914, 2005.4 4.78
TABLE III.

RESULTS OF LABORATORY TESTS ON SECOND BEAM.

Beam Parameters: £ = 4.0in.,, D = 040in.,,2¢ = 0.2in., Dp = 1.20in.,
E =30 x 108 Ib/in.>.

Nordimensional parameters: a = /£ = 0.025,6> = Jp/Mpf? = 0.005833,
o= Mp/me€=0.4585 = 2.2727 x 10%,k = 21.42 x 10% in.-lb/rad.

Mode Measured Natural Calculated Natural Percent

No. Frequency (Hz) Frequency (Hz) Difference
1 393. 408.7 3.99
2 2925. 3087.5 5.55
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Figure 4. Eight-inch-diameter test projectile.
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Figure 5a. Rigid body axial acceleration vs. time. Barrel exit time occurs at approxi-
mately 17.5 milliseconds. Maximum axial acceleration can approach 12,000 g’s.
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Figure 5b. Rigid body angular acceleration vs. time. Maximum angular acceleration can
approach 182,000 rads/sec?.

Barrel
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t
Figure 5c. Rigid body angular velocity vs. time. As the gun-fired test projectile travels
along the rii:. gun tube toward the muzzle, the beam and disk are subjected to an axial

acceleration U, an angular acceleration w;, and an angular velocity w,, which results

in a nearly quasi-static response of the beam. Maximum angular velocity can approach
1,180 rads/sec (11,250 rpm).
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Figure 6. Forward beam (refer to Figure 4), illustrating the undeformed and deformed
positions in the body-fixed z — y plane. Note that for the forward beam a, = —U,

# = —w;,and § = —w,. P and F, schematically represent the resultant axial and ra-
dial inertia forces acting at the center of mass of the disk.

38



+

; TS ST YRV T3 A I I I R R R
i ”‘ Ej c ; 2. ”;, o = FRE{DI CTED

3 o+ | MEASURED ;

‘ | |

|
.

STREIN [ wIN/INE

-1000 -3500 -3000 -2533 -2000 iS¢ --02
i

VRN
N ..A A f\ﬁ \/}Vf\\ln[ 4 /\)

]
i | | oo |
g i1 || LRdE fUigHThereD cTED
4 0 ,j__._.'J".,, RS ‘ n I Q) ' ) W ' Jr, T . “ . " 52 . 5!& W :,:s " 71a "

TIME EHSECH

Figure 7. Measured strain-time history for a uniaxial strain gage located on the forward
beam at 358.5° and 1 inch from its fixed end. The test (GE021B) utilized essentially a
new 8-inch-diameter tube (90% remaining life; tube number 34). "he dots and heavy
solid line represent predicted quasi-static strain values. The coupled lateral vibration
subsequent to barrel exit results from the Coriolis effect. Note that the projectile exits

the gun tube at approximately 17.5 x 1073 sec and that the response of the beam prior
to this time is essentially quasi-static.
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Figure 8. Measured and predicted apparent bending frequencies associated with the first
mode for lateral beam vibration. As the spin speed w, gradually approaches the first
bending natural frequency w;, the first apparent frequency 19‘1”’7""6” approaches zero
and the second apparent frequency 29‘11”’”6”, approaches 2 w;. Large-amplitude vibra-
tions for the beam can occur when the spin speed w, approaches wy or one of the other
lower-mode bending natural frequencies. The ratio of total beam mass to projectile mass
is about 2.3 x 1073, Consequently, as w, approaches w1, the flight dynamics of the pro-
jectile during free flight is not significantly affected by the beam vibration.
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CONCLUSIONS

Nonrotating Beam or Cable

When the heam is not rotating (i.e., wy = 0), dynamic buckling (divergence) occurs
for the system shown in Figure 1 when the fluid speed equals or exceeds the critical fluid
speed given by Eq. (29) and the inequality (30). For this case there are no oscillatory
motions associated with the dynamic instability and the critical speed ratio for the fluid
is independent of the damping factor. The critical speed ratio f.r (or the 1 »ndimen-
sional fluid speed at which instability of the beam occurs) is increased by

e Decreasing «, the nondimensional fluid mass,
) Increasmg PJ, the nondimensional axial tensile force acting on the beam,
. Increasmg vy, the nondimensional foundation stiffness.

Physically, f.r is increased by increasing the system stiffiness and is independent of the
damping factor £ny.

A beam with boundary conditions such as fixed-pinned or fixed-fixed is more stiff
than when simply supported. Hence, the results presented by Eq. (29) and the inequal-
ity (30) should represent a lower bound for the fluid critical speed when compared to a
beam having fixed-pinned or fixed-fixed boundary conditions.

Equation (33c) gives the critical speed ratio for an incompressible, frictionless fluid
flowing through a uniform fixed-fixed cable supported on & uniform elastic foundation.

If the coupled Eqgs. (21) and (22) are utilized to numerically determine 8¢, (i.e., V¢r)
when w, equals zero, the inequality (30) suggests that the minimum number of terms N
(or coupled equations) required for accurate numerical results (e.g., numerical integra-
tion of the equations of motion) is given by the first value of N which satisfies the in-
equality N2(N +1)% > v,. Increasing N above this value may not result in any apprecia-
ble decrease in the calculated value of Bc,. However, decreasing N below this value may
result in calculated values of f;, which have not converged and are significantly larger
than the correct value of Bc,.
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Rotating Beam or Cable

For each mode N of undamped lateral vibration, resonance can occur at two critical
spin speeds for the beam provided the fluid speed V is less than or equal to the criti-
cal fluid speed V,,. If the fluid speed is less than the critical fluid speed, but sufliciently
high, resonance can occur at very low values of spin speed. If the fluid speed exceeds
the critical fluid speed, resonance occurs for any spin speed greater than zero. (Refer to

Cases 1 through 4.)

During resonant vibration the two apparent frequencies for each mode of undamped
lateral vibration consist of a certain combination of the two critical spin speeds asso-
ciated with resonance for the N** mode. Refer to Eqgs. (63a) and (64a) and to Cases 1
through 3 for the two critical spin speeds of interest for each mode.

The accuracy of Eqgs. (44a) and (45a) and of Eqgs. (63a) and (64a) can be examined
by numerically integrating the coupled equations of motion [i.e., (21) and (22)] to deter-
mine the resonant lateral beam response. This can be done by specifying the parameters
that appear in Eqs. (21) and (22); e.g., B (V < Ver)y Py, P71y Ves @, Wiy, wiy,, cle,
and w;. The specified value for the spin speed w, is initially chosen to corresnond to a
critical spin speed associated with a particular mode of lateral resonant vibration. The
initial value for a critical spin speed can be estimated from Ea. (44a) or (45a). 1t is ex-
pected that these equations will yield good estimates of the 2N beam critical spin speeds
for the lower modes.

During undamped free lateral vibration, which is not associated with resonance for
the spinning beam, the amplitudes of vibration in the rotating body fixed z -~y and o - z
planes (refer to Figure 1) consist of an amplitude modulated sinusoidal vibration where
the amplitude is sinusoidally modulated by a combinaivion of frequeacies composed of
wz, Ny [refer 1o Eqs. (40) and (34a)], and Qy, [refer to Eqgs. (41) and (35a)]. Conse-
quently, the undamped free bending vibration of the N** mode for the spinning beam
appears to be composed of two apparent frequencies and neither of these two apparent
frequencies corresponds to the N** natural bending frequencies, Oy, and Qp,, for the
nonspinning beam.

Discussion

Recall that the coupled Egs. (21) and (22) (note that the equations are coupled
even when w; = 0) for the beam generalized coordinates result from using the Galerkin
method to represeni the motion of the beam as a 2N degree-of-freedom system. Note
that these linear, second order, ordinary differential equations have constant coefficients.
One of the reasons for this is that the acceleration of the fluid along the z axis of the
beam is zero. When this is not the case, the velocity of the fluid along the z axis is a
function of time and the analytical solution for the 2N set of coupled equations .ith
time dependent coefficients is difficult, even when the acceleration of the fluid along the
T axis is constant.
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When the coefficients in these equations are periodic functions of time, peculiar dy-
namic stability problems can arise. For example, if the acceleration of the fluid along the
beam axis is zero but the density variation of the fluid is periodic with respect to time
with a period T, the 2N coupled Egs. (21) and (22) can be expressed by*

M(1)q(t) + C(t)q(t) + K (t)3(t) = F(t), (72)

where the mass, damping, and stiffness matrices are periodic with respect to time, each
with a period T. That is,

M(t+T) = M(t)
C(t+7) = C(t) | (73)

For this case Eq. (72) is similar to a set of Hill's equations or Mathieu-Hill’s equations.
Consequently, multiple regions of unstable dynamic response will occur rather than a
single region as indicated by Eqs. (29) or (33b). Qualitatively, these multiple regions of
stable and unstable dynamic response will have the general appearance as indicated in
Figure 9. With respect to Figure 9, when damping is not present, the smaller unshaded
regions, associated with unstable dynamic response for the tube, will be more extensive
than shown in Figure 9 and will extend to the § axis.

For a system of equations analogous to Egs. (72), the boundaries separating the re-
gions of stable and unstable dynamic response can be quantitatively determined by uti-
lizing Floquet theory [3] and an iterative computational procedure which (equires, for
each iteration, numerically integrating the equations of motion for a time equal to the
period T of the coefficient matrix. However, the integration must be done 2N times for
the case where the spin speed w, is zero and 4N times for the case where the spin speed
wg is not zero [refer to Eqs. (21) and (22)]. For further information regarding Floquet
theory and its application, refer to [4].

¢ Another example occurs when the ﬁuid‘speed is periodic.
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Figure 9. Qualitative represcntation for the regions of stable (shaded) and unstable
(unshaded) dynamic response for a nonrotating, hollow tube, with viscous damping, car-
rying an incompressible fricticnless fluid flowing at a constant speed where the density of
the fluid is periodic with respect to time.
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