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COMPARISON OF SWELLING AND CAYITY MICROSTRUCTURAL DEVELOPMENT FOR TYPE 316 STAINLESS STEEL

IRRADIATED IN EBR-II AND HFIR
P. J. MAZIASZ

Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA

Comparison of swelling and cavity microstructures for one heat of 20% cold-worked (CW) type 316
stainless steel (316) irradiated at 500-650°C in EBR-II (up to 75 dpa) and HFIR (up to 61 dpa)
suggests that woid growth and swelling are suppressed by the higher helium generation found

in HFIR.
version to woids.

Instead of voids, many small bubbles develop in the CW 316 in HFIR and resist con-
However, similar comparison of solution-annealed (SA) 316 irradiated in

EBR-1I and HFIR at 500-550°C leads to an opposite conclusion; void swelling is enhanced by

helium in HFIR.

Many more bubbles nucleate in SA 316 at low fluence in HFIR compared to EBR-II,

but bimodal distributions and rapid coarsening eventually lead to high swelling due to high con-

centrations of matrix and precipitate-associated voids in HFIR.

A key to the swelling resis-

tance of the CW 316 in HFIR appears to be the development of a sufficiently cavity-dominated

sink system in the early stages of evolution.

1. TINTRODUCTION

Helium effects on swelling have long been a
~ concern of the radiation effects and reactor
design communities for fusion. Recent compari-
sons of specimens irradiated in HFIR (high heli-
um generation rate of ~20~70 at. ppm He/dpa) and
EBR-II (low helium generation rate of ~0.5-1.0 at.
ppm He/dpa) have suggested that increased helium
generation can (a) suppress void (bias-driven
cavity) swelling in 20%-cold-worked (CW) type
316 stainless steell»2 (316) but (b) enhance
void swelling in solution annealed!»*3 (SA) 316.
This work presents additional swelling data and
summarizes new microstructural data that confirm
and expand upon swelling differences between
HFIR- and EBR-II-irradiated specimens,

2. EXPERIMENTAL

Irradiation experimental details have been
presented previously.l™* Samples of the DO heat
of 316 were irradiated in EBR-II at 500 to 630°C
to fluences ranging from 8.4 to 36 dpa (5-22 at.
ppm He) in both SA and C¥ conditions, and up to
69 to 75 dpa (~44 at. ppm He) only for the CW

material. Samples of the same steel (bath SA
and CW conditions) were irradiated in HFIR at
325 to 755°C to fluences ranging from 5.3 to
68.5 dpa (180-4140 at. ppm He). These HFIR data
included dpa and irradiation temperature correc-
tions as compared to previously reported
data.l"* The dpa values are corrected for addi-
tional recoils caused by helium transmutation
reactions5 and the irradiation temperatures cor-
rected by +50 to 75°C, as recommended previously.%
Fluxes vary from ~0.4 to 1.25 x 106 dpa/s in
EBR-IT and from G.5 to 1.1 x 10-6 dpa/s in HFIR.

Swelling in samples with very large cavi-
ties was determined with high voltage electron
microscopy (HVEM). For the early, high-fluence
HFIR experiments (prior to 1976), the immersion
density data on entire tensile specimens are con-
sidered unreliable because a large terperature
gradient existed from gage to shoulder across
the specimens. Because irradiation temperatures
were reported for the gage center, transmission
electron microscopy (TEM) disks cut from those
reqgions best represent the low swelling.

*Research sponsored by the Office of Fusion Energy, U.S. Department of Energy, under cont;gg;k

W-7405-eng-25 with the Union Carbide Corporation.
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3, RESULTS

3.1 Swelling— SA 316

The temperature and fluence dependencies of
cavity volume fraction (CVF) data for SA 316
jrradiated in EBR-11 (four samples} and HFIR
{thirteen samples) are shown in Fig. 1. The
HFIR data at 64, 53, and below 17.8 dpa are new.
A prominent feature of the data is the high
swelling at the higher fluences in HFIR for tem-
peratures below 650°C. In Fig. l{c), despite
scatter in the HFIR data, the EBR-II data fell
below the HFIR scatter band, indicating that the
SA 316 may be emerging from the low-swelling
transient regime more slowly in EBR-II. The
higher fluence temperature dependence in HFIR
indicates a swelling peak at about 500 to 550°C
or below. By contrast, high fluence (66 dpa)
EBR-II swelling data on another heat of SA 316
by Xenfield et al.? indicates a peak at about
550 to 625°C.

3.2 Cavity evolution— SA 316

The fluence dependence of cavity con-
centration and size distributions for SA 316
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irradiated in EBR-II and HFIR at 500 to 550°C
are shown in Fig. 2. Matrix cavities were dis-
tinguished as woids (bfas-driven cavities)8s?

or bubbles (stable cavities)8s9 where possible,
on the basis of size, size distribution, and
comparison to grain boundary cavities, as dis-
cussed previously.l No matrix bubbles or woids
were observed in EBR-II at 8.4 dpa but a few
precipitate-associated voids were found. Many
matrix cavities were observed in HF[R at 12 and
17.8 dpa with clearly bimodal size distributions
Moreaver, these cavities coarsened with
increased fluence. These observations suggest
early conversion of matrix bubbles to wids in
HFIR.8:9 After 47 dpa in HFIR many large matrix
voids were found, together with even larger
precipitate-associated voids, which were not
evident at low fluences. By comparison, fewer
voids were found in EBR-I[ at 31 dpa, with the
number of both matrix and precipitate voids pro-
gressivaly increasing with fluence [Fig. 2(a)l.
Apparently, the acceleratecd swelling observed in
HFIR [Fig. 1{c)] resulted from the earlier
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) FIGURE 1
Swelling as functions of irradiation temperature (a,b) and functions of fluence (c,d) for SA and CW
(D0 heat) 316 {rradiated in €BR-I[ and HFIR. Data indicated with {*) were reported k)>y Brager ‘and

: @

Garner {ref. 6).
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FIGURE 2

Correlated fluence dependence of cavity (a) concentrations and (b) and (¢) size distributions for

SA 316 irradiated in HFIR and EBR-II at 500-550°C.

development of more, and eventually larger, voids
compared to EBR-II.

A perplexing observation was the appearance
of dense populations of very fine matrix bubbles
(~2 nm in diameter) in SA 316 irradiated in both
reactors to higher fluences, particularly when
such bubbles were definitely not observed at
lower fluences. There wera about 102 times more
bubbles than voids in both reactors and about 30
to 40 times more bubbles in HFIR than in EBR-II.

3.3 Swelling — 20%-CW 316

The temperature and fluence dependencies of
CVF data are shown in Fig. 1{b,d) for EBR-II
(six samples) and HFIR {fourteen samples) irra-
diations of CW 316. High-fluence EBR-II data
and the HFIR datum at 64 dpa are also new. In
general, below about 30 to 36 dpa, CVFs were low
(<1%) and independent of temperature in either
reactor at 425 to 650°C [Fig. 1{b)]. Above 30
to 36 dpa, CVFs remain fairly temperature
independent and continue to develop at a low

[Fig. 1a)l.

rate of ~0.03%/dpa in HFIR to ~64 dpa [Fig. 1(d)].
By contrast, CVFs were quite high in the same
temperature range in EBR-II after fluences of
69 to 75 dpa, developing at rates of 0.3 to
0.5%/dpa or more. The high-fluence EBR-I1 data
also indicates greater swelling for 510°C than
at 620°C. In HFIR at high fluences, swelling
increases dramatically above 650°C due to recrys-
tallization of the originally CW material
[Fig. 1(b)] and approaches that found in SA 316
Figure 3 shows that cavity
swelling was similar in SA and CW 316 after
68.5 dpa at 730 to 755°C in HFIR. There are no
comparable EBR-II data at these temperatures.
Recrystallization phenomena under irradiation
are treated in more detail in Section 3.5.

3.4 Cavity evolution — 20%-CY 316

The fluence dependencies of cavity concen-
trations and size distributions for C4 3156 irra-
diated in EBR-II and HFIR af 500 to 550°C and
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A comparison of cavity micro- Correlation of cavity concentrations (a,d) and size distributions
structure in {a) SA 316 and (b,c,e,f) for CW 316 as functions of fluence for irradiaticns in
(b) CW 316 after irradiation in EBR-II and HFIR at 500 to 550°C {a-c) and 600 to 640°C (e~f).

HFIR at 730 to 755°C to 68.5 dpa.

irradiated in EBR-II and HFIR at 500 to 550°C 61 dpa [Fig. 4(b) and (e}]. By contrast, fewer
and at 600 to 640°C are shown in Fig. 4. No bubbles were observed after 36 dpa in EBR-1I and

bubbles or voids were observed in EBR-II after these almost completely converted to (or were
8.4 dpa at 500 to 625°C. Thus, Fig. 4(a) and absorbed by} large matrix voids, and even larger

{d) indicate bubble nucleation occurred earlier precipitate-associated voids, as fluence
in HFIR than in EBR-II. A striking feature was increased. These observations are consistent

that these bubbles remained quite small in HFIR with the suppressed swelling in HFIR compared to
and did not convert to large voids even after EBR-1I [Fig. 1(b,d}].
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The strongest temperature dependencies were
observed for void nucleation and growth in EBR-
IT and bubble nucleation in HFIR [cf Fig. 4(a)
and (d)]. In HFIR, bubble nucleation decreased
and became more sluggish as temperature
increased. In EBR-II, woid nucleation also
decreased with increased irradiation temperature
LFig. 4(a) and (d)]. Void sizes separated more
distinctly into bimodal! and trimodal distribu-
tion of matrix and precipitate-associated wids
as temperature and fluences in EBR-II increased
LFig. 4(c) and (f)], with precipitate wid sizes
increasing tremendously with temperature.

3.5 Recrystallization of CW 316 under

irradiation

Small amounts of recrystallization are
found in the DO heat of CW 316 after long-time
thermal aging at 650°C (ref. 10). At ~660 to
695°C in HFIR, the CW 316 dislocation structure
recovered into polygonalized cell boundaries
after 17.8 dpa and a fine grained, completely
crystallized structure was found after 67 dpa
(ref. 3) [Fig. 5(a,b)]. Compared to thermal
aging, recrystallization seemed enhanced under
HFIR irradiation, consistent with the similar
swelling found between SA and CW 316 in HFIR at
these and higher temperatures (see Fig. 3)}. One
isolated, large, recrystallized grain was found
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after EBR-II irradiation at 620°C to 75 dpa.
This seems no more than expected thermally.?
However, Fig. 5(c) shows that the irradiation-
produced precipitates and woid structures dis-
solved at the recrystallization interface in
EBR-II in contrast to bubble and precipitate
survival during recrystallization in HFIR. This
cavity behavior difference during recrystalliza-
tion supports the distinction made between
bubbles in NFIR and voids in EBR-II.’

4, DISCUSSION

The CW 316 HFIR data indicating suppressed
void formation due to very high bubble nucleation
rates confirms the early theoretical predictions
made for the effects of helium by Odette and
coworkers821l in 1974 to 1975, This work indi-
cated that if sufficient bubbles nucleate early
in the irradiation in order for these to become
the dominant sinks in the system, then the net
bias would be reduced. * Recent theoretical
modeling by Glasgow et al.12 also points out
that it is possible for bubbles not to develop
into voids if the net bias is very low.

The SA 316 HFIR data represents the oppo-
site result for increased helium, in that
increased bubble nucleation Jeads to enhanced
void formation and swelling. The possibility
of helijum-enhanced (accelerated) void swelling

FIGURE 5
A comparison of recrystallization development in CW 316 irradiated in
conditions indicated.

HFIR (a,b) and EBR-II {c} at



and the underlying mechanisms are elaborated by
recent modeling work of Stoller and Odette.l3
They suggested that if matrix bubbles were not
the dominant sinks in the system, then more heli-
um would result in more {and possibly earlier)
matrix and precipitate-associated void formation
and higher swelling. Despite substantial early
bubble nucleation, subsequent cavity ewsiution
suggests that these bubbles are not the dominant
sinks in the SA 316 that they appear to be in
the CW 316 in HFIR. This may indicate that some
other factor, such as dislocation or precipita-
tion evolution, governs whether bubbles remain
stable or convert to voids at higher fluences.
The bubble coarsening together with development
of bimodal cavity distributions in the SA 316
between 10 and 20 dpa are probably the keys to
the divergent swelling behaviors found between
SA and CW 316 at higher fluences in HFIR. The
development of larger precipitate-associated
voids in SA 316, despite the earlier development
of mtrix voids (early bimodals) indicates faster
growth rates for the precipitate-associated
voids, consistent with Mansur's theory,l%
Finai]y, the data presented here are reasonably
consistent with rate theory calculations by
Ghoniem and TakatalS of nucleation and growth of
voids in SA 316 in HFIR (particularly with
revised irradiation temperatures).

It is also noted that Brager and Garneré
reach different conclusions treating a portion
(primarily CW 316) of the EBR-IT and HFIR data.
However, it is believed that the additional data
presented here clearly define the swelling and
microstructural differences between AISI 316
irradiated in these reactors.

5. CONCLUSIONS

Comparing SA and CW 316 irradiated in EBR-
IT and HFIR at 400 to £25°C, void swelling
appears enhanced for SA 315, but suppressed for
CH 316 in HFIR. Increased helium generation

~

results in much more bubble nucleation for both
in HFIR; however, bubbles remain stable in the
CW 316 whereas they convert to woids in SA 316.

‘The key to the swelling resistance of CW 316 in

HFIR seems to be achievement of a cavity domi-
nated sink system early in the irradiation
history.
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
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mendation, or favoring by the United States Government or any ageacy thercof. The views
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