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1. INTRODUCTION

The purpose of this paper is to introduce the reader to the theory associated
with the transverse dynamics of single particles in circular accelerators. Since
the treatment hiere uses the Hamiltonian formulation of dynamica, the discussion
begins with a review of Hamilionian dynamics snd canonical tranaformations.

Next we specialize to the case of a particle in a circular accelerator and
develop the equations of motion from the relativistic Hamiltonian for a particle
in an electromagnetic field. This leads to the linenrization of the motion about
a elosed orbit. Temporarily suppressing the nonlinear terms, vre then give a
atandard treatment of linear equations with periodic coeffictents which leads to
a discussion of betairon oscillations,

The solution of the linearized equation lesds naturally to the action-angle
variables for that problem. These variables form the beais for the study of the
higher order nonlinear terma. Before analyzing these terms we discuss briefly
the sources of nonlinearity and motivate the inclusion of sextupoies in a circulay
accelerator or storage ring for the control of the chromaticity, the momentum
dependence of the betatron frequency or tune,

In the next section a general formulation of canonical perturbation theory
is presented. This leads to some examples of the technique for linear pertur-
bations and for a sextupole perturbation. Perturbation theory breaks down in
the neighborhood of resoranees. However, for an isolated resonance there is
an alternative approach which yields the basic structure in phase space. To
demoenstrate thie we treat a single resonance, calculate the exact invariants and
illustrate the atructure in phase space.

Unfortunately this technique gives an exact answer only for one resonance.
For multiple resonances oite must face the non-integrability of nonlinear equa-
tions in general. This leads to a brief discussion of the Chirikov criterion and
Greene's residue criterion as methods for estimating the onset of chaotic behav-
ior in phase space.




To complete the dincission of nonlinear resonances we go to the case of two
degrees of freedom. Once agein the case of an isolated nonlinear resonance is
studied; the invariants are calculated and methoda for the projective viewing of
the invariant torus are presented. This concludes the more standard part of the
paper.

In the next {ew sections a more in depth trestment of the questions of chaotic
behavior and the breaking of KAM curves is presented. This begins in Section

12 with a discussion of the residue criterion to set the stage for the next two
sections.

In the next scction recent work is presented on the direct calculation of
KAM curves avoiding perturbation theory. This leads to a new criterion for
the break-up of 2 KAM curve which is then ¢compared in some detait with the
residue criterion converted to the langueage of canonical transformations.

In the last section we discuss the concept of renormalization as a technique
for determining the break-up of a KAM curve. This section focuses on the
discussion of an example which is presented in detail. However, this gives quite
general results due to the untversal nature of renormalization and the residue
criterion. This fina' section concludes with a calculation of the critical residue
for the breaking of & KAM curve and a discussion of the structure of the self-
aimtlarily revealed by the renormalization approach.

Many important subjects are only mentioned briclly here and some are not
discussed at ali. Since the focus is on single particle dynamies, all collective
effects are neglected. It is ugual to treat collective effects as a perturbation to
the single particle dynamics.

In addition we neglect the difference between clectrons and protons in this
treatment. Issues relating to damping due to synchrotron radiation, quantum
excitation, efc. are treated elsewhere in these proceedings. However, since the
time scale for damping in an electron storage ring is very long compared to bath
the revolution period and the betatron oscillation periad, the results obtained
here are quite relevant to electrona as well as protons.

The discussion i3 also confined 1o transverse dynamics ignoring longitudinal
dynamics and synchrolron oseitlatsons. Typically the synchrotron [frequency is
quite small compared to the betatron frequency and thus there ic 2 natural
separation here. This not to say, however, that the general results oblained in
many of the sections cannot be applied to synchrotron oscillations. In particular,
the discussion of resonances is quite relevant and leads in this case to synchro-
betalron resonances.

Finally, the discussion of methods for determining the transition of chaatic
behavior or the breaking of a KAM curve are somewhat brief bul reasonably
up to date. The field of nonlinear dynarnics is a rapidly advancing one; here we
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concentrate on those features which might have useful applications in accelerator
theory.

The primary references for introductory part of this paper (Sections 1 - 11)
are Refs. 1 and 2. References for the sections dealing with the transition to
chaotic behavior (Sections 12 - 14) will be given in the appropriate sections.

2. HAMILTONIAN DYNAMICS
2.1 EQUATIONS OF MOTION

The dynamical systems of interest here can be described by a Hamilionian
H{g,p.t). ¢ is the coordinate, p is the canonical momentum, and ¢ is the in-
dependent variable or time. In many cases the Hamiltonian is the sum of the
kinetic energy T and potentinl energy V each written as a function of the coor-
dinates and canorical momenta, The equations of motion can be derived from
the Hamiltonian using Hamilton's equations:

@ _OH dp; _'_ oH

dt ~ 3p; ' At dq
For example, consider a system of n nonrelativistic particles interacting through
a force law derivable [rom a potential. Then we have

(2.1)

1
=m(l’?+Pg+"'+P3)+V(QI; ’ho"'-%) (2-2)

and

dg; _ pi dp; @V

e i (2.3)
The above differential equations are simply Newton's Second Law for the
n~particle system.

in the above example the canonical momenta were equal to the kinetic mo-
menta. It is evident that this is not true for more general Hamiltonians, Con-
sider for example a nonrelativistic charged particle in an electromegnetic field
with vector potential A(z,?) and scalar potential $(z,t). Then the Hamiltonian
is given by

(p _ EA(:.:,t))3 + ed(x,1) (2.4)

and the corresponding equations of motion are

1
2m

dz;  pi— A

vy =—— -
VT de m

2.5
I 08 ex~ (b= i4)0A .
dt dz; ¢ 7 m drg



Note that in this case the canonical momenta and the kinetic moi.onta are
related by

my, - op, - ‘-:A.' . {2.6)

To convert the equations of motion to more conventional form recall the

relations relating the electric and magnetic fields to the vector and scalar po-
tentials,

1oA 1)

Using Eq. (2.6) to eliminate the canonical momenta in favor of the velocities,
Eq. {2.5) becomes

dv e v

—=— {E} -x . .

T m (B p B} (2.8)
Equation (2.8) is simply the Lorentz lorce equation for a nonrelativistic charged
particle in an external electromagnetic field.

2.2 SYMMETRY, INTEGRALS, AND INVARIANT ToORI

If we examine Eq, (2.3}, it is easy to see that if the Hamiltonian is inde-
pendent of some coordinate gm, then the corresponding canonical momenturn
'm is 2 constant of the motion. In this case pm is a first integral of the motion
and the coordinate g, is called a ‘cyclic’ or ‘ignorable’ coordinate. In general,
the existence of such an integral corresponds to a certain symmetry of the sys-
tem. In this case the symmetry is the invariance of the equations of motion to
translations in gm. W ¢m is an angular coordinate, then the conjugate angular
momentum is conserved, and the system is invariant with respect to a rotation
in gm.

In general for an n-dimensional system, Hamillen’s equations constitute a
system of 2n ordinary first-order differential equations. In order to integrate
such a system we need to know 2n first integrals. In many cases, however, it
is sufficient to know only n independent integrals. In these cases each inte-
gral can be used to reduce the order of the system of equalions by two rather
than just one. These probiems are called integrable, and the motion is con-
fined to an n-dimensional surface in 2n-dimensional phase space. In the case
of bounded ascillatory motion, the rmotion is confined to n- dimensional torus in
2Zn—dimensional phase space.

In other cases n independent integrals do not exist; these are called noninte-
grable. In these cases the trajectory can fill regions of phase space of dimension
greater than n. In these nonintegrable cases there are, however, invariant tory



as shown by KAM (Kolmogorov, Arnold, and Moser).® These invariant tori,
however, do not exist as continuous famiiies as in the integrable case. The set
of invariant tori is a Cantor set, Just next to each invariant torus is a region
of resonance and chaoti¢ behavior. In spite of this for nonintegrable systems
which differ from integrable ones only by the addition of small nonlinenr terms,
there are invariant tori almost everywhere in phase space,

The caese of two degrees of frcedom with a time independent Hamiltonian
is a special one because the torus is 2-dimensional {a real donut}, but the
phase space is reduced to 3-dimensions by the invariance of the Hamiltonian.
Thus, the invariant tori ‘hold water® in that they enclose velume in phase space.
Therefore, the existence of KAM invariant tori in the case ~bove (sometimes
called 1] degrees of freedom) guarantees stability: Those orbits, whether chaotic
or not, which are inside the danut must remain inside. If they were to ‘attempt’
to cross they would fall on the invariant tori. But asince it is invariant they
have been and will be on the invariant torua forever. Thus, in this case there
are no orbits which connect the 3-dimensional volume inside the 2-torus to the
3-dimensional volume outlside. This it not true, however, in systems of iliree
or higher degrees of frecdom. In these systems invariant tori do not guarantee
stability since their dimensionality is too low to enclose volume. This leads to
the phenomenon of Arnold diffusion.

Although many of the differential equations which will be discussed here
are, strictly speaking, nonintegrable, they are sufficiently close to integrable
systems to admit approximate sclutions. In cases where there is significant
chaotic behavior it is necessary to use other techniques such as the residue
criterion, the Chirikov criterion, the direct calculation of XAM tori through
solution of the Hamilton-Jacobi equation, or renormalization techniques. These
methods are concerned with the nature of the break-up of invariant tori and are
discussed in Sections 12-14,

2.3 MOTION NEAR A KNOWN PERIODIC SOLUTION

In many casea we are inter-sted in the orbits of a systern which are close to
a known periodic solution, This periodic solution may or may not be easy to
find; let us assume that we know it. Consider the Harniltonian in Eq. {2.2) in
two dimensions, This yields the equations of motion,

so OV

S
(2.9)

OV

y= By

A periodic orbit zp(t) and yo(t) with period T is defined to be one which closes

T



on itself in time 7. Thus it is defined by

- av
mEy = —E(Io. vo) . To{t +T) = zo(t)
(2.10)
. v
mip = —o-(20, o) . wlt+T) =)
I
Now consider an orbit close to the periodic orbit and let
E =T Xp
{2.11)
n=y-y .
Substituting into Eq. {2.9) and expanding for small £ and n, we find
- %V PV
mE = ~{o—z(xo,p0) - “3:;_69(1“"-"0)
(2.12)
_ IV v
mij =

“faray(%'b‘o) - '?W(Io' y‘a)

Thus, since yo and zy are periodic functions of t, we find a linecar differential
equation with periadic coefficients which can be derived from the Hamiltonian,

2 2 2
Pe Py 1 (FV

_ 1 1
H= o tamtz 5zt +2

atv arv
i n} (2.13)

- = N =
(')zt?yf’ ay’ ’
where the derivatives of the potential are 2gain evaluated at (g, yo). Note that
the coefficients in the new Hamiltonian now depend periodically on time rather
than being constant. Therefore, the solutions will differ substantially from those
for the harmonic oscillator.

The stability or instability of the periedic orbit in question is determined by
the solutions of Kq. (2.12). Thus the solutions of lincar equations with periodic
coefficients are evidently of fundamental importance. The solutions to this type
of equation (Hill's equation) in one degree of freedom will be discussed in Section
5.



3. CANONICAL TRANSFORMATIONS

A dynamical system is described in terms of a certain set of variables, coor-
dinates and canonically conjugate momenta. Sometimes it is more convenient
lo express the equalions of motion in terms of different variables which are
functions of the old ones. 1t is desirable to have the new coordinates again in
Hamiltonian form; that is, if Q@ and P are the new coordinat.s. then

19 _OK(Q.RY) | 4P _ 0K (@R

ik — 3.
dt ar Toodt 8Q 1)

where K(Q, P,t) is the new Hamiltonian. The question is then to find thoze
transformations which accomplish this.

3.1 THE GENERATING FUNCTION OF A CANONICAL TRANSFORMAT]ON‘

Hamilton's equations of motion can be derived from a variational principle.
For a syster: described by 2 Hamiltonian H{g,p,t}, the Lagrangian function ig

Lig,4,t) = Zp.-é.- ~ Higi,pist) - (3.2)

Consider the evolution of the system from ¢; to ¢; and the sction integral
f
s = [ Lla(t), d(0), )t . (2.3)
&

Next vary the function g(t} so that the end points are fixed, and ask for what
g(¢) is the action integral stationary. The answer can be found from the calculus
of variations; g{t) must satisfly

d af aL
E 53‘ - —a? =0 (3.4)
which is equivalent to
dip;)  9H Y
— — =0 = — .
dt + aql v 9 BP. (3 5)

Equations (3.5) are Hamilton's equations of motion.

9



Now, with new variables Q and P and a new Hamiltonian K, Hamilton's
principle must again he valid

Iy
568 = o‘/ [Z PQ, - K(Q,Pt) dt=0 . (3.6)
&, ¢

Therefore, the new and old Langrangian can differ at most by the total time
derivative of some funclion W (recall that the end peints are fixed).

This function must be a funclion of the new and old variables. However,
only 2n of these are independent for an n-dimensional problem since there are
2n transformation equations relating the new and old coordinates and momenta.
Consider a function which depends only on the new and old coordinates. That is

W= Fi(a.Q.) . (3.7)

Then we must have

. : dF;
Z pdgi — H = Ef’iQ; -K ¢ *-d'?- . (3.3]
' 1

Now if we expand the total time derivative we have

. - 9RYy . ‘ aF 3 aF\ _
;‘Q‘i (Th - a—ql) Z':Q: (R + a‘_q)‘—‘) - (H K+ W) =0 . (3-9)

For Eq. (3.9) to hold identically, the coefficients of § and £ must vanish because
g and Q are the 2n independent variables. Thus we must have

_ aF o _3F1
P= EP ' 1= 30,
(3.10)
K=H + 2D

at

Equations (3.10) specify the relations between the ald and new variables in a
canonical transformation. The firsl two of these equalions can be solved for ¢
and p in terms of @ and P. The new Hamiltonian is then giver by the third
equation in (3.10),

K(@.P.0) = H(@.P.O5(@ P00 + S @@ P0,Q . (a1)

Fi1(g, @,1t} is called the generating function of the canonical transformation
in Eqs. (3.10). Rather than choosing the ald coordinates and new coordinates

10



(¢. Q) as variables, we could have choaen the old coordinates and new momenta
(¢, P)- 'n this cnse we have a different generating function Fi(g, P,t), and a
differenl set of equations for the canonical transformation

aF;
= =t g, Pt}
P g, 0P
-9k ’ 3.12
Q=5 (0P, (3.12)

aF
K=H+ 57 (.PY .

Fe and Fy are related by a Legendre transformation.

The equations of a canonical transformation can he viewed in many different
ways. We could start with the retationship between the coerdinates, derive the
generaling funclion which yields that, and then find the new momenta and now
Hamiitonian. Alternatively we could begin with a new Hamiltonian, solve for
the generating function and then calculate the new coordinates. In the next
sections we show some examples.

3.2  ACTION ANGLE VARIABLES FOR THE HARMONMIC OSCILLATOR

in this seclion we consider a problem that we know how to solve. The
harmonic oscillator Hamiltonian is

b o—— (3.13]
and the solution of the equation of motion is

T = acos(wl + )
(3.14)
p— - awsinfwl * ¢p) ,

where a and ¢n are two arbitrary constants. The motior is confined to an ellipse
in phsse space. Note that the Hamiltonian is independent of the time and is thus

a constant of the motion. Therefore the constant a is related to the constant
value of }i.

Now we would like to change to a set of variables for which the new Hamil-
tonian iz a function only of the new momentum: Since we alrecady know the
solution abave, we can use it to construct these new coordinates. Eq. (3.14)

it



suggests we consider a transformation of the jorm

z = a(J) cos(¢)
(3.15)
p— - alJ)wsin{d)

where J and & are the new momentnm and coordinale respectively. a(J) is
some as yet upspecified function of the new momentum. To accomplish the
transformation we will use a generating function of the first type discussed in
the previous section. From the trans{ormalion equations in ¥q. {3 10}, we need
to find the old momentum p in Lerrs of the new and ald coardinates. This can
be done by combining the two equations in Eq. (3.15) to yield

p= wrlan ¢ . (3.16)
The equation for the generating function can be integrated to yield

2
Fi (z.8) - w; tand . (3.17)

Solving for the new momentum we find

(w2t p?)

J 3.14
2w ( )
and the complete set of transformation equations now reads
= V2 jweosd
P v/"!.fu's'il](# {3_]9)
cR I
R Py w.t
2 2z

The new momentum J is called the action variabie while the new coordinate o
is the angle variable. 1t is not hard to see that if the Hamiitoman has the units
of energy. J has the unmits of an artion,

These coordinates are very uselul for studying problems which differ from a
harmonic oscillater only by the addition of small nonlinear terms.

12



3.3 DEVIATION FROM A KNGWN SOLUTION

In Section 2.3 we saw that deviations from a known periodic solution to a
differential e-uation obeyed a linear differentinl equation with periodic coelhi-
cients. 1L is usefitl Lo derive a somewhal more general result using canenical
transformations. Consider a Hamiltonian M and a known particular solution
go(t) and po(t) to Hamilton's equations. For cases of interest thia is the peri-
odic solution to an inhomogeneous differential equation. This known sclution
satisfies

dolt) %"{ (go(t). po{t), 1)
(3.20)
20 - -2 i) mihe) -

We would like to perform a canonical transformation to new coordinates and
momenta which are close to the particular solution. Let the new cootdinates
and momenta be given by

Q = ¢ - qoft)
(3.21)
P =p—po(t)
Now if we use a generating function of the second type the equations of the
transformation are given by

DB
|

p= -‘5 =P+ m(f]
(3.22)
_9h _
Q=25 =9l
which can be integrated to yield the generating function

Then if we use Eq. (3.11) for the new Hamiltonian and expand for amsll Q
and P, we find

K = H(w(E). k) + olddan(t) + 3| (Hea(ao8) ol6), )| @7
(3.24)
+ 5 Hpp(9a(t), Po(t) )P + Hpn (a0(t),po(t). )QP

where the subscripts denote partial differentiation. The Hamiltonian in Eq.
(3.24) consists of two types of terms: those which depend only on the time and

13



those which are quadratic and higher-arder functions of @ and P with time-
dependent coclFcients. The terms in the Hamiltanian which are nat functions
of @ and P do not affect the differential equatian for @ and P and thus ean
be ignored. If the known solution is a periodic ane, the lowest-arder terms
which contribute to the differential equatlions are =ecand-order with periodic
coefficients. Thus the differential equations are linear with periodic cocfficients.

Particular soluticns which are periodic are fixed points of the anc-perind
mapping genecrated by the differential equation. The transformation ahove has
moved that fixed paint to the origin in the new coordinate system. This is easily
seen if we write the condition for a fixed point,

affaQ =0
(3.25)
anj/ap -9
From Eq. (3.24) this is satisfied for
Q=0 , P=0 . (3 73)

There may also be other fixed points of this system or other periodic orbits in
the new variables. These periodic orbits are fixed points of mappings through
different periods and thus the above process can be performed again.

Not surprisingly we will ance again find quadratic Haruiltonians with
periodic coefficients; that is, linear differential equations with periodic coeffi-
cients, Since these types of equations are so ubiquitous, we return ta them in
Section 5.

4. THE MOTION OF A PARTICLE IN AN ACCELERATOR
4.1 THE HAMILTONIAN AND THE EQUATIONS OF MOTION

The motion of a particle in a circular accelerator is governed by the Lorentz
force equation,

dd—-l:=-‘e(E-!§xB). (4.1)

where P is the relativistic kinetic momentum and v is the velocity. Bold face
quantities denote vectors. It is convenient to cast these equations in Hamiltonian

14



11-B4
4319A

Fig. 1 The coordinate system.

form. 1T we introduce the vector and scalar potentials,

18A
E=-V¢-1%3 (4.2)
B = v x A ¥
then the Hamiltonian is given by
H= epteclmie+(p—eA/e)|!?, (4.3)

whera p is the canonical momentum. In terms of the kinetic momentum and
the vector potential

]
p=F+ ;A(x,t] . (4.4)
The equations of motion can then be written in terms of Hamilton's equations,

dp _ BH dx _ OH
*= "B ' & o (45

4.2 THE COORDINATE SYSTEM AND THE CHANGE OF INDEPENDENT
VARIABLE

It is useful to use a conrdinate system based on a closed planar reference
curve. This reference curve is taken to be the closed trajectory of a particle
with some reference momentum py in the guiding magnetic field. The coordinate
system [z, 5, ¥} is similar to a cylindrical system, however, the radius of curvature
may vary along the curve,

b1




From Fig. 1 if r is the coordinate of a particte in space, and rq i8 the paint
on the reference curve closest to r, then
a = distance along the curve to the point rg
from a fixed origin somewhere on the eurve,
T = horizontal projection of the vector r - 1,
y = vertical projection of *he vector r - ro,
p = lacal radius of curvature,

The Hamiltonian written in terms of these coordinates is’
-3 ? 1/2
_ a3, Pr— E4) _€,.\? _e ’]
H=cb+ C[m S+ Tt (pe-S40) + (- 24)) (4.6)

where p, and p, are projections of p onto the z and y direction and

ptp-n(142) . (1)

We will call the vector potential used in Eq. (4.6) the canonical vector potential

since A,, Az, and Ay are defined analogously to the canonical momenta, In
particular note that

A, =(A-5) (1 ¥ E) . (4.8)

Instead of using the Hamiltonian above, it is useful to change the indepen-
dent variable to s rather than ¢. This can be done provided Lthat s is monotonic

in £. 'This is a standard transformation and can be accomplished by defining
another Hamiltonian,

= _p.l'(zsphyspyit!_}?) - (1-9]

That is, we solve Eq. (4.6) for p,. With this new Hamiltonlan and new inde-
pendent variable, Hamilton’s equations become

dz _ 9% dp: 3K
ds  dp:’ ds = 3z
dy _ 29X dpy _ OX
ds  dp, ' ds ~ By (4.10)
d_ W Y-H) N
ds  8(-H}' ds B

Note that (£, -JI} now play the role of the third coordinate and conjugate
momentum.

6




4.3 THE LINEARIZED EQUATIONS OF MOTION

To be specific we will specialize to the case of no electric field and a conatant
magnetic fleld given by

By = —Bo(s) + By(s) z+---

B; = Bﬂa)y 4o (4.11)

The main bending feld Bo(s) is chosen so that a particle at the reference mo-
mentum po will bend with a local radius of curvature p(s). Thus, we set

Bo(s) = (4.12)

cp(-!)

By (e) in Eq. (4.11} is simply the gradient of the magnetic field. It is conventional
and uscful to scale the gradient to obtain the focusing funetion,

_ By
K] (!) = —p.!;;—"

Using Bqs. (4.12) and (4.13) the cancnical vector potential which yields the
above magnetic field is

A.=_E‘E[f+(_’;_m) 2+§& e (4.14)

(4.13)

The new Hamiltonian from Eq. (4.9) is

He=(-p) = _:‘4' (1 + = ) l_' —m¥ - p? — ,,']m } (4.15)

Since there i3 no time dependence, H is a constant of the motion which we call
E ( the energy). In an actual accelerator the magnetic flelds do change in time,
and there are longitudinal electric felds to accelerate the particles. However, the
pcceleration process is slow and can be considered adiabatic for our purposes.
In addition, the longitudinal electric flelds cause longitudinal oscillations which
are omlitied here.

To continue we expand the aquare root in Eg. {4.15) and substitute the
vector potential from Eq. (4.14) ta abtain

X ={po-p}— +po[( —K.) + Ky ] ;;+:;+ . (4.16)

where p is the total kinetic momentum of the particle,
p= [E’Ic‘ _ a,_.:lm , (4.17)

which may be somewhat different from the reference momentam. The expansion
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of the square root is a good approximation provided that

Pevl & 1, (4.18)

which i3 typically the case. From Hamilton’s equations and the Hamiltonian in
Eq. (4.16) we find

dz _ p: dp. 11 (p~ po)
ds p ' ds pD(p* K')“

P
(4.19)
dy _»y  dpy _
& p  ds pkyy .
In terms of = and y Eqs. (4.19) become
B (GoK)e= 2R
n, Poit (4.20)
v o+ BrEthe 0,

where prime denotes differentiation with respect to 5. Equations (4.20) yicld the
motion of particles near the reference orbit. Because Ky and p ure periodically
dependent on s with period C , the circumference, these equations are Hill's
equations.

5. LINEAR EQUATIONS WITH
PERIODIC COEFFICIENTS®

There have been many useful techniques developed for linear equations with
periodic coefficients in the context of alternating gradient focusing for particle
accelerators or storage rings. In this section we follow Ref. § to develop these,
now standard, techniques in one dimension. The matrix approach Is used ini-
tially to understand stability and introduce the very important function 3, the
Courant-Snyder amplitude function. Next we find a canonical transformation
which changes the Hamiltonian to that for a harmonic oscillator, Finally we
discuss the adiabatic damping of betatron oscillations with acceleration. In this
section the discussion is restricted to the case of a particle with momentum equal
to the design momentum. Thus we find two uncoupled homogencous differential
equations of the form

&z
pl = 5.1
I + K(s}z=0 (5.1}
which can be derived from the scafed Hamiltonian
3 2
. P Kis)z 5
H = = + — (5.2)

z represents either horizontal or vertical displacement, and K satisfles the peri-
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odicity relation

K{a+ C) = K(s) . {6.3}

Here C is the circumference of the equilibrium orbit.

In a circular accelerator or storage ring the magnetic “Jattice” ideally con-
sists of N tdentical sections or “unit cells”, so that K also satisfies the stronger
periodicity relation

K(s+L)=K(s) ; L=C/N. {5.4}

5.1 THE MATRIX APPROACH

The solution of any linear second order differential equation of the form (5.1)
is uniquely determined by the initial values of z and its derivative 2":

z(s) = az(:so) + b2'(s0)

(5.5)
Z{s) = c2(s0) + d'(so) ,
In matrix notation this can be written
2(2) 7 a b7 [ 2(%)
Z(s) = ‘o) =M{siw)Z(e) = | | (5.6)

The matrix formulation is uvselul because it separates the properties of the gen-
eral solution from those due to a apecific initial condition. The matrix depends
only on K (s} and the length of the interval 8 — sg. Ir addition, the matrix for
any interval made up of sub-intervals is just the product of the matrices for the
sub-intervals, that is,

M(sa|s0) = M(23) 8 )M{2y!350) . {5.7)

It is important to note that the determinant of the matrix Af is equal to
unity, because Eq. (5.1) was darived from a Hamiltonian and thus does not
contain any first-derivative (dissipative) terms.
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For the case of constant K which corresponds locally to a harmonic oscillator
sofution the matrix is

cos ¢ K- 1%sin¢

M{s|s0) = . 5.8
(5] s0) —~KV2ging cos ¢ (5:8)
where ¢ = K1/?(s — 35). When X is negative, this is sometimes written
cosh (—K)""2sinh ¢
M= ' (5.9)

(—K) /2 ginhy cosh

where ¢ = (—K)*/?(s — sp). Finally for an interval of length £ in which K =0,
Bq. (5.1) can be trivially invegrated to yield

M= X (E.m)

Perhaps the most important point is that for an interval in which K is piece-
wise constant the matrix for the total interval is the produet of the appropriate
matrices of the forms (5.8) to (5.10).

In the periodic systems considered hete the matrices of particular impor-
tance arc these which map the initial condition through an enfire persod. Let
us abbreviate this one turn matrix as {oilows,

Mis) = M(s + L}s) . (5.11)

This is the matrix for passage through one period. starting from s. Due to the
periodicity of K the elements of M (s} must be periodic functions of s with period
L. The matrix for passage through one revolution composed of & identical cells
is

M(s+ NLjs) = [M(s)]" .

Finally, the matrix for passage through k revolutions is [M{s}]¥* .

In order for the motion to be stable all the elements of the matrix MM
must remain bounded as k increases indefinitely. To obtain the condition for
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this, we consider the eigenvalues of the matrix M{s), that is, those numbers A
for which the characteristic matrix equation

Mz =)z (5.12)

possesses non-vanishing solutions. The eigenvalues are the solutions of the
determinantal equalion

Det{M --Al) =0 , (5.13)
which yields the characteristic eguation,
Aodfa+d)+1=0 (5.14)
where we have made use of the fact that Det M = ad — 8¢ = 1. Defining
cosp = :l,—’ TrM = %(a +d) , (5.15)
the two solutions of {5.14) can be written
A=cospt §aing = e, {5-16)

The quantity s is real if |a + d| < 2, and complex if ja +d} > 2.

Assuming that | + d| # 2, the matrix M may be written in a form which
exhibits the eigenvalues explicitly. To do this define cos it by (5.15), and define
a, f,and v by

a - d=2afs)sinp ,
b=pf(s)sing , (5.17)
c¢= —v(s)sing .
T).: condition Dei M = 1 becomes
pr—a=1, (5.18)
and the matrix M can now be written
‘cosp + asing Bsinp

M= . . = Jcomp + Jsinp {5.19)
—sinp cosp — asing
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where [ is the unit matrix, and

a B '|
J= J (5.20)
— -

is a matrix with zerv trace and unit determinant which satisfies
Ji= 1. (5.21)

It is importart to note that ihe trace of M, and therclore g, is sndependent .
of the reference point s. From (5.7} we have

M(s2 + L] s1) = M(s2)M(sz]55) = M{sa| 1) M(sy) , (5.22)

so that

M(s9) = M{s- 15 )M (5, }[M(a2] 91} " (5.23)
Therefore M{s,) and M (sz} are related by a similarity transformation, and thus
have the same trace and cigenvalues. However, the matrix M(s) as a whole dozs

depend on the ceference point s. Thus the elements a, 5, v of the matrix J
must be functiens of s, periodic with peried L.

To exzmine stability simply recall that the eigenvalves of Af(s) have the
form ’

A= et (5.24)
Thus, the eigenvalues of M(s)* are given by

P {5.25)

For stability the Ay must remain bounded as k& -+ co. This means that g must
be reel since in thia case the eigenvalues have unit magnitude and the matrix
elements of M(s) simply oscillate with increasing k. Recalling the definition of
pin Eq. (5.15), the motion is stable provided

Trace|M(s)] < 2, {5.26)

and is unstable if
Trace[M{s}] > 2. (5.27)

Thus, to summarize, the matrix approach can be used to construct explicitly
the periodic matrix elements a,b,¢ and d. Once the one-tuza matri: at @ point

22



39 is known, its trace can be calculated. This yields ss, which can then be used
to calculate a, ¥ and A at the point 5y. The values of a, -y and 3 at other points
can then be calculated via the similarity transformation in Eq. (5.23). In this
case the matrix elements change but » remains fixed, and thua the change ia
entirely due to &, ¥ and 4.

These parameoters play a major rale in determining the details of the mo-
tion. In particular, # determines the maximum local amplitude of tranaverse
oscillations. This is demonstrated in the next section.

5.2 THE PHASE- AMPLITUDE FORM OF THE SOLUTION
The previous section suggests that we might consider a solution of the form

2 (8) = w(a)e'¥9) (5.28)

Upon substitution into Eq. (5.1}, it is steaightforward to vesify that if w and ¢
satisfy

' + Kw - ?:5 =0 {5.29)
and
, 1
V== (5.30)

then 2; as defined by Eq. (5.28) is indeed a solution to Eq. (5.1). In addition
22(8) = wis)e~ e | (5.31)

is also a solution and 2y and z; are linearly independent. Since any solution
of (5.1) can be written as s linear combination of z; and zz, we can wrile the
matrix M{s;]s;) in terms of ). Using the form of the solution in Eq. (5.28)
the matrix becomes

M(s3)s1) =
%%ws ¥ — uawjsintp wywz siny
-1- - ' (5.32)
l——;—’!!—-::’lMQ sinp — (%—%) cos ¢ %cosw-l-wlw;simb

where ¢ stands for ¢(s3) -- ¥(81), un for w(sy), etc.

Consider for example the case where sz — s; is just one period of K(a), i.c.,
53 — 81 = L. In this case the matrix M is identical with the matrix (5.19). If we



require that w(s) be a periodic function of s, then w; == ws and w{ = w{, and
the forms (5.19)and (5.32) are idzntical provided that

Ploz) —dlsa) = (5.33)
wi=g , (5.24)
ww'=-a , (5.35)

which yields
1+{wew')P 144
{ z ) — ‘_,l.a...— ] ‘7 - {5'363

The above identifications are legitimate provided that we can show that g1/2
gatisfies the differential Eg. {5.29) and that

8= -2a . (5.37)

To prove this, consider the one-period matrix for the transformation from
s+ ds to s+ L+ ds. From Eq. {5.23) the matrix ia given by

M(s + dz) = M(s + ds| s)M(a) [M(s +ds|8)|"! . (5.38)
However, from the differential equation in Eq. (5.1}, it is easy to sce that
l s
M(as + dsls) = ' 5.39
(ardsie) = | g (5.30)

Therefore, if we substitute (5.29) and (5.19} into (5.38) we find

(K@ - 4)sing w2asinp

ds} = . .
M(s + ds} = M(s) + Kasing  —(KA - )sing ds (5.40)

Inspecting the upper right matrix element, we see that (5.37) is indeed valid.
In addition from tike other matrix elements, we obtain

S PPN I 4

(5.41)
and

¥ =2Ka. (5.42)
Using (5.37) and (5.41) one can verify that #'/2 does indeed satisly (5.29), and is
thus a periodic solution of that egnation. Therefore, Bgs. (5.34) and (5.35) are
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jwetificd. Combining Eqe. (5.30) and {8.33) we find the very important relation

L
g ‘;_;'. . (543)

Equation (5.13) may be regarded as the definition of 2. It is consistent with the
previors definition, (5.15), but i» unambiguons; equation (5.15) only defines
modulo 27,

Considering an accelerator of circumference € = NL with ¥ identical unit
cells, the phase change per revolution is Nu. It is also uvseful to define

e 1 'l
8

which In the numnber of hetatron oscillation wavelengths in one revolution. Al-
ternatively, v s the frequoncy of betatron oscillations measured in units of the
revolution frequency; hore we refer to v slmply as the frequency or tune of
betairon oscillations,

Using the previous results 2; and 23 may be written in the following useful
form,

5 = ﬂlf!(.)etivi[ij" (5.45)
whers
ds
é(l) = ;E .

Tha function ¢(a) increases by 2« every revolution. The general solution of (5.1)
can thorefore be written

£(s) = af"/? coslve(s) + 6) , (5.48)

where a and § are arbitrary constants. This s & paeundo-karmonic oscillation
with varylng amplitude 1/3(s) and varying instantaneous wavelength

A=2xfls) . (6.47)
Note agein that the mazimum amplitude «t a fixed position sp on successive

revolutions ia simply proportional to #(s)*/?. For this reason f(s) is called the
Courant-Snyder amplitude function.



5.3 ACTION-ANGLE VARIABLES

Now let us assumne that we have explicitly calculated S{o) and ¢(s). Then 3
is useful to construct action-angle varisbles for this problem in a way completely
analogous to the harmonic oscillator in Section 3.2. To do this firat write the
scaled Hamiltonian for betatyon nstillations from Bq. (5.2),

H=P:+M

= = . {5.48)

Next write the solution for both the position and momentum,

2 = af'/? cos(vg(s) + §)

, (5.49)
p=-af~ |gin{vé(s) + 8) - %cos(ué[a) + 8)

The momentum cquation is obtained by simply differentiating the equation for =.

Using the salution above as a gitide let us search for a ¢anonleal transfor-
mation of the form

z=a(J)8 % rosy

(5.50)
p = ~a(J)g~/? [alw - ‘;m w]

where J and ¢ are the new momentum and coordinate respectively. We will use
4 generating function of the first type; therefore, we need the old momenta p in
terms of the new and old coordinates. Combining the two equations in (5.50)
yields

4

2 8
P -ﬁ (ﬂlﬂg’ - E) . (5‘51)
Therefore, Eq. (3.10) for the generating function can be integrated to yield
2
F(z,9) = —% [tanqb - -‘:;] . (5.52)

Solving for the new momenta in terms of the old coordinates and momenta,
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we find

1 sz
J= ﬁ[é + (ﬂz‘ - -3-)’] (6.53)
and the complete set of transformation equations becomes
2Jfcosdh ,
~V2J7B (sln - %— cos ﬂw) . (5.54)

Hi=H +8F [0s=J/0(s) .

The differential relations for § in Eq. (5.41) have been used to simplify the
new Hamiltonian.

In these new coordinatea the solution of the equations of motion is
J = constant

(5.55)

4
o =0+ | 5 5

Nole that in the process we have explicitly constructed an invariant, J.
Equation (5.33) for the invariant ia the equatlon of an ellipse in phase apace
which rotstes periodically in 8. If a particle has initial conditions which begin

on some ellipse given by Jp, then the coordinates and momentum of that particle
always atay on that cllipse.

Looking at it in another way, consider a single particle traversing the periodic
focusing structure and plot ite position and momentum in phase space each time
it passes s = a9. Then, the locus of those points is an ellipse in phasc apace. At
points other than &, the ellipse so generated evolves according to Eq. (5.53).
If we extend phase space to include the independent variable s, we find a 3-
dimensional extended phase space and the motion i confined to the 2-torus
defined in Bq. (5.53).

The invariant J is simply related to the area enclosed by the ellipse,
Area entlosed = 2vJ . (5.56)

In accelerator and storage ring terminology there is 2 quantity called the emit-
tance which ja closely refated to this inveriant, The emittance, however, s a



property of a distribution of particles, not a single particle. Consider a Gaussian
distribution in amplitude. Then the (rma) emittance, ¢, ja given by

(srau)® = B{e) « . (5:57)

Tu terms of the action variable, J, thia can be rewritten

e={J) (3.58)

where the bracket indicates an average over the distribution In J.

Finally note that the form of the new Hamiltonian ie not precisely that of
a harmonic oscillator in that the phase does not advance unifarmly This of
course causes no difficulty in that both cases are trivial to solve. However, it
is possible to perform another canonical transformation to coordinates which

have a uniformly sdvancing phase. Thia is accomplished with the canonica!
transformation:

4 I
Fa(, Jy,8) = [?T:& —/% +wd
b

Bws ds
V= v (5.59)
SJi=J,
2ny v
H] = -E—J1=-§Jl .

In these new coordinates the osciilating part of the phase advance has been
extracted leaving only the average phase advance. Either these conrdinates or
the previons set can be used in the section on canonical perturbation theory;
however, we will use the second set since no reference Is made to & specific
probiem. In the later sections we will use the first set (J, ¥) since this simplifies
the notation in spite of the fact that one must integrate to obtain the phase
advance.



5.4 ADIABATIC DAMPING

In the previous sections the case of a constant momentumn equal to the
design momentum py was considered. From a scaled Hamiltonian and the known
solutions the invariant J was calculated. In this section we consider the case of
slow acceleration so that the momentum p and the magnetic fields (oc pg) slowly
increase topether with p = pg. I[n actual accelerators the acceleration time is
much longer than either the revolution period or the betatron period. However,
although this slow change does not affect the single particle dynamics, it does
lead to the adfabatic damping of the aclion J and thus the emittance of a beam
of particles.

To sec this effect we return to a Hamiltonian of the form in Eq. (4.16}),

T L0 Ly

= g 2 {(5.60)

where once again = refers to either = or y and K (s) refers to the appropriate
focusing function. Asin the previous seclion we can perform the change to action
angle variables. The generating function of the transformation {z,p;) = (W,¥)
is

1 '
Fi(2,9) = - 2”;(‘8) [tanw _8 ;’)] . (5.61)
which Jeads to the transformation equations
z=\/2Wp]pocosys ,
p=—2Wm/p (uinv,b—%’cosqb) . (5.62)

H=N+0F/0s= W/ﬂ(a) .

Here, again, the phase advances an in the previous section; however, the invariant
is given by

\?2 .
From Hamilton’as equations
E = :—i =7, (5.64)

and therefore from Eqs. (5.53) and (5.63), W and J are related by
W = poJ . (5.65)
Now consider the adiabatic variation of pp. In this case the action W is an
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adiabalic vnvarjont and is very nearly constant; therefore,

w
J = —«pil. 5.66
oy & Po (5.66)

This is called adiabatic damping. It means that as a particle beam is accelerated
in a circular (or linear) accelerator, the emittance is inversely proportional to
the momentum. Therefore, from Eq. (5.62) the transverse beam size varies as

/2
T= g [&] . (5.67)

Due to this variation it is useful to define an auxiliary quantity, the invariant or
normalized emittance, which is constant,

eEN = Bye. {5.68)

This quantity is proportional to the area in phase space {z, p;) occupied by the
beam distribution.

The damping discussed does not apply to electrons in circalar accelerators
or storage rings since the elfecl is small compared to radiation damping. For a
discussion of radiation damping and quantum excitation in circular accelerators
see Refs. 6 and 7 and references therein.

5.5 THE ADIABATIC INVARIANCE OF THZ ACTION

It is straightforward to show that W, the action for betatron oscillations
discussed in the previous section, is an adiabzatic invariant. To do this we resort
again to the very powerful technique of canonical transformations. Since we
already have the parametric dependence of the transformation to action-angle
varjables on py, it is now only necessary to allow that pg depend vpon s. In
this case the transformation to the action-angle variables discussed in Section
5.4 is still valid; however, the new Hamiltonian is no longer independent of ¥
the angle variab’ In this case the transformation to the new Hamiltonian from
Eq. (562) *

oF

f1=H+"£

(5.69)
W ﬁw fsin2d - B'{s) cos? v} .

Bl(s) 2po
where the rate of change of the momentum is

dpo e
! = . 5.70
Fo ds { )

Equation {5.69) is the Hamiltonian which describes betatran oscillations in the
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presence of acceleration. The phase and action variables evolve according to

dy 1 py o At 2,
& B 2 [sin 2¢ — §'{s) cos ] 6)
aw

ds ~ po(s)chas 29 + §'(s) cos 2¢r8in 2¢0] .

We wou)d now like to show that the variation of W is quite small for small
pp even if the total change of momentum is quite large. We do this by inspecting
the differential equations in Eq. (5.71). For the purpose of this demonstration
it i3 useful but not essential to smooth the betatron ovscillations. [ his is done
by setting 4' = 0 and 3(s) = constant = § which yields

d—"fi:--l--—p;’ sin 2y
s ﬁ 2]‘10(8)
aw (5.72)

o
= =2 W cos 2y .
ds  pols) cos 2
To zeroeth order the phase variation is simply unperturbed. Substituting

this appreximate aalution af the phase equation into the differential equation
for the action yields

%‘:f ~ WPE'E)WCOS(%/I? + ) - (5.73)

By inspecting Eq. (5.73) for small g, and thus slow variation of pg, it is easy
to see that W is nearly constant. Thia i3 due to the rapid oscillations of the right
hand side. If po(s) varies Jitile in one betatron period, then the variation of W
averages out over one betatron oscillation. For finite chasges in po(s) there iz a
small non-adiabatie contribution.

This can be estimated by integrating Eq. {5.73) over the entire acceleration
cycle. To do this we assume a linear increase of the momentum and the magnetic
fields which bend and focus the beam, that is,

po{s) =pi +p's . (5.74)

Integrating Eq. (5.73) is straightforward to show that for small p' the change

in action is limited by
21rﬂp') ( Ap )
< (? _bLe )y 5.75
( 4p; pi + Ap (875)

where Ap is the total change in momentum. Nete that the variation in W is
small even for large Ap provided that the change in momantum in one betatron
wavelength (27 81'} is small compared to the initial momentum.

AW
W,
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6. THHE NONLINEAR TERMS
8.1 THE SOURCES OF NONLINEAR(TY AND CHROMATICITY

The nonlinear terms that have so far heen neglected come from scveral
"sources. T'he so-called geomnetric terms arise from termas in the longitudinal vec-
tor potential whick are higher than quadratic. These arist from both deliberate
and inadvertent nonlinear magnetic Relds. In addition, there are higher-order
terms in the transverse components of the vector potential which are necessary
to satisfy Maxwell’s equations. There are also kinematie terms which come from
the expansion of the square root in Tq. (4.15). Finally, in colliding beam storage
tinga there is the beam-beam force. A particle from one beam feels the electric
and magnetic fields due to the collection of all the particles in the opposing
beam. The beam-beam force is typically very strong, quite nenlinear, and of
a different character than the others mentioned; thercfore, it is usually treated
separately. For useful reviews of the beam-beam effect see Refs. 8 and 9.

Aside from the beam-beam force, 2 dominant source of nonlinearity comes
from the deliberate use of sextupoles to cure chromatic effects in slorage rings.
Before discussing the deleterious effects of sextupeles on the homogencous equa-
tions, it is first useful to motivate their inclusion in the first place,

Let us first examine the Hamiltonian for belatron oscillations in Eq. (4.16).
Since in all cases considered here p varies only adiabatically, it is first useful to
scale the Hamiltonian with p to make it dimensionless. Defining the quantity

p— 1 (6.1]
the effective Hamiltonian becomes
. x 1 z? y"] Pl Py
= -A= +(1- . K PRGOS 2T .

which is simply the Hamiltonian in Eq. {1.16) scaled appropriately. Note that in
these new variables the canonical momenta are sitnply equal to the slopes dz/ds
and dy/ds as is easily verified through Hamilton’s equations. The quantity A
measures the deviation of the actual momentum from the momentum on the
reference orbit. It is clear from the Hamiltonian in £q. (6.2) that the solutions
of the linear equations of motion will depend on A as a parameter. Since all
particle beams have a finite spread in momentum, this *chromatic’ dependence
is nndesirable. In addition, there is a collective instability (the head-Lail elfect)
wkich is enhanced by these chromatic eflects; thus, it is necessary to provide
some chromatic correc tion.
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6.2 SEXTUPOLES FOR CHROMATIC CORRECTION

'To see the effects of sextupoles we musat first include them in the Hamilto-
nian. The vector potential for a sextupole magnet is

eAsfe = pnigﬂ(:cs ~3zy%) . (6.3)

In terma of the magnetic field
5(8) = —==F . {6.4)

S5(a) is a periodic function of 2 which is typically piecewise conatant in the
regions where the carrection sextupales are placed and zero elsewhere. If S(s)
comes from errors in magnetic field, then the strongest contribution is usually
in the bending magnets which are typically pure dipole tnagnets.

The new Hamiltonian including sextupoles is

3 3 z 2 3 .
R | Rt  EYEFAL I )

where we have defined

Ke= Ky~ % (6.6)

in order to simplify the notation. Using Hamilton's equations, the differential
equations for the motion are

- (1-A)Kaz+(1- A)—':—(z’ ~y¥) =
v+ (1 - A)Kyy - (1 — A)Szy =0 .

a
p (6.7)

The equations above may look slightly different from and somewhat simpler
than others in the literature. The difference arises due to the definition cf A
chosen here.

At this point it is necessary to calculate the periodic solution to Eq. (8.7)
above. This will give us the closed orbit for an off momentum particle in the
full nonlinear fleld. By inspection we can see that once again the vertical closed
orbit simply vanishes. In the horizontal direction it is conventiona! and useful
to introduce the dispersion function D. If we let the periodic solution be z.(a),
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then
D(s} = z{s)/A (6.8)

where, of courge, {2} is a periodic fuaction of 9. Writing the equatian for the
horizontal dispersion we find

D" - (1 - 8)K:D + A1 - A)%D2 = % . {6.9)

D{s} is the periodic solution to Eq. (6.9). With this definition, D depends
upon A; however, since A is typically quite small, the dependence is weak. The
more familiar linear dispersion function Dy is obtained by setting A and § to
zero in Eq. (6.9). I? can be thought of as the exact dispersion function for the
Hamiltonian in Eq. (6.5).

Now we would like to perform a canonical transformation to place the pe-
riodic orbit just calculated at the center of phase apace. This transformation
(z.pz) =+ (zg,pg) can be accomplished with the generating function

Fiy(z,pp} = (z - AD(s))(py + AD'(5)) (6.10)
which yiclds the transformation equations

T=1Ip k% AD(G}
p: = py -+ AD'(s) (6.11)
g =X +0f/os.

Substituting us'nz the Hamiltonian in Eq. {6.5) yields the new Hamiltonian

1 2 2 2
. Py P z 5
fp= 7 + 5 - Ky + Ko + 5 (e - 9200)
%5 ¥ S5 5 2 o
+ & |(5D(s) + K)o — (SD(s) + K1) ~ gl — 32pv”) (6.12)

_ A’SDz(a} (z‘é _ yﬁ)

Examining the linear chromatic terms, we find that sextupoles contribute to the
linear differential equations at points where the dispersion D is nonzero. Thus,
by adjusting 5(2} one can cancel many of the chromatic effects. In particular,
anz can cancel the linear variation of the tune with momentum.

Unfortunately, in the process of cancelling the chromatic effects, we add
nonlinear terms to the equations of motion. Te begin the study of the effects of
these nonlinear terms on the motion, in the next section we discuss canonical
parturhation theory.
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7. CANONICAL PERTURBATION THEORY

in this section we seek a method !5 study nonlincar eflecta perturbatively.
We do this by attempting to find a cancnical transformation which makes the
new Hamiltenian a function of the new momenta alone. Thisis jest the approach
which yiclds the Hamiltonian-lacobi equation; however, in perturbation theory
the new Hamiltonion may depend upon the coordinates and time in higher order.

7.1 THE EQUATION FOl THE GQENERATING FUNCTION
Suppose that the problem can be described by a Hamilton®zn
H = Ho(¥) + V{®,3,0) {7.1)

where H has been written in termsa of action-angle variables of Lthe nnperturbed
problem and bold face characters denote d-dimensional vectors. The unper-
turbed Hamiltonian Hy includes nonlinear terms which depend only on J; thus,
the unperturbed tune may depend upon amplitude. In the zbsence of the per-
turbation, the action variables are invariant and the mstion is confined to a
(d+ 1}-dimensional torus in the extended phase space (I, ®,9). In the following
we look for Lhe distortions of this torus due to the noulinear perturbation.

Note that in this seclion we have scaled the independent variable from s to
8 so that the Hamiltonian js 2x periodic in both the angle variables ® and the
independent variable . In particular, the nonlinear perturbing term V(9,J3,8)
is a periodic function of § and ® and has zero average with respect to them,
ie.,

x b1
[ df?[di' V(®,3,0 =9 . (7.2)
4] 0

If V has a nonzero average, the average value of V can be absorhed into Hy(J).

Consider a canonical transformation (J, %)} « (F;,®) with a generating
function of the {ollowing form:

B(®,J,,0) = -3, + G(®,1:.6) . (7.3)

The above transformation is close to the identity provided that ¢ is small. The
new coordinates and Hainiltonian are given by

&, =% + G,
J=J + Geg (7.4)
h=H + Gg

where the subscripts indicate partial differentiation.
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The new Hamiltenian after substituting the transformed variables is
Hy = Hold + Gg) t V(®, )1 +Go,0) +Gg . (7.9)

Note that we have substituted sa that the Hamiltonian is a function of tha same
variables as G, the old coordinates and the new momenta. Eventually we must
complete the substitution; however, for the moment it i3 more convenient to
work with the mixed variables. Equation (7.5) can be rewritten in the interesting
form
Hy = HD(JI) + [Ho(Jl t Ge) - Tho(3)) - () - (.'@I
+{V{®.3: + Go,0) - V(3,3,,0)] (756)
+v{d)) - Go 4+ Gp + V(D,0,,8),

where 12(J;) is the veetor frequency as a function of amplitude of the unperturbed
prublem,

. 9Ho(J)
v{d) = T (1.7}
Il we can find a solution to the cquation
U(J;) Arg t 15 ¢ V(@,Jl.fn = { (T.ﬂ)

G will be a quantity of order V. All other parts of the new Hamillonian are
either independent of the coordinatcs and time or are o order ¥, To sce this
more easily we can expand for small (7 Lo obtain

Hy = Ho(I1}+v(3,)-Ge + Go + V(®,0y,8) +[Go -y, Gpi2 ) Vi, G|t -+
15.0)

7.2 THE SOLUTION FOR THE GENERATING FURCTION

Since we are looking for the distortions of the invariani torns, we must find
the periodic solution to Eq. (7.8); however, in order for a periodic selution Lo
exist, the average value of V must vanish. This was anticipated by our catlier
requirerment in Eq. {7.2).

Since both V and & are periodic functions of &, they can be Fourier ana-
lyzed,

V(®.J1.0) = ) um(dr,8)e™®

o _ (7.10)
G(ﬁ,d],a] - Lgm(-]ho)ftm @
m
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Then the equation to be solved for G becomes

[im»u(Jl) + ‘%l fm = ~Um (7.11)

which has the periodic solution

442rx

i smvE-0-x) o (3,00 d0 . (7.12)

Jm = 2sin{wm - ¥)

Finally, the [ull expression for @ ta given by

e

=y ' sm(®+u(0'—0-x)] nag | .
¢ ;2sin(ﬂ'm-v) ¢ vm{Js,0') df (7.13)

> —

Sometimes it is desirable to make use of the fact that V is a periodic function
of & to expand it as a ‘double’ Fourier series

V=) tmad)elm® (1.14)

mn

This leads to an alternative expreasion for the generating function in Eq. (7.13),

(7.15)

. umn(Jl)ei[m-l'—-M)
G =i Z m-v-n
m,n

7.3 THE New HAMILTONIAN AND THE AMPLITUDE DEPENDENCE OF
THE TUNE

Recall that our original purpose waa to transform the Hamiltonian into &
form which iz approximately independent of the coordinates and the time. The
new Hamiltonian in Eq. (7.9} is now given by

Hy = Ho(d)) + [Va, Ga+Ga-vy,-Ga/2+ -} (7.16)
= HQ(J}) -+ V'(J],'],a) )
The remaining nonlinear term can be separated into a part which dependa only
an the new action variabie and into another part which involves J;, ®; and
8 but which has zero average value. This oeciilatory term Is the object of the
next canonical transformation, whereas the term which is & function of the new
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action variable J; leads to s change of frequencies with amplitude. The latter
term is given by

ir Ir

l r hd
(V') = (é;)—m/dﬂfd@ ;le . Gqs + G@ sy, 'Cna/z ‘+ !‘ . [7.]7)
0 0

Separating the average value, the new Hamillonian can be written

Hi= [ HoJ) + (VI3) 1+ [V (V)]
(7.8
= [IU](JI) + Vl(ﬁ].\’,‘.,o)
and the new frequency becomes
_9Hy V" -
vi(Jy) = —-EJ—I——IJ(J”-I-ﬁ'I" . (7.19)

Note that if we examine the new perturhing term Vi, it is second order in the
strength of the pecturbation. In addition it is higher order in J;. I the original
perturbation has 2 lowest-order contribution of order Jf, then the new term is

of order J,m'n. Therefore, for sufficiently small Jy, we can neglect Vi, If this is
done, we have a new Hamiltonian which depends only npon the new momenta.
Therefore, these new momenta are {approximate) constants of the motion, and
from Eq. (7.4) for 3{$,J;,8) the motion is restricted to a (d + 1)}-dimicnsional
turus in phase space.

To proceed to higher order in perturbation theory there are two approaches.
In the first approach we return to the generating runction in Eq. {7.3) and
express it as a power series in the strengih of the perturbation, Then upon snb-
stitution into the Hamiltonian in Eq. (7.5), we obtain a hierarchy of equations
as we cancel the perturbing terms order by order. In this approach if ¢ is the
strength of the perturbing term, after the n** step we are lelt with a perturbing
term of order (1),

In the second approach we begin where we left off and make successive
canonical transformations which are formally identical to the first one. This
method is called superconvergent perturbation therry and was first introduced
in this context by Kolmogorov in his proof of the K AM theorem. It is called
superconvergent beczuse on the n'* step the remaining perturbing term is of
order «2°. Despite the name, however, the method need not converge! If the
protedure does converge, then it does so much faster than the first method.

Unfortunately these methods do not always wark. Everything would be fine
il @ were always small; however, a quick inspection of Fq. (7.13) shows that
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this is not the case for arbitrary v. There are resonances whenever
m - v = integers . {7.20)

This happens because we have required periodic a.... inns to the equation for
. [t is straightforward to see that if the resonance condition is satisfied, there
are no periodic solutions to Eq. (7.11). In fact the amplitude of the solution
grows linearly in 8.

Thus, in the neighborhood of a rescnance one must abandon perturbation
theory at least insofar as it applies to the resonance, We can continue to use
perturbation theoery for the non-resonant terms, but we must isolate the resonant
term for special treatment. Before beginning the atudy of isolated resonances,
it is first useful to apply perturbation theory to a few simple cases.

8. LINEAR PERTURBATIONS

1t is interesting and uselul to apply the canonical periurbation theory de-
veloped in the previous section to linear perturbations. In these cases we can
solve the perturbed problema exactly; however, it is quite useful to have analytic
formulae witich describe the effect of a small perturbation. First consider the
perturbation of the quadrupole gradient in one degree of freedom.

8.1 QUADRUPOLE GRADIENT PERTURBATION

In this case, the Hamiltonian we consider is

P K&} | k(s)2?
H=" 404 = —, (8.1)

where k(s}, the coefficient of the linear perturbation, is considered small. The
transformation to the action-angle variables of the unperturbed linear problem
yields
1 - J
A(s)

Before proceeding it is necessary to include the average part of the perturbation
in Hy,

+ "k(";ﬂ (s} [1+coa(24)] . (8.2)

Ho = J[1/5(s) + k(s)8(s}/2] . (8.3)
This yields the shift of the phase advance to first order in the strength of the

19



perturbation,
dofe) = wls) = wl0) + ﬂ( -+ f KBNS . (84)

The tune shift due to this additional phase advance is thus given by

[
Av = ;; [ k(s')B(s')ds' | 8.5)
0

where C is the circumference.

Eq. (8.5) above is the well known farmula for the tune shift due to a small
quadrupole perturbation. In canonical perturbation theory it is obtained simply
by averaging the Hamiltonian to obtain Hy before procceding to the first step
of perturbation theory.

To calculate the first order distortions of the invariant curves it is only
necessary to use the formula for the generating function in Fq. (7.13) to obtain

1+

—h jk(s')ﬁ(a]sm2(¢+w{s)—w(s)—:w) &', (85)

451:1(2#»)

where v is the tune which includes the shift in Eq. {8.5). Note that the phase
advance t{s) from Eq. (8.4) appears in Eq. (8.6) rather Lhan 8 as in Eq.
(7.13). The approximate invariant curves are given by

J =0yt Gulg, Jy,s) {8.7)
with
Ji = constant + O(k?) . (8.8)
From Eq. (8.6) we have explicitly
a4+ C

J1 f k(s}8(s') cos 2(¢ + ¥(s) — yo(s) — mv) ds' . (B.9)

T = )
4

In standard accelerator physics literature one usually finds the distortlons of
the § function calculated rather than the invariant curves, This is simply related
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to the variation in amplitude of the invariant curve at ¢ — 0. Identifying the
new beta function ,(s), we find

8+C

[ k{s")Bo(s'} cos 2(p(s") — ¥{s) — nv) ds' . (8.101

Bils) —Pols) _ -1
Fo(s) 2gin(27v)

This form is somewhat different than usual in that it is the perturbed tune
which appears in the formula,

8.2 WEAK LINEAR COUPLING

It is also interesting to apply cancnical perturbation theory to the case of
weak linear coupling. The perturbed Hamiltoninn is given by

P _ Kelz® | Kils)y?
2 2 2

+ M(s)zy , (8.11)

where M(s) is the skew focusing function defined by
M(s) = L, (8.12)

In this case the transformation to the action-angle variables of the anperturbed
linear problem yiclds

He= ﬂf_(ls) + B’;I(!a_) +2M(8)(B1 ) (I 1a) ' conidi) cos(da) . (8.13)

Now if we treat the last term above as a perturbation, we can use the pertur-
bation theory developed previously.

From Eq. (7.13) the generating function in this case is

B \/2 a4+ C
= s [ MUIB)BL N i V. (1 0,

(8.14)
(hh)l}z
" 2sin wn —

~=+C
) / M6 ()Ba o))/ ain ¥ - (91, 63,2, ')ds"

where the subscripts 1 and 2 refer to z and y, Iy and I; are the new action
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I i | ~ | . 1

variables, and the phase factors in Lhe integral are given by

Ua(dr,d2,5,8) = (1 + W (s') — (s} — min) & (62 + ¥2(8)) — ¥n(s) — M)

b

(8.15)
where
r U
ds
Yi2(s) = S 8.16
tals) Br (o) (8:16)
0
To calculate the invariant surfaces we simply use Eq. (7.4) to obtain
J=I +G |:':|1 8
1= h+Gs {12 2,5) (8.17)

J1 = L+ Gy d1,d2, 11, Ih,8)

where I) and I3 are constant.

"In this case the distorted invariant surface is a 3-torus in the extended 5-
dimensional phase space. If we make a surfare of section at some sp, then we
remain with a 2-torus in 4-dimensional phase space. In the uncoupled case this
torus is simply the direct product of the twe ellipses [rom the horizontal and
vertical phase spaces; however, in the case of coupling this is no longer true.
There are at least two different ways to view the invariant surface. One can
make another surface of section, say at ¢2 = ¢o, and view the resulting curve
in (J;,91) phase space. Alternatively, one can project the surface onta a three
dimensional suhspace, (¢1,92,51) or {¢1,¢2,J2). 1f we examine Eq. (B.17]},
we find that in these 3-dimensional subspaces the invariant surface remains a
2-torus. This surface can be viewed in perspeciive in each of the subspaces
mentioned above. This iatter method will be discussed in detail in Section 11.2.

Firally, in the linear coupling case, it is possible to return to the Hamilto-
nian in Eq. (8.11) to find the eigenvectors which decompose the torus into the
direct product of two circles by directly solving the lincar differential equations.
However, these do not project as simple curves In the original phase spaces.
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9. A SEXTUPOLE PERTURBATION
IN ONE DEGREE OF FREEDOM

In this section we apply perturbation theory to a sextupole perturbation in
one degree of freedom. Since there are also coupling terma in the Hamiltonian
in Eq. (6.12), one should actually treat the problem in two degrees of freedom.
However, for the sake of brevity, we treat only one degree of freedom here; the
extension to two degrees of freedom is quite straightforward by following the
previous section.

From Eq. (6.12) we consider the non-chromatic part of the Hamiltonian for
horizontal motion,

H= 17 1 Koty + 2 s (0.1)

Recall that S(s) is periodic with period C (the circumference) but may have
stronger periodicity imposed by design. Transforming to the action-angle vari-
ables introduced in Eq. (3.19) we obtain the new Hamiltonian

= J/B(s) + ?sm(m)m cos®

=J/B(s) + V(¢ J,9)
From Eq. (9.2) the perturbing term is

(5.2)

V(¢,J,3) = \/-S(.s)(Jﬂ(s))a“[cos 30+ 3cosg] (9.3)

and using Eq. (7.13) the generating function is

54+C
/ ds'S(s")8(s')3 sin[¢ + ¢(') = ¥(a) — 7v]

3
s+ C
1

PR [ ds'S(s')B(2")*/? sin 3 + ¥(s') - w(s) - ﬂ'l}

G = -

Jf”{ 1
V2 Wsinmyr

12sin 37
A

(0.0)

Note that since the phase of betatron motion does not advance upiformly like
a harmonic oscillator, the factor of v in Eq. (7.13) is replaced in Eq. (9.4) by
¥(s) where

s
ds’

vls) = / )

{9.5)

Next we can evaluate the average of the new perturbing term from Egq.
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(7.17). Vs, and Gy sre given by

Vi = 7SR Do fcos g + Bcos )
$4+C

B g 32 '
Co = ‘72_{4&11 xu / ds'S(8')8(s')* cos|p + Y(s') - ¢(s) - 7y ©9.6)
3
. s+C
+ 48in 3xv _/ d.s'S(,')ﬁ(_,')ﬁlﬁ cos 3|¢ + ¥(s') — ¥{s) - wu]}
3

First we average over ¢ to get rid of the cross term and then average over s
to obtain

72 c 5+C
Vi, Gg) =~ 2 f dsp(s)1s(s) [ B(s)*S(s)ds'
) 3
« {3(:05(‘{)(3') = ¥(s) - nv) + cos 3(t{s') — ¥{s) - nv)
sin nv sindnp

(9.7)
If the actual distribution of sextupeles s known, the integral in Eq. {9.7) can
be evaluated. If we drop the fluctuating term, the new Hamiltonian is given by

H, = Jl/ﬂ(s} + (Gé VJ‘) + e (9.8)
The new {une is then obtained by intcgrating the phase advance through one

turn
C
1 1 3{GeVy,
vi(h) = .o — T M g
1 2:;0[(_;3(.;) aJ, ) _ (9.9)

Since the additional term in the new Hamiltonian in Eq (9.8) is ol crder J?, the
tune in Bq. (9.9) varies linearly with J. This is similar to the firrt-order effect of
an octupole perturbation (~ z¥); therefore, a sextupole perturbation in second
order produces an octupole-like nonlinear frequency shift with amplitude.

Finally, the approximate invariant torus is given by
J =0+ Gylh, 8} {9.10)

with J; = constant. As the tune approaches n/3 the phase space curves ob-
taincd at some surface of section s = sp develop the characteristic 3" harmonic
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distortion of the third integer resonance. However, when the tune is too close
1o a third integer resonance, GG is not small and perturbation theory is not ap-
propriate. In the next sections we confront this problem for general nonlinear
res0oNnances.

10. AN ISOLATED RESONANCE
IN ONE DEGREE OF FREEDCOM

In Section 7 we discovered that there were resonances whenever
m-v=n. (10.1)

Perturbation theory is not the appropriate method for studying the behavior
in the neighborhood of such a resonance. In this acction we study an isolated
nonlinear resonance in one degree of freedom in detail, that is, 2 2-dimensional
phase space with a ‘time’ dependent Hamiltonian, We suppose that we are close
to a resonance and that all other nonresonant terms in the Hamiltonian can be
neglected. Thus, we are left with the truncated Hamiltonian,

Hr = vl + a(J) + f(J)cos(m¢ — n8) . (10.2}

Note that we have separated Hy into a linear and nonlinear pars, and that f{J)
is taken to be positive in the region of interest.

This problem can be solved exactly by using a canonical ¢ransformation to a
rotating system in phase space. The generating function for the transformation
(4,8) = (J1,81) is

B (¢4, J]) = (dﬁ —nl/m)dy , (10.3)

which vields the transformation equations
fr=d—nlm, Hh=J . (10.4)
The new Hamiltonian is then given by |
Hi=Hr—-afmnh =8 1 +ea() + f(J1)cosmdy , (10.5)

where
b=v-nfm . (10.6)

The Hamiltonian has been cast in a form explicitly independent of the *time’
variable #; thus, it is a conatant of the motion.
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10.1 FIXEP POINTS

In the phase space (¢, J;} we can find a set of points where the trajectories
are gtationary. These fized points can be obtained by the conditions

aH; oHy :
55, =0 %% =0 (10.7)

which yield
sinm¢; = 0 (10.8)

b+ a'(h)+ f{I)cosmdy =0 |

where the prime above indicates differentiation with respect to J,.
T T+ 1 1 1T 7T 1 1 71 1

12-05 8300A2
Fig. 2 Phase space for a sixth order resonance with a width of AJ =~ .2J,.

In the polar coordinates (v/Jy, #1), these form a string of points surrounding
the origin, as shown in Fig. 2. In fact when sinm¢, = 0, cosm¢, = +1 and
for different signs of cos mg,; the characteristics of the fixed points are different.
The trajectories surrounding stable fixed points, SFP, are closed (ellipses), while
those surrounding unstable fixed points, UFP, are open (hyperbolic). Those

44




fixed points where cosmgy = —1 (+1) are stable (unstable) since the potential
has a minimum (maximum) there.

Suppose we define J, as that amplitude which yields an ascillation fre-quency
at resonantce, i.¢.,

v+d(é)=n/m , (10.9)
then Eq. (10.8} becomes

a'(Ji1) — () + f'(N1)cosmdy =0 (10.10)
or expanding for J; close to J,

{h - J)= —5%% cosmd; . (10.11)

Therefore, provided that f'/a is positive, the amplitude of the UFP is slightly
less than J, while the amplitude of the SFP is slightly larger than J,.

10.2 RESONANCE ISLAND WIDTH

The boundarics of the stable islands shown in Fig. 2 are formed by curves
joining the unstable fixed points. These curves are separatrices and thetr equa-
tion can be easily found by the fact that the new Hamiltonian ; is a conatant
on the curve,

From Eqs. (10.5) and (10.8), we have
01 + aldy) + J(Nh) cosmey = 8Jy + alJda) + f(Ju) (10.12)

where Jy is the action at the unstable fixed point. Expanding for J close to J,
and recalling that Jr =~ J,, we find that on the separatrix

2J{Je}{1 — cosmey)
J - Jy)? = .
( u) (1) {10.13)
From Eq. (10.13) we find the maximum separation or island width
Ay = +2,f S0 (10.14)

a"(],] 1

where a'{J,} has hcen assumed paositive for simplicity. Keep in mind that this
is only valid when AJ <« J,. In addition, the other resonances which have so
far been negiected must be far away. If the widths calculated using the isolated
resopance assumplion are such that neighboring resonances overlap each other,
then it is clearly incorrect to consider the resonances isolated,
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To summarize the phase space portrait shown in Fig. 2, at small amplitude
the motion is relatively unaffected by the resonance. Near the resonance the
circles are distorted. Finally, at the resanant amplitude there is a string of stable
islands with widths determined (approximately) by Eq. (10.14).

10.3  ISLAND SEPARATION AND THE CHIRIKOV CRITERION

i has been observed that if the main resonance islands have widtha which
are close to their separation, there is chaotic behavier in the overlap region. This
has been investigated extensively by B. Chirikov'? and is used as ~ criterion to
estimate the onset of stochastic instability. To apply the Chirikou eriterion iy is
first necessary to calzculate the spacing of the resonance islands.

To find the distance to a neighboring resonance, we first find the spacing in
tune and then vonvert that to amplitude. Near J, the amplitude dependence of
the tune is nearly linear. Therefore, twn resonances with a tune spacing of Aw
are separated in amplitude by

6J = Av/a’(J.). (10.15)

To avoid chaotic behavior we require with Chirikov that the island width be
much less than the island spacing. For two resonances of half-width AJy and
AJ; the Chirikov criterion is

A+ Al < 6F. (10.16)

For AJy = AJ; and using Eqs. {10.14) and (10.15), Eq. {(10.16) becomes

Av

v a”(.f,)f[—j.-j < 4

(10.17)

The Av separating two resonances is genarilly determined by inspecting the
Hamiltonian or Lthe equations of motion Lo find the main driving resopances. For
any given Av Eq. (10.17) sets a limit to the validity of the isolated resonance
enalysis. This condition requires that the nonlinear detuning, ", not be too
large since in this case the resonances do not separate. On the olther hand if
o is small, the widths of the islands get large. Unfortunately, as we increase
o' the island width decreases more slowly than the separation. Thas, i we
increase the nonlinear detnning we eventually get island overlap and slochastic
instability. This leads one to select a moderate nonlinear detuning to avoid
chaotic behavior.
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10.4 ISLAND ‘TUNE' AND GREENE'S RESIDUE CRITERION

Having understood the phase space structure in generul, we can study a
particular island. Consider a small island width. In this case it is vseful to
expand the Hamiltonian in Eq. (10.5) for small devistions about J,,

Hr‘.‘! a.(sz)(J_J')‘+’(J')mm¢l+.u . . (10.18)

We have dropped constant terms and used the resonance condition in Eq. (10.9)
for simplification. The Hamiltonian above {3 that for a pendulum; from Hamil-
ton’s equations we find

% - a"(J)mf{J )sinméy =0 . (10.19}

S

N o
.1 1
3.0 35 4.0 45
t1-8e ‘I 4D10AS

Fig. 2 Pendulum-Bke phase spare siructure.

This is the equation of motion for a pendulom with familiar phase space
structure shown in Fig. 3.
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In the neighborhoad of one of the stable fixed points (¢y = (2k—1)w/m, k =
1, 2, +++, r1) we can determine the small amplitude oscillation frequency by
expanding .he sinmé, as

stn[(2k — 1)x + mBdy| = —mbdy |, (10.20)

which yields the frequency -
02 = o (J)f(Je)m® . (10.21)
Uui!mthlafuqumcy n aliernate expression for the overlap condition can be

degived,

J. Greene has est: »lished that the last invariant curve which separates two
neighboring island ch: ns survives provided that the ‘residue’ of the neighboring
strble fixed points is | 3 than about 1/4." A detailed discussion of the sesidue
eriterion iz given tn Soction 12, In this section we simply use the results to
obtain the residue R ¢ the resonance treated here,

R = aln®*(amf)) . (10.22}
If we vewrite the residue condition in terms of the frequency calculated above,

it becomes
1

mi<z , (10.23)
which ylelds
1
VeI < o5 - (10.24)

At this point the reg 1 between the iwo island chains may be quile chaotic.
Thus, to avoid large = :le chaolic behavior, the ineguality in Eq. (10.24) shouild
be strongly satisled. otice that the residue criterion and the overiap criterion
are guite similar whe:. expressed in this approxir..ate form. In fact, they are
nearly identical provi: »d that Ar = 1/m?. We leave remaining details of the
residue critecion to Se tion 12 while in the next section we return to properties
of nonlinear resonances.



10.5 UNBOUNDED MOTION

So far we have treated casen in which the frequency of the unperturbed prob-
lem is a function of amplitude. This it important In that it yields finite island
widths. However, if the unperturbed Hamiltonian is simply linear, then an iso-
lated resonance causes unbounded motion. This case is particularly imporlant
for particle accelerators since the amplitude dependence of the tune is typically
quite weak and in many cases can be neglected. To illustrate this consider a
sextupole induced third order resonance with the Hamiltonian

Hr = vd 4+ J3% cos{3¢ - 9) . {10.25)

If 'we transform to the rotating system in phase space, we find the new invariant
Hamiltcnian
Hi=65+ (Jf‘/’ cos(3¢;) = constant (10.26)
where in this case
§=v-—1/3 (10.27)
ll'—l_llllllllll“ll

lle!llllI!’:lll‘

-14||||_11||‘|||1
12-85 5300A14

Fig. 4 Phase space near a third order resonance with = 0.
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Far é nonzero the motion in phase space is shown in ['ig. 4. T'he curvesshown
correspond to four diflerent values of the invariant ITy. At small amnplitude the
circles are distorted and are described well by the first order perturbation theory
in Section 7. For larger amplitude the curves approach a triangular shope with
three unstable fixed points at the peints of the triangle. Finally, at sufliciently
large amplitude the motion is unbounded. As § is decreased io zero, the siable
arca inside the triangle goes to zero. This eflect is quite well known in acceleralor
physics literature since it is used as a mechanism for driving particles in a beam
to large amplitude to extract them from circular accelerators.!?

Unfortunately, sextupoles provids not only the cubic tern which yields the
resonance structure shown in Fig. 4, but also a coupling terin ~ zy? as shawn
in Eq. {6.5). This leads us to the next section Lo ronsider coupling resonances.

11. AN ISOLATED RESONANCE
IN TWO DEGRELS FREEDOM

It is interesting and useful to consider an isolated resonance in 2 degrees
of freedom (with a time dependent Hamiltonian}. In a particie accelerator Lhis
corresponds typically to-the.coupling of the two transverse degrees of freedam;
however, it could invelve one transverse and the longitudinal degree of freedom.
We will consider the former rase here. In this case the r onance condition
hecomes

mitr 4 gl =n L II‘I)

where mj, ma2 and n are integers, and vy and »; are the 1unes in the Lwo
iransverse degrees of freedom. In the provious section we fii nd resonances at
all rational vaiues of the tune, that is, at a set of pointz : tune space. In
this case the resonances consist of lines in 2-dimensional tunc - ace {¢y,12). In
Fig. 5 we illustrate this with several examples. Note that as we incinde higher-
order resonances the tune space rapidly Gils ap. Thus, to aveid crsnnances it s
necessary to carefully place the two tunes.

11.1 CALCULATION OF THE INVARIANTS

Now consider two tunes which are close to one of the lines with finite slope
in Fig. 5 but far from the intersection of any twoe lines. Thus, the system is
close to an isolated coupling resonance. As in the previous scetion truncate the
Hamiltonian so that only the dominant resonant term is retained, This yields

Hy = wnJy + vada + f{d1,J2) cos{mady + mada - nl} {11.2)

where for simplicity we have taken the unperturbed Hamiltonian to be that
for uncoupled linear osciflation. Omnce again the truncated problem above can
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be solved exactly by transforming to a rotating system in phase space. The
generating function for the transformation (&, J;) = (¥;, K;} is

F3(¢i, Ki,6) = (mud1 + mads — n0) Ky + ¢:Kz . (11.3)

di=midy +mady—nf S = m K,

114
= ¢y Jai=myKi+ Kz ., (11.4)
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and the new Hamiltonian becomes
H = [m|u| + maty - n)K; + 1l + f(K[. Kq)ecaatyy (11,5)

where
F(K1 K) = flmy Ky ma Ky 4 K3) . {11.6)

Since the Hamiltonian above is independent of ihe independent variable,
it is a constant of the motion. In additior, however, it is independent of .
Therefore, the new action K3 is alse an invariant. Thus, we have

{rmyn + rpra - n) Ky 4 1K + f(Kl,K:)co:n,b] = cong’ % {11.7)

K> = constant . (11.8)

In terms of the old coordinates this becomes

n .
viJy+ vady — ;nT.h + f(J1.Jz2) cos(midy + mady - nf) = constant (11.9)

Ji - E.h -z constant . {11.10)
my
From Eq. (11.10) there are two distinct cases. In the case of a sum reso-
nance, [sign{m;) = sign(my)], stability is not guaranteed. However, in the case
of a difference resonance [sign(my) = -sign(my)|, statility is guaranteed since
the weighted sum of the actions is a constant. In this second case there can be
‘emittance’ exchange; however, the overall motion is hounded.

11.2 VIEWING COUPLED MoTioN"

As in the case discussed in Section 8.2, the motion near a coupling resonance
is confined to a 3-torus in the extended phase space (¢, ¢1,J1,J2,0). If we
take a surface of section at some 8y, then the resulting figure is a 2-torus in
4-dimensional phase space. We can view the 2-torus by taking yet another
surface of section at ¢y = ¢y which yields a curve in {¢;, J1) space, or we could
set @7 = ¢y and view the resulting curve in {¢3, Ja} space.

There i3, however, another alternative as mentioned previously in Section
B.Z. We can project the 2-torus onto a 3-dimensional subspace (¢1,¢é2,Jt) or
(#1,¢3, J2). In these subspaces we obtain a 2-torus imbedded in 3-dimensional
space which can be viewed in perspective. This method is especially powerful if
we are comparing theory and numerical experiments. In numerical experiments
it 1s quite difficult to take a second surface of section mentioned above because
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Fig. 6 Surface of section near a third integer resonance (¥ = 5.331, 1p = 5.144}.

there are so few points on il. The first surface of section {in #) does not suffer
from this difliculty since it simply corresponds to the integration of the equations
of motion through multiples of 2x.

To illustrate the technique firat consider o system with 2-degrees of reedom
far from a coupling resonances but close to & resonance vy =~ 1/3 mod(1). In
this case the motion is nearly that corresponding to one degree of freedom. In
Fig. 6 we show three equivalent ways of viewing the motion. In 6(a) you see the
phase space (Jl”'2 cos ¢y, —J,l” sin ¢) which would yield a circle for the case of
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uncoupled harmonic oscillation. The paoints are plotted at multiples of 27x in @
without regard to J; or ¢2. The locus of the points has the characteristic dig-
tortion of m 1/3 integer resonance superimposed onto basically circular motion.
In Fig. 6(b) we unfold 6(a) and plot J; vs. ¢; to see the modulation due to the
resonance mote clearly. Notice that although the motion is very nearly in one
degree of freedom, there is still a small coupling which leads to a band of motion
rather than 2 curve. Finally in Fig. 6{c) you sec the 2-torus in {¢1, ¢2, J;) epace
as calculated from first order perturbation theory. The influence of the 1/3 res-
onance is shown as the dominant wave on the torus. Notice that if we project
the surface onto the (Ji,¢#1) plane, we obtain a figure essentially identical to
6(b). The coupling causes small ripples in the 2-lorus which give rise to the
band of motion in 6(b).

To view 3 coupling resonance with this technique consider the sextupole-
induced resonance

23 — 11 = integer . (11.11)

(a) (b)

12-05 #y ¢2 5300A7

g. . The two phase space projections of coupled motion {1 = 5317, v = 5.164).

First let us view the motion by numerical integration of the equations of
motion. In Fig. 7 we plot (¢1,J;) and (¢4, J7) at & = 8 mod{27] which in the
case of simple linear motion would yield straight lines. In both plots we sec a
wide band of motion; however, this scattering of points does rot indicate chaotic
motion. To see this clearly we turn to the perspective method just deseribed.
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Fig. 8 Surface of section near a coupling resonance (¥ = 5.317, 7 = 5.184).

In Fig. 8 we show the surface of section @ = €. (med 27) near the coupling
resonance. In 8(a) and 8(b) we plot the 2-torus us ¢calculated with perturbation
theory. Below in 8(c) and 8{(d} we again plot all the data points obtained by
numericalintegration. The data fall nicely on the torus obtained by perturbation
theory. Notice that near a coupling resonance the surface is similar to that in
Fig. 8; however, the ripples no longer run parallel to one of the axes.

Using this technique it is possible in numerical experiments to separate
chaotic motion from mere coupling. Chaotle motion is shown as departures
from a surface similar to the departures from closed curves for the case of chaotic
motion in one degree of freedom.
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12. THE RESIDUE CRITERION "™

In this section we begin the discussion of several techniques which address
the question of the onset of chaotic behavior or the ‘breaking’ of KAM curves.
The first technique, the residue criterion, developed by J. Greene applies only to
cases of one degree of frecdom (with a time dependent Hamiltonian). Since the
renormalization discussed in Section 14 was founded on the residue criterion, it
too is limited to systems in one degree of freedom.

Greene's approach to the onset of chaotic behavior focuses on one particular
invariant curve with some irrational tune or winding number w to determine the
perturbation strenglh which causes the KAM curve to ‘break’. The basic idea
is that the distinction between w and very good rational approximations to
W, Wn = Pn/gn, should not be very great. Here p, and ¢4 are two relalively
prime integers. But in fact we know that the orbit for & rational frequency
consists of a sequence nf 2g, points in phase space which are periodic orbils,
while an invariant K AM curve with irrationa! tune gets filled in densely as time
progresses. In spite of this difference perhaps the existence of n KAM curve is
related to properties of the neighbaring periodic orbits.

12.1 THE DEFINITION OF THE RESIDUE

A key property of & periodic orbit is its stability. We know how to calculate
stability of an arbitrary periodic orbit from the analysis in Sections 3.3 and 5.1.
The procedure is:

1. First Iocate a periodic orbit {closed orbit} with some period 2mg,.

2. Linearize the equations of motion about the fixed point (or linearize the
map of initial conditions to final conditions about the fixed point.)

3. Calculate the transfer matrix M for one period (2mga).
4. Calculate the trace of M {a 2 x 2 matrix).
5. If [Trace(M}| < 2, then the fixed point is stable.

So the procedure is identical to the analysis of betatron oscillations. Why
should one use the properties of a oeriodic orbit rather than those of the island
aurrounding it (for example the width}? The siability properties of periodic
orbita can be determined exactly without ambiguity while the concept of width
breaks down just when the widths ol islands get large.

Unfortunately, it is not just stability which determines the existence of KAM
curves since there are cqual nutnbers of stable and unstable periodic orbits
neighboring a KAM curve. However, the trace of the transfer matrix is still a
good candidate for a key parameter. Rather than the trace Greene uses the
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residue R defined by
R = ;{2 - Trace(My)] (12.1)

where M, is Lthe matrix for the one-period map ncar the periodic arbit with
period 2ng, If we define a “tune’ € in analogy to the tune in betalron oscillations,

then
cos 2t = ~'a;eM . (12.2)

and
R =sin*n§ . (12.3)

To get the iden let us first state the qualitative version of Greene’s empirical
residue criterion:

1. Check the residue for periodic orbits *close’ to the KAM curve in question.
2. If |R| < 1/4, the neighboring KAM curve probably exists.
3. I {R > |1/4, the neighboring KAM curve probably does not exist.

The question is which periodic orbits do we check and how do we improve the
accuracy of the method in a gystematic way, This leads us to a brief iiscussion
of conlinued fraciions.

12.2 CONTINUED FRACTIONS

Every irrational number w has a unique continued fraction expansion. This
lenils to a sequence of rational approximations w, = pn/gn to w which are the
‘best’ fur & given size denominater. That is, all ather rational approximations
to w with denominators less than or equal to g, are further from w than the con-
tinued fraction approximation p,/qn. If we write pa/ga for the n'® approximate,

then
Pn
= =ag b —— (12.4)
Gn a+-o—L
o3t
el
which is more conveniently written
Er:':lafhnll”'raﬂ - [12-5)
n
The frequency w can then be written
w= lim 2. (12.6)
N0 ql‘\

To each of these clements py/g, there corresponds a periodic orbit in phase
space. These perindic orbits and the resonance islands surrounding them tightly
squeeze the KAM curve with tune w.

59

L



12.3 A PRECISE STATEMENT OF ThE RESIDUE CRITERION

We are now in a positian to state the residue eriterion precisoly, Consider a
KAM curve with tune or winding number w. Consider the scquence of approxi-
mates pn/qn in the continued {raction representation of w, Examine each of the
residues R, of the periodic orbits with frequency p,/qq. Then there are three
distinct cases:

l. B —+ 0, 1 - oo; there is a KAM curve with winding numbaer w.

2. Ra — Fcoo, n — co; there is no KAM curve with winding number w,

3. fa — Hp, n — oo} the transition case.
Best convergence is achieved for Ho around 1/4, but that depends upon w. It
is important to note that the criterion abave can in prineiple yield very precise
results on the breaking of KAM curves, For example Shenker and Kadanoff in

Ref. 15 have determined numerically that the critical residue for breaking a
KAM curve with a winding number equal ta the ‘golden mean’,

! 2‘5 (12.7)

is given by
R, 2500888 . (12.8}

In addition this criterion suggests that there is an asymptotic self similarily
at the critical case since all the residues are equal. We return to this question
in Section 14.

12.4 AN ISOLATED RESONANCE EXAMPLE

To calculate an example let us return to the isolated resonance Hamillonian
of Section 10.4. From Eq. {10.18) the ilamiltonian in the neighborlined of the
resonance i ~ n/m is given approximalely by

if
Hr = 97%-) (- IV ST )cosmey b o-o L (12.9)

Recall that this Hamiltonian is expressed in coordinates which rotate in phase
space {sce Eq. {10.3) to (10.5)). (n these coordinates thera is are 2m fixed
points at .J — J, and ¢y = kn/m, k — 1,2,---2m. In the original coordinatey
these are periodic orbits with period 2am. Following Section 10.3 we lincarize
about one of these periodic orbits and find that the frequency of osvillalion in
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the ¢p coordinates is
0? = " (LK) {5 )m? . (12.10)

Now we must conslruct the matrix transforming motion about the fixed paint.
‘This ia simply given by

& {9 cosT@ sin no/a"(J,)) ¢1(0) (12.11)
§2(0) ) \o'(J}sinnd  cosDd  J \6J(0) ) '
If we construct the matrix for one period (2rm) and recognize that ¢ and ¢
simply differ by 27 in this case, we find the one period matrix to be

M., ==( cos(27mil) sin(ZWmn}/a"(Jf)) . (12.12)

a"'(J,) sin(22mMn) cos(2rmil}

lalculating the trace of the matrix above and using Eq. (12.1) yields the residuc
for this example,

R =sin*(xmn) . (12.13)

This approximate approach can be used to check the existence aof neighbor-
ing KAM curves to known resonances. In the more precize approach one must
locate the periodic orbits numerically, und calculate the matrix M; numerically.
This must be dona for higher and higher order resonances. Because of this, much
of the work with the residue criterion has been devoted to the study of nonlinear
mappings. These avoid the problems associated with tedious numerical integra-
tion of diflerential equations to locate fixed points and calculate residues. In the
mapping case the differential equations have effectively already been integrated
through 2x in # the independent variable. Integration in # Is thus replaced by
simple iteration of the map.

13. DIRECT SOLUTICN OF TI; r
HAMILTON-JACOBI EQUATION ™

In the previous sections we have seen the utility aa well as some of the limi-
tations of perturbation theory. For small perturbations and far from resonance
perturbation theory gives an accurate description of the smell distortions of the
invariant surfaces; however, it completely misses the small neighboring islands
and regions of chaotic hehaviar. This is due to the non-convergence of pertur-
bation theory in most cages. There ate very special ciccumatances deacribed in
the KAM theorcm which permit one te calculate invariant tori which, however,
are not continuous families {as one expects in integrable systemns). This ia true
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because the tune of the actual motion along the KAM curve in queation muat
be irrational or in two or more degrees of freedom, the frequencies of motion on
the KAM torus must be incommensurate. However, since Lhe rational numbers
are a dense set, just next te any irrational is a rational. Thercfore, between
these invariant tori lie regions of resonance islands and chaeotic behavior.

In this section we move beyopd perturbation theory to develop a method
to calculate directly KAM tori and eatimate the strength of the perturbation
neceseary to break a given invariant curve. The aim is to achieve better re-
sults in the neighborhood of resonance, and also to achieve good results in the
neighborhood of chaotic motion. We follow Refs. 16 and 17 throughout this
section.

13.1 THE HAMILTON-JACOBI EQUATION

In this section we begin a3 in Section 7 but restrict the problem to a system
with one degree of freedom for simplicity. In a circular accelerator this cor-

responds to motion in one transverse degree of freedom. The Hamiltonian we
consider is given by

H($,J,6) = Ho{J) + V($,/,0), (13.1)

where 2 is the machine azimuth or ‘time’, and the perturbation V is periodic
in @ and ¢ with period 2r. To obtain the Hamilton-Jacobi equation, we seek a
canonical transformation ($, J) ~ (¢, K) in the form

J=K+ G¢(¢l K: 0) t (13'2)

Yr=¢+ Gy (¢| Kle) 1 (13‘3)

such that the new Hamiltonian becomes a function of X alone. Once again sub-
scripts denote partial derivatives. The Hamilton-Jacobi equation to determine
the generator (7 is the requirement that the new Hamiltonian &y indeed depend
only on K; namely

Ho(K +Cg) + V(6. K + Gy,0) + Go = Hy(K) . (13.4)

If we succeed in finding G, then by Hamilton's equations in the new variables,
K will be invariant, and ¢ will advance linearly with the time:

K = constant ,

(18.5)
¥ = U‘(K)g + % y
where
n(K) = % (13.6)

is the perlurbed frequency.
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As in Section 7 we are interested in solutions of (13.4) which are periodic
in both ¢ and @ since we are interested in the distortion of the invariant torus.
This leads ua to use the Fourier development

G(6, K.8) = Y guan(K)e ™) | (13.7)

mn

It is uscful to reartange (13.4) by adding and aubtracting terms so as to isolate
terms linear in G4 and Gy, We then take the Fourier transform for m # 0 to
cast Eq. {13.4) in the form

g= A(g) ' “3'“)
where g = [gmn] is 3 vector of Fourier coefficients and
¥ ¥

Amsl9) = £y (zn)’ j / didta™fmd 1) (13.9)

[H(¢ K + Gy, 8) - Ho(rr) HK)Gy] , m#0,

where v(K} = @Ho /0K . Notice thut if we set G4 Lo zero on the right hand side
of Eq, (13.8), we obtain the Fourier coefficient for the generating function of
first order perturbation theory as in Eq. {7.15). Equation (13.8) is a nonlinear
algebraic cquation for the Fourier coefiicients gma which 18 equivalent to the
nonlinear partial dilferential equation for G.

To truncate the system of equations (13.8) and (13.9) for numerical solution
we restrict (m,r) Lo some bounded set B of integers, with m # 0, and put

Gy = Z imgma{ K)eimé-ne} | {13.10}
{m;n)eB

In an iterative solution of (13.8) the sct 8 is selected =o that at iterate (p+ 1)
all Amn(g?!) with (m,n) € B are greater than some preassigned small number;
here g is the p' iterate.

It is impartant to note that only the amplitudes gms for m # 0 are required
to calculate Gy; the m = 0 amplitude and also the function Iy (K) can be
determined from {(13.4) a posterioni, Once G4 is known, the distarted invariant
curve may be obtained from Eq. {13.2) by taking a surface of section at some
0y and plotting J(#,8) vs. 6. The new action K is constant by Hamilton’s
eguation and is thus an input parameter.

The equation in the form {13.8) ia suitable for the examples treated below,
but not for typical accelerator problems involving short nonlinear lattice ele-
ments. For the latler, the Fourier analysis in # has slow convergence and should
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be avoided. For an accelerator lattice we retain the Fourier analysis in ¢, and use
the periodic Green function for the operator imy+ /94, as shown in Eq. (7.12).
This leads to an integral equation for the amplitudes g,.,( K; 8} which can be dis-
cretized to provide an equation for the variables gm{K;6,),m = 1, where the 0,
are mesh points Jocated only in the nonlinear elements of the lattice. The solu-
tion is periodic in § because we use the perjodic Green function. An alternative
pracedure is to treat the equation as a system of differential equations in 0. The
equation must be integrated only once around the acceterator with periadicity
achieved by iteration, in analogy to nonlinear closed orbit caleulations.

13.2 AN INTEGRABLE EXAMPLE

Before trying the method on norintegrable cases it is useful first to test
the method on 2n integrable example. In this section we show resulis from
solving {13.8) - {(13.10) by Newton's method {starting fsom g = D). This first
example is a locally integrable case in which some of the invariant surfaces may
be expressed analytically, namely the 4'* order isolated resonance model with

F{$nJd.0) = »pJ + aJ?j2 4+ ¢J2 cos{46 ~ 8) , (13.11)
where vy, @, and ¢ are constants. This example has been treated in detail in
Ref. 16; here we present some of the more difficult cases which were calculated.
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Fig. 9 4 order resanance, (a) H-J solution (b} Exact solution
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The most diffcult curves to compute are the separalrices around wide is-
lands, Tn this case first order perturbation theory gives very poor results. How-
ever, the direct solution of the Hamilton-Jacobi equation works surprisingly
well in this case as is seen in Figures 9(a) and 9(b) Fig. 9(a) shows separatrices
computed in © iterations with 31 modes in the set B. The points are plotted
in normalized phase spece {VJ cosd vs. VT sin #) at 8 = 0. The inner sep-
aratrix (almost a square) and the outer separatrix (four lobes intersecting at
right angles) are from two diffzrent caleulations for two different values of K.
Fig. 9(b) is & plot of curves from the exact analytic formulas for comparison.
The separatrix cutves and curves hoth outside and inside the resonance islands
are included to guide the eye. The Hamilton-Jacobi solution is virtually indis-
tinguishable from the analytic curves. This test case is not simply academic
since accelerators typically have small nonlinearity which yields large islands
{or unbounded motion). In regions close to single resonances in nonintegrable
systems similar results are obtained although the separatrix in this case cannot
be calculated since it is a thin band of chaotic motion. This leads us to the next
section where we show a nonintegrable example.

13.3 THE TwoO RESONANCE MODEL

This second example is nonintegrable and containa all the generic phenom-
ena of nonlinear mechanics in 1} or 2 degrees of freedom. In restricted regions
of phase space it should describe the easential features of one dimensional beta-
tron motion in the presence of nonlinearities. The example is the two-resonance
mode| with the Hamiltonian

H=wl+ %a.f" + g JJ? coa(5¢ — 36) + e3J? cos(8¢ — 59) .. (13.12)

Equations (13.8) - (13.10) are solved with Newton’s method for the invariant
curve with a tune equal to the golden mean v. = (v/6 — 1)/2, which is between
the two resonances. Here v, is the exact perturbed tune, v, = dH;/dK, not
the uaperturbed tune v = 1y + aK. To maintain the perturbed tune at the
preassigned value, we include the equation v, = dHy/dK as a constraint in the
iteration (see Ref. 16). This process is repeated for a a_juence of resonance
strengths €1, €5 {arbitrarily taking € = 2¢2) beginning with moderate strengths
to look for the transition to chaotie behavior.

The other parameters are chosen to be 1y = 0.5, a = 0.1, which places
the resonance ialands of the two resonances near J = 1.0 and J = 1.25. The
sequence of resonance strengths and resonance halfwidths AJ;, AJy shown
here are as follows:

(i) &g =2¢3 =6 x 1075, AJy, =0.049, AJ; = 0.054;
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{17} €1 = 2e2

(168} €1 = 2e3

104, AJy = 0.063, AJ; = 0.070;
1.25 x 1074, AJ; = 0.070, AJa = 0.07H;

By the Chirikov resonance overlap crii.erit:m,"J the corresponding invariant
curves should be close to breakup, since the resonance separation is Jy, ~ Jy, =
0.25.

13.3.1 A New Criterion for the Break-up of a KAM curve

In Ret. 16 a new criterion is proposed for the break-up of a KAM curve, the
‘transition ta chaos’. The criterion is that the Jacabian of Eq. {13.3) vanish at
some (¢, 8) as the ¢'s are increased:

OYfOd =14+ Cyy=0Jf0K =0. (13.13)
At such a point it is in general impossible to solve uniguely for ¢ as a function of

. To qualitatively understand the idea first write the solution for ¢ nssuming
the Hamilton-Jacobi equation has been successfully solved. This is given by

Y=g +uvd. {13.14)
Therefore we have
dy Oy

The heuristic picture is then that if we infinitesimalty change the insticl eondition
for motion on the invariant curve, the phase motion {¢) on the curve mapped
into the original coordinates jumps discontinuously. This would not happen on
a smooth continuous invariant curve, but might happen on a eurve with gaps.

Before continuing the discussion of results of the two resonance model it is
interesting to conjecture the generalization of Fq. (13.13). The key point is the
non-invertibility of (13.3). In higher dimensions the conjectured criterion is that
the determinant of the Jacobian matrix of the second canonical transformation
equation vanish. If we denote the old and new vactor angle variables with bold
face, then the second cananical transformation equation becomes

T =&+ CGy(¥,K,9, (13.16)
while the condition for the break-up of the KAM torus is

Det{d%/3®) = Det(l + Gok) =0 . (13.17)

66



"—_"_'T—‘l"_]_"!ﬁ"-'r-" rﬁ_j T T T T T T T T

fo} - .

.20 (b} =

1% I j

S Y

08
IR 14
| 04 -
114 LL ST U VORI S T J oLb— b . 1, b 1
0 or 02 06 0B 10 0 02 04 06 08 10
s /2w Shrenin d/2n

LESST AT

Fig. 10 (a)The invariant curve and (b) 8¢//d4 for €, = 2¢9 = 6 x 1075,

13.3.2 lInvariant curves and their break-up

Figures 10(a), 11{a), 2nd 12(a) show the invariant curves for the two res-
onance model in Cartesian plots of J(¢,6 = 0) for cases (i}, (i1} and (iii)
respectively. Figures 10(b), 11{b}, and 12(b) give the corresponding plots of
Y/ 8¢(4,0 = 0). The latter quantity allows us to test condition (13.13}, since
the minirmmum values of 3¢/3¢ are quite insensitive to 8. The anticipated zeros
of 3y:/3¢ are on the verge of appearance in Fig. 12{b).

In Figures 13(a), 13(b), and 14(b) we show enlargements of small portions
of the invariant curves for cases (i), (i1} anu (iii), together with points obtained
by tracking from iritial conditions on the appropriate curve. An orbit from a
single initial condition was lolfowed through N turas in 4, with N = 4000, 4000,
and 1500 for cases (i), (ii) and (iii) respectivel;. The good agreement between
tracking and computed curves indicated in Figures 13(a) and 13(b) is maintained
over the full range of ¢. Chaoctic behavior is evident in case {iii), but completely
zbsent in case (ii). In Fig. 14(a) we show an intermediate case, £, = 2¢; =
1.2 x 10~ tracked for 3000 turns, which is ambiguous. It might represent a
broken KAM curve or merely a high-order island chain not yet filled in. The
scatter of points in Figures 14(a) and 14(b} is genuine, tince the accuracy of the
integration of Hamilton'’s equations has been checked by integrating back to the
initial conditinons.

Comparing Figures 12(b) and 14(b) one sees that condition (13.13) is first
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met at roughly that perturbation strength at which chaotic motion appears in
tracking. Actually, the Hamilton-Jacobi results for di/3¢ (but not those for
J) are slightly ambiguous for ¢; - 2¢2 > 101, since ut such large perturbations
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Fig. 14 Invariant curve vs. numerical solution, (a) ¢; = 107* and (b) case (iii)

there is a limitation on the number of modes that can be accommodated while
retaining convergence of Newton’s method. Thus one cannot say precisely where
(13.13) is first satisfied. A more precise determination of the transition should
be possible by using a second canonical transformation or a modification of
Newton’s method. Assessing the results from tracking and 8i/8¢ togeiher, the
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curve for the golden mean tune breaks up at 5 = 2¢2 = (1.2 £ .05) x 1074

The Hamilton-Jacobi method provides a promising alternative to canonical
perturbation theory and its modern variants. Unlike perturbation theory its
algebraic complexity does not increase as more accuracy is demanded, and the
required computer programs are quite simple. The criterion in Eq. (13.16) for
the transition to chaotic behavior in higher dimensional systems may provide 2
useful criterion for the break-up of KAM tori in the Tull 5-dimensional extended
phase space of betatron motion. The reader interested in more details of this
method should consult Ref. 16.

13.4 A COMPARISON WITH THE RESIDUE CRITERION

In this section we would like to make the connection between John Greene's
residue criterion’ 'Y and the assoriated Hamilton-Jacob; equation. To do this
we need to solve the H-J equation over a finite time interval, locate an appropri-
ate fixed point of the resulting map, and linearize about that point te calculate
the residue.

To solve the H-J equation over a finite time interval it i3 necessary to re-
specify the problem and convenient to change notation slightly. We consider a
canonical transformatian (¢, J) v+ (¢, J;} defined by

J=J+ §¢(¢‘.J£:erai) r

¢l' = ¢ + .g.?.(¢a Jl'-angl') ) (13'18)

where 8; is the initial time. The H-J equation which is appropriate for the finite-
time map consists of the requirement that the new Hamiltonian he identlcally
zero

H{#, i + 63,8) + Ga =0 . (13.19)

In this case the new coordinates are the initial conditions provided that we also
impose the boundary condition

g(¢1-’i|8f|ai] =0 . (1320)
In this case G is not a periodic function of 8; however, it does satisfy
9(¢1Jiv8+2“;0l +2ﬂ}:g(¢1Ji19sﬂi} )

since the nriginai Hamiltonian is periedic in 8.
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To study the neighborhaod of a periodic orbit with period 21q, we note that
such a periodic orbit is a fixed point of the map in (13.18) at (¢#q, Jo) provided
that

g¢(¢0| JD! el' + 2ng, Bl) =0,
G1.(do, Jo, 0 + 27q,0;) =C .

To calculate the residue of that fixed point we linearize for small deviations
about it by selting

(13.21)

¢=¢D+6¢\ ¢i=¢0+6¢il

13.22
I=L+sJ, Ji=Jo+6J;. ( ]

From (13.18) if we now keep terms linear in the deviation from the fixed point
we obtain the linear map

6J = ! (1'*'91”)’ — GesG11  Ges 6J;
(scb) T+ Gys ( —G1s 1 )(645.-) v (13.23)

where all partial derivatives of G are evaluated at (¢o, Jo, 8; + 27g,8;). Denoting
the matrix above as M, the frequency or tune ¢ of the oscillation about the
fixed point is given by

1+ (1 + G4s)? = GooGay

Trace(M,) = 2cos 2y, = 13.24
( 9) q 14 g‘J ( )
Therefore, the residue is given by'l
1 1 gdﬁg.f! gélg
R = 2|2 — Tracel =_ === _ v . .
4[ racel M)} y ( 1+ 5y (13.25)

In the case of an integrable system with Hamiltonian Ho(J) we find

§=-Ho(J)8 (13.26)

which yielda R = 0.

In the case of a nonintegrable system we test the existence of some KAM
curve with irrational frequency w by considering the residues R, of a sequence
of periodic orbits of increasing period 2xg, as » — oo. The elements of the
sequence correspond to frequencies in the continued fraction representaticn of
w, 83y pL/q1, 2/q2, -+ -. According to Greene there are three distinet cases:

1. B — D, there is a KAM curve with frequency w.
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2. R — foo, there is no KAM curve with frequency w.
3. B — Rp, the transition case.

If attention is restricted to solutions G with bounded second derivatives,
then case (2) can arise only if

1+ 64,0 =0, n—oo. (13.27)

This recalls the condition that 1 -+ Gk should first acquire a zero at transition;
c¢f. Bection 13.3.1. Tne latter condition refers to the G which generates an
orbit covering an invariant surface, which is a different object from the G{®)
of {13.27). Nevertheless, for large n the orbit generated by (") lies close to
the surface generated by G. The failure of either condition, 1 + g“(“l #0or
1+ Gyx # O, means that the corresponding canonical transformation, (13.18)
or (13.3), is no longer well defined. It seems reasonable that the two conditions
(the former taken in the limit n — o) should fail simultaneously as parameters
approach critical values.

14. RENORMALIZATION: THE ROUTE TO CHAOS

In Sections 10.3, 10.4, 12 and 13.3.1 we discussed techniques for determining
the existence of invariant curves in non-integrable systems, In this section we

continue by discussing the renormalization explanation of the break-up of a
KAM curve.

The residue criterion discussed in Section 12 is the driving force behing
renarmalization. Consider a (AM curve with a golden mean tune or winding
number. Then examine the sequence of resonances which squeeze this KAM
curve as discussed in Section 12.2. Then there is a critical case in which the
residues of the periodic orbits with longer and longer periods are 2lf equal.
This leads one to suspect an asymptotic self-similarity between these resonances
which suggests that a renormnalization approach might he useful.

The basic idea is then to find some transformation which links the proper-
ties of large islands about periodic erbils with low periods, to the properties of
smaller islands about periodic orbits with lenger periods. Once this transforma-
tion is obtained, one can calculate the critical residue and study the properties
of this self-similarity.

Te illustrate this technique we consider the two resonance probiem. First we
covert it to a convenient form, then we calculale the renormalization transfor-
mation approximately, and finally we study the renormalization group obtained.
The technique used here is similar in spirit to Escande and Doveil in Refs. 18
and 19, but the results obtained are equivalent to those ohiained by Greene and
MacKay in Rel. 20. For complete discussions of renormalization o Ja MacKay
and Greene sce Refs. 11, 21, and 22.
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14,1 THE Two RESONANCE MODEL

In this section we consider a slightly different form of the two resonance
mode| to begin renormalization. This form is inspired by the two resonance
model of Escande and Doveil,'®!®

We begin with the Hamiltonlan
H = voJ + wJ?]2 - ¢y cos(my ) — my8) — €3 coa(may) —ngf) , (14.1)

where ¢y and ¢3 in this case are constant. We would like to convert this problem
by changes of variables to one very simllar to that considered by Escande and
Doveil, namely

H =£;——Ccoa¢-—Dcos(k¢—t). (142)

This can be accomplished with a sequence of trar+formations; however, before
beginning it is useful to introduce two types of - aling transformations which
will be used together with the more standard eand ‘cal transformations.

14.1.1 Scaling The Time and the Momentum

To begin it is useful to write down Hamilton’s equations since the scaling
equations can then be read off by inapection. In the old variables Hamilton's
equations for the coordinates and mamentum (g,p) are

dg @H dp dH

E = —a? y I = '——8}" . (14-3}
First we would like to change the acale of the time variable while preserving the
form of Hamilion’s Equations. If we change to & new variable #' given by

t'=at, (14.4)
then the form of Hamilton's equations s preserved if we set

H
== 4.5
- . (145)
It is also useful at times to ecale the momentum. While this does not
preserve the Poisson bracket, it simply multiplies it by a constant. In this case
a simple scaling of the Hamiltonian once again preserves the forrn of Hamilton's
equations. [nspecting Hamilton’s equations in Eq. {14.3) we see that if

Y=, (24.8)
the form of Hamilton's equations is preserved provided that
H' =)H . (14.7)
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14.1.2 The ‘Standard® Form of the Two Resonance Problem

Now to convert the starting Hamiltonian of Eq. (14.1) to the standard form
we begin with the canonical transfoarmation (v, J) — (¢, 1)

¢ =myp—n
J=myJy {14.8)
mn=H-nJ,

which yields the new Hamiltonian

3
Hy = (mjvg — n)dy + a%‘-.ﬁz — €1 cosd — ez cos{k — mﬁﬂ) (14.9)
1
where
k=2
my (14.10)

A =namy — nymsg.

Next we would like to rrale the time variable. Following the previous section
this can be done by setting

t = —9
m {14.11)
—_ m
H? - A Hl ]

which yields the new Hamiltonian

Hy = -—-l((mll/a —nq)dy + T‘Jﬂ
A (14.12)
my my
- - -1).
¢rros¢ €3 cos{ig - t)

Before scaling the momentum it is useful to complete the =quare in the
¢-independent part of Hy to yield

3
By =00 - 00y - P e m—l-ezcos(kd:o —t) +eonst,  (14.13)
2 A A
where
Jo = M T Tt
="

Finally we shift the origin and scale the momentum variable with the transfor-
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mation

= 2, - )

¥ = an)

égii

which yields the final desired form

1
" p Ccos¢ Decos{kp -1), {14.14)
where
4
am
C=""l,
M‘ (14.15)
m

To summarize the sequence of transformations, we collect the changes of vari-
ables and the nssociated parameters below,

- A =nemy - nymg ,
my (= A s

¢ =mp-né , Tmy (14.16)
mn e M —mMito
“a - Jg) , K= “aml

In these new variabls the resonant amplitudes for the two resonances have been
shifted to

po=0

oy = 1/k {14.17)

Using the analysis of Section 12.4 the residues st the stable periodic orbits
are given approximately by

Ry = n%C

14.18
R =~ =D . ( )
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141.2 THE RENORMALIZATION TRANSFORMATION

In keeping with the residue eriterion we would like to examine the sequence
of higher order islands whirh comes from the continued fraction representation
of the frequency we are considering. I we express the sequence of resonances
given by the rule

momim
ma m, + ma )
Mo oM (14.19)

Ny ma -+ ma,

we find that this sequence limits on the irrationa) tune

p- b (14.20)
niy + yme
where
1iyvh
Ty (14.21)

These numbers are calicd Noble numbers and the sequence generated is the con-
tinved fraction representation of the Noble number I'. ‘T'he approach described
here focnses on just these types of irralional anmbers,

The two resonance terms which appear explicitly in the amiltonian gener-
ate two sequences of driving resonance islands about their stable periodic otbits
as discussed in Section 10. In addition, their interaction generates an infinite
number of other fixed points and resonance islands. To see this explicitly in per-
turbation theory we can use the analysis in Section 7 to show that the resonances
follow the sequence shown in Table 1,
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To see this in a specific example consider the standard two resonance Hamil-
tonian in Eq. (14.2} with k = 1. In Figs. 15(a) and 15(h) you see plots of the
motion in phase space (a surface of section at £ = D mod 27) generated by
integrating Hamilton’s equations for this case. In Fig. 15(a) you see the tweo
driving resonances centered at ¢ = 7 and p ~ 0, 1.0. Each sequence of islands
is of course generated by a different initial condition integrated through many
multiples of Zr. Between the two driving resonances you see 2 sequence of res-
onances. In Fig. 15(b) the momentum scale is blown up to show the detail of
the higher order reconances. The ‘dashed' curve in the center of Fig. 15(b}isa
KAM curve with a tune or winding number of 1/~. The sequence of resonances
shown are just those which correspond to ihe continued fraction approxima-
tions to 1/4, namely 0/1, 1/1, 1/2, 2/3, 3/5, and 5/8. Note that the resonance
istards rapidly squeeze the KAM curvz and impress thelr shape on it causing
it to weave through the gaps between the resonance islands. The sequence of
resonances shown are those which must be checked with the residue criterivn to
see if the KAM curve exists. Notice that the island widths are rather il defined
due to some chaotic behavior and also due to the distortions of neighboring
resonance islands. It is just this scquence of resonances which we focus on in
this section. The elements of this sequence are obtained by simply adding both
the numerators and denominators of the previous two resonances. Therefore, in
the remainder of this section we will focus on resonance phases which gdd since
these limit on the noble number which is between the two driving resonances.

The basic idea is to find a transformation of the Hamiltonian which allows
us to study the next higher order periodic orbits in this sequence and their
associated resonance islands.

To begin this process we perform a general canonical transformation close to
the identity similar to that used in perturbation theory in Sectien 7. Consider
the canonical transformation (p, @) — (p1,&1) generated by

Fy(#.p1,t) = ¢p1 + C(é, p1. 1) (14.22)

with the transformation equations

¢ = ¢+ Gp,
p=p1+Gy (14.23)
N=X+G,
Then the new Hamiltonian is
n G
M= 4 5 PGy + Gy~ Ceosé - Deaslkd - t) (14.24)

The simplest choice for the gencrating funciion is the choice which rliminates one
of #Fh explicit resonances from view, but yields explicit higher order resonances
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in the new variables. Therefore we sut

P1Ge + Gy =Crongd (14.25)
which yields
G = E sin g {14.28)
4}

If we now complete the substitution of new variables, and keep up te quadratic
terms in the strength of the resonance we find

2 2
M = %+f?[l-f-cus%q)—Dcoa(k¢|—t)+(;—,Dsin(k¢|—t)5in¢+--- . {14.27)
i 1

We wish to study the interactiona of two resonances in which the phases
add, since these resonances are closer and closer to the Noble frequency T which
lies between our initial two resonances. The other resonances are far away in
phase space and will simply be dropped here. This yields

H kC
My = % — Dcos(k¢y — t) - -2—P?cou[(l + k) — |+ -, (14.28)
1

which is ence again a two resonance Hamiltonian but with one of the driving
resonances and the next higher order resorance. To obtain the exact form of
the two resonance Hamiltonian which we started with, we must approximate the
coefficient of the new resonance. To preserve the residue and for small island
width we can set p; {o its value at the center of the island

1

which yields

k(14 kYCD

3 cos[(1 + k)¢ —¢] + - . (14.30)

s
M = 'il - Dcoslkd; — 1)

Now that we have the new Hamiltonian in the desired two resonance form,
the next step is to make a sequence of transformations to convert this Hamil-
tonian to the one which we started with. This, however, is quite easy since we
have already taken a more general Hamiltonian of this form in Eq. (14.1) and
converled it in Section 14.1. Therefore, we can read off the transformation from
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Eqs. (14.15) and {14.16). In this case we have

my -k n =1
my=1tk |, mp=1 (14.31)
A =1 , a=1,

Substituting these values into the translormation equalions we find the new
Hamiltonian

'z
W =T foosd’ - D' cos(k'd' - 1) (14.32)
where
5 2
C'=k'D D= ﬂ{;ﬁ-(:n
w1tk W =KNH - p)
ko , ¢ {14.33)
' _ _ =
& = ko&a t , %
oo Lk - 1
P {p-m) » o _ &

For example consider & = 2. This transformation collapses 47 inte 27 in
time, in the ¢ dimension we blow-up 7 in ¢ to 2r in &', and linally the mormentum
zero is shifted and Lhe scale hlown np by a facter of B, Thus, we Inok at longer
times and at smaller resonance structure, but we have changed the scales to
match the size of the driving resonances of the initial problem.

Since we have converted the higher order problem to look just like the initisl
problem, we can study the transformations to higher and higher order resonances
and periodic orbits by simply iteraling tha transformation equatinns. In the next
section we proceed in this manner by studying the ‘parameter renormalization
group’.

14.3 THE RENORMALIZATION GROUP

The parameter transformation which yields a self-similar problem is

(o 1tk
k . |
C' = k'D (14.34)
5 2
D= "_“-;—k’-co.

It is useful to study the first transformation separately since it is decoupled from
the other two.
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To calculate the fixed point of the map we set

I+ k
= — 3
k o (14.35)
which yiclds
k=1 *2‘@ . (14.26)

If we restrict k to be positive, we find a fixed point at the ‘golden mean’
ke=+y=1618 . (14.37)

Thus, in the new coordinates , the sequence of resonances limit at k = v which
means the fixed points approach

1
¥ (14.38)

Thus the limiting KAM curve which is heing tested here has a winding number
of 1/~

Next we examine the coefficient renormalization. H we iterate the & equation
to its fixed point, the map for the coefficient renormalization becomes

C'=+'D

p="0tWoh Pep,
2 2

The map defined by Eq. (14.39) haas an attracting fixed point at C = D = 0.

Thuas, for some initial C and D which are sufficiently small, the higher order

coefficients which approach the KAM curve go to zero. Since the residues are

just proportional to C and D, they alao go to zero in the same circumstances.

Therefore, for smalt C and D the KAM curve exists by the residue criterion.

This is not true for general C and D. The map in Eq. (14.39) also has a
eritical fixed point. To see this set

(14.39)

C=+D
] 14.40
p=Xcp'’ (14.40)
2
which yields
C. = 19
b
2 (14.41)
.Dc = .’—ﬁ -

This fixed point is a hyperbaolic fixed point. To see this first scale C and D as
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followa:
r= C
T C.
b (14.42)
= E‘; v
which yields the normalized transformation equation
'
=y
Y=y (14.43)

Now we linearize about the eritical fixed point (1,1) which yields the linear map

5z 0 1 Sz
= . 14.44
&y 11 by ( )
This map haa eigenvalues v, —1/+ which implies that the fixed point is

a hyperbalic fixed point. The divergence in the unstable direclion at the nt®
iterate is 4™ while the convergence along the stable direction is {—1)"/y".

It is interesting and wvseful to calculate the extensiona of the curves from the
hyperbolic fixed point since one of them defines the boundary for the basin of
attraction for the central fixed point. If we guess a form for the curve™

y=z", (14.45)
then substitating into Eq. (14.39) yields the condition

Bt (14.46)
which yields
p=,~1/7. (14.47)
Therefore, the ‘stable’ and "unstable’ curves are given by
y=a'/ (14.48)
y=1".

To summarize the portrait in (C, I}) ‘phase space’ see Fig. 16. In the area
below the curve y = z~1/7 iteration of the renormalization fcads to the fixed
point at £ = y = 0. These points lie in the basin of attraction of the central
fixed point. Iteration of initial z and y which start jusi above this line leads
to rapid growth. Since by Eq. (14.18) the residues of the sequence of periodic
orbits are juat proportionat to C and D, the basin of attraction corresponds
to residues going to zerc and to the existence of the KAM curve with winding
number 1/4. The outside corresponds to the nonexistence of the KAM curve,
and finally the line between corresponds to the transition case. '
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Fig. 16 Critical parameters and the existence of KAM curves.

Before continuing the discussion it is interesting to calculate the critical
residues predicted by the simple renormalization scheme shown here. Using Eq.
(14.41) for the critical C and D and Eq. (14.18) for the residues we obtain

Ro =~ 2#2/19
14.49
Ry ~=2n%/4°, ( )
which yields
Ro = Ry =0.2597.- (14.50)

This is quite close to the values numerically calculated by Shenker and Kadanoff*?

R = 2500888, {14.51)
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14.3.1 Discussion

It is useful to conctude this section with a brief discussion of the message of
renormalization and the residue criterion. Recall from Sections 10.2 and 10.4
that the residue of a fixed point ia related to the island width surrounding that
fixed point; as the residue goes te 2era sa does the island width. 1f we look
at a sequence of resonances which are in the continued fraction representation
of the golden mean, ther we examine z sequence of periodic orbits and islands
around them which sgueeze in on both sides of the KAM curve with golden mean
winding number. If there is to be a smooth curve threading its way through this
ever finer detail, then the island widths must go to zero as the order increnses.
As we increase the atrength of the driving resonances, the larger resonances
far from the KAM curve do indeed get larger ard distort the overall shape of
the curve, However, since the residues and {sland widths still go to zere the
KAM curve can sLill smoothly thread ite way through this maze of islands. Al
the critical case something qualitatively dilferent happens. The sequence of
residues converges to a fixed vajue (about 0.25), and thus there are neighboring
islands at all scales! It was just this obsorvation which led us Lo renarmalization.
The curve which threads Lhrough this maze and is squeezed by the sequence of
islands, must have structute on all scales and thus cannot be a smooLh curve,
Just beyond this point as the driving resonancesa are increased, the KAM curve
gets squeezed out of existence.

The strength of renarmalization is that the techinique allows one to under-
stand and calculate Lhe structure on ever finer and finer scales by understanding
the basic properties of the renormalization transformation. In particular one can
calculate the critical Lehavior at the breaking point of a KAM rurve.
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