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ABSTRACT

When a fluid flows inside a tube, the deformations of the tube can interact with the fluid

flowing within it and these dynamic interactions can result in significant lateral motions
of the tube and the flowing fluid.

The purpose of this report is to examine the dynamic stability of a spinning tube

through which an incompressible frictionless fluid is flowing. The tube can be considered

as either a hollow beam or a hollow _ble. The analytical results can be applied to spinning

or stationary tubes through whici, fluids are transferred' e.g., liquid coolants, fuels and
lubricants, slurry solutions, and high explosives in paste form.

The coupled partial differential equations are determined for the lateral motion of a

spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid.

The beam, which spins about an axis parallel to its longitudinal axis and which can also_

be loaded by a constant "_Y_ialforce, is straight, uniform, simply supported, and rests on a

massless, uniform elastic foundation that spins with the beam. Damping for the beam and

foundation is considered by using a combined uniform viscous damping coefficient. Tile

fluid, in addition to being incompressible, is frictionless, has a constant density, and flows

at a constant speed relative to the longitudinal beam axis.

The Galerkin method is used to reduce tile coupled partial differential equations for

the laterM motion of the spinning beam t,, a coupled set of 2N, second order, ordinary

" differential equations for the generalized beam c,,_ordinates. By simplifying these equations

and examining the roots of the cha.rac_eristic equation, an analytical solution is obtained for
11
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the lateral dynamic instability of the beam (or cable). The analytical solutions determine

the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed,

in terms of the physical parameters of the system.

When the beam (or cable) is not spinning, a certain fluid speed results in a dynamic

instability that is analogous to static buckling (divergence), and consequently there are no

osciUa.tory lateral motions associated with the dynamic instability. In this case, when the

fluid speed equals (or exceeds) the minimum critical fluid speed, the lateral stiffness of the

beam is zero (or negative) and dynamic buckling occurs. For this case the critical speed

for the fluid is independent of the viscous damping factor for the beam and foundation.

On the other hand, when the beam is spinning with a certain constant angular speed

and the viscous damping factors for the beam and foundation are zero, the dynamic in-
stability is identical to resonance. In this case, as the fluid speed increases, the natural

frequencies associated with lateral motion of the beam decrease and small spin speed8 of

the beam can result in violent self-excited vibrations. When the fluid speed equals or

exceeds the minimum critical fluid speed, resonance occurs for any spin speed greater than
zero.

For each mode of lateralvibration,resonance can occur at two criticalspin speeds

provided thefluidspeed islessthan or equalto the minimum criticalfluidspeed. The two

apparent; resonant frequencies for the N ¢h mode of lateral vibration consist of a certain
combination of the two critical spin speeds associated with resonance for the N th mode of

vibration. The critical spin speeds are determined in terms of the natural lateral frequencies

for a nonspinning beam (or cable), the fluid speed, and the ratio of fluid mess to beam
mass.
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NOMENCLATURE

• a offset, distance

_f acceleration vector for fluid

A cross-sectional area of beam

Ct, n th combined viscous damping coefficient for beam and founda-
tion per unit length

E modulus of elasticity

fn, qn generalized beam coordinates for the y and z directions, respec-
tively

_,3:, k unit vectors along the body fixed a,y,z axes,
respectively

I area moment of inertia of beam cross-section (symmetrical)
about y or z axes originating at centroid of beam cross-section

Iv,I_ area moment of inertia of beam cross-section about y and z
_xes, respectively, originating at centroid of beam cross-section

k foundation stiffness per unit length

k v,kz foundation stiffness per unit length in the y arid z directions,
respectively

beam length

m mass of beam or cable per unit length

my mass of fluid per unit length

N number of generalized beam coordinates

l ) constant axial force apt)lied at the end of a beam in the

x direction through the centroid of the cross-section

Pc, minimum static buckling load (defined as static buckling load)

Pe = EI(rc/g) 2 magnitude of the Euler buckling load

. P* = P/Pe nondirnensional axial force

qp generalized beam coordinate
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_(a,t) beam loading function vector per unit length

_f(_,_) fluid loading function vector per unit, length

r index representing the number of generalized coordinates for the

beam or number of comparison functions

position vector for fluid within tube

Ro position vector from origin of fixed frame to origin of body fixed
frame

t dme

U translational displacement of beam origin along X axis

v beam displacement in y direction

V fluid speed

Vc,. minimum critical fluid speed (defined as critical fluid speed)

w beana displacement in z direction

p mass density

position along z axis of bean:

a = my/m ratio of fluid mass per unit length to beam mass per unit length

angular velocity vector

.'z rotational speed, angular speed, spin speed of beam or cable

rotating about its longitudinal axis

nwz c,'i i_h critical spin speed of beam or cable associated with lateral
resonant vibration of the n th mode

13= V/v speed ratio

13c,. = Vc,./v critical speed ratio

k foundation stiffness per unit length, nondimensional- .Es(,_/tp

v = _ _/_ wave speed of a sinusoidal flexural wave of wavelength £



_n = _C___ n th damping factor for beam and foundation or ratio of the n th2town

viscous damping coefficient to the critical viscous damping coef-
ficient for the n th mode

fort ---=

. ,_/'E'I _ 7t2 P nth'_-(7 )4[n4 + _e + 7] undamped natural circular frequency of lateral vibration forI'

a uniform, simply supported beam on an elastic foundation with

a positive (tensile) axial force applied at its end

oapparent c)apparent first and second circular frequencies associated with the N th1_ N _ 2_ N

mode of lateral vibration for the beam (or cable)

ft/W, flN_ natural bending cicular frequencies associated with the N th

mode of lateral vibration for the beam (or cable) in the y and

z directions, respectively, when the fluid is flowing along the

beam with a constant speed V (V < V_,) and the beam is not
spinning (i.e., w, = 0); e.g.,

_/w 2 .-a(N_/g)2V212Nv _u_= l+cr

(') differentiation with respect to time, t

- ( )l differentiation with respect to the space coordinate, x
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INTRODUCTION

" When a fluid flows over the external surfaces of a structure, dynamic interactions
between the fluid and structure can occur that can result in significant motions of the

. structure. Some examples are the vibration of bridges, tall chimneys and towers, electri-
cal transmission lines and the "flutter" of aircraft wings.

When a fluid fows inside a tube, the deformations of the tube can i_teract with the
fluid flowing within it and these dynamic interactions can result in significant lateral mo-
tions of the tube and flowing fluid.

The purpose of this report is to examine the dynamic stability of a spinning tube,
with a symmetricM noncircular cross-section, through which an incompressible fric*ion-
less fluid is flowing. The tube can be considered as either a hollow beam or a hollow ca-
ble. The analytical reaults can be applied to spinning or stationary tubes through which
fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, high
explosives in paste form, etc. Fluids transferred from one location to another along the
spin axis of a spinning body such as an artillery projectile is another example.

An analytical solution is obtained that determines the critical fluid speed as a func-
tion of the physical parameters for the system. Also, the critical angular speeds for res-
onance as well as the frequencies associ .ted with resonant lateral vibration are deter-
mined in terms of the system's physical parameters and a specified fluid speed.

When the tube is not spinning, a certain fluid speed results in dynamic instability,
" which is analogous to static buckling (divergence) and consequently, there are no oscilla-

tory lateral motions associated with the dynamic instability. In this case, when the fluid
speed equals (or exceeds) the minimum critical fluid speed, the lateral stiffness of the
tube is zero (or negative) and dynamic buckling occurs. For this case, the critical speed
for the fluid is independent of the damping factor for the beam and foundation.

On the other hand, when the tube is spinning with a certain constant angular speed
and the viscous damping factors for the beam and foundation are zero, the dynamic in-
stability is identical to resonance. In this case, as the fluid speed increases, the natural
frequencies associated with lateral motion of the tube decrease and small spin speeds or
angular speeds of the tube can resuli in violent self-excited vibrations. When the fluid
speed equals or exceeds the minimum critical speed, resonance occurs for any spin speed
greater than zero. If damping is present, large amplitude laterM vibrations can occur at
or near the critical spin speeds.

For each mode of lateral vibration, resonance can occur at two critical spin speeds
provided the fluid spee-_ is less than or equal to the minimum critical fluid speed. The
apparent resonant frequencies for the N th mode of lateral vibration consist of a certain
combination of the two critical spin speeds associated with resonance for the N th mode
of vibration.

The critical spin speeds are determined in terms of the natural lateral frequencies
for a nonspinning beam (or cable), the fluid speed, and the ratio of fluid mass to beam

. mass.
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EQUATIONS OF MOTION

=

Idealized System

The idealized system is shown in Figure 1 and consists of a fluid flowing through an
elastic tube of constant cross-section. Consider the case where the tube cross-section is

symmetrical with respect to the rotating body fixed y and z axes but the lateral stiff-

nesses in the y and z directions are different; e.g., a beam with an elliptical or rectangu-
lar cross-section.

j _ BODYFIXED COORDINATESYSTEM

o J_" FLUID ~

_l f BEAM- _ m ,V

E,I,m f

s,.<., ---"
P I) I • I I • I I l_ll'l li / •, =_==_

• / / l // • I F"[ii I

c0z

i \ BEAM GROSS-SECTION

FIXED COOROINATESYSTEM

Figure 1. Idealized syste.n.

The tube is modeled as a straight, simply supported, Bernoulli-Euler beam of finite

length supported on a continuous, linear-elastic foundation. The beam is continuous,

homogeneous, and isotropic with a linear constitutive relationship between stress and

strain. The foundation modulus is constant and the force per unit length exerted on

the beam by the foundation is directly proportional to the transverse beam deflection.

The mass of the foundation is neglected. Constant viscous damping coefficients are as-

sumed for the beam and foundation and the dar.qping forces are linear with respect to

the transverse beam velocity. The beam and foundation are rotating with a constant an-
gular speed w_ as well as translating with a constant speed, U. In addition, the beam is
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subjected to a constant axial force P applied at the end of the beam through the cen-
troid of the cross-section in the _3direction.

The fluid is flowing in the x direction at a constant speed V relative to the longitudi-

nal beam axis. In addition, the fluid is incompressible and has a constant density. Fric-

tion as well as gravity is neglected. The fluid is supplied from a reservoir and is always

. flowing at a constant speed during the time of interest.

Partial Differential Equations of Motion For The Beam

The partial differential equations which describe the lateral motions of the beam, in

the body fixed y and z directions, are derived in Referel,_ce 1 and are expressed as !

E±z.""- [P+pZ+o_]."+ [k_- ,_,d]v+ ,_, -/_+"

E±,_'"'-IF +/_,o_]_"+ [k=- ,_,o_]_+ r_+-/_+"
+ Cn(v + 2rnw_i; = qz(x,t) (2)

The lateral displacements of the beam, v and w, in the y and z directions, respec-
. tively, are functions of the space coordinate x and time t, and

(), 0() . o()-0x' ()= 0t'

Also, qu(x,t) and q_,(z,t) represent the beam loading functions per unit length in the

positive y and z dirtctions, respectively. No;e that Eqs. (1) and (2) are coupled due to
the Coriolis effect.

The boundary and initial conditions associated with Eqs. (1) and (2) are expressed

by the following set of equations:

Atx=0"

.(o,_)=o
v"(o,_)=o (a)

" w(O,_)=o
'u,"(0,t) = 0

p

1 Note that when I N and ]z equal zero, Eqs. (3) and (2) reduce to those for a uniform

fixed-fixed cable. That is, the beam bending stiffness is zero.
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At x=*:

.(,,z) = 0
lt

(t,_)= o (4)
w(t,_) = o
"(t,_) oW --

Atf O:

v(,,0)= g_(,)
6(,,0)= g2(_) (5)

w(z,O)=hl(z)

_(,, 0)= h2(_)

Acceleration of the Fluid and the Loading Function for the Beam

Significant dynamic interactions can occur between the flowing fluid and the beam

deformations. To determine these interactions it is necessary to examine the kinematics
of the fluid while the fluid is in contact with the beam.

The absolute acceleration of the center of mass ofa fluid element located at any po-

sition _ along the beam axis is given by

_I = no+_ ×_+ 2_×#,oz+_z +_ × (_ ×_) (6)

The acceleration of the origin of the body fixed :_yz system is given by

no= _ ×no+2_×no.._,+ no., +_ ×(_ ×no) (7)

where, for the particular case under consideration,

"_.L..

Ro_z= U'i

Ro_.,=0 (8)
"_ = wzi

_=0.
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The position vector from the origin of the xyz system to the center of mass of a fluid

element located at any position along the beam axis is given by

" = + .j + (9)

, Since the fluid lateral displacements v and.. w depend on z and t, i.e. v = v(a:, t) and
w = w(x, t), the expressions for _rei and Fret for the fluid in contact with the beam are
given by

dt + Oz dt _-"_ "j + _ dt _-"_ "_ (10)

= + (dt/ + + dr2+ Or2ja (11)
[02w d_ 2 ,,0 =w d_ cqw d2_ 02w

+_0_ (a) +z_a _ o_ dt_ + -_]_

where

d__ = V,
dt

the constant velocity of the fluid element relative to the beam along the a: axis, and
f

- d2_

dr--g = O,

• the acceleration of the fluid relative to the beam along the z axis.

Some explanation of the terms appearing in Eqs. (10) and (11) may be helpful. Con-
sider the components of velocity and acceleration of the fluid element in the y direc-

tion in Eqs. (10) and (11). That is, the terms associated with the coefficient of the unit

vector j. The first term in the coefficient in Eq. (10) is equal to the y component of V

and results from the slope of the beam; the second term results from the velocity of them

beam irl the y direction. In equation (11), the first term in the j coefficient is due to the

centripetal acceleration of the fluid which results from a change in the direction of V and

is caused by the curvature of the beam. The second term is due to the Coriolis accel-

eration which arises because the fluid is moving with a velocity V relative to the beam

while the beam element has an angular velocity _2v The third term is equal to the yO.:_t"

component of 1) and is zero in this particular case since the acceleration of the fluid rel-

ative to the beam a',ong the z axis is zero. The fourth term results from the acceleration

of the beam in the y direction. Similar statements can be made for the components of

velocity and acceleration of thr fluid in the z direction.

" The force per anit length acting on the fluid is giv:,n by

. qf(m, t)=mf-d f (12)

and the force per unit length ac._",g on the beam is given by
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where

-_b(X,t) = qy(z,t)j + qz(x,t)k (14) .

provided the fluid is in contact with the beam.

Substitution of Ems. (7) through (11)into Eq. (6) and utilizing Eqs. (12) through

(14) results in the loading function per unit length for the beam, "_b(Z,t). The compo-
nents of the loading fllnction for the beam in the y and z directions are expressed by

Eqs. (15) and (16), respectively, and will subsequently be used in Eqs. (1) and (2). Re-
call that _ locates the center of mass of a fluid element along the x axis of the beam be-
tween 0 < x < l.

qy(z,t) = mfw2za + mfw2zv + 2mfwzVw' + 2mfwz_b

- msV2v''- 2._:v6'-- _# (15)

q.(z,t) = mfw2w- 2mfwzVv t- 2mfwz_ - mfV2w"

- 2rnfV(v t- mf_ (16)

Also recall that the speed V of the fluid is constant.

Reduction of the Partial Differential Equations of Motion for the Beam-Fluid

System to 2N, Second Order, Coupled, Ordinary Differential Equations

Substitution of Eqs. (15) and (16)into Eqs. (1) and (2) results in the equations be-

low, which describe the motions of the beam-fluid system in the y and z directions, re-
spectively, for 0 _< x _< g and t > 0.

q,

ES.'"'- [P+ pI=_- ._:v_].''+ [k,-(._+ r_:)_]_

+2mfVi:'-2mfw..Vw'= aw2.(m+ml) (:1.7)

EIuw"" - [P + pIyw 2 - mfV 2 + [kz (m + 'mf)w2_]wW tl

--pI_" + (_ + ,_:)_ + c_ +2_(._ + ,_:)_
-}-2mfI':w t + 2rnfwzVv t= 0 (18)
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The lateral displacements of the beam are approximated by

n-N
. nTl'x

_,= Y_,_i_-77A(t) (19)
n=l

• p=N
pzrz,

'*'= Z ,in-_-q,it) (2o1
la=1

Equations (21) and (22) result, from utilizing the Galerkin method to represent the mo-

tion of l_e beam as a 2N degree-of-freedom system

-,. EI_ ---g- -,- P-_I_ z -.-rn/I j ,T- - ik_ -(m . m/)w_i, f,(t)
,D--- _ r

4 V nrr'_ 2r

n-I ' '

p=N

4 _Z (_ 2. ,'(m m/)[: _o_.< (2:1-7_j''" t J(,,./,,:)(,.2_p2)qp(_)=_ +- -
. p=l

r = 1,2,3, .... ,N

p=N

4 (p_) 2,-2_,.(.,- m_)/.(t)*_m,v _ t / (_;,t)(_2_ v2)0.(t)
p=l

n=N

-'-7 mf':zI" E "T- (rr'£)(r 2 -.-n2) fn(_') - 0 (22)
1_ '-" ] k ,

- where the last two terms on the left hand side of the equal sign in Eqs. (21) and (22) are
and r--p) are odd numbers.nonzero only if (r - nj

• If the off-diagonal terrn _,;.'i Eqs. (21) and (22) are neglected and the N th terms along

the diagonal are considered i.e. n = p = r = N), the homogeneous form of Eqs. (21)
and (22) can be simplified and expressed as

., ,..,



,, ,.,dm

771,

-2,o_(1+_)0N(_)= 0 (23)

[1+__+ P&(N_)21-J- -7- _N(t)+2_,_V,ON(t)

' _i'= a V.2 2 1 +a -.... "_ .. T qN(t)

_2wz(1 -4-a)/g(t) = 0 (24)

_vhere

0_. TM]
rn

2

_Y = El=(r, 'l)_

k,
_z = Ely(r,l).+

.2 _ _(r.)4[ + ,¥2 P ],'_'y- ,_ , 7 N4 _,_ _ + %

"_ -E_-z'"" _r . N2 P 1+._,,- m 17) N4 + gj-,-%

:= 2rnwNy

_N.- 2_,.,v,,.

Since the dynamic stability of Eqs. (21) and (22) is of interest, it, is only necessary to
consider the homogeneous form of these equations.

The initial conditions associated with Eqs. (23) and (24) are given by

18



2 9f z=t NTr¢• fN(O) = _ =o yl(_)sin---_--d_

(23a)

" 2 fz=! . Nrrx

]N(O) -----"_]_:o g2(x)szn----_d;t

2f =l N .x.
(24a)

2 f,_=t NrrxqN(0) = _ =o h2(x)sin--[-dx

For reasonable values of N, the terins involving the rotary inertia and the change

in direction of the ang_,l_ar n_omentum, for an element of beam cross-section, are ne-
glected. That is, (pI/m)(Nr/£) _ is very small compared to unity for reasonable values

of N, where I --- Iy or I = Iz. Consequently, the terms involving (pI/m)(Nrr/l) 2 in

Eqs. (23) and (24) are neglected.
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RESULTS

D

Divergence for a Nonrotating Beam

When the angular speed of the beam is zero (i.e., w, = 0), the sim+plified equations

(23) and (24) are not coupled by the Coriolis effect. For this case, dynamic instabihty

-+, in the form of a divergence rather than a resonance will occur when the fluid speed V

equals or exceeds a critical fluid speed Vcr. The incipient critical fluid speed (i.e., on the

boundary between stability and instability) is determined by requiring that one of the
rp1

roots to the characteristic equation, for either Eqs. (23) or (24), equal zero. _.,e other

+, root is negative since the viscous damping factor is not zero. Since there are no repeated

zero roots to the characteristic equation (i.e., {Nv # 0 and {/vz # 0), divergence occurs
when one of the roots is real and positive.

lt is important to note that the simplified equations (23) and (24) will each yield a
critical fluid speed and that these critical fluid speeds will, in general, not be the same

since the), depend upon Iy,Iz, 7_, % and N. The minimum critical fluid speed is of in-

terest in this analysis and it is assumed that wnp is less than whrz. This is an arbitrary
choice and in actual practice both frequencies need to be determined since the natural

bending frequencies are influenced by parameters other than the moments of inertia of

area for the beam cross-section. Henceforth in this analysis, the miB;-"_':,m critical fluid

speed is defined as the critical fluid speed l&r and is determined from Eq. (23).

Therefore, for incipient divergence the minimum cri'+ica] fluid speed, I_r is deter-

mined from Eq. (23) and is obtained from
d

.... °(T) :o (++)
or

_ g /T1
I_r- _-_._N_V a (26)

where a is not zero and WNp is given by

,,.4 P ,-,,,,] (2++)'
Equations (26) and (26a) are not useful unless the value of N is known since the

lowest critical speed ma), occur with N = 1, 2, 3, ..., depending upon the values of the

other parameters in Eqs. (26) and (26a). Since divergence of the beam o:curs with no
oscillatory motion, (i.e., the roots to the characteristic equation are read and not com-

plex conjugates) it appears that the beam behaves as if it were under the inluence of
+,

its s{atic buckling load when the speed of the fluid V equals the critical speed Vcr. This
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suggests that the beam is buckling into one of its N modes and that the term contain-

ing V 2 in Eq. (23) is analogous to an equivalent static buckling load when V equals Vcr.
This observation allows the value of N to be determined for use in Eq. (26).

In order to determine the vMue of N which makes the critical fluid speed Vc, a min-
imum, consider the special case when the nondimensional foundation stiffness 7v = 0.

., Now, there is no resisting foundation and from Eqs. (26) and (26a), 3J must equal 1. If
7u is very small but greater than zero, N still equals 1 in Eqs. (26) and (26a). Thus, for
a very flexible foundation, the beam buckles without an intermediate inflection point.
By gradually increasing ")'u, l_r in Eq. (26) will eventually be smaller for N = 2 than
for N=I (refer to Figure 3). At this value of _'u the buckled beam will have an inflec-
tion point at g/2. The limiting value of 3'u at which the transition from N = 1 to )v = 2
occurs is found from the condition that at this limiting value of 3'u Eq. (26) should give
the same value of Vc, independent of whether N = 1 or N = 2. Therefore, a relation-
ship for the number of half-sine waves N in which the beam subdivides at Vc, (dynamic
buckling) is obtained by equating Vc,. for the N th mode to V_, for the (N + 1) mode for
Eq. (26).

This minimizes the critical speed in Eq. (26) for these inflection points and results in
the inequality

N2(N+ 1)2_> (27)

where the nondimensionaJ foundation stiffness is given by
,i

ku

V_ = Eiz(Tr/12)4 (28)
,i

The first value of N which satisfies the inequality (_sT) is the N which is used in
Eq. (26) to determine V_,. Table I illustrates the use of the inequality (27).

TABLE I.

USE OF THE INEQUALITY IN EQ. (27').

Value of Nonndimensional Value of N for

Foundation Stiffness, 7u use in Eq. (26)

0 57y <_4 1
4 < 7_ -"_36 2

36 < 7u -< 144 3
144 <_7u _ 400 4
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Defining u as the wave speed of a sinusoidal flexural wave of length g and/_cr as the
critical speed ratio, where

b

2rr _/ E I_I/-'- T 77_

and
J

/1

Equation (26) is expressed in nondimensional form as

= N2+ + (29)

where a is not zero. A positive value of P in Eq. (29) implies a tensile axial load acting

on the end of the beam as shown in Figure 1. Recall that the value of N to be used in

Eq. (29) is the first value of N which satisfies the inequality (27). That is,

N2( N + 1) 2 -> 7_. (30)

Also note that the critical speed ratio/_c_ is independent of the damping factor _Nv.

Equation (29) and the inequality (30) are illustrated in Figure 2 for P_ == 7_ = 0 and
in Figure 3 for P; = 0 and a = 2.

Static Buckling--If divergence occurs when the critical speed ratio (/_cr) equals

zero (for finite values of a), then the axial force P acting on the beam must equal the

static buckling load Pc_. Therefore with/_c, = 0, Eq. (29) yields the minimum static
buckling load for the beam shown in Figure 1"

7y
Pc,=-(N2 +--_7)P,v (31)

where P_y = EI_(Tr/_) 2 and the inequality (30) applies. The minus sign in Eq. (31) im-
plies that P_ is compressive and acts in a direction opposite to that shown in Figure 1.

The minimum static buckling load P_ given by Eq. (31) represents static buckling of
the beam for lateral beam displacements which occur in the x - y plane. Reca,ll that it is

assumed that WNv < WNz.

A larger second static buckling load, which can be determined in a manner analo-

gous to Eq. (31), represents static buckling of the beam for lateral displacements which

occur in the x - z plane. Howew_r, the minimum static buckling load Pcr is of interest in

this analysis. Recall that in the case for dynamic instability the minimum critical fluid

speed Vcr is of interest and that WNy < WNz.
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Divergence ofa Nonrotating Cable

Considera uniformfixed-fixedcablenot on an elasticfoundation(i.e.,3'_= 0 and
" 7z = 0)throughwhich an incompressiblefrictionlessfluidisflowingata constantspeed

V. The lateralnaturalfrequenciesfora uniformfixed-fixedcablenoton an elasticfoun-

. dationcanbe determinedfrom Eq. (26a)as

- -i- ' n = 2,3,. ..,lv (32)

where P is a constant tensile force applied to the ends of the cable.

Note that when the uniform beam i8 very flexible (i.e., I_ _ 0 and Iz _ 0) but
subjected to a large axial tensile force P appLed atits ends, the beam can be considered
as a uniform fixed-fixed cable and Eq. (26a) yields Eq. (32) provided 7t = 7_ = 0. The
critical speed of a fluid flowing along a uniforn'_ fixed-fixed cable not on an elastic foun-
dation is obtained by substituting Eq. (32) into Eq. (26) and results in Eq. (33).

Vc, = _I_P (33)vc_m

where a is not zero. Equation (33) can be nondimensionalized with respect to the wave
speed in the cable by dividing VeTby (P/m) 1/2. That is,

./'7-

3c_ = _. (33a)
L,

The critical speed of a fluid flowing along a uniform fixed-fixed cable supported on a
uniform elastic foundation is given by

P 1 1 + (a3b)

The inequality(27)isnot applicable.Forthiscasetheminimum criticalspeed Vetal-
ways occurswhen N = I.The criticalspeedratioofthefluidisexpressedby
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Resonance for a Rotating Beam or Rotating Cable with Unequal Lateral

Stiffness in the y and z Directions

" When the damping factors, _Ny and _Nz, are zero and the terms involving the rotary
inertia and the c[_rage in direction of the angular momentum for an element of beam

. cross-section are neglected, the simplified equations of motion for the N th generalized
beam coordinates, Eqs. (93) and (24), reduce to

f:_(t) + [ w2N_- a(Nr/g)2V2 - w_]/2v(t)- 2W_0N(t) = 0 (34)(1

(1+.)
where

_ _ N 4 + +
wNv- rn _ 7v

kv

. 7/,' =-: EC(_.//)4

b

kz

==

Here WNy and WNz are the undamped natural bending frequencies associated with lat-
eral motion of the beam due to bending vibration in the y and z directions, respectively,

when the beam is not spinning (i.e., w_ = 0) and the fluid mass per unit length, mi,
is zero. Pey and Pe_ are the magnitudes of the Euler buckling loads in the y and :: di-

rections, respectively, k v and ks are the foundation stiffnesses per unit length in the y

and z directions, respectively. I_ and Iz are tile centroidal area moments of inertia of the
beam cross-section about the y and z axes, respectively.

• fN(t) and qN(t) are expressed by

fN(t) = ANe _++_ (36)lt

qN(t) = BNe "_Nt (37)
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Substituting Eqs, (36) and (37)into Eqs. (34) and (35) and setting the det, ern_ina, nt

of the coefficients equal to zero yields the characteristic equation for the spinnhlg bcaln
(i.e.,,,_# o).

Rearranging Eq. (38) results in

- + -- _..rt,z)(_- _.7/- o (ao)

where

- (4o)
Ny 1 +a

and

Nz (4-1)l+a

The four roots to the characteristic Eq. (39) are given by
st

1AN = i CN -- DN or 1,_2V=i(1_ N )

} 1/2 flapparent 1/22_ N =:- --i CN -- DN or 2,_N = --i(1._N )

(3na)

{ }1/2aAN i CN -4- DN or 3_ N i( pappa,'e.nt)a/2= = 2 tN ,

}1/24AN = -'i CN + DN or 4_N -- --i(2,,_Nc_apparent)l/2

where

CN = Ny " 4" w z2

DN =_ [(_VV- _2 )2Nz 2,w2z( 2_lNy )]1/22 + +a_ (:_,.)
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and N = 1,2,3,... ,r. Here _Nv and _lNz are the natural bending frequencies associated

with lateral motion of the beam in the y and z directions, respectively, when the fluid is

flowiny, along tile beam (or pipe) with a constant soeed V(V < Vcr) and the beam is not
" spinning (i.e., w_ = 0).

Solving Eq. (39) for AN results in the apparent Lending natural frequencies associ-

. ated with the free undamped lateral vibration for the spinning beam. These apparent

frequencies are expressed by [refer to Eqs. (39a), (39b), and (39c)]

1"'2v = 2 + - 2 +2 w_(fl2Nv+_Z2Nz) (42)

napparent

where N = 1,2, 3,..., r. Note that for each of the N bending modes associated with un-

damped free lateral vibration for the spinning beam, the amplitudes of vibration in the

rotating body fixed z - yand z - z planes consist of an amplitude modulated sinusoidal

vibration where the amplitude is sinusoidally rnodulated by a combination of frequen-
cies composed of w_, f_Nv and ,QNz. Consequently, the free bending vibration of the N th

mode for the spinning beam appears to be composed of two apparent bending frequen-
• . apparent apparent ,

cms (1_ y and 2_ N ) and neither of these apparent frequencies corresponds to

the N th natural bending frequency for the nonspinnin E beam.

• Also, observe that the 2N apparent frequencies consist of a difference and a sum of

"two frequencies" [refer to Eqs. (42) and (43)] and that these "two frequencies" are not

as simple as those given by Eqs. (46) and (47). That is, the "two frequencies" given by

Eqs. (42) and (43) result from a combination of the natural frequencies for the beam
[i.e., f}gv and fZNz; refer to Eqs. (40) and (41)] and the spin frequency w, of the beam.

For each mode of vibration, resonance occurs at two spin frequencies or critical spin
speeds. That is,

Nw_ cr 1 = f/Nv (44)

or

_
gwzcr j = (44a)l+a

• and
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NW_c.r2 -- Iw2Nz - c_(N_r/_)2V2] 1/:_ (45a)l+a

(-)apparent iSwhere N = 1,2,3,... ,r. Equations (44) and (45) result from Eq. (42)when 1,_/v
zero.

In general, it is not expected that the critical spin spee&. (Nw_cri,i = 1,2) will equal

, the beam natural bending frequencies associated with zero angular speed; that is Eqs.

(44) and (45). For example, consider a cantilevered beam with a large disk attached to

its free end. When the beam is spinning about its undeformed longitudinal axis, the gy-

Jscopic effects of the disk (and to a much lesser extent the beam cross-sections) are ex-

pected, for the most part, to stiffen the beam resulting in critical speeds (Nw_cri) which

are, in general, higher than the natural frequencies (tiNy and gt/vz) for the cantilevered
beam.

Returning to Eqs. (42) and (43), note that when 12gv = fiN, = fin (or wNv =

• aCNz -- WN; e.g., a beam with circular cross-section resting on a uniform and equal elastic
foundado:_), Eqs. (42)and (43)reduce to Eqs. (46) and (47), respectively.

1_ N

a - ftN + (47)2 N

with N = 1,2,3,...,r, where aN is given by either Eq. (40) or (41) and WNv or wNz is
given by either Eq. (34a) or (35a). Also, when _o_ = 0, the apparent frequencies equal

the natural frequency, WN; the amplitude of vibration is constant, and only one natural

frequency is associated with each mode of vibration.

Consider Eqs. (46) and (47). When the spin speed of the beam, w_, is zero, the ap-

parent frequencies are identical for la.terM vibration of the N th mode in the y and z di-
__ f3apparentf)apparent oapparent _g)' As w, is gradually increased, ]'_Nrections (i.e., a""N = 2"_N

_apparent
decreases by w_ and 2_ N increases by w_. When w_ eventually becomes equal to

oapparent -- 0) resonance occurs and the amplitudes of vibration of the N thf_N (i.e., 1._ g

mode increase linearly with time and the resonant frequency of vibration for the N th
f3apparent f) apparent

mode becomes equal to 2f/g. That is, 1.. N = 0 and 2_ N -'-: 2f/N at resonance.
Note that in this case NW,cr = fin where N = 1,2,3,... ,r.

Now consider Eqs. (42) and (43). When the spin speed of the beam, _0,, is zero,

the apparent frequencies for lateral vibration of the N th mode in the y and z directions

are f/Ny and fiNz, respectively. As w_ is gradually increased and approaches g/Ny, res-

onance occurs and the resonant frequency of vibration for the N ih mode, in the y and

z directions, equals V/afl_vy + fl_z. As w_ is increased further and approaches f/Nz, a

second resonance occurs for the N th mode and the resonant frequency of vibration for

the N *h mode in the y and z directions, associated with the second resonance, equals

V/fi_vv + 3f/_v _ [refer to Eqs. (63) and (64)]. (Note that in the second paragraph of the
Results section, it is assumed that WN_ < WNz and that thi,_ is an arbitrary choice.)
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Case 1: Fluid Mass is Zero--When the fluid mass per unit length, mf, is zero
(i.e., a = 0), resonance occurs when the angular spin speed of the beam (or tube), wz,

equals any of the 2N natural bending frequencies, w/vv and wNz. That is, re:'onance oc-
" curs when

• Nw_ cr 1 = WNv (48)

aim

nwzc, 2 = W/Vz (49)

and N = 1,2, 3,... ,r.

Case 2" Fluid Speed is Zero- -_' hen the fluid speed V along the tube equals zero
but the tube or pipe is filled with a fluid of mass mf po_ unit length (i.e., a # 0), reso-
nance occurs when

_Vn_ (50)
NW:ecr l : V _ + o_

and

(51)
NWzcr 2 -- V _ + o_

• andN= 1,2,3,...,r.

Case a: Fluid Speed is Less Than the Critical Fluid Speed--When the fluid

, speed V is less than the critical fluid speed t_r (i.e., flayv > 0 in Eq. (40); recall the as-
sumption that wWr < wNz), resonance occurs when

w2 _ o_(grr/i)2y 2
(52)Nw_. cr l -- 1 + a

and

-lv_c,2 = 1 + c_ (53)

and N = 1,2, 3,...,r. In this c_se, if the fluid speed V is high enough, resonance can

occur at very low values of angular speed, wz.

Case 4: Fluid Speed Equals the Critical Fluid Speed-_When the fluid speed

V equals the critical fluid speed Vcr (i.e., glgy = 0), resonance occurs. That is, when
" V = Vc,,, where

" V_- N wNy (54)
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and the inequality (27) applies, resonance occurs when

N_ =0 (55) .
and

Nwzcr 2 = _Nz (56)

where

2 2

_.,v_= V- 1-5YV--_ (_7)

and N = 1,2,3,...,r. When the beam bending natural frequencies (or the tube lateral

natural frequencies) are identical in the y and z directions (i.e., WNv wgz), resonance
occurs for any spin speed, wz, greater than zero.

Case 5: Fluid Speed Exceeds the Critical Fluid Speed--When the fluid speed

V along the tube exceeds the critical fluid speed Vcr (i.e., _v_ is negative), dynamic in-
stabikity occurs. That is, when V > Vcr, where

v_ = _--;_ (58)
i

and the inequality (27) applies, resonance occurs for any spin speed w, greater than
zero. However, if the spin speed wz is zero, a dynamic instability occurs which is anal-

ogous to static buckling (divergence) when V = Vcr. Consequently, for this case there

are no oscillatory lateral motions associated with the dynamic instability and the crit-

ical speed for the fluid is independent of the viscous damping factor for the beam and
foundation.

In Eqs. (48) through (58), WNv and Wgz for the beam shown in Figure ] are given by

_ ___ N 4 + N 2 P
m _+Ty

Pev = EI, (59)

kv
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= N 4 _,_N _ P

/ .,,. k 2

k,

:

Recalltheassumptionthat_N_ < _:N,.Therefore,forthecable,itisassumedthat
k_ < k_.For a uniformfixed-fixedcable,_'z:uand _^,,aregivenby

,-r_ /P! N_ P(rr/g)2kv" _', = ._" 7 _ [l,} -- l + '( 6 1 )?7l

and

,r pr k_ ]

"'" =:"-i\:- L .- , (62)m N 2p (rr.=,,g) 2.1

and iX'= 1.2,a ..... ,r.

. In Eqs. (61) and (62) P is a constant axial tensile force apphed to the ends of the
cable and m is the cable ma.,,s per unit length. Use of Eqs. (61) and (62) in Eqs. (48)
through (57) wili give the critical spirt speeds, ._'x, c,-t, which result in resonance for a

• rotating, uniform, fixed-fixed cable supported on an elastic foundation and conveying an
incompressibie, frictionless fluid moving at a constant speed I'. For a cable the critical
fluid speed occurs when N = ! 7refer to Eq. (aab)! and the inequality (27) is not appli-
cable.

Frequency of Lateral Vibration at Resonance_For each mode of undamped
later_ vibration, resonance can occur a_ two critical spin speeds provided the fluid speed
is less than or equal to the minimum crit,cal fluid speed I_,. The amplitude of lateral
vibration increases linearly with respect to time and the frequency of lateral vibration
for the .y:h mode at resonance is determined from equations (63) or (64)" that is, Case A
or Case B. Note that the two apparen', resonant frequencies for the :Vth mode of lateral
vibration consist of a certain combination of the two critical spin speeds associated with

• 1_ ! •resonance for the V_' mode of vlora,_ion (Refer to Cases 1 through 3 for the critical
speeds of in_.erest.)

Ca_.e A' Spin Speed Equal to Flr'_t Critical Speed for ,\,rh 3fode.

. _'lar'm:ent.','-'_,¢," = fl.'v_, (i.e., :. 5' = 0)

Frequency of ,a,_''era] vibra:ion at resonaqce:

= 3_.x. o: .V- 1 "' 3 (63)
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or

_ . (63a) "

Case B: Spin Speed Equal to Second Critical Speed for N th ._lo,4e.

c;apparent -- O)lVwzc,.2 = f_lvz (i.e., 1., N -

Frequency of lateral vibration at resonance,

2""NO"P_'_"t V/=f_v_ + 3_2_vz, N = 1,2,3,... (64)

or

oapparent V/2_tN = Nw2zcrl + 3(NW_cr2 ) (64a)

F/N_ and f/_T_ are given by Eqs. (40) and (41). For Case A or B, the 2N critical spin

speeds of interest, Na)zcri(i --- 1,2), are given in Cases 1 through 3. Note that wN_ and
,VN_ are determined by Eqs. (59) and (60)for a beam and by Eqs. (61) and (62) for a
cable.

When f_Nu = f_Nz -- f'lN (or WNu = WNz = WN; e.g., a beam with a circular

cross-section resting on a uniform and equal elastic foundation), the apparent frequency
of lateral vibration at resonance for Cases A and B is equal to 2 fiN. That is,

c)ar'Pa_ent "- 2tiN (65)2, _2V

or

2 _ot(NTr/_)2V2
N (66)2"'N =2 l+a

where

N4+N2 P
m P,

k

and N = 1.2,3,...,r.

Equations (66) a_d (67) can be simplified for application to a cable.
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Comparison Between Experimental Measureraents and Predicted Values

To illustrate the use of Eqs. (46) and (47), consider the following brief description

" of a field experiment and some associated measured results. For additional information,

refer to [2].

. Figures 4 and 5 illustrate an 8-inch-diameter test projectile and the usual gun firing

environments. Figure 6 is an enlarged view of the forward beam within the test projec-

tile. The cylindrical disk on the end of the beam is used to tune the beam to a specified

natural frequency associated with the first mode of vibration due to bending.

As the gun-fired test projectile travels along the rifled.gun tube toward the muzzle,
the beam an'.l disk are subjected to an axial acceleration U, an angular acceleration Hz,

and an angular velocity wr, which results in a nearly quasi-static response of the beam.

Almost immediately upon barrel exit the character of beam response changes sud-

denly from quasi-static to dynamic (refer to Figure 7). Note that the beam vibration
shown in Figure 7 occurs in the body fixed z - y plane. Due to the Coriolis effect an

analogous vibration also occurs in tj" body fixed z - z plane. The vibration which be-

gills at barrel exit is primarily caused by the sudden reduction (in about 0.2 mi_sec-

onds) of pressure acting en the projectile base. When this occurs, the rigid body axial

inertia loads acting on the beam and disk suddenly decrease to zero (drag is neglected)

and the bending moment in the beam at the strain gage location changes almost instan-
taneously relative to the fundamental period for lateral oscillation. Consequently, for the

forward beam, the sudden increase in the bending moment at the location of the strain

• gage.. (358.5 ° and 1 inch from its fixed end) results in additional compressive strain in the
beam and its subsequent dynamic response.

The wave shape subsequent to barrel exit is composed of two apparent bending fre-

quencies, each associated with the first mode for lateral vibration. Figure 8 shows the

measured and predicted values for these frequencies. The first natural bending frequency

for the beam, when it is not spinning, is 393 Hz (refer to Appendix G in [2]) and the
spin frequency of the projectile is 183 Hz. Therefore, the two calculated apparent bend.-

ing frequencies for the first mode are 210 Hz and 576 Hz. The measured frequencies are

213 Hz and 575 Hz. The agreement between the measured and calculated frequencies,

using Eqs. (46) and (47), is quite good.

In applying Eqs. (46) and (47) to the beam shown ia Figure 6, note that there is no

fluid present (i.e., a = 0) and that l'_hTv - _Nz ----a)Ny -==WNz -----CON where N=I.

When there is no axial load acting on the beam (P - 0) and the foundation stiff-

hess is zero (7 - 0), the natural bending frequencies for the beam shown in Figure 6 are
given by

', i= 1,2,...,N (68)

and/3i is determined from
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Z [ 2Z4( 2 b2 }] + b2_2_ 4 + -_3( a2 +b2)-_-f- _ -4-. )-(1 -_- ao_2) 2] sin_cosh_ .

+ _-a_3(a2+b_)+"_[(1-ac_2)2- ( + )] cos_sinh_=0 (69)

where

b2 = JD
MD_ 2

(7o)
MD
m_

k_

EI

The following definitions apply for the terms in Eq. (70). .

e is the distance from the end of the beam to the mass center of a rigid disk attached
to the free end of a beam.

JD is the mass moment ef inertia of a rigid disk about the y or z axis originating at
the mass center of a disk.

MD is the mass of a rigid disk.

k is the bending spring constant for a spring located at the "fixed" end (i.e., at
z = 0) of a beam.

The symbols used in Eqs. (68) and (69) are also defined in [2].

Equation (69) represents the characteristic equation for the Euler beam shown in
Figure 6 when the beam is not spinning (i.e., _v_ = 0). For a specified set of parameters
(i.e., a,b,a, and S), Eq. (69) will yield N roots tSi and, consequently, N natural bending
frequencies for the beam.

Laboratory experiments on test beams indicate Eq. (69) accurately prc'ticts the nat-
ural frequencies for lateral vibration. Two beams were tested and the results are summa-
rized in Tables II and III.

If the modulus of elasticity, E, is 28 xl06 lb/in. 2 rather than 30 x 106 lh/in. 2, the
calculated natural frequencies are reduced by 3.39 %. Consequently_ some of the differ-
ences listed in the fourth column in Tables II and III could be due to material property
variations.

Equation (69) is applicable for other boundary conditions: for example, a cantilever
beam without a disk attaciaed to its free end. For this case
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. EI

and Eq. (69) reduces to

+co Z o hZ= 0.

TAB LE II.
RESULTS OF LABORATORY TESTS ON FIRST BEAM.

Beam parameters' l = 4.0 in., D = 0.40 in., 2e = 1.0 in., DD = 1.20 in.,
E = 30 × 106 lb/in. 2.

Nondimensionalparameters: a = e/£ = 0.125, b2 = JD/M19i 2 = 0.010833,
a = MD/rn_ = 2.25, S = 2.2727 × 103,k = 21.42 × 106 in.-lb/rad.

Mode Measured Natural Calculated Natural Percent

No. Frecluency (Hz) Frequency (Hz) Difference
• 1 183.3 186.7 1.85

2 1914. 2005.4 4.78

TABLE III.
RESULTS OF LABORATORY 'rESTS ON SECOND BEAM.

Beam Parameters: t = 4.0 in., D = 0.40 in., 2e = 0.2 in., DD = 1.20 in.,
= 30 × 108 lh/in. 2.E

b2 JD/MD_. 2 0.005833,Noi!dimensional parameters: a = e/£ = 0.025, = =
a = MD/m_ = 0.45, S = 2.2727 x 103,k = 21.42 x 100 in.-lb/rad.

Mode Measured Natural Calculated Natural Percent

No. Frequency (Hz) Fr_ (Hz) Difference
1 393. 408.7 3.99
2 2925. 308"7.5 5.55
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Figure 4. Eight-inch-diameter test projectile.
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Figure 5a. Rigid body axial acceleration vs. time. Barrel exit time occurs at approxi-

mately 17.5 milliseconds. Maximum axial acceleration can approach 12,000 g's.
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Figure 5b. Rigidbody angular accelerationvs. time. Maximum angularaccelerationcan
approach 182,000rads/sec2.
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Figure 5c. t_iL'iid body angular velocity vs. time. As the gun-fired test projectile travels

" aJong the ri::]':"i gun tube toward the muzzle, the beam and disk are subjected to an axiM

acceleration U, an angular acceleration ubz, and an angular velocity ,;,, which results

. in a nearly quasi-static response of the beam. Maximum angular velocity can approach

1,]80 rads/sec (11,256 rpm).
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Figure 6. Forward beam (refer to Figure 4), illustrating the undeformed and deformed

positions in thebody-fixed z - y plane. Note that for the forward beam a= = -U,
8 = -w=, and _ = -_b,. P and Fr schematically represent the resultant, axial and ra-
dial inertia forces acting at the center of mass of the disk.
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Figure 7. Measured strain-time history for a uniaxial strain gage located on the forward

beam at 358.5 ° and1 inch from its fixed end. The test (GE021B) utilized essentially a

new 8-inch-diameter tube (90% remaining life; tube number 34). :?he dots and heavy
solid line represent predicted quasi-static strain values. The coupled lateral vibration

subsequent to barrel exit results from the Coriolis effect. Note that the projectile exits

the gun tube at approximately ]7.5 × 10 -3 sec and that the response of the beam prior

to this time is essentially quasi-static.
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Figure 8. Measured and predicted apparent bending frequencies associated with the first

mode for lateral beam vibration, As the spin speed w= gradually approaches the first.

Oapparen¢ approaches zerobending natural frequency wl, the first apparent frequency 1_-1
C) apparen_

and the second apparent frequency 2_.1 , approaches 2 wi. Large-amplitude vibra-
tions for the beam can occur when the spin speed w= approaches wl or one of the other

lower-mode bending natural frequencies. The ratio of total beam mass to projectile mass

is about 2.3 × 10 -3 . Consequently, as wz approaches wl, the flight dynamics of the pro-
jectile during free flight is not significantly affected by the beam vibration.
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CONCLUSIONS

Nonrotating Beam or Cable

" When the beam is not rotating (i.e., w_ = 0), dynamic buckling (divergence) occurs
for the system shown in Figure 1 when the fluid speed equals or exceeds the critical fluid

speed given by Eq. (29) and the inequality (30). For this case there are no oscillatory
motions associated with the dynamic instability and the critical speed ratio for the fluid

is independent of the damping factor. The critical speed ratio _cr (or the i mdimen-

sionaJ fluid speed at which instability of the beam occurs) is increased by

• Decreasing a, the nondimensionaJ fluid mass,

• Increasing P;, the nondimensional axial tensile force acting on the beam,

• Increasing 7v, the nondimensionaJ foundationstiffness.

Physically, 3ct is increased by increasing the system stiffness and is independent of the

damping factor _/vv.

A beam with boundary conditions such as fixed-pinned or fixed-fixed is more stiff

than when simply supported. Hence, the results presented by Eq. (29) and the inequal-

ity (30) should represent a lower bound for the fluid critical speed when compared to a

beam having fixed-pinned or fixed-fixed boundary conditions.

• Equation (33c) gives the critical speed ratio for an incompressible, frictionless fluid
flowing through a uniform fixed-fixed cable supported on a uniform elastic foundation.

If the coupled Eqs. (21)and (22) are utilized to numerically determine Zcr (i.e., Vcr)

- when w_ equaJs zero, the inequality (30) suggests that the minimum number of terms N

(or coupled equations) required for accurate numerical results (e.g., numerical integra-

tion of the equations of motion) is given by the first value of N which satisfies the in-

equality N2(N + 1)2 _ ,_. Increasing N above this value may not result in any apprecia-

ble decrease in the calculated value pf _cr. However, decreasing N below this value may

result in calculated values of Ecr which have not converged and are significantly larger
than the correct value of _cr,
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Rotating Beam or Cable

For each mode N of undamped lateral vibration, resonance can occur at two critica,1
II

spin speeds for the beam provided the fluid speed V is less than or equal to the criti-
cal fluid speed Vc_. If the fluid speed is less than the critical fluid speed, but su[Iiciently
high t resonance can occur at very low values of spin speed. If the fluid speed exc,eeds
the critical fluid speed, resonance occurs for any spin speed greater than zero. (Refer tc,
Cases 1 through 4.)

During resonant vibration the two appzrent frequencies for each mode of undamped
lateral vibration consist of a certain combination of the two critical spin speeds asso-
ciated with resonance for the N *h mode. Refer to gqs. (63a) and (64a) and to C,ases 1
through 3 for the two critical spin speeds of interest for each mode.

The accuracy of Eqs. (44a) and (45a) and of Eqs. (63a) and (64a) can be exa,mined
by numerically integrating the coupled equations of motion [i.e., (21) and (22)] tc) deter-
mine the resonant lateral beam response. This can be done by specifying the parameters

that appear in Eqs. (21)and (22); e.g., _ (V < V_), I'_*, P;, _,_, _,_, a, wNv, _oN_,etc.,
and w_. The specified value for the spin speed w_ is initially chosen to correspond 1,<i)a
critical spin speed associated with a particular mode of lateral resonant vibr_,tion. The
initial value for a critical spin speed can be estimated from Eq. (44a) or (45a). lt is ex-
pected that these equations will yield good estimates of the 2N beam critical spin speeds
for the lower modes.

During undamped free lateral vibration, which is not associated with resona,nce for
the spinning beam, the amplitudes of vibration in the rotating bod), fixed x ....iq and x .....z
planes (refer to Figure 1) consist of an amplitude modulated sinusoidal vibration where
the amplitude is sinusoidally modulated by a combination of frequeacies comported of *t

w_,,glNy [refer to Eqs. (40) and (34a)], and f_Nz [refer to Eqs. (41.) and (35a)]. Conse-
quently, the undamped free bending vibration of the N th mode for the spinning beam
appears to be composed of two apparent frequencies and neither of these tw,c) a,ppa,rent
frequencies corresponds to the N th natural bending frequencies, f/N_ and f/Nz, for the
nonspinning beam.

Discussion

Recall that the coupled Eqs. (21) and (22) (note that the equations t_re coupled
even when w_ = 0) for the beam generalized coordinates result from using the C,alerkin
method to represent the motion of the beam as a 2N degree-of-freedom system, Noi,c
that these linea.r, second order, ordinary differential equations have constant coet-[icie_ts.
One of the reasons for this is that the acceleration of the :fluid along the x, axis of th(,
beam is zero. When this is not the case, the velocity of the fluid along the x axis is a
function of time and the analytical solution for the 2N set of coupled equations ,it,h
time dependent coefficients is difficult, even when the acceleration of the fluid al(,_tg t,l_c
x ay,is is constant.

42



When the coefficients in these equations are periodic functions of time, peculiar dy-
namic stability problems can arise. For example, if the acceleration of the fluid along the
beam axis is zero but the density variation of the fluid is periodic with respect to time

• with a period T, the 2N coupled Eqs, (21) and (22) can be expressed by 4

, + (72)

where the mass, damping, and stiffness matrices are periodic with respect to time, each
with a period T. That is,

i_(t +T)= _i(t)
C__(t+ T) = _C(t) (73)

K(t +T)= _K(t).

For this case Eq. (72)is similar to a set of Hill's equations or Mathieu-Hill's equations.
Consequently, multiple regions of unstable dynamic response will occur rather than a
single region as indicated by Eqs. (29) or (33b). Qualitatively, these multiple regions of
stable and unstable dynamic response will have the general appearance as indicated in
Figure 9. With respect to Figure 9, when damping is not present, the smaller unshaded
regions, associated with unstable dynamic response for the tube, will be more extensive
than shown in Figure 9 and will extend to the _ axis.

" For a system of equations analogous to Eqs. (72), the boundaries separating the re-
gions of stable and unstable dynamic response can be quantitatively determined by uti-

, lizing Floquet theory [3] and an iterative computational procedure which _quires, for '
each iteration, numerically integrating the equations of motion for a time equal to the
period T of the coefficient matrix. However, the integration must be done 2N times for
the case where the spin speed w_ is zero and 4N times for the case where the spin speed
_v, is not zero [refer to Eqs. (21) and (22)]. For further information regarding Floquet
theory and its application, refer to [4].

4 Another example occurs when the fluid speed is periodic.
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Figure 9. Qualitative representation for the regions of stable (shaded) and unstable

(unshaded) dynamic response for a nonrotating, hollow tube, with viscous dampirlg, c_r-

rying an incompressible frictionless fluid flowing at a constant speed where the density oi"
the fluid is periodic with respect to time.
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