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l NTRODUCTION 

Fuel cel l  power p lan ts  may be  r e q u i r e d  t o  use coal d e r i v e d  l i q u i d  fue l s  o r  heavy  

petro leum dist i l la tes as fue ls .  T h e  fue l  processor in p resen t  power p lan ts  i s  a 

ca ta ly t ic  steam re fo rmer  wh ich  i s  l imi ted t o  t h e  use o f  fue ls  such as naphtha o r  

na tu ra l  gas. T h e r e  has been ex tens ive  w o r k  b y  Un i ted  Technologies and  o t h e r  

i nves t i ga to rs  t o  develop a l te rna t i ve  reac tors  t o  process su l fu r - con ta in ing  fue ls .  

Among these candidates, t h e  adiabat ic re fo rmer  i s  a t  t h e  most advanced state o f  

development. (I) I n  t h e  adiabat ic  re fo rmer  a i r  i s  added t o  t h e  process fue l  and  

steam t o  p r o v i d e  by combustion t h e  endothermic heat  f o r  re fo rm ing  in t h e  ca ta l ys t  

bed.  T o  obta in  opt imum power p l a n t  e f f i c iency  t h e  amount o f  a i r  added must  b e  

k e p t  t o  a low value.. Ear ly  tes ts  showed, however,  t h a t  a i r  in excess o f  des i red  

values was r e q u i r e d  b o t h  t o  p r e v e n t  accumulation o f  carbon in t h e  ca ta l ys t  b e d  

and  t o  ra ise t h e  ca ta l ys t  t o  a tempera ture  su f f i c i en t  t o  achieve su i tab le  a c t i v i t y  f o r  

re forming.  T h e  development o f  e f f i c i en t  m i x i n g  nozzles f o r  fue l ,  steam, and  a i r ,  

and  o f  advanced cata lys ts  w i t h  p roper t i es  f o r  l im i t ing  carbon accumulat ion and  

promot ing  re fo rm ing  has resu l ted  in t h e  demonstrat ion o f  cons iderab ly  improved 

per formance in a bench scale adiabat ic re former .  F u r t h e r  improvements may b e  

achieved w i t h  mechanist ic unders tand ing  o f  t h e  fue l  convers ion  and carbon fo rm ing  

processes in t h e  reac tor .  

T h e  ob jec t ive  o f  t h e  p resen t  p rog ram i s  t o  establ ish a reac tor  model f o r  t h e  adia- 

ba t ic  re former  wh ich  w i l l  p r e d i c t  process stream compositions and  inc lude  carbon 

format ion processes. Four  subord inate  tasks  were  proposed t o  achieve the objec- 

t i v e .  These were: 

(1) T o  determine on selected ca ta lys ts  r a t e  expressions f o r  ca ta ly t ic  reac- 

t i ons  o c c u r r i n g  in t h e  ent rance sect ion o f  t h e  adiabat ic re former .  

(2) T o  determine w i t h  microbalance exper iments c r i t i ca l  condi t ions f o r  carbon 

format ion o n  selected cata lysts.  
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(3) T o  establ ish a reac tor  model t o  p r e d i c t  process stream compositions in 

t h e  adiabat ic re former  u s i n g  data f rom T a s k  1 f o r  ca ta ly t ic  react ions and  

data f rom t h e  l i t e r a t u r e  f o r  homogeneous gas phase react ions.  

, 
(4) T o  establ ish a model t o  p r e d i c t  carbon format ion by combinat ion o f  t h e  

model f o r  process stream composition f r o m  T a s k  3 and data f o r  carbon 

format ion f rom  ask' 2 .  
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RESULTS 

T a s k  1 

T h e  react ion r a t e  measurements o f  T a s k  1 a r e  close t o  completion. Cata ly t ic  reac- 

t ions  o f  methane and  ethane in t h e  presence o f  h y d r o g e n  su l f i de  were  inves t iga ted 

o n  t h r e e  catalysts; a commercial n icke l  steam re fo rm ing  cata lyst ,  a suppor ted  noble 

metal ca ta lys t  and a metal ox ide  ca ta lys t .  A f low reac tor  was used t o  determine 

d i f f e ren t ia l  ra tes  f o r  steam re forming,  ca ta ly t ic  combustion and t h e  carbon mon- 

ox ide  s h i f t  react ion o n  0.5 gm cata lys t  samples a t  temperatures up t o  1800°F. 

Rates f o r  steam re fo rm ing  in e v e r y  case were  s t r i c t l y  f i r s t  o r d e r  in hyd roca rbon  

pa r t i a l  p ressu re  w i t h  unusua l l y  high act iva t ion  e n e r g y  (e.g.., 69 and  88 k cal/mole, 

respect ive ly  f o r  t h e  re fo rm ing  o f  methane and ethane on t h e  n icke l  ca ta lys t ) .  I n  

t h e  steam re fo rm ing  exper iments c r a c k i n g  react ions and t h e  s h i f t  react ion also 

occu r red .  Material  balances were used o n  p a r t i c u l a r  reac t i ng  species t o  ob ta in  

des i red  ra tes  f o r  t h e  i nd i v idua l  ca ta ly t ic  react ions f o r  each exper iment .  T h e  

convers ions due  t o  homogeneous react ions were  obta ined by calculat ion, us ing  t h e  

resu l t s  f rom exper iments w i t h  an empty  reactor ,  and t h i s  c o n t r i b u t i o n  was removed 

f rom t h e  reac tor  material  balance so t h a t  o n l y  t h e  ca ta ly t ic  ra tes  remained. These 

ca ta ly t ic  ra tes  were  t h e n  i n p u t  t o  a non- l inear  regress ion analys is  t o  evaluate 

i nd i v idua l  react ion r a t e  expressions.  Tab le  1, f o r  example, l i s t s  t h e  react ions 

used t o  descr ibe  t h e  exper iments w i t h  ethane and Tab le  2 summarizes t h e  r a t e  

expressions so obtained inc lud ing  those f o r  t h e  shift. react inn ( 3 ,  3) .  

T o  evaluate t h e  ca ta ly t ic  con t r i bu t i on  t o  t h e  combustion react ions o f  methane and  

ethane, t h e  same f low reac tor  was used. B l a n k  exper iments were  i n i t i a l l y  run w i t h  

t h e  empty reac tor  t o  establ ish t h e  e x t e n t  o f  homogeneous combustion. For  b o t h  

methane and ethane, t h e  homogeneous react ions were simi lar t o  those repor ted  by 

D r y e r  (4) in h i s  t u r b u l e n t  f low reac tor .  For  ethane, dehydrogenat ion  t o  e thy lene 
Q 

was t h e  p r i m a r y  react ion.  For  methane, b o t h  e thy lene and  ethane appeared as 

intermediates.  Typ ica l  data a re  shown in F igures  1 and 2. T h e  e f fec t  of va r ious  

cata lysts o n  t h e  combustion o f  methane i s  summarized in F i g u r e  3 wh ich  shows t h e  

convers ion o f  methane t o  ox ides o f  carbon a t  comparable space ve loc i t y  and i n l e t  
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process steam composition in t h e  empty reac tor  and  in t h e  reac tor  w i t h  n ickel ,  

noble metal and metal ox ide  ca ta lys t .  T h e  n i cke l  cata lyst ,  a l though ac t ive  f o r  

steam re forming,  gave  no s ign i f i can t  accelerat ion o f  t h e  combustion react ion,  when 

o x y g e n  was added, o v e r  t h e  reac tor  b lank .  B y  con t ras t  t h e  metal ox ide  cata lyst ,  

t h o u g h  less ac t ive  f o r  steam re fo rm ing  t h a n  t h e  n icke l  cata lyst ,  h a d  s ign i f i can t  

a c t i v i t y  f o r  combustion. T h e  noble metal ca ta l ys t  was ac t i ve  f o r  steam re fo rm ing  

a n d  ex t remely  ac t ive  f o r  combustion (5, 7) .  

T a s k  2 

Charac ter is t i c  carbon format ion behav ior  in t h e  adiabat ic re fo rmer  has been d i s -  

cussed in a number  o f  r e p o r t s  (I), (6), (7).  A t  t h e  b o u n d a r y  between carbon-  

f r e e  and carbon fo rm ing  condi t ions in t h e  reac tor  t h e  ra tes  f o r  format ion and  

removal must  be  in steady state equ i l ib r ium.  Exper iments a re  in p rog ress  w i t h  a 

microbalance t o  determine condi t ions c r i t i ca l  f o r  carbon accumulat ion o n  t h e  cata- 

l y s t s  used in t h e  adiabat ic re former .  T h e  e f fec t  o f  t h e  ca ta lys ts  on t h e  ra tes  o f  

carbon accumulation and  gasi f icat ion w i l l  b e  determined in atmospheres o f  ethy lene,  

steam, and h y d r o g e n  su l f ide .  

T h e  balance, gas de l i ve ry ,  and  gas analys is  systems have  been ca l ib ra ted a n d  

in i t i a l  tes ts  a r e  in p rog ress .  

T a s k  3 

I n  Task  3, k ine t i c  da ta  obta ined in T a s k  1 a r e  t o  be  used t o  establ ish a model t o  

p r e d i c t  process stream composition in t h e  adiabat ic re former .  Data t o  b e  f i t t e d  

were  obta ined in a p rev ious  t e s t  p rog ram a t  Un i ted  Technologies f u n d e d  b y  t h e  

E lec t r ic  Power Research l n s t i t u t e  (1 ) . Typ ica l  exper imental  tempera tures  and  

convers iun p ru f i l es  in a reac tor  f i l l ed  w i t h  n i cke l  ca ta l ys t  ope ra t i ng  o n  No. 2 fue l  

o i l  a r e  shown in F igu res  4 and  5. A minimum react ion se t  necessary t o  rep resen t  

t h i s  data i s  g i v e n  in Tables 3 and 4. Rates f o r  t h e  ca ta ly t ic  re fo rm ing  o f  methane 

and  ethylene and o f  t h e  s h i f t  react ion were d iscussed in an ea r l i e r  r e p o r t .  T h e  

r a t e  f o r  steam re fo rm ing  No. 2 fue l  o i l  was represented as a composite o f  t h e  ra tes  

f o r  methane and ethylene.  Exper iments had  shown i t s  r a t e  t o  fa l l  in a range  

between those f o r  t h e  t w o  l i g h t e r  reactants (2) .  
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T h e  ra tes  f o r  t h e  homogeneous react ions were obta ined f rom va r ious  l i t e r a t u r e  

sources. T h e  ra tes  f o r  combustion o f  methane and  e thy lene a r e  those o f  D r y e r  

(4 ) .  B y  analogy w i t h  steam re fo rm ing  o f  No. 2 fue l  oil, t h e  r a t e  f o r  combustion o f  

t h e  unreacted fue l  i s  represented as a composite o f  t h e  ra tes  f o r  t h e  l i g h t e r  gases. 

Rates and p r o d u c t  d i s t r i b u t i o n s  in t h e  c r a c k i n g  react ion were  evaluated f r o m  t h e  

l i t e r a t u r e  f o r  steam c rack ing .  T h e  p r o d u c t  C6H6 represents ,  n o t  benzene, but 

merely t h e  res idue o f  t h e  c r a c k i n g  react ion w i t h  lower h y d r o g e n  content .  I t s  

r e a c t i v i t y  in subsequent  react ions was assumed t o  b e  t h a t  o f  methane. 

T h e  react ion set  can b e  reduced t o  7 d i f f e ren t ia l  equations, and 3 material  balances 

desc r ib ing  t h e  var ia t ion  o f  t h e  reac tants  and p r o d u c t s  d i s t r i b u t i o n s  w i t h  b e d  

posi t ion and temperature.  A rou t ine  has been developed wh ich  solves t h e  equa- 

t i ons  fo.r a known tempera ture  p ro f i l e .  T h i s  r o u t i n e  i s  t h e  core  o f  t h e  complete 

solut ion a lgor i thm, and i s  be ing cor re la ted w i t h  t e s t  data, p r i o r  t o  add ing t h e  

tempera ture  and e n e r g y  balance calculat ions. Solut ion o f  t h e  equat ion se t  i s  

accomplished b y  t h e  Cont inuous System Model ing Program I I  I  (CSMP I I  I ) ,  a p r o -  

g ram p r o d u c t  o f  IBM. T h e  program numer ica l ly  in tegra tes  t h e  equat ion se t  us ing,  

f o r  t h i s  appl icat ion, a t ime step techn ique wh ich  var ies  t h e  increment  size until t h e  

var iance i s  w i t h i n  use r  speci f ied tolerances. 

F igures  6 and 7 p r e s e n t  t h e  resu l t s  o f  an i n i t i a l  s imulat ion o f  t h e  t e s t  condi t ions 

represented in F igures  4 and 5. Rate constants were  taken  f rom Tables 3 and 4. 

Comparison w i t h  t e s t  data shows qua l i t a t i ve  and f a i r  quan t i t a t i ve  agreement. 

Thus ,  t h e  disappearance o f  oxygen  and fue l  occu r  a t  close t o  t h e  cnrrer . t  ra te .  

Concentrat ions o f  b o t h  methane and  e thy lene reach a maximum a t  t h e  c o r r e c t  

reac to r  posi t ion and w i t h  approximately c o r r e c t  values.  Un l i ke  t h e  t e s t  data, n o  

maximum in carbon monoxide concentrat ion occu r red .  A p p a r e n t l y  t h e  r a t e  f o r  

ox ida t ion  o f  carbon monoxide, in Tab le  4, was too large.  T h i s  would b e  cons is tent  

w i t h  repor ted  moderat ion of tlit! r-ale o f  t h i s  react ion u n d e r  fuel r i c h  condi t ions 

(8) .  I n i t i a l l y  a l a rge  e r r o r  also ex is ted  in t h e  e x i t  methane concent ra t ion  wh ich  

t h e  model calculated t o  b e  a t  equ i l ib r ium.  When an u p p e r  l im i t  was se t  on  t h i s  

r a t e  t o  b r i n g  t h e  e x i t  methane concentrat ion i n t o  agreement w i t h  t h a t  o f  F i g u r e  4 

t h e  u p p e r  va lue was coinc ident  w i t h  values p red ic ted  f o r  methane f l u x  by d i f f u s i o n  

a t  t h e  ca ta lys t  pe l le t  b o u n d a r y  l aye r .  A p p a r e n t l y  t h e  i n t r i n s i c  methane re fo rm 

r a t e  was too g rea t  and was l imi ted b y  mass t r a n s f e r  e f fec ts .  
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C u r r e n t  e f f o r t s  a r e  d i rec ted  a t  i n t roduc t ion  o f  t h e  mass t r a n s f e r  e f fec ts  and re f ine-  

ment  o f  t h e  i nd i v idua l  component ra tes  t o  obta in  a fit t o  t e s t  resu l t s  o f  t h e  reac tor  

w i t h  t h e  n icke l  ca ta lys t .  Temperature  and e n e r g y  balance calculat ions w i l l  t h e n  b e  

added. App l ica t ion  o f  t h e  model t o  o t h e r  reac tor  condi t ions and tes ts  w i t h  d i f f e r e n t  

ca ta lys t  loadings w i l l  t h e n  b e  possible. 

T a s k  4 

Combination o f  t h e  reac tor  model f o r  t h e  process stream composition and  the,  exper i -  

mental data f o r  carbon format ion w i l l  proceed as T a s k  2 and 3 approach complet ion. 
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TABLE 2 

NICKEL 

-86 900 2.52 x l0 l5  exp ( AT 1 

RATE CONSTANTS FOR REACTIONS OF ETHANE ON 
NICKEL AND NOBLE METAL CATALYSTS 

2.58 x lo1' exp (q) 

-84 700 3.98 x 1015 exp ( iT 1 

N O B U  METAL 

4 -31,644 m 3 3.36 x 10 exp ( 
RT ) kg sec 

6 -30,189) m 3 
1.65 x 10 exp ( RT 

kg sec 

m 3 
kg sec 



TABLE 3 

RF1ACTION SET - NICKEL CATALYST 

CATALYTIC 

O2 + FUEL -- CO + H2 r = O  1 

36 
2 

H20 + FUEL 4 C02 + H2 r = [k4 (1 - + k CY ] CF 
2 3 

H 0 + CH4 - CO + H2 
2 2 

H20 I- C H 4 CC12 + H2 
2 4 

CO + H20 -- C O ,  + H2 - 

8 
r3 

= 1.8 x 10 exp (-70,000/~T) C 
CH4 

r4 = 9.4 x 1013 exp (-88,000/RT) C 
CH4 

17 - C C /K) r = 2.6 x 10 exp (54,830/RT) LCCO CH20 CO, 
5 2 

36 
A l l  ra tes  i n  uni t s  - moleslg. ca t .  sec. 

3 Concentrations - moles/cm . 



TABLE 4 

REACTION SET 

O2 + FUEL , CO + H2 

O2 + CH4 - CO + H2 

= exp (-50, ~ ~ o / R T )  C! 3 
cn 

2 4 O2 

'4 = 
2 x ld3 exp (-24, ~ O O / R T )  cm cn 

*2 O2 

12 r = 8.85 x 10 exp (-55,372/RT) ,cm cn 
5 = O2 

r6 = 4.2 x 1013 exp ( - ~ ~ , o o o / R T )  CCO Co2 

3C 

A l l  ra tes  i n  uni ts  - c a t  sec, concentrations - moles/cm 
3 

m and n = variable as per  references 



TABLE 4 (continued) 
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S. B. Zdonik, E. J. Green, L. P. Hallee,  O i l  and Gas Journa l  

June 26, 96, (1967) 

Williams, G. C., Ho t t e l ,  H. L. and Morgan, A .  C . ,  Proc. 12 th  Symp. ( 1 n t l . )  

on Combustion 1969, p. 913 









PRODUCT DISTRIBUTL,.. IN THE ADIABATIC REF,..,.,,. 
- - - - - - -  

1 
C - --.--- --- ClAL NICKEL C A T A L Y S T  CONFIGURATLIII  10 NOZZLE 

A 

MOLE PERCENT 

DRY GAS OPEN SYSBOQS: BENCH SCALE REACTOR 
02/C = 0.45, PRE-REACTION TEMP 1254°F 

CLOSED SYMBOLS: PILOT SCALE REACTOR 
PLOTTED AT COMPARABLE SCALE VELOCITY 

/ g 

Oz/C = 0.44, PRE-REACTION TEMP 1 3 3  1 O F  

' C2Hs 
CH4 

0 
0 4 8 12 16 

REACTOR LENGTH (2 INCH REACTOR) - INCHES 



TEMPERATURE PROFILE IN THE ADIABATIC REACTOR 
COMMERCIAL NICKEL CATALYST - CONFIGURATION 10 NOZZLE 

TEMP 
O F  

1600 
0 BENCH SCALE REACTOR: 0 2 / C  = 0.45, PRE-REACTION 

TEMPERATURE = 1254°F 
PILOT SCALE REACTOR - PLOTTED A T  COMPARABLE 

SPACE VELOCITY: 02 /C  = 0.44, PRE-REACTION 
TEMPERATURE = 133 1 "F 

REACTOR LENGTH - INCHES 








