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l. INTRODUCTION

The RELAP5/MOD2 code was used to predict the thermal-hydraulic behav-
ior of the HFIR core during decay heat removal through boiling natural cir-
culation. The low system pressure (i.e., 22 psia) and low mass flux values
associated with boiling natural circulation are far from conditions for
which RELAPS5 is well exercised. Therefore, some simple hand calculations
are used herein to establish the physics of the results.

The interpretation and validation effort is divided betweea the time
average flow conditions and the time varying flow conditions. The time
average flow conditions are evaluated using a lumped parameter model and
heat balance. The Martinelli-Nelson correlations are used to model the
two-phase pressure drop and void fraction vs flow quality relationship
within the core region.

Systems of parallel channels are susceptable to both density wave
oscillations and pressure drop oscillations. Periodic variations in the
mass flux and exit flow quality of individual core channels are predicted
by RELAP5. These oscillations are consistent with those observed experi-
mentally and are of the density wave type. The impact of the time varying
flow properties on local wall superheat is bounded herein.

The conditions necessary for Ledinegg flow excursions are identi-
fied. These conditions do not fall within the envelope of decay heat lev-
els relevant to HFIR in boiling natural circulation (i.e., 9. < 1 x 109
Btu/h).

2. TIME AVERAGE FLOW CONDITIONS

A lumped parameter model is presented in Figure 1 that captures the
physics of the HFIR boiling natural circulation loop. It is assumed that
the heat input to the core region is rejected in the upper plenum such that
the average loop temperature is constant. Dimensions for each part of the
system model are listed in Table 1.

TABLE 1: HYDRAULIC DATA

D, (FT) L(FT) A(FT2)
Core 0.008 1.9 0.54
Upper Flow Annulus 0.5 4.0 1.2

tOperated by Martin Marietta Energy Systems, Inc. under contract
No. DE~AC05-840R21400 with the U.S. Department of Energy.



The pressure drop in the core 1Is evaluated using the Martinelli-
Nelson, 1948, friction multiplier and void fraction vs flow quality rela-
tionships. The HMartinelli-Nelson correlations were developed from data
taken in horizontal pipes. Thus, they can be expected to overpredict
interphase slip and will underpredict the local void fraction at given mass
and heat flux values. The core inlet and exit losses are negligible.

The downcomer (i.e., target region) is single phase and has a very
complicated flow geometry. Therefore, the pressure drop in the downcomer
is modeled by scaling pressure drop data taken for higher flow condi-
tions. The pressure drop during normal operation is known to be 105 psi
when the volume flux is 750 gal/min. Assuming the pressure drop goes as
the flow velocity squared, the target pressure drop is given generally as,
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The pressure loss in the flow annulus above the core is very small. How-
ever, significant bouyancy head is contributed by this region. The void
fraction in the upper flow annulus is calculated assuming a constant drift
velocity (Lahey and Moody, 1977),
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The void fraction follows from the Zuber-Findlay, 1965, void-quality model
given as,
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where the concentration parameter, C_, is taken as unity.
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The mass flux in the loop can now be written in terms of the core exit flow
quality as,
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The two-phase friction multiplier, ¢L , Is taken from Martinelli-Nelson and
the single phase drag coefficient, Ci , is taken as 0.013 from HFIR flow
data. The core mass flux and exit %flow quality is related to the decay
heat level by,
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where saturated inlet conditions have been assumed.

Figure 2 shows the variation of core mass flux with core decay heat
level as predicted by the Martinelli-Nelson flow model. Figure 3 shows the
variation of the core exit flow quality with decay heat level. The core
exit void fraction is also shown in Figure 3. Notice that the core exit
void fraction is in excess of 80X for core exit flow qualities in excess of
ten percent. The steady state mass flux values predicted by RELAPS are
consistent with those predicted by the Martinelli-Nelson model as evidenced
by the comparison points included in Figure 2.

3. DENSITY WAVE OSCILLATIONS

Density wave oscillations have been observed in a number of boiling
forced and natural circulation experiments (Mishima and Nishihara, 1987,
1985; Mishima et al., 1985; Gambill, 1968; Gurgenci et al., 1983; Lottes et
al., 1958). Of these, the experiments of Mishima and Nishihara and of Gam-
bill involved narrow rectangular channels.

Ishii and Zuber, 1970, developed a simple expression for the region
where density waves can be expected,
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Equation 6 indicates that density waves will exist in the HFIR core when-
ever the exit flow quality exceeds one percent.

Stenning, 1964, found that the period of a density wave, 1, should be
approximately equal to the mass tramsport time. This is the case in both
the experimental data and in the RELAP5 predictions for HFIR. Ir fact,
RELAPS has successfully predicted the period and amplitude of experiment-
ally observed density waves in a previous application (Chen et al.,
1979). A typical density wave oscillation as predicted by RELAPS5 for HFIR
is shown in Figure 4.

The impact of the density wave on the channel thermal behavior can be
assessed by considering the core fuel plate adiabatic heating rate given

by,
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This allows the maximum amplitude of the variarion in the wall superheat
during the flow oscillations to be bounded by,
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Thus, one can assess if the channel walls will rewet after the low
void fraction part of a density wave. The maximum variation in the wall
superheat is given as a function of decay heat level for HFIR in Figure 5,
where the mass transport time has been taken as,
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4, LEDINEGG FLOW EXCURSIONS AND PRESSURE DROP OSCILLATIONS

The criterion for the onset of Ledinegg flow excursions in a system of
parallel channels is given by,
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The mass flux satisfying equation 10 for HFIR is ap%roximately 21.5 1b_/s~
ft2., The corresponding decay heat level is 4 x 10% Btu/h, as taken from
Figure 2. This is well above the level of decay heat that exists during
boiling natural circulation in HFIR.

Pressure drop oscillations result from an interaction of the Ledinegg
flow excursion with a compressitle volume in the flow loop (Maulbetsch and
Griffith, 1966). These oscillations usually have a longer period than the
density waves. Mishima et al., 1985, observed pressure drop oscillations
leading to critical heat flux in their boiling natural and forced circula-
tion experiments.

5. CONCLUSIONS

The time averaged mass flux values predicted by RELAP are consistent
with the predictions of lumped paramefrer system using a Martinelli-Nelson
pressure drop and void fraction vs. flow quality model. The density waves
predicted by RELAP5-MOD2 are in agreement with experimental observation and
do not appreciably impact the average heat transfer situation in the core
when decay heat levels are below 2 x 10® Btu/h. Ledinegg flow excursions
are not a concern for the decay heat levels present during natural circula-
tion.

Boiling natural and forced circulation data are needed where the
entire system is characterized. Existing data are without adejuate system
description to allow any more than a qualitative check of the performance
of the RELAP5 model. This is especially true for single channel experi-
ments where the system stiffness, total liquid inertia, and pump character-
istics play an important role in defining the response of the heated chan-
nel.
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NOMENCLATURE:

SYMBOLS (ENGLISH)

AREA

SINGLE PHASE LIQUID DRAG
COEFFICIENT
CONCENTRATION PARAMETER
HYDRAULIC DIAMETER

GRAVITY

Mass Flux

32.17 FT:LBM

ENTHALPY FOR VAPORIZATION

LENGTH

PRESSURE

ACCELERATION TERM FROM
MARTINELLI-NELSON

POWER

TIME

TEMPERATURE

DRIFT VELOCITY

(GREEK)

a VOID FRACTION

o SURFACE TENSION

2

oL TWO--PHASE FRICTION

fo) MULTIPLIER

p DENSITY

T PERIOD OF OSCILLA~-
TION

SUBSCRIPTS :

A UPPER FLOW ANNULUS

C CORE

E EXIT

G GAS PHASE (VAPOR)

L LIQUID PHASE (FLUID)

T TARGET



