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1. INTRODUCTION 
The purpose of this paper is to introduce the reader to the theory associated 

with the transverse dynamics of single particles in circular accelerators. Since 
the treatment here uses the Hamiltonian formulation of dynamics, the discussion 
begins with a review of Hamiltonian dynamics and canonical transformations. 

Next we specialize to the case of a particle in a circular accelerator and 
develop the equations of motion from the relativistic Hanu'Itonlan for a particle 
in an electromagnetic field. This leads to the linearization of the motion about 
a closed orbit. Temporarily suppressing the nonlinear terms, v.*e then give a 
standard treatment of linear equations with periodic coefficients which leads to 
a discussion of betatron oscillations, 

The solution of the linearized equation leads naturally to the action-angle 
variables for that problem. These variables form the basis for the study of the 
higher order nonlinear terms. Before analyzing these terms we discuss briefly 
the sources of nonlinearity and motivate the inclusion of teztupolcf in a circular 
accelerator or storage ring for the control of the chromatids, the momentum 
dependence of the betatron frequency or (une. 

In the next section a general formulation of canonical perturbation theory 
is presented. This leads to some examples of the technique for linear pertur­
bations and for a sextupole perturbation. Perturbation theory breaks down in 
the neighborhood of resonances. However, for an isolated resonance there is 
an alternative approach which yields the basic structure in phase space. To 
demonstrate this we treat a single resonance, calculate the exact invariants and 
illustrate the structure in phase space. 

Unfortunately this technique gives an exact ariBwer only for one resonance. 
For multiple resonances one must face the non-integrability of nonlinear equa­
tions in general. This leads to a brief discussion of the Chirikov criterion and 
Greene's residue criterion as methods for estimating the onset of chaotic behav­
ior in phase space. 
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To complete the dincusslon of nonlinear resonances wc go to the case of two 
degrees of freedom. Once again the case of an isolated nonlinear resonance in 
studied; the invartanta are calculated and methoda for the projective viewing of 
the invariant torus are presented. This concludes the more standard part of the 
paper. 

In the next Tew sections a more in depth treatment or the questions of chaotic 
behavior and the breaking of KAM curves is presented. This begins in Section 
12 with a discussion of the residue criterion to Bet the stage for the next two 
sections. 

In the next section recent work is presented on the direct calculation of 
KAM curves avoiding perturbation theory. This leads to a new criterion for 
the break-up of a. KAM curve which is then compared in some detail with the 
residue criterion converted to the language or canonical transformations 

In the last section we discuss the concept of rcnormalization as a technique 
for determining the break-up of a KAM curve. This section focuses on the 
discussion of an example which is presented in detail. However, this gives quite 
general results due to the universal nature of ^normalization and the residue 
criterion. This fina' section concludes with a calculation of the critical residue 
for the breaking of .1 KAM curve and a discussion of the structure of the self-
aimilarity revealed by the renormalization approach. 

Many important subjects are only mentioned briefly here and some arc not 
discussed at a!i. Since the focus is on single particle dynamics, all collective 
effects are neglected. It is usual to treat collective effects as a perturbation to 
the single particle dynamics. 

In addition we neglect the difference between electrons r.ml protons in this 
treatment. Issues relating to damping due to synchrotron radiation, quantum 
excitation, etc. are treated elsewhere in these proceedings. However, since the 
time scale for damping in an electron storage ring is very long compared to both 
the revolution period and the betatron oscillation period, the results obtained 
here are quite relevant to electrons as well as protons. 

The discussion is also confined to transverse dynamics ignoring longitudinal 
dynamics and si/nrhroiron oscillations. Typically the synchrotron frequency is 
quite small compared to the betatron frequency and thus there 1E a natural 
separation here. This not to say, however, that the general results obtained in 
many of the sections cannot be applied to synchrotron oscillations. In particular, 
the discussion of resonances is quite relevant and leads in this case to syneh.ro-
betatran resonances. 

Finally, the discussion of methods for determining the transition of chaotic 
behavior or the breaking of a KAM curve are somewhat brief but reasonably 
up to date. The field of nonlinear dynamics is a rapidly advancing one; here we 
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concentrate on those features which might have useful applications in accelerator 
theory. 

The primary references for introductory part of this paper (Sections 1-11) 
are Refa. 1 and 2, References Tor the sections dealing with the transition to 
chaotic behavior (Sections 12 - 14) will be given in the appropriate sections. 

2. HAMILTONIAN DYNAMICS 

2.1 EQUATIONS O F MOTION 

The dynamical systems of interest here can be described by a Hamiltonian 
ll[q,p,t). q is the coordinate, p is the canonical momentum, and t is the in­
dependent variable or time, tn many cases the Hamiltonian is the sum of the 
kinelic energy T and potential energy V each written as a function of the coor­
dinates and canonical momenta. The equations of motion can be derived from 
the Hamiltonian using Hamilton's equations: 

dt dpi ' dt dqi ' l ' ' 

For example, consider a system of n nonrelativistic particles interacting through 
a Force !?.w derivable from a potential. Then we have 

# = ^ ( P l + P a + - + P » ) + V(?i, 4>, — ,q») (2.2) 

and 
*5i _ ?i <*Pf _ d v 

dt m ' dt dqi 
The above differential equations are simply Newton's Second Law for the 
n-particle system. 

In the above example the canonical momenta were equal to the kinetic mo­
menta. It is evident that this is not true for more general Hamiltoniano. Con­
sider for example a nonretattvistic charged particle in an electromagnetic field 
with vector potential A(x,t) and scalar potential ${x,t). Then the Hamiltonian 
is given by 

H = ±(p-lMx,t)Y + t*tx,t) (2.4) 
and the corresponding equations of motion are 

dxi Pi-\Ai 

(2.3) 

» , = - - - — ^ -
dt m 

dt dxi e^r' m -ixi 

(2.5) 
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Note that in this case the canonical momenta and the kinetic mou.onta are 
related by 

"in, P l - Ai . (2.0) 

To convert the equations of motion to more conventional form recall the 
relations relating the electric and magnetic fields to the vector and scalar po­
tentials, 

B = ? x A 

e at 
Using Eq, (2.6) to eliminate the canonical momenta in favor of the velocities, 
Eq. (2.5) becomes 

d\ e v 
^ = - { E + - * B } . (2.8) 

Equation (2.H) is simply the I.orentz force equation for a nonrelativistic charged 
particle in an externa! electromagnetic field. 

2.2 SYMMETRY, INTEGRALS, AND INVARIANT TORI 

If we examine Eq. (2.3), it is easy to see that if the Hamiltonian is inde­
pendent of some coordinate qm, then the corresponding canonical momentum 
pm is a constant of the motion. In this case pm is a first integral of the motion 
and the coordinate qm is called a 'cyclic* or 'ignorable' coordinate. In general, 
the existence of such an integral corresponds to a certain symmetry of the sys­
tem. In this case the symmetry is the invariance of the equations of motion to 
translations in qm. If qm is an angular coordinate, thru the conjugate angular 
momentum is conserved, and the system is invariant with respect to a rotation 
in 9m-

In general for an n-dimensional system, Hamilton's equations constitute a 
system of 2n ordinary first-order differentia! equations. In order to integrate 
such a system we need to know 2n first integrals. In many cases, however, it 
is Buffkiwifc to know only n independent integrals. In these cases each inte­
gral can be used to reduce the order of the system of equations by two rather 
than just one. These problems are called integrabte, and the motion is con­
fined to an ri-dimensional surface in 2n-dimensiona! phase space. In the case 
of bounded oscillatory motion, the motion is confined to n-dimensional torus in 
2n-dimensional phase space. 

In other cases n independent integrals do not exist; these are called noninte-
grabU. In these cases the trajectory can fill regions of phase space of dimension 
greater than n. In these nonintegrabie cases there are, however, invariant tori 
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as shown by KAM (Kolmogorov, Arnold, and Moser). These invariant tori, 
however, do not exist as continuous families as in the integrable case. The set 
of invariant tori is a Cantor set. Jufit next to each invariant torus is a region 
of resonance and chaotic behavior. In spite of this for nonlntcgrablc systems 
which differ from integrabic ones only by the addition of small nonlinear terms, 
there are invariant tori almost everywhere in phase space. 

The case of two degrees of freedom with a time independent Hamiltonian 
is a special one because the torus is 2-dimensional (a real donut), but the 
phase space is reduced to 3-dimensions by the invariancc of the Hamiltonian. 
Thus, the invariant tori "hold water' in that they enclose volume in phase space. 
Therefore, the existence of KAM invariant tori in the casr cbove (sometimes 
called \\ degrees of freedom) guarantees stability. Those orbits, whether chaotic 
or not, which are inside the donut must remain inside. If they were to 'attempt' 
to cross they would fall on the invariant tori. But since it is invariant they 
have been and will be on the invariant torus forever. Thus, in this case there 
are no orbits which connect the 3-dimensional volume inside the 2-torus to the 
3-dimensional volume outside. This is not true, however, in systems ol ;'iree 
or higher degrees of freedom. In these systems invariant tori do not guarantee 
stability since their dimensionality is too low to enclose volume. Thi3 leads to 
the phenomenon of Arnold diffusion. 

Although many of the differential equations which will be discussed here 
are, strictly speaking, nonintegrable, they are sufficiently close to integrable 
systems to admit approximate solutions. In cases where there io significant 
chaotic behavior it is necessary to use other techniques such as the residue 
criterion, the Chirikov criterion, the direct calculation of KAM tori through 
solution of the Hamilton-Jacobi equation, or renormalization techniques. These 
methods are concerned with the nature of the break-up of invariant tori and are 
discussed in Sections 12-14. 

2.3 MOTION NEAR A KNOWN PERIODIC SOLUTION 

In many cases we are interested in the orbits of a system which are close to 
a known periodic solution. This periodic solution may or may not be easy to 
find; let us assume that we know it. Consider the Hamiltonian in Eq. (2.2) in 
two dimensions. This yields the equations of motion, 

dV 
mx = --5— 

ax 

dV 
my = - - = -

dy 

A periodic orbit XQ[1) and yo(0 with period T is defined to be one which closes 
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on itself in time T. Thus it is defined by 

(2.10) 

(2.11) 

dV 
mx0 = --g-(x0i yo) , io{( + T) = x0[t) 

dV 

Now consider an orbit close to the periodic orbit and let 

£ = x - xn 

T) = y - Vo • 

Substituting into Eq. (2.9) and expanding for small £ and r/, we find 

d2V d2V 

(2.12) 

m J 1 = -tdxdy-{x»'J0)- "dyT(x°'vo) • 

Thus, since yo and xo are periodic functions of t, wo find a linear differential 
equation with periodic coefficients which can be derived from the Hamillonian, 

where the derivatives of the potential arc again evaluated at (jr^yo). Note that 
the coefficients in the new Hamiltonian now depend periodically on tirne rather 
than being constant. Therefore, the solutions wj11 differ substantially from those 
for the harmonic osaliator. 

The stability or instability of the periodic orbit in question is determined by 
the solutions of Kq. (2.12). Thus the solutions of linear equation? with periodic 
coefficients are evidently of fundamental importance. The solutions to this type 
of equation (Hill's equation) in one degree of freedom will be discussed in Section 
5. 
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3. CANONICAL TRANSFORMATIONS 

A dynamical system is described in terms of a certain set of variables, coor­
dinates and canonicaily conjugate momenta. Sometimes it is more convenient 
lo express the equations of motion in terms of different variables which are 
functions of the old ones. It is desirable to have the new coordinates again in 
Hamiltonian form; that is, if Q and P are the new coordinate, then 

dQ _ dK(Q,r,t) dp dK{Q,r,t) 
dt " dp ' dt dQ K ' 

where K(QtP,t) is the new Hamiltonian. The question is then to find those 
transformations which accomplish this. 

3 .1 THE GENERATING FUNCTION OF A CANONICAL TRANSFORMATION4 

Hamilton's equations of motion can be derived from a variational principle. 
For a system described by a Hamiltonian H(q,p,t), the Lagrangian function is 

Consider the evolution of the system from t | to (j and the nction integral 

f i 

S = j C{q[t),q{tU)dt . (3.3) 

Next vary the function q[t) so that the end points are fixed, and ask for what 
q(t) is the action integral stationary. The answer can be found from the calculus 
of variations; q{t) must satisfy 

_ _ _ _ = o (3,4) 
dt 3q dq { V 

which is equivalent to 

¥ • £ - • • * - £ • 
Equations (3.5) are Hamilton's equations of motion. 
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Now, with new variables Q and P and a new Hamiltonian K, Hamilton's 
principle must again be valid 

6 S> = 6 j [ E P>& ~ W - O ] <*( - 0 . (3.G) 
i . i 

Therefore, the new and old Langrangian can differ at most by the total time 
derivative of some function W (recall that the end points are fixed). 

This function must be a function of the new and old variables. However, 
only 2rc of these arc independent for an n-dimcn3ional problem since there are 
2n transformation equations relating the new and old coordinates and momenta. 
Consider a function which depends only on the new and old coordinates. That is 

W = Fi[q,Q.t) . (3.7) 

Then we must have 

$ > . * - / J = £ r , C J , - t f ( - ^ . (3.8) 
I t 

Now if we expand the total time derivative we have 

E*(«-£)-E4(«*£)- (»-**$)-o- ,3.. .9) 

For Eq. (3.9) to hold identically, the coefficients of v and Q must vanish because 
q and Q are the 2n independent variables. Thus we must have 

(3.10) 
dF\ 

K = H + -d • 
Equations (3.10) specify the relations between the old and new variables in a 
canonical transformation. The first two of these equations can be solved for q 
and p in terms of Q and P. The new Hamiltonian is then giver by the third 
equation in (3.10), 

K{Q,P.t) = H(q(Q,P,t)MQ,P.t),t) + ^ MQ.^O.Q.O • (3-H) 

JPJ ( 9 i Qt t) is called the generating function of the canonical transformation 
in Eqs. (3.10). Rather than choosing thr old coordinates and new coordinates 
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(Q,Q) iVt variables, we could have chosen the old coordinates and new momenta 
(q,P)- Tn this case we have a different generating function Fjfo, P,t), and a 
different set of equations for the canonical transformation 

Q-d£ii,r,t) , (3.12) 

dFi K-^U 4 - (* (<,,P,() . 

Fj and F\ arc related by a Lcgcndre transformation. 

The equations of a canonical transformation can be viewed in many different 
ways. Wr could start with the relationship between the coordinates, derive the 
generating function which yields that, and then find the new momenta and new 
Mamiltonian. Alternatively we could begin with a new Hamiltonian, solve for 
the generating function and then calculate the new coordinates. In the next 
sections we show some examples. 

3.2 ACTION ANCILE VAMAULKS FOR THE HARMONIC OSCILLATOR 

In this section we consider a problem that we know how to solve. The 
harmonic oscillator Hamiltonian is 

n=v- f - - - , (3.i3) 

and the solution of the equation of motion is 

x - acos(wf 1 <fo) 
(3.11) 

ji — - a wsin(ut l $n) , 

where a and 4*o are two arbitrary constants. The motion is confined to an ellipse 
in phfcse space. Note that the Hamiltonmn is independent of the time and is thus 
a constant of the motion. Therefore the constant a is related to the constant 
value of H. 

Now we would like to change to a set of variables for which the new Hamil-
toniaii is a function only of the new momentum: Since we already know the 
solution above, we can use it to construct these new coordinates. Eq. (3.11) 
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.suggests we consider a transformation of the form 

x - a{J) cos(<£) 
[3.15) 

p - a(J)w5in(<#) 

where J and 4> a r c the new momentum and coordinate respectively. a\J) is 
some as yet unspecified function of the new momentum. To accomplish the 
transformation we will use a generating function of the first type discussed in 
the previous section. From the transformation equations in Kq. (3 10), we ru-cd 
to find the old momentum p in terms of the new and old coordinates. Thin ran 
be done by combining the two equations in Eq. (3.15) to yield 

p ~ UT. tan if* (3.1fi) 

The equation for the generating function can be integrated to yield 

wx"1 

Fi (i,<£) - tan-* • (3.17) 

Solving for thr n^w momentum we find 

J V . (.!.!«) 

and the complete set of transformation equations now read:; 

p - - v 2 Ju si i i0 j 3 | i | ) 

K - ' u-J • 
2 2 

The new momentum J is called thr action variable while the new coordinate <p 
is the angle variable. It is not hard in see that if the llntuiitoiiiaii has the units 
of energy, J has the units of an art ion. 

These coordinates are very useful for studying problems which differ from a 
harmonic oscillator only by the addition of small nonlinear terms. 
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3.3 DEVIATION FROM A KNOWN SOLUTION 

In flection 2-3 we saw that deviations from a known periodic solution to a 
differential equation obeyed a linear differential equation with periodic coeffi­
cients. It is useful to derive a somewhat more general result using canonical 
transformations. Consider a Hamiltontan / / and a known particular solution 
qv{t) and po{t) to Hamilton's equations. For cases of interest thia is the peri* 
odic solution to an inhomogencous differential equation. This known solution 
satisfies 

(3.20) 

- 5 - = - l f Mt) .»(0.* ) • 

We would like to perform a canonical transformation to new coordinates and 
momenta which are close to the particular solution. Let the new coordinates 
and momenta be given by 

0 = 9 - »(0 
(3.21) 

Now if we use a generating function of the second type the equations of the 
transformation are given by 

(3.22) 

which can be integrated to yield the generating function 

fti* P*t) = [q-go[t)\[P + «,(«)] .. (3.23) 

Then if we use Eq. (3.11) for the new Hamiltomaji and expand for small Q 
and P, we find 

K = ffivo[t).rtt)*t) + MO**) + 5[(J5r«{»W.poW,o]g" 
(3.24) 

+ \H„[*[t).Poi*)**)P* + ffw(fli»W.Po[0.0*?'' 
where the subscripts denote partial differentiation. The Hamiltonian in Eq. 
(3.24) consists of two types of terms: those which depend only on the time and 
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those which arc quadratic and higher-order functions of Q and P with time-
dependent coefficients. The terms in the Hamiltonian which are not functions 
of Q and P do not affect the differentia! equation for Q and P and thus can 
be ignored. If ths known solution is a periodic one, the lowest-order terms 
which contribute to the differential equations are second-order with periodic 
coefficients. Thus the differential equations are linear with periodic coefficients. 

Particular solutions which are periodic are fixed points of the one-period 
mapping generated by the differential equation. The transformation above has 
moved that fixed paint to the origin in the new coordinate system. This is easily 
seen if wc write the condition Tor a fixed point, 

dll/dQ - 0 
(3.25) 

dlf/dP -- 0 . 

From Eq. (3.2-1) this is satisfied for 

Q ^. 0 , P ^ 0 . ('J ?.$) 

There may also be other fixed points of this system or other periodic orbits in 
the new variables. These periodic orbits are fixed points of mappings through 
different periods and thus the above process can be performed again. 

Not surprisingly we will once again find quadratic Hcviiiltonians with 
periodic coefficients; that is, linear differential equations with periodic coeffi­
cients, Since these types of equations are so ubiquitous, we return to them in 
Section 5. 

4. THE MOTION OF A PARTICLE IN AN ACCELERATOR 

4.1 THE HAMILTONIAN AND THE EQUATIONS OF MOTION 

The motion of a particle in a circular accelerator is governed by the Lorentz 
force equation, 

? - < ( E < - X B ) . (4.1) 

wh<ire P is the relativistic kinetic momentum and v is the velocity. Bold face 
quantities denote vectors. It is convenient to cast these equations in Hamiltonian 
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Fig. 1 The coordinate system. 

form- If we introduce the vector and scalar potentials, 

r c dt 

then the Hamiltonian is given by 

H = t+ + e [mV + (p - eA/c) J | 1 / J , 

l«) 

(4.3) 

where p is the canonical momentum. In teroiB of the kinetic momentum and 
the vector potential 

p = P + - A ( x , 0 - (4.4) 
c 

The equations of motion can then be written in terms of Hamilton's equations, 
dp 8H d x d H 
rf< ~ "" £bc ' df _ dp (4.5) 

4.2 THE COORDINATE SYSTEM AND THE CHANGE OF INDEPENDENT 
VARIABLE 

It is useful to use a coordinate system based on a closed planar reference 
curve. This reference curve is taken to be the closed trajectory of a particle 
with some reference momentum po in the guiding magnetic field. The coordinate 
system ( i t sty) is similar to a cylindrical system, however, the radrae of curvature 
may vary along the curve. 
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From Fig. 1 if r is the coordinate of a particle in space, and ro is the point 
on the reference curve closest to r, then 

a = distance along the curve to the point ro 
from a fixed origin somewhere on the curve, 

x = horizontal projection of the vector r - ro, 
y = vertical projection of *.hc vector r - ro, 
p — local radius of curvature. 

The Hamiltonian written in terms of these coordinates is 

H = * * . ( * + fi^i!! + („-t A tf + {„,-tA,)'f M 

where p a and pv are projections of p onto the x and y direction and 

P. = ( p - * ) ( l + | ) • (4.7) 

We will call the vector potential used in Eq. (4.6) the canonical vector potential 
since A,, Ax, And Av are defined analogously to the canonical momenta. In 
particular note that 

l ) ( l + f ) • (4.8) At = (A • s 

Instead of using the Hamiltonian above, it ia useful to change the indepen­
dent variable to s rather than t. This can be done provided that 5 is monotonic 
in t. This is a standard transformation and can be accomplished by denning 
another Hamiltonian, 

W s -?,(*,**,»,PV,*,-//) - (4.9) 

That is, wc solve Eq. (4.6) for ps. With this new Hamiltonian and new inde­
pendent variable, Hamilton's equations become 

(4.10) 

Note that [t. -11} now play the role of the third coordinate and conjugate 
momentum-

dx _ ay 
ds dpi 

dp? 
ds 

3K 
dx 

Ay _d)l_ 
dS dpy 

dpv 

ds dy 

dt ax 
ds ~ d(-H) * ds 

aw 
at 

to 



4.3 THE LINEARIZED EQUATIONS OF MOTION 

To be specific we will specialize to the case of no electric field and a constant 
magnetic field given by 

B9 = -Bo(s) + Bi(s)x + <-
Bs - fli(a)y + • • - . 

The main bending field Bo(a) is chosen so that a particle at the reference mo­
mentum po will bend with a local radius of curvature p[s). Thus, we set 

B\{e) in Eq. (4.11) Is simply the gradient of the magnetic field. It is conventional 
and useful to scale the gradient to obtain the focusing function, 

K l { a ) a . & M . (4.13) 
Poc 

Using Rep. (4.12) and (4.13) the canonical vector potential which yields the 
above magnetic field is 

' - - T I H ? - * ) ^ ] ^ - • < 4 1 < ) 

The new Hamiltonian from Eq. '4.9) is 

V r- (-p.) = zfj*- _ (i + S) [*! _ m y - p\ - p>]m . (4.is) 

Since there la no time dependence) B is a constant of the motion which we call 
E (the energy). In an actual accelerator the magnetic fields do change in time, 
and there are longitudinal electric fields to accelerate the particles. However, the 
acceleration process Is slow and can be considered adiabatic for our purposes. 
In addition, the longitudinal electric fields cause longitudinal oscillations which 
are omitted here. 

To continue we expand the square root in Eq. (4.15) and substitute the 
vector potential from Eq. (4.14) to obtain 

where p is the total kinetic momentum of the particle, 

p = {£*/«* " m V l 1 ^ , (4.17) 

which may be somewhat different from the reference momentum. The expansion 
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of the square root is a good approximation provided that 

^ < 1 , (4.18) 

which is typically the rase From Hamilton's equations and the Hamiltonian in 
Eq. (4.16) we find 

_ - PO^) 

' (4.16) 

dx _ 
ds ~ 

Pi 
P 

d>* 
' ds " ~ P 0 ( ^ 

-Ky ) » 

dy _ 
da 

Py 

P 
dpv 

* ds* -Po^iy 

terms of x and y Eqs. (4.19) become 

X 
1 , PO / 1 

, PoKt 

, - - y 

P' 

= 0 

-Pg 1 
P P 

i 

(4.20) 

where prime denotes differentiation with respect to s, Equations (4.20) yldd the 
motion of particles near the reference orbit. Because K\ and p are periodically 
dependent on J with period C , the circumference, these equations arc Hill's 
equations. 

5. LINEAR EQUATIONS WITH 
PERIODIC COEFFICIENTS5 

There have been many useful techniques developed for linear equations with 
periodic coefficients in the context of alternating gradient focusing for particle 
accelerators or storage rings. In this section we follow Rcf, 5 to develop these, 
now standard, techniques in one dimension. The matrix approach 1B used ini­
tially to understand stability and introduce the very important h net ion 0, the 
Courant-Snyder amplitude function. Next we find a canonical transformation 
which changes the Hamiltonian to that for a harmonic oscillator. Finally we 
discuss the adiabatic damping of betatron oscillations with acceleration. In this 
section the discussion is restricted to the case of a particle with momentum equal 
to the design momentum. Thus we find two uncoupled homogeneous differential 
equations or the form 

^ + tf(5}* = 0 (5.1) 

which can be derived from the seated Hamiltonian 

B .% • «®L . (,,, 
z represents either horizontal or vertical displacement, and K satisfies the peri­
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odicity relation 

K{s + C) = K{s) . (531 

Here C is the circumference of the equilibrium orbit. 

In a ct/cular accelerator or storage ring the magnetic lattice" ideally con­
sists of N identical sections or "unit cells", so that K also satisfies the stronger 
periodicity relation 

K(s + L) = K(a) j L = C/N. (5.4) 

5.1 T H E MATnrx APPROACH 

The solution of any linear second order differential equation or the form (5.1) 
is uniquely determined by the initial values of z and its derivative z': 

z[a) = az(&0) + 6z'(ao) . 

J{s) = cz(so) + d^^o) , 
(5.5) 

In matrix notation this can be written 

Z(s) = = M(s \aD)Z{sa) = 
'o 

e 

6' 

d 

' z(ao) 
(5.6) 

The matrix formulation is useful because it separates the properties of the gen­
eral solution from those due to a specific initial condition. The matrix depends 
only on K(s) and the length of the interval » - SQ. In addition, the matrix for 
any interval made up of sub-intervals is just the product of the matrices for the 
sub-intervals, that is, 

M(s a |5o) = M{*i\*\)M(si\6o) (5.7) 

It is important to note that the determinant of the matrix M is equal to 
unity, because Eq. (5.1) was derived from a Hamiltonian and thus does not 
contain any first-derivative (dicsipative) terms. 

19 



For the case of constant K which corresponds locally to a harmonic oscillator 
solution,, the matrix is 

M(*|*o) = 

cosfll K ' / ' s i n ^ ' 

-K1'2 Bin 4> cos<f> 
(5.8) 

where 4> = J f 1 ' 3 ^ - .So)- When K is negative, this is sometimes written 

coshV- ( - / f j - ' ^ s i n h ^ -

cosht^ 
Af = (5.9) 

where tf> = ( - / f ) : / 2 ( s - s0). Finally for an interval of length I in which K = 0, 
Eq. (5.1) can be trivially migra ted to yield 

M = 
ri 

0 
fa. 10) 

Perhaps the most important point is that for an interval in which K is piece-
wise constant the matrix for the total interval is thn product of the appropriate 
matrices of the forms (5.8) to (5.10). 

In the periodic systems considered hete the matrices of particular impor­
tance are those which map the initial condition throuph an entire period. Let 
UB abbreviate this one turn matrix as follows, 

M(s) - M[s t- L\s) (5.1!) 

This is the matrix for passage through one period, starting from s. Due to the 
periodicity of K the elements of A/(s) must be periodic functions of s. with period 
L. The matrix for passage through one revolution composed of V identical cells 
is 

M{s + NL\s) =\M{s)f . 

Finally, the matrix for passage through k revolutions is \M(s)\Nk . 

In order for the motion to be stable all the elements of the matrix MNk 

must remain bounded as fc "mcieases indefinitely. To obtain the condition for 
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this, we consider the eigenvalues of the matrix M(s), that is, those numbers A 
for which the characteristic matrix equation 

MZ = \Z (5.12) 

possesses non-vanishing solutions. The eigenvalues are the solutions of the 
determinants! equation 

D e t ( M - A / ) = 0 , (5.13) 

which yields the characteristic equation, 

A* - A(o + d) + l = 0 , (5.14) 

where we have made use of the fact that Dct M — ad — be = I. Defining 

(5.15) 

the two solutions of (5.14) can be written 

A = cos/i ± i ain/i = e±ip . (5.16) 

The quantity fi is real if \a + d\ < 2, and complex if jo + d\ > 2. 
Assuming that \a + d\ ^ 2, the matrix M may be written in a form which 

exhibits the eigenvalues explicitly. To do this define cos jt by (5.15), and define 
a, P, and 7 by 

a - d = 2a{s) sin ft , 

cos/x = 2 T r M : = 2(a + d) • 

b = fl(s) sin /* , 

c = -7(a) sin/1 . 

Tl.e condition Det M = 1 becomes 

0 - r - a J = l . 

and the matrix M can now be written 

"cos/i + a sin/* /Jsin/i 

—7sin/« cos/j-aoin/J 

(5.17) 

(5.18) 

M = = /cc*ii + J sin/i (5-19) 

21 



where / is the unit matrix, and 

« 0 

— Y - o r 
(5.20) 

is a matrix with zeru trace and unit determinant which satisfies 

J7 = -I . (5.21) 

It is important to note that the trace of A/, and therefore /«, is independent 
of the reference point s. From (5.7) we have 

M[si + L\s1) = M[S3)M{s2\5l)=Misi\.<ii)M{*1) , (5.22) 

so that 

iW(aj) •-= A/(«- '«i)Af («i)[Af(d2| si) | - 1 . (5.23) 

Therefore hf(*\) and M(sj) are related by a similarity transformation, And thus 
have the same trace and eigenvalues. However, the matrix M(s) as a whole HOJS 
depend on the reference point s. Thus the elements Q, /!, 7 of the matrix J 
must be functions of st periodic with period L. 

To examine stability simply recall that the eigenvalues of M(s) have the 
form 1 

A = e*<* . (5.24) 

Thus, the eigenvalues of M(s)k are given by 

A t = e***" . (5.25) 

For stability the A* must remain bounded as k --> 00. This means that ft, must 
he re si since in this case the eigenvalues have unit magnitude and the matrix 
elements of M{s) simply oscitlate with increasing k. Recalling the definition of 
ft- in Eq- (5.15), the motion is stable provided 

Trace[Af(s)] < 2 , (S.26) 

and is unstable if 
Trace|Af [s)\ > 2 . (5.27) 

Thus, to summarize, the matrix approach can be used to construe* explicitly 
the periodic matrix elements a,b,c and d. Once the one-turn matrix at a point 
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$0 is known, its trace can be calculated. This yields 11, which can then be used 
to calculate a, t and 0 at the point *o> The values of a, t and 0 at other points 
can then be calculated via the similarity transformation in Eq. (5,23). In this 
case the matrix elements change butj* remains fixed, and thus the change is 
entirely due to o, -7 and 0. 

These parameters play a major role in determining the details of the mo­
tion. In particular, 0 determines the maximum local amplitude of transverse 
oscillations. This is demonstrated in the next section. 

5.2 THE PHASE-AMPLITUDE FORM OF THB SOLUTION 

The previous section suggests that we might consider a solution of the form 

*,(«)= ufaje^'), (5.28) 

Upon substitution into Eq. (5.1), it is sttaightforward to verify that if w and t/> 
satisfy 

w" + Kw - ~ a 0 (5.29) 

and 

f = ± , (5.30) 

then z\ as defined by Eq. (5.28) is Indeed a solution to Eq. (9.1). In addition 

zi\i) = itf(s)e_i*to , (5.31) 

is also a solution and 2\ and z% are linearly independent. Since any solution 
of (5,1) can be written as a linear combination of «i and z2, we can write the 
matrix M(,sj| jj) in terms of £\. Using the form of the solution in Eq. (5.28) 
the matrix becomes 
M(sj]si) -

jj£cos$ -u>au>Jsin$ wyW2 s'mij/ 

(5.32) 

where ̂  stands for ^(*i) -- (('(si), tui for w($i), etc. 
Consider for example the case where 52 - »• is just one period of K(&), i.e., 

sj - *i = /'. In this case the matrix M is identical with the matrix (5.19). If we 
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require that w[s) be a periodic function of st then w\ — w% and w{ = tuj, and 
the forms (5.19)and (5.32) are identical provided that 

which yields 

w*~0 , 

ww* = - « , 

1 f (u>u>')a _ 1 + a2 

W2 ~ ~0 1 ' 

(S.33) 

(5.34) 

(5.35) 

(5,3(5) 

The above identiRcat'.ons are legitimate provided that wc can show thi\t 0 ' / ' 
satisfies the differential Eq. (5.29) and that 

0'---2a (5.37) 

To prove this, consider the one-period matrix for the transformation from 
s + ds to s + h + ds. From Eq. (5.23) the matrix in given by 

M{s + d*) = M{s + ds\s)M(a) \M{s + d s | a ) | _ l , (5.38) 

However, from the differential equation in Eq. (5.1), it is easy to see that 

1 dfl-

M(s + ds\s) = 
-K{s) d* 1 

(5.39) 

Therefore, if we substitute (5.39) and (5.19) into (5.38) wn find 

'{I<0 - l()sin(i - 2 a sin (i 

M[s + ds) = M[s) + As. (5.40) 

Inspecting the upper right matrix element, we ace that (5.37) is indeed valid. 
In addition from the other matrix elements, we obtain 

*' = -!/?<' = K0~t «w- - - ^ - (5.41) 

and 
V = iKa. (5.42) 

Using (5.37) and (5.41) one can verify that /J 1 ' 2 does indeed satisfy (5.29), and is 
thus a periodic solution of that equation. Therefore, Eqs. (5.3*1) and (5.35) art 
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justified. Combining Bos* (5 JO) and (5.33) we find the very important relation 

L 
ft BI 

b 
/ J . (5«) 

Equation (5.13) may be regarded as the definition of #». It is consistent wHh the 
previoej definition, (6-15), but f» unambiguous; equation (6.15) only define* #» 
modulo 2*. 

Considering an accelerator of circumference C — Hh with N identical unit 
cells, the phase change per revolution Is If ft. It is also useful to define 

Nfi 1 / oV . . , , , 

which in the number of betatron oscillation wavelengths in one revolution. Al­
tar nn Lively, v is the frequency of betatron oscillations measured in units of the 
revolution frequency; here we refer to v simply as the frequency or tunc of 
betatron oscillations. 

Using the previous results *i and «j may be written in the following useful 
form, 

s. * * |/ ,(i) <-**"W, (5.45) 

where 

* » - / $ • 

The function d(s) Increases by 2* every revolution. The general solution of (5.1) 
can therefore be written 

*(s) . op1** cos|i/^(a) + 6) , (5.46) 

where « and $ are arbitrary constants. This la a patudo-karmonie oscillation 
with varying amplitude 0*^(4) and varying Instantaneous wavelength 

A«2w0(«) . (6.47) 

Note again that the maximum amplitude i*t a fixed position JO on successive 
revolutions la simply proportional to 0{t*)1t*. For this reason ff{a) is called the 
CoHtant-Snyder amplitude function. 
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5.3 ACTION-ANCLE VARIABLES 

Now let no assume that wc have explicitly calculated ff[») and d-(»). Then it 
is useful to construct action-angle variables for this problem in a way completely 
analogous to the harmonic oscillator in Section 3.2. To do this first write the 
scaled Hamiltonian for betatron oscillations from Bq. (5.2), 

« = £ + *!&! . 
2 2 

Next write the solution for both the position and momentum, 

2 = a/j'/ f l «os(i^(s) +6) 

[SAB) 

.= . - a / r l / a 3' sln(i^(j) + S) - Zr cos(i/^(a) + £) 
(5.49) 

The momentum equation is obtained by simply differentiating the equation for e. 
Using the solution above as A guide let us search for a canonical transfor­

mation of the form 

z = a(J)^ 1 / ' rostf 

p=-a (J ) /7 - , / J slnV»- ^-cos^i 
47 

(R.BO) 

where J and 0 are the new momentum and coordinate respectively. We will use 
a generating function of the first type; therefore, we need the old momenta p in 
terms of the new and old coordinates. Combining the two equations In (5.50) 
yields 

p * - | ( t a n * - ^ . (8.51) 

Therefore, Eq, (3.10) for the generating function can be integrated to yield 

F,(*,*) = - ^ [ t a n i J - - £ ] . (5.S2) 

Solving for the new momenta in terms of the old coordinates and momenta, 
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we find 

and the complete set of transformation equations becomes 

z- \/2J0coai}> , 

H\-H + dFt/ds = J/0(s) . 

The dilferential relations for 0 in Eq. (5.41) have been used to simplify the 
new Hamiltonian. 

In these new coordinates the solution of the equations of motion is 

J = constant 

*w-«°>+/$i 
(5.55) 

. W 
Nate that in the process we have explicitly constructed an invariant, J. 

Equation (5.53) for the invariant is the equation of an ellipse in phase space 
which rotates periodically in 9. If a particle has initial conditions which begin 
on some ellipse given by Jo, then the coordinates and momentum of that particle 
always stay on that ellipse. 

Looking at it in another way, consider a single particle traversing the periodic 
focusing structure and plot its position and momentum in phase space each time 
it passes 3 • so* Then, the locus of those points is an ellipse in phase space. At 
points other than t0, the ellipse so generated evolves according to Eq- (5.53). 
tf we extend phase space to include the independent variable s, we find a 3-
dimensional extended phase space and the motion is confined to the 2-torus 
defined in Eq. (S.53). 

The invariant J is simply related to the area enclosed by the ellipse, 

Area enclosed = 2ir J . (5.56) 

In accelerator and storage ring terminology there is a quantity called the emit-
tonee whkh ta closely ret&ted to this Invariant. The emittance, however, is a 
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property of a distribution of par ticks, not a. single particle. Consider a Gaussian 
distribution in amplitude. Then the (rma) emittance, e, fa given by 

In terms of the action variable, J, this can be rewritten 

(6.57) 

(.j.58) 

where the bracket indicates an average over the distribution In J. 
Finally note that the form or the new Hamiltonian is not precisely that of 

a harmonic oscillator in that the phase does not advance uniformly This of 
course causes no difficulty in that both cases are trivial to solve. However, it 
is possible to perform another canonical transformation to coordinates which 
have a. uniformly advancing phase. This is accomplished with the canonical 
transformation: 

W , / i , . i ) =^A 2JTI/.I / dV 
"C ~ J J + $J\ 

V ' I *- it> I-%tvt t d£ 
(5.5U) 

In these new coordinates the oscillating part of the phase advance has been 
extracted leaving only the average phase advance. Either these coordinates or 
the previous set can be used in the section on canonical perturbation theory; 
however, we will use thp second set since no reference is made to a specific 
problem. In the later sections we will use the first set [J, iff) since this simplifies 
the notation in spite of the fact that one must integrate to obtain the phase 
advance. 
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5.4 ADIADAT1C DAMPING 

In the previous sections the cose of a constant momentum equal to the 
design momentum po w a s considered, From a scaled Hamiltonian and the known 
solutions the invariant J was calculated. In this section we consider the case of 
slow acceleration so that the momentum p and the magnetic fields (oc po) slowly 
increase together with p — pg. In actual accelerators the acceleration time is 
much longer than either the revolution period or the betatron period. However, 
although thiB slow change does not affect the single particle dynamics, it does 
lead to the adiabatic damping of the action J and thus the emittance of a beam 
of particles. 

To sec this effect we return to ft Hamiltonian of the form in Eq. (4.16), 

H = A + * * £ £ . (5.60) 
2po 2 * ' 

where once again z refers to either x or u and K(a) refers to the appropriate 
focusing function. As in the previous section we can perform the change to action 
angle variables. The generating function of the transformation {ztPz) '-+ [W,^) 

f l ( * . * ) = * * ' Pi*) 
20(s) 

which leads to the transformation equations 

tad ^ - (5.61) 

z - \/2Wp/pocoar}; , 

p=- s/2Wpo/0 f sin i> - ^ cos A , (5.62) 

H, =W + 3F , /3 s = W/0(s) . 

Here, again, the phase advances as in the previous Bection; however,the invariant 
is given by 

"-SMS-?)*!- «"" 
From Hamilton's equations 

* = T s *' . (5.64) 

and therefore from Eqs. (5.53) and (5.63), W and J are related by 

W = poJ . (5.65) 
Now consider the adiabatic variation of po. In this case the action W is an 
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adiabatic invariant and is very nearly constant; therefore, 

J -• - « Po' • (5.66) 
Po 

This is called adiabatic damping. It means that as a particle beam is accelerated 
in a circular (or linear) accelerator, the emittance is inversely proportional to 
the momentum. Therefore, from Bq. (5.62) the transverse beam size varies as 

1/2 
(5.67) 

Due to this variation it is useful to define an auxiliary quantity, the invariant or 
normalized crnittanee, which is constant, 

FJV = Pit . (5.G8) 

This quantity is proportional to the area in phase space (z,Pi) occupied by the 
beam distribution. 

The damping discussed docs nut apply to electrons in cirr.ilar accelerators 
or storage rings since the effect is small compared to radiation damping. For a 
discussion of radiation damping and quantum excitation in circular accelerators 
see Refs. 6 and 7 and references therein. 

5.5 T H E ADIABATIC INVAKIANCE OF THE ACTION 

It is straightforward to show that W, the action for betatron oscillations 
discussed in the previous section, is an adiabatic invariant. To do this we resort 
again to the very powerful technique of canon.ical transformations. Since we 
already have the parametric dependence of the transformation to action-angle 
variables on po, it is now only necessary to allow that p<j depend upon 3. In 
this case the transformation to the action-angle variables discussed in Section 
5.4 is etill valid; however, the new Hamiltonian is no longer independent of ri> 
the angle variab''* In this case the transformation to the new Hamiltonian from 
Eq. (5.62) »• 

. A l V fsin2.fr ~ tf(s) cos 1 tf,| , 
0(i) 2po 

where the rate of change of the momentum is 

as 
Equation (5.69) is the Hamiltonian which describes betatron oscillations in the 
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presence of acceleration. The phase and action variables evolve according to 

dW t/ l ' 
- j - = - ^ W l c o s 2 0 + 0'{s)cos20Bin20] . 
da p 0(s) 

We would now like to show that the variation of W is quite small for small 
pf, even if the total change of momentum is quite large. We do this by inspecting 
the differential equations in Eq. (5.71). For the purpose of this demonstration 
it is useful but not essential to smooth the betatron oscillations, i his is done 
by setting 0' - 0 and 0[s) = constant = 0 which yields 

-r ~ z ~ T:J^ sin z0 
dW r/ * ' 
T~ = - T T " ' cos 20 . 

To zcroeth order the phase variation is simply unperturbed. Substituting 
this approximate solution of the phase equation into the differential equation 
for the action yields 

dW D* 
~ -J£-Wcm(2s/0 + 0 O ) - (5.73) 

as po[a) 

By inspecting Eq. (5.73) Tor small pf, and thus slow variation of po, it is easy 
to see that IV is nearly constant. Thia la due to the rapid oscillations of the right 
hand side, ir po(-0 varies little in one betatron period, then the variation of W 
averages out over one betatron oscillation. For finite changes in Pa{&) there is a 
small non-adiabatic contribution. 

This can be estimated by integrating Eq. (5.73) over the entire acceleration 
cycle. To do this wc assume a linear increase or the momentum and the magnetic 
fields which bend and focus the beam, that is, 

po(a) =Pi+ p's . (&.74) 

Integrating Eq. (5.73) is straightforward to show that for small p' the change 
in action is limited by 

Wi < 11P7J [VT^P) • { 5 ' 7 5 ) 

where Ap is the total change in momentum. Note that the variation in W is 
small even for large Ap provided that the change in momentum in one betatron 
wavelength [2n0p') is small compared to the initial momentum. 

31 



6. THE NONLINEAR TERMS 

6.1 T H E S O U R C E S O F N O N I . I N E A R I T Y AND O H U O M A T I C I T Y 

The nonlinear terms that have 80 far been neglected conic from several 
sources. The so-called geometric terms arise from terms in the longitudinal vec­
tor potential which are higher than quadratic. These aris< from both deliberate 
and inadvertent nonlinear magnetic fields. In addition, r,herc are higher-order 
terms in the transverse components of the vector potential which are necessary 
to satisfy Maxwell 's equations. There are also kinematic terms which come from 
the expansion of the square root in F.q. (4-15)- Finally, in colliding beam storage 
rings there is the beam-beam force. A particle from one beam feels the electric 
and magnetic fields du<* to the collection of all the particles in the opposing 
beam. The beam-beam force is typically very strong, quite nonlinear, and of 
a different character than the others mentioned; therefore, it is usually treated 
separately. For useful reviews of the bcarn-beam effect see Refs. 8 and 9. 

Aside from the beam-beam force, a dominant source of nonline.irity comes 
from the deliberate use of sextupoles to cure chromatic effects in storage rings. 
Before discussing the deleterious effects or sextupoles on the homogeneous equa­
tions, it is first useful to motivate their inclusion in the first place. 

Let us first examine the Hamilloni;.n for betatron oscillations in Eq. (4.16). 
Since in all cases considered here p varies only atliahatically, it is first useful to 
scale the Hamiltonian with p to make it ditnensionlcss. Defining the quantity 

A ^ p - ' - ° , (6.1) 
P 

the effective Hamiltonian becomes 

H - -A~ + ( l - A) 
P 0 * ' K • « • ? ] • ! • 1 "• <«' 

which is simply the Hamiltonian in E)q. (1.16) scaled appropriately. Note that in 
these new variables the canonical momenta are simply equal to the slopes dx/ds 
and dyfds as is easily verified through Hamilton's equations The quanti ty A 
measures the deviation of the actual momentum from the momentum on the 
reference orbit . It is clear from the HatnilIonian in Eq. (6.2) that the solutions 
of the linear equations of motion will depend on A as a parameter. Since all 
particle beams have a finite spread in momentum, this 'chromatic 1 dependence 
is undesirable. In addi+ion, there is a collective instability (the head-tail cllecl) 
which is enhanced by these chromatic effects; thus, it is necessary to provide 
some chromatic corre< tion. 
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6.2 SEXTUPOLES FOR CHROMATIC CORRECTION 

To nee the effects of sextupoles we must first include them in the Hamilto-
ni&n. The vector potential for a sextupole magnet is 

^ / ^ p o ^ s ' - a r y 1 ) . (6.3) 
o 

In terms of the magnetic field 

S { 9 ) = ±.^1 . (6.4) 

S[a) is a periodic function of 9 which is typically piecewise constant in the 
regions where the correction sextupolcs arc placed and zero elsewhere. If S(s) 
comes from errors in magnetic field, then the strongest contribution is usually 
in the bending magnets which are typically pure dipote magnets. 

The new Ilamiltonian including sextupoles is 

JJ = d + S_A=+(l-A)[-K^ t *,£]+(!-A,^V-3V) (6.5) 
where we have defined 

K, = Ki-± (6.6) 

in order to simplify the notation. Using Hamilton's equations, the differential 
equations for the motion are 

*Mi-A)*,* + ( i -A)f(y-V)^ ( 6 7 ) 

y" + (1 - A)iftv - (1 - A)Sxy » 0 . 

The equations above may look slightly different from iind somewhat simpler 
than others in the literature. The difference arisen due to the definition of A 
chosen here. 

At this point it is necessary to calculate the periodic solution to Eq. (6.T) 
above. This will give us the closed orbit for an off momentum particle in the 
full nonlinear field. By inspection we can see that once ajjain the vertical closed 
orbit simply vanishes. In the horizontal direction it is conventional and useful 
to introduce the dispersion /unction D, If we let the periodic solution be xt(s), 
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then 
D[s) = x<{s)/& (6.8) 

where, of course, *?(J») is a periodic function of s, Writing the equation for the 
horizontal dispersion we find 

D" - (1 - A)KtD + A{1 - A l - O 2 = - . (6.9) 
2 p 

D(s) is the periodic solution to Eq. (6.9). With this definition, D depends 
Upon A; however, since A is typically quite small, the dependence is weak. The 
more familiar linear dispersion function Z?o is obtained by setting A and S to 
zero in Eq. (6.9). D can be thought of as the exact dispersion function for the 
Hamiltonian in Eq. (6.5). 

Now we would like to perform a canonical transformation to place the pe­
riodic orbit just calculated at the center of phase apace. This transformation 
[xtps) *-* {xp,pp) can be accomplished with the generating function 

FA^Pp) = (x •• AD(*))(p„ + A £ > » ) , (6.10) 

which yields the transformation equations 

x - xp ¥ A D ( J ) 

p2 = p„ + &&{*) (6.11) 
Sp - it + dFt Ids . 

Substituting m n% the Hamiltonian in Eq. (6.5) yields the new Hamiltonian 

"fi ~ T + T ~ K'Y + KlY + 6 ( x " " 3 x p J ] 

{SD(S) + Kx)^ - {SD{,} + K,)y~ - | ( 4 " 3 V ) + A (6.12) 

Examining the linear chromatic terms, we find that sextupoles contribute to the 
linear differential equations at points where the dispersion D is nonzero. Thus, 
by adjusting S(a) one can cancel many of the chromatic effects. In particular, 
one can cancel the lineaT variation of the tune with momentum. 

Unfortunately, in the process of cancelling the chromatic effects, we add 
nonlinear terms to the equations of motion. To begin the study of the effects of 
these nonlinear terms on the motion, in the next section we discuss canonical 
perturbation theory. 
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7. CANONICAL PERTURBATION THEORY 
In this section we seek a method 'o study nonlinear effects pcrturbativcly. 

We do this by attempting to find a canonical transformation which makes the 
new Hamiltonian a function of the new momenta alone. This is just the approach 
which yields the Hamlllonian-Jftcobi equation; however, in perturbation theory 
the new Hamiltonian may depend upon the coordinates and time in higher order. 

7.1 T H E EQUATION FOII THE GENERATING FUNCTION 

Suppose that the problem can be described by a Hamilton!-:i 

// = H0[S) + V ( * , J , 0 ) (7.1) 

where H haa been written in terms of action-angle variables of the unperturbed 
problem and bold face characters denote d-dimensionat vectors. The unper­
turbed Hamiltoniaii //o includes nonlinear terms which depend only on J ; thus, 
the unperturbed tune may depend upon amplitude. In the absence of the per­
turbation, the action variables are invariant and the motion ic confined to a 
(d + l)-dimensi«nal torus in the extended phase space (J , • ,£!) . In the following 
wc look for the distortions of this torus due to the nonlinear perturbation. 

Note that in this section we have scaled the independent variable from s to 
6 so that the Hnmiltonian i<t 2T periodic in both the angle variables * and the 
independent variable &. In particular, the nonlinear perturbing term V(9,3,0) 
is a periodic function of $ and * and has zero average with respect to them, 
i.e., 

/ dO / d * V ( * , J , 0 ) = O . (7.2) 
0 0 

If V has a non2cro average, the average value of V can bo absorbed into //o(J)-
Considcr a ranonica) transformation ( J , $ ) •—• («Ji,$i) with a generating 

function of the following form: 

F2(9>,3U$) = * J , +G[9,Jut) . (7.3) 

The above transformation is close to the identity provided that G is small. The 
new coordinate.-? and llainiltonian are given by 

* i = * + G j t 

J = J i 4- (? • (7.4) 
lh = H + G$ 

where the subscripts indicate partial differentiation. 
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The new Hamiltcnian after substituting the transformed variables is 

ffi * H o ( J i + G » ) r V ( * , J i + C » , ( 0 + G» . (7.5) 

Note that we have substituted an that the Hamiltonian is a function of ths same 
variables as G, the old coordinates and the new momenta. Eventually we must 
complete the substitution; however, for the moment it is more convenient to 
work with the mixed variables. Equation (7.5) can be rewritten in the interesting, 
form 

ffi = tfo(Ji) + (ff 0(Ji I C*j - Wo(Ji) - i '(Ji) t.'*| 
+ ( V ( * , J 1 + G » , 0 ) - V(*.Jj,fl)l (7.6) 
+ P ( J I ) . C» + C | » V(*,J | . t f ) , 

where (/(Ji) is the vector frequency as a function of amplitude of the unperturbed 
problem, 

" ( • 0 ^ ™ • (7.7, 

If we can find a solution to the equal ion 

v{3t] •<•;* + G„ i- V(»,Ji ,fl) - 0 , (7.8) 

G will be a quantity of order V. All other parts of the new llairitltnnian are 
either independent of the coordinates and time or are o" order V 1 . To see this 
niore easily wc can expand for small G to obtain 

/ / , =H0{Ji) + l'[Jt)-G9 + G, + V{9,Jlt6) !r\G9Vhn,p;2 > l . i . f . V h ••• 

7.2 THE SOLUTION FOR THE GKNERATINO FUNCTION 

Since we are looking for the distortions of the invariant iopi«. we must find 
the periodic solution to Eq. (7.8); however, in order fo a periodic solution to 
exist, the average value of V must vanish. This was anticipated by our earlier 
requirement in Eq, (7.2). 

Since both V and G are periodic functions of <I>. they can be Fourier ana­
lyzed, 

v-(*,j,.tf) • J > m ( j i , * ) « " - * 
(7.10) 

c ( * , J , , 0 ) - - ^ ^ ( J i , ^ ^ * • 
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Then the equation to be solved for G becomes 

i m ' C ( J | ) f ^ U m = -l?m , (7-11) 

which has the periodic solution 

2sin(7rm -i») ffm - ^ - r / J™^*'-9-* «m(J..*') & • (7-12) 
TlXl-fl J I 

Finally, the full expression Tor G ia given by 

tA-i* 
G = J2^-T V ( ( -">l»^( ' ' - ' -}] U m ( j j T 9V»' • (7.13) 

Sometimes it ia desirable to make use of the fact that V is a periodic function 
of 6 to expand it as a 'double' Fourier aeries 

V = £ «™(Ji)e*'tm-#-,,,> • ( 7-L 4) 

This leads to an alternative expression for the generating function in Eq. (7.13), 

G = . y ^ , (J , )^»^ . ( 7 1 5 ) 

7.3 T H E NEW HAMILTONIAN AND THE AMPLITUDE DEPENDENCE OF 
THE TUNE 

Recall that our original purpose was to transform the Hamiltonian into a 
form which is approximately independent of the coordinates and the time. The 
new Hamiltonian in Eq. (7.9) is now given by 

Hi = /*>(Jl) + [VJ, " G # + G # • v3l • G#/2 + • • •} 
= ffo(Jt) + V'(Ji .»i .») • 

The remaining nonlinear term can be separated into a part whfch depends only 
on the new action variable and into another part which involves J) , * i and 
6 hut which has zero average value. This oscillatory term is the object of the 
next canonical transformation, whereas the terra which is a function of the new 
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action variable Jj leads to a change of frequencies with amplitude. The latter 
term is given by 

7t it 

(V^-{vl^i*\fd9j**\V3l-G+ + G*-uirU*IZ + ---\ . (7.17) 
o o 

Separating the average value, the new Haniitlonian can be written 

// , = | flc.(Ji) + (y ' ( J i ) ) l f | v" (v'} | 

and the new frequency becomes 

17.18) 

' • < * > - 3 ? - * • > • $ ? • • CM.. 
Note that if wc examine the new perturbing term Vj, it is second order in the 

strength of the perturbation. In addition it is higher order in 3\. If the original 
perturbation has a lowest-order contribution of order J*, then the new term is 
of order J\ ' . Therefore, for sufficiently small J\t we can neglect V\. If this is 
done, we have a new Hamiltonian which depends only upon the new momenta 
Therefore, these new momenta are (approximate) constants of the motion, and 
from Eq. (7.4) for 3[9,Ji,8) the motion is restricted to a (d -t- l)-dimcnsional 
torus in phase space. 

To proceed to higher order in perturbation theory there are two approaches. 
In the first approach we return to the generating function in Eq. (7.3) and 
express it as a power series in the strength of the perturbation. Then upon sub­
stitution into the Hamiltonian in Eq. (7.5), we obtain a hierarchy of equations 
as we cancel the perturbing terms order by order. In this approarh if i is i\\e 
strength of the perturbing term, after the nth step we are left with a perturbing 
termof order e t " + 1 J . 

In the second approach we begin where we left off and make successive 
canonical transformations which are formally identical to the first one. This 
method is called superconvergent perturbation theory and was fust introduced 
in this context by Kolmogorov in his proof of the KAM thrown. It is called 
superconvergent because on the nlh step the remaining perturbing term is of 
order * J*. Despite the name, however, the method need not converge! If the 
procedure dots converge, then it does so much faster than the first method. 

Unfortunately these methods do not always work. Everything would be fine 
if G were always small; however, a quick inspection of Eq. (7.13) shnws that 
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this is not the case for arbitrary f. There are resonances whenever 

m * v = integers . (7.20) 

This happens because we have required periodic s^.-Jnns to the equation for 
G. Et is straightforward to see that if the resonance condition is satisfied, there 
arc no periodic solutions to Eq. (7.11)- In fact the amplitude of the solution 
grows linearly in 6. 

Thus, in the neighborhood of a resonance one must abandon perturbation 
theory at least insofar as it applies to the resonance. We can continue to use 
perturbation theory for the non-resonant terms, but we must isolate the resonant 
term for special treatment. Before beginning the study of isolated resonances, 
it is first useful to apply perturbation theory to a few simple cases. 

8. LINEAR PERTURBATIONS 

It is interesting and useful to apply the canonical perturbation theory de­
veloped in the previous section to linear perturbations. In these cases we can 
solve the perturbed problems exactly; however, it is quite useful to have analytic 
formulae which describe the effect of a small perturbation. First consider the 
perturbation of the quadrupole gradient in one degree of freedom. 

8.1 QUADKUPOLE GRADIENT PERTURBATION 

In this case, the Hamiltonian wc consider is 

a.£+mt + *&., ( 8 , i 

where k(s)t ths coefficient of the linear perturbation, is considered small. The 
transformation to the action-angle variables of the unperturbed linear problem 
yields 

Before proceeding it is necessary to include the average part of the perturbation 
in Ho, 

H0~ J[l/0(3)+k(s)p(s)/2\ , (8.3) 

This yields the shift of the phase advance to first order in the strength of the 
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perturbation, 

4>0(o) = * W - 0(0) f IJ^j+lf k[s')0t*')d8' . (8.4) 
0 0 

The tune shift due to this additional phase advance 13 thus given by 

c 
Au=~Jk{s')0{s')d3', (8.5) 

0 

where C is the circumference. 

Eq. (8.5) above is the well known formula for the tune shift due to a small 
qu&drupole perturbation. In canonical perturbation theory it is obtained simply 
by averaging the Hamiltonian to obtain Ho before proceeding to the first step 
of perturbation theory. 

To calculate the first order distortions of the invariant curves it is only 
necessary to use the formula for the generating function in K(j. (7.13) to obtain 

U = 4 3 i m > ^ ~ / fc(s'W*') 6 i n 2 ** + ^ ~ *W ~ " " l ds' • ( 8 6 ) 
• 

where v is the tune which includes the shift in Eq. (8.5). Note that the phase 
advance ${s) from Eq. (8.4) appears in Eq. (8.6) rather than vB as in Eq. 
(7.13). The approximate invariant curves are given by 

J = J, l •C d (* ,J , ,») (8.7) 

with 

J, = constant -f 0(k2) . (8.8) 

From Eq. (8.6) we have explicitly 

>+c 

2sin(2in/) J 

In standard accelerator physics literature one usually finds the distortions of 
the/? function calculated rather than the invariant curves. This is simply related 
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to the variation in amplitude of the invariant curve at <j> ~ 0. Identifying the 
new beta function 0i(a), we find 

4+C 

- 4 T T ^ = o^G—l i * ( * W ) c o 3 2 W f ) - ^a) - *u) ds> . (8.10) 0o[s) 2sin[27ri') J m 

This form is somewhat different than usual in that it is the perturbed tune 
which appears in the formula. 

8.2 WEAK LINEAR COUPLING 

It is also interesting to apply canonical perturbation theory to the case of 
weak linear coupling. The perturbed Hamiltonlan is given by 

where M(s) is the skew focusing function defined by 

M{9) = ±-^§1 . (8.12) 

In this case the transformation to the action-angle variables of the unperturbed 
linear problem yields 

Hi = ^ h + irh + ^ W O W ' V i ^ ) , / 3 « H ( * I ) C « ( ^ ) • (8-i3) 
Pit*) P% V) 

Now if we treat the last term above as a perturbation, we can use the pertur­
bation theory developed previously. 

From Eq. (7.13) the generating function in this case 1B 

zsin)r(ts[ + V2) J 

( 8 ' 1 4 ) 

where the subscripts 1 and 2 refer to x and y, It and /j are the new action 

(hh)1'2 

2 sin' 

41 



variables, and the phase factors in the integral are given by 

*±(<*i,*!.•'.«') = (<t>i + V»](«') - tf-i(s) - xvi) ± [fa + 0» ( J ' ) - ifc(s) - i\v7) , 
(8.1S) 

where 

0 

To calculate the invariant surfaces we simply use Eq. (7.4) to obtain 

J\ = h + G$l{4\,4>i,*:,h,s) /Ri7i 
J i = JJ + G $ J ( < 0 I , ^ I , / i , / j , s ) , 

where /i and Jj are constant. 
In this case the distorted invariant surface is a 3-torus in the extended 5-

dimensional phase space. If we make a surfare of section at some $o, then we 
remain with a 2-torus in 4-dimensional phase space. In the uncoupled case this 
torus is simply the direct product of the two ellipses from the horizontal and 
vertical phase spaces; however, in the case of coupling this is no longer trut. 
There are at least two different ways to view the invariant surface. One can 
make another surface of section, say at 4>i — 4>o, and view the resulting curve 
in (J|,t/>i) phase space. Alternatively, one can project the surface onto a three 
dimensional subspace, (^1,^2, Ji) or [4>i,4>2,h)- If w e examine Eq. (8.17), 
we find that in these 3-dimensional suhspaces the invariant surface remains a 
2-torus. This surface can be viewed in perspective in each of the subspaces 
mentioned above. This latter method will he discussed in detail in Section 11.2. 

Finally, in the linear coupling i.ase, it is possible to return to the Hamilto-
nian in Eq. (8.11) to find the eigenvectors which decompose the torus into the 
direct product of two circles by directly solving the linear differential equations. 
However, these do not project as simple curves In the original phase spaces. 
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9. A SEXTUPOLE PERTURBATION IN ONE DEGREE OF FREEDOM 
In this section we apply perturbation theory to a scxtupole perturbation in 

one degree of freedom. Since there are alao coupling terms in the Hamiltonian 
in Eq. (6.12), one should actually treat the problem in two degrees of freedom. 
However, for the sake of brevity, we treat only one degree of freedom here; the 
extension to two degrees or freedom is quite straightforward by following the 
previous section. 

From Eq. (6.1.2) we consider the non-chromatic part of the Hamiltonian for 
horizontal motion, 

H = ltf + K(s)x*)+^x* . (9.1) 

Recall that S(s) is periodic with period C (the circumference) but may have 
stronger periodicity imposed by design. Transforming to the action-angle vari­
ables introduced in Eq. (3.19) we obtain the new Hamlltontan 

H = J/m + ̂ S[a)(J0)** cos 3 4> ( Q 2 ) 

5 J / 0 W + V{<j,,J,9) . 

From Eq. (9.2) the perturbing term is 

V(4>,J,S) = -Ls( a)(J/?{*)) 3/»[co8 3* + 3co S^] , 
6\/2 

(9.3) 

and using Eq. (7.13) the generating function is 

J 3' 2 r i Sf 

5tC 

(9.4) 
Note that since the phase of betatron motion does not advance uniformly Mice 
a harmonic oscillator, the factor of v$ in Eq. (7.13) is replaced in Eq. (9.4) by 
i>{s) where 

0 

Next we can evaluate the average of the new perturbing term from Eq. 
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(7.17). Vj, and G+ are given by 

Vj, = ^ g ^ W ^ l ) 1 ' 1 i}{*?l7\™W + 3«M*| 

,3/3 * + C 

J ' t 1 / 

G* = ' vr ̂  I ^ W " c o s" + ^ - *('»" H (9.6) 

+ ^ / ^ S ( / ) / W 3 ^ O T 3 [ 0 + ^ ) - 0 { S ) - H } • 
Firat we average over ^ to get rid of tho cross term and then average over s 
to obtain 

C s+C 

x { 3COS(^(J ' ) - ^(a) - xv) cos3(^(a') - tf{s) ni>) 1 
ainiri/ sin3jri/ ) 

(9.7) 
If the actual distribution of sextupoles ia known, the integral in lOq. (9.7) can 
be evaluated. If we drop the fluctuating term, the* new Hamiltonian is given by 

Hi = Jif0{s)l (G, *>,) + ••• - (9.8) 

The new tune is then obtained by integrating the phase advance through one 
turn 

C d{GtVjt) 

Since the Additional term in the new Hamiltonian in Eq (9.8) is or order J3, the 
tune in Eq. (9.9) varies linearly with J. This is similar to the firi»t-order effect of 
an octupole perturbation (— x^); therefore, a acxtupole perturbation in second 
order produces an octupole-like nonlinear frequency shift with amplitude. 

Finally, the approximate invariant torus is givrn by 

J - J, +G%(./,,^,s) , (9.10) 

with Ji = constant. As the tunc approaches n/3 the phase space curves ob­
tained at some surface of section .<s — so develop the characteristic 3 r d harmonic 
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distortion of the third integer resonance. However, when the tune is too close 
to a third integer resonance, 0 ts not small and perturbation theory is not ap­
propriate. In the next sections we confront this problem for general nonlinear 
resonances. 

10. AN ISOLATED RESONANCE 
IN ONE DEGREE OF FREEDOM 

In Section 7 we discovered that there were resonances whenever 

m-w = n . (10.1) 

Perturbation theory is not the appropriate method for studying the behavior 
in the neighborhood of such a resonance. In this section we study an isolated 
nonlinear resonance in one degree of freedom in detail, that is, a 2-dimensional 
phase space with a 'time' dependent Hnmi I Ionian. We suppose that we are close 
to a resonance and that all other nonresonant terms in the Hamiltonian can be 
neglected. Thus, we are left with the truncated Hamiltonian, 

Hr = v J + a(J) -f f{J) cos(m* - nO) . (10.2) 

Note that ws have separated Bn into a linear and nonlinear part, and that f{J) 
is taken to be positive in the region of interest. 

This problem can be solved exactly by using a canonical transformation to a 
rotating system in phase space. The generating function for the transformation 
(J,4>)t-*[Ju4n) is 

F,(*,7,) = fo-n0/m)J, , (10.3) 

which yields the transformation equations 

4>i = 4>- tiff/m , Ji = J . (10.4) 

The new Hamiltonian is then given by 

Ht= HT- n/m Ji = 6 Jx + a{Ji) + /(Ji)coam^i , (10.5) 

where 
6 = u~n/m . (10.6) 

The Hamiltonian has been cast in a form explicitly independent of the 'time' 
variable 6; thus, it is a constant of the motion. 

45 



I O . I FIXED POINTS 

In the phase space (<t>], J\} we can find a set of points where the trajectories 
are stationary. These fixed points can be obtained by the conditions 

which yield 
siiim^j = 0 

6^-a'(Ji) +f'{J1)cosm<j>i=0 , 

where the prime above indicates differentiation with respect to J\. 

(10-7) 

(10.8) 

12-85 53DDA2 

Fig. 2 Phase space for a sixth order resonance with a width of A J ~ .2J r . 

In the polar coordinates [i/Ji,<t>t)* these form a string of points surrounding 
the origin, as shown in Fig. 2. In fact when sinm^j = 0, cosm^i = ±1 and 
for different signs of cosm^i the characteristics of the fixed points arc different. 
The trajectories surrounding stable fixed points, SFP, are closed (ellipses), while 
those surrounding unstable fixed points, OFP, are open (hyperbolic). Those 
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fixed points where coam^i = - 1 (+1) are stable (unstable) since the potential 
has a minimum (maximum) there. 

Suppose we define J, as that amplitude which yields an oscillation frequency 
at resonance, i.e., 

v + a'(JT) = nfm , (10.9) 

then Eq. (10.8) becomes 

Q ' ( J . ) - a'{Jr) + / '(Ji)cosmtfi = 0 (10.10) 

or expanding for Jt close to JT 

( J , - J r ) ~ - f f i U o s m * , . (10.11) 

Therefore, provided that /'/<*" is positive, the amplitude of the UFP is slightly 
less than JT while the amplitude of the SFP is slightly larger than JT. 

10.2 RESONANCE ISLAND WIDTH 

The boundaries of the stable islands shown in Fig. 2 are formed by curves 
joining the unstable fixed pcfrits. These curves are separatrkes and their equa­
tion can be easily found by the fact that the new Hamittonian / / | is a constant 
on the curve. 

From Eqs, (10..̂ ) and (10.8), we have 

6Ji + a{Ji) + / ( J , ) cosmtfi = tf J . + a{Ja) + f{Ju) , (10.12) 

where J„ is the action at the unstable fixed point. Expanding for J close to Ju 

and recalling that Jr — A , we find that on the separatrix 

From Eq. (ID. 13) we find the maximum separation or island width 

where a"(Jr) has been assumed positive for simplicity. Keep in mind that this 
is only valid when A J <£ JT. In addition, the other resonances which have so 
far been neglected must be far away. If the widths calculated using the isolated 
resonance assumption are such that neighboring resonances overlap each other, 
then it is clearly incorrect to consider the resonances isolated. 
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To summarize the phase space portrait shown in Fig. 2, at small amplitude 
the motion is relatively unaffected by the resonance. Near the resonance the 
circles aTe distorted. Finally, at the resonant amplitude there is a string of stable 
islands with widths determined (approximately) by Eq. (10.14). 

10.3 ISLAND SEPARATION AND THE CHIFUKOV CRITERION 

Jt has been observed that if the main resonance inlands have widths which 
are close to their separation, there is chaotic behavior in the overlap region. This 
haa been investigated extensively by B. Chsrikov 1 0 and is used as >. criterion to 
estimate the onset or stochastic instability. To apply the Chirikoj criterion h is 
first necessary to calculate the spacing of the resonance islands. 

To find the distance to a neighboring resonance, wc first find the spacing in 
tune and then convert that to ampiitude. Near JT the amplitude dependence of 
the tune is nearly linear. Therefore, two resonances with a tune spacing of Av 
are separated in amplitude by 

6 J = Av/a:'(Jr). (10.1ft) 

To avoid chaotic behavior we require with Chirikov that the island width be 
much less than the island spacing. For two resonances of half-width AJ\ and 
A J j the Chirikov criterion is 

AJi+AJ2<6J. (10.16) 

For AJi ~ AJ2 and using Eqs. (10.14) and (10.15), Eq. (10.1C) becomes 

%^[J7)J[Jr) « A l / . (10.17) 
• 1 

The Af separating two resonances is gcnon.lly determined by inspecting the 
Hamiltonian or '-lie equations of motion to find the main driving resonances. For 
any given Av E v (10.17) sets a limit to the validily of the isolated resonance 
analysis. This condition requires that the nonlinear detuning, n"', not be tot1 

large since in this case the resonances do not separate. On the other hand if 
a" is small, the widths of the islands get large. Unfortunately, as wc increase 
a" the island width decreases more slowly than the separation. Thus, if we 
increase the nonlinear dctnuing we eventually get island overlap and stochastic 
instability. This leads one to select a moderate nonlinear detuning to avoid 
chaotic behavior. 
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io.4 ISLAND 'TUNE' AND GREENE'S RESIDUE CRITERION 

Having understood the phase space structure in general, we can study a 
particular viand. Consider a amall Island width. In this case it is useful to 
expand the Hamiltonian in Eq, (10-5) for small deviations about Jti 

flr«?^l(J-JT)* + / ( ^ ) w m 4 1 + . . . (10.18) 

We have dropped constant terms and wed the resonance condition in Eq. (10.0) 
Tor simplification. The Hamiltonian above is that for a pendulum; from Hamil­
ton's equations we find 

^ - <t«(4)fn/(-M«l« «** - 0 (1019) 

f f ' M 

Fig. 3 Pendnram-Rka phase spar* structure. 

This is the equation of motion for a pendulum with familiar phase 
structure shown in Fig. 3. 
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In the neighborhood of one of the stable fixed points (d-i as (2ft - l)*/nt, k = 
1, 2, •••, rt) we can determine the small amplitude oscillation frequency by 
expanding Jie sinm^i as 

sfn[(2fc - 1 ) * + m£4i\ at -m«4i , (10.20) 

which yields the frequency 

n* - <f(Jr)f(Jr)m* . (10.21) 

Using this frequency n alternate expression for tbe overlap condition can be 
derived. 

J. Greene has est; tlished that the last invariant curve whkh separates two 
neighboring island chr ns survives provided that the 'residue' of the neighboring 
stable fixed points is I .is than about 1/4. A detailed discussion of the residue 
criterion is given hi Section 12. In this section we simply use the results to 
obtain the residue R <r the resonance treated here, 

R m olna(Trmfl) . (10.2?) 

If we rewrite the resluje condition in terms of the frequency calculated above, 
it becomes 

mn < \ , (10.23) 
6 

which yields 

At this point the reft •> between the two island churns may be quite chaotic 
Thus, to avoid laf£e s> *.le chaotic behavior, the inequality in Eq. (10.24) should 
be Btrongty satisfied, otfce that the residue criterion and the overlap criterion 
are quite stmftar wher. expressed in this approximate form- In fact, they are 
nearly identical provi< ad Chat A** st 1/m*. We teave remaining detaib of the 
residue criterion to Se tion 12 while in the next section we return to properties 
of nonlinear resonance. 
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10.5 UNBOUNDED MOTION 

So far we have treated casrfl in which the frequency of the unperturbed prob­
lem is a function of amplitude. This is important In that it yields finite Island 
widths. However, if the unperturbed Hamiltanlan is simply linear, then an iso­
lated resonance causes unbounded motion. This case is particularly important 
for particle accelerators since the amplitude dependence of the tune is typically 
quite weak and in many casta can be neglected. To Illustrate this consider a 
sextupole induced third order resonance with the Hamittonian 

HT = vJ + £ j 3 / a cos(3<f - 9) . (10.25) 

If we transform to the rotating system In phase space, we find the new invariant 
Hamiltonian 

Hi = 5J) + tJx' cos(3^i) =s constant , 

where in this case 
6 = t / - l / 3 

(10.26) 

(10.27) 

• i - r i | i i i i 1 i i i i i i i _ 

- • 

-

<C ( 1 

— 

" i i 1 1 1 1 1 1 1 1 1 '1 1 1 1 1 l~ 
12-85 5300A4 

Fig. 4 Phase space near a third order resonance with nr = 0. 
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Fori nomero the motion in phase space is shown in Fig. A. The curves shown 
correspond to four different values of the invariant 7/j. At small amplitude the 
circles are distorted and are described well by the first order perturbation theory 
in Section 7. For larger amplitude the curves approach a triangular shape with 
three unstable fixed points at the points of the triangle. Finally, at sufficiently 
large amplitude the motion is unbounded. As 6 is decreased to zero, the si able 
aTca inside the triangle goes to zero. This effect is quite well known in accelerator 
physics literature since it is used as a mechanism far driving particles in a beam 
to large amplitude to extract them from circular accelerators. 

Unfortunately, sextupoles provid?. not only the cubic term which yields the 
resonance structure shown in Fig. 4, but also a coupling term — zxj1 as shown 
in Eq. (6.5). This leads us to the next section to consider coupling resonances. 

11. AN ISOLATED RESONANCE 
IN TWO DEGREES FREEDOM 

It is interesting and useful to consider an isolated resonance in 2 degrees 
of freedom (with a time dependent Hamiltontan). In a particle accelerator this 
corresponds typically to-the .coupling of the two transversa degrees of freedom; 
however, it could involve one transverse and the longitudinal degree of freedom. 
We will consider the former case here. In this c<isc th': :< 'onanc*! condition 
hccoiies 

mji / . + mj i / j — n . I . 1 ' 1 ) 

where mi, mj and n are integers, and is\ and v-t are the innes in the two 
transverse degrees of freedom. In the previous section we f<i nd resonances at 
all rational values of the tune, that is, at a set of point; '. tune space. In 
this case the resonances consist of lines in 2-dimcnsional tunt - ace {y\, fj). In 
Fig. 5 we illustrate this with several examples. Note that, as we include higher-
order resonances the tune space rapidly fills up. Thus, to av.iiil rcsinminces it is 
necessary to carefully place the two tunes, 

l l . i CALCULATION OF THE INVARIANTS 

Now consider two tunes which are close to one of the linos wilti finite slope 
in Fig. 5 but far from the intersection of any two line?. Tims, the system is 
close to an isolated coupling resonance. As in the previous .section truncate the 
Hamiltonian so that only the dominant resonant term is n-taineii. This yields 

HT = i>\Ji + v2J2 + yVi ,J 2 )cos(m]^] + m24-i - nO) , (H2) 

where for simplicity we have taken the unperturbed Hamiltoriian to be that 
for uncoupled linear oscillation. Once again the truncated problem above can 
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Fig. 5 Resonance lines in tune space. 

be solved exactly by transforming to a rotating system in phase space. The 
generating function for the transformation (&, J,)»-»(Vv, if,} is 

Ft{<t>i,Kit6) = (m^i +m,4>2 ~ n$)Ki + faKt . (11.3) 

(n-4) 
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and the new Hamilton ian becomes 

Hi - {mii/t f m«vi - tt)ft, \u2Ki + / ( K i , A'jjcos^i , (11.5) 

where 

f(K,, ff2) = /(rn, K, ,m,K, + K 2) . (n.6) 

Since the Hamittonian above is independent r?f the independent variable, 
it ia a constant or the motion. In addition, however, it is independent of i/>j. 
Therefore, the new action Kj is also an invariant. Thus, we have 

(m.|fi f m 2 f j -- ri)Ki + u%K% + f(Ki,K2)cosil)l - cons' \ (11.7) 

/J2 = constant . (U- 8 ) 

In terms of the old coordinates this becomes 

f l J j + V2J2 J\ f / ( . ' I . J J ) cosfmj^i 4- r«j<fo - n0) = constant (11.9) 
r7l| ' v ' 

, mi . Ji J | = constant (11.10) 
m j * ' 

From Eq. (11.10) there arc two distinct cases. In the case of a sum reso­
nance, [sign{mi) — Eign(mi)), stability is not guaranteed. However, in the case 
of a difference resonance |sign(mi) — ~sign(mi)|, stability is guaranteed since 
the weighted sum of the actions is a constant. In this second case there can be 
'emittance' exchange; however, the overall motion is bounded. 

11.2 VIEWING COUPLED M O T I O N ' 3 

As in the case discussed in Section 8.2, the motion near a coupling resonance 
is confined to a 3'torus in the extended phase space (<£i,<£:i,A,•/],#). If we 
take a surface of section at some 60, then the resulting figure is a 2-torus in 
4-dimensionaI phase Space. We can view the 2-torus by talcing yet another 
surface of section at <f>i = tfo which yields a curve in (#1, Ji) space, or we could 
set ^2 = ^0 and view the resulting curve in (<fo, Jj) space. 

There ia, however, another alternative as mentioned previously in Section 
8.2. We can project the 2-torus onto a 3-dimensional siibspace (^1,^2.^1) or 
[4>ti'fotJz)- fn these subspaces we obtain a 2-torus imbedded in 3-dimensional 
space which can be viewed in peispcctivc. This method is especially powerful if 
we are comparing theory and numerical experiments. In numerical experiments 
ii Is quite difficult to take a second surface of section mentioned above because 
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Fig. f> Surface of section near a third integer resonance {v\ = 5.331, I/J = 5.144). 

there are so Tew points on it. The first surface of section (in 6) does not suffer 
from this difliculty since it simply corresponds to the integration of the equations 
of motion through multiples of 2JT. 

To illustrate the technique first consider a system with 2-degrees of freedom 
far from a coupling resonances but close to a resonance vi a 1/3 mod(l). In 
this case the motion is nearly that corresponding to one degree of freedom. In 
Fig. 6 we show three equivalent wayB of viewing the motion. In 6(a) you see the 
phase space (./,J/ c o 3 ^ i , - J , ' sin^i) which would yield a circle for the case of 
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uncoupled harmonic oscillation. The points are plotted at multiples of 2T in 9 
without regard to J j or 4>t- The locus of the points has the characteristic dis­
tortion of a 1/3 integer resonance superimposed onto basically circular motion. 
In Fig. 6(b) we unfold 6(a) and plot J\ vs. 4>\ to see the modulation due to the 
resonance more clearly. Notice that although the motion is very nearly in one 
degree of freedom, there is still a email coupling which leads to a band or motion 
rather than a curve. Finally in Fig. 6(c) you sec the 2-torus in (4>i. $2. Ji) space 
as calculated from first order perturbation theory. The influence of the 1/3 res­
onance ts shown a3 the dominant wave on the torus. Notice that if we project 
the surface onto the {J\,4>\) plane, we obtain a figure essentially identical to 
6(b). The coupling causes small ripples in the 2-torus which give rise to the 
band of motion in 6(b). 

To view a coupling resonance with this technique consider the sextupole-
induced resonance 

2t/-i - v\ = integer . (1111) 

(o) (b) 

J , - " - • • • - - - - • . ' - • • - . " - • • • • • - ' • ' • • • • - • • - • • - • " . • . • • , • / • , ; • , . • • . h 

tZ -aS # 1 # 2 53CIOJW 

g. , The two phase apace projections of coupled motion \y\ - 5.3)7, r/j = 5.1G1). 

First let us view the motion by numerical integration of the equations of 
motion. In Fig. 7 we plot [fa, Jj) and (<fo, J7) at $ - 0O mod(2jr) which in the 
case of simple linear motion would yield straight lines. In both plots w.e see a 
wide band of motion; however, this scattering of points does not indicate chaotic 
motion. To see this clearly we turn to the perspective method just described. 
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Fig. 8 Surface of section near a coupling resonance (t/j = 5.317, 1/2 = 5.164). 

In Fig. 8 we show the surface of section 0 = f _ (mod 2n) near the coupling 
resonance. In 8(a) and 8(b) we plot the 2-torus as calculated with perturbation 
theory. Below in 8(c) and 8(d) we again plot all the data points obtained by 
numerical integration. The data fall nicely on the torus obtained by perturbation 
theory- Notice that near a coupling resonance the surface is similar to that in 
Fig. 6; however, the ripples no longer run parallel to one of the axes. 

Using this technique it ie possible in numerical experiments to separate 
chaotic motion from mere coupling. Chaotic motion is shown as departures 
from a surface similar to the departures from closed curves for the case of chaotic 
motion in one degree of freedom. 

57 



12. THE RESIDUE CRITERION11 ,14 

In this section we begin the discussion of several techniques which address 
the question of the onset of chaotic behavior or the 'breaking' of KAM curves. 
The first technique, the residue criterion, developed by J. Greene applies only to 
cases of one degree of freedom (with a time dependent Hamiltonian). Since the 
renormalization discussed in Section 14 was founded on the residue criterion, it 
too is limited to systems in one degree of freedom. 

Greene's approach to the onset of chaotic behavior focuses on one particular 
invariant curve with some irrational tune or winding number w to determine the 
perturbation strength which causes the KAM curve to 'break'. The basic idea 
is that the distinction between (J and very good rational approximation;) to 
ID, w B = Pnl<fn, should not be very great. Here pn and g„ are two relatively 
prime integers. But in fact we know that the orbit for a rational frequency 
consists of a sequence of 2qn points in phase spac« which arc periodic orbits, 
while an invariant KAM curve with irrational tune gets filled in densely as time 
progresses. In spite of this difference perhaps the existence of a KAM curve is 
related to properties of the neighboring periodic orbits. 

12.1 T H E DEFINITION or THE RESIDUE 

A key property of a periodic orbit is its stability. We know how to calculate 
stability of an arbitrary periodic orbit from the analysis in Sections 3.3 and 5.1. 
The procedure is: 

1. First locate a periodic orbit (closed orbit) with some period 2irqn. 

2. Linearize the equations of motion about the fixed point (or linearize the 
map of initial conditions to final conditions about the fixed point.) 

3. Calculate the transfer matrix M for one period (2^7 n). 

4. Calculate the trace of M (a 2 x 2 matrix). 
5. If [Trace{Af)| < 2, then the fixed point is stable. 
So the procedure is identical to the analysis of betatron oscillations. Why 

should one use the properties of a oeriodic orbit rather than those of the island 
surrounding it (for example the width)? The stability properties of periodic 
orbits can be determined exactly without ambiguity while the tonccpt of width 
breaks down just when the widths or islands get large. 

Unfortunately, it is not just stability which determines the existence of KAM 
curves since there arc equal numbers of stable and unstable periodic orbits 
neighboring a KAM curve. However, the trace of the transfer matrix is still a 
gotid candidate for a key parameter. Rather than the trace Greene uses the 
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residue R defined by 

R = \\2 - Tracc(M,)| , (12,1) 

where Mq is the matrix for the one-period map near the periodic orbit with 
period 2 Jig, If wc define a 'tunc' ( in analogy to the tune in betatron oscillations, 
then 

COS2JT£ = — , (12.2) 

And 
R^a\n7irt. (12.3) 

To got the idea let ua first state the qualitative version or Greene's empirical 
residue criterion: 

1. Check the residue for periodic orbits 'close' to the KAM curve in question. 
2. If |/t| < 1/4, the neighboring KAM curve probably exists. 
3. If |J? > ) l /4 t the neighboring KAM curve probably does not exist. 
The question is which periodic orbits do we check and how do we improve the 

accuracy of the method in a systematic way. This leads us to a brief discussion 
of continued fractions. 

12,2 CONTINUED FRACTIONS 

Every irrational number w has a unique continued fraction expansion. This 
lead)) to a sequence of rational approximations w n = p„/q„ to w which arc the 
'bent' for a given size denominator. That is, all other rational approximations 
to ui with denominators less than or equal to qn are further fromu than the con­
tinued fraction approximation Pniln- If we write pn/qn for the nth approximate, 
then 

7-~«* + —r-_zr— (>") 
" • • • * 

which is more conveniently written 

& = |ao ,a , , -" ,« B | - (12.5) 

The frequency w can then be written 

u, = lim — . (12.6) 
n-iou qn 

To each of Ihrsc elements pn/<Jn there corresponds a periodic orbit in phase 
space. These periodic orbits and the resonance islands surrounding them tightly 
squeeze the KAM curve with tunc u>. 
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12.3 A PRECISE STATEMENT OF TUB RESIDUE CRITERION 

We are now in a position to slate the residue criterion precisely, Consider a 
K AM curve with tune or winding number u. Consider the sequence of Approxi­
mates pn/^n in the continued fraction representation of w. Examine each of the 
residues /?„ of the periodic orbits with frequency p„fqn. Then there arc three 
distinct cases: 

1. Rn -*• 0, n -* oo; there \a a KAM curve with winding number w. 

2. Jin -* ±oo, n —* oo; there is no KAM curve with winding number w. 

3. fin —• Ro, n —• oo; the transition ease. 

Beat convergence is achieved for lin around 1/<1, but that depends upon w. It 
is important to note that the criterion above can in principle yield very precise 
results on the breaking of KAM curves, For example Shenkcr and KadanofF in 
Ref. 15 have determined numerically that the critical rcsldnr for breaking a 
KAM curve with a winding number equal to the 'golden mean1, 

1 4- v ^ 

is given by 

Rt .2500838 . (12.R) 

In addition this criterion suggests tfiat there is an asymp'eitir sr.lf similarity 
at the critical case since all the residues are equal. We return to this question 
in Section M. 

12.4 AN ISOLATED RESONANTR EXAMPLE 

To calculate an example let us n-turn to the isolated resonance Ilamiltnnian 
of Section 10.1. From Eq. {10.IS) the Hamiltonian in the neighborhood of the 
resonance v ~ nfm is given approximately by 

IIT ~ a"^[J - J,)* t- /(.7 P)ro»m*i I ••• . (12.0) 

Recall that this Hamiltonian is expressed in coordinates which rotate in phase 
space (sec Eq. (10.3) to (10.5)), In these coordinates there is arc 2m fixed 
points at ./ - Jr and ê i -- kx/m, k - 1,2, •••2m. in thr original coordinates 
these are periodic orbits with period 2?im. Kollowing Section 10.3 we linearize 
about one of these periodic orbits and find that, the frequency of oscillation in 

(12.7) 
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the 4>i coordinates la 
n 1 = a"{Jr)f[JT)m'1 . (12.10) 

Now we must construct the matrix transforming motion about the ftxed point. 
This is simply given by 

/ *,(») \ / cosne riniw/flVrA / Mo) \ 
\SJ{6)) ~ \a"(Jr)smti6 cosIW / \ * J ( 0 ) / " 

If we construct the matrix for one period (2jrm) and recognize that 0 and $i 
simply differ by 2n in this ease, we find the one period matrix to be 

/ cos(2™in) •in(2]rmn)/<Hn(Jr) \ 
Mm — I 1 • 112.12) 

\a"(Jr)B\n(2irmn) coa(2irrnn) ) 

Calculating the trace of the matrix above and UBing Eq. (12.1) yields the residue 
for this example, 

R = sin^ffmn) . (12.13) 

Thin approximate approach can be used to check the existence of neighbor­
ing KAM curves to known resonances. In the more precise approach one must 
locate the periodic orbits numerically, and calculate the matrix Mq numerically. 
This must be done for higher and higher order resonances. Because of this, much 
of the work with the residue criterion has been devoted to the study of nonlinear 
mappings. These avoid the problems associated with tedious numerical integra­
tion of differential equations to locate fixed points and calculate residues. In the 
mapping case the differential equations have effectively already been integrated 
through 2K in 9 the independent variable. Integration in 6 Is thus replaced by 
simple iteration of the map. 

13. DIRECT SOLUTION OF THE 
IIAMILTON-J ACOB1 EQUATION16717 

In the previous sections we have seen the utility as well aa some of the limi­
tations of perturbation theory. For small perturbations and far from resonance 
perturbation theory gives an accurate description of the small distortions of the 
invariant surfaces; however, it completely misses the small neighboring islands 
and regions of chaotic behavior. This is due to the non-conv«»»gcnce of pertur­
bation theory in moat caaea. There are very special circumstances described in 
the KAM theorem which permit one to calculate invariant tori which, however, 
are not continuous families (as one expects in integrable systems). This Is true 
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because the tune of the actual motion along the KAM curve in question must 
be irrational or In two or more degrees of freedom, the frequencies of motion on 
the KAM torus must be incommensurate. However, since the rational numbers 
are a dense set, just next to any irrational is a rational. Therefore, between 
these invariant tori lie regions of resonance islands and chaotic behavior. 

In this section we move beyond perturbation theory to develop a method 
to calculate directly KAM tori and estimate the strength of the perturbation 
necessary to break a given invariant curve. The aim is to achieve better re­
sults in the neighborhood of resonance, and also to achieve good results in the 
neighborhood of chaotic motion. We follow Refs. 16 and 17 throughout this 
section. 

13.1 THE HAMILTON-JACOBI EQUATION 

In this section we begin as in Section 7 but restrict the problem to a system 
with one degree of freedom for simplicity. In a circular accelerator this cor­
responds to motion in one transverse degree of freedom. The Hamiltonian we 
consider is given by 

H(i>,J,9) = IIa[J) + V{4>,J,$), (13.1) 

where 9 is the machine azimuth or 'time', and the perturbation V is periodic 
in 9 and <f> with period 2w. To obtain the Hamilton-Jacob! equation, we seek a 
canonical transformation [<i>, J) *-* (if1. K) in the form 

J^K + G^{4>,K,0) , (13.2) 

^ = * + G K ( * , K , « ) , (13-3) 

such that the new Hamiltonian becomes a function of K alone. Once again sub­
scripts denote partial derivatives. The Hamilton-Jacobi equation to determine 
the generator G is the requirement that the new Hamiltonian H\ indeed depend 
only on K; namely 

Ho{K + Gi) + V{<j>,K + G4tQ) + G!> = Ih{K) . (13.4) 

If we succeed in finding G, then by Hamilton's equations in the new variables, 
K will be invariant, and 4' will advance linearly with the time: 

K = constant , 

where 

is the perturbed frequency. 

62 

(13.5) 



As in Section 7 we are interested in solutions of (13.4) which arc periodic 
in both <t> and 0 since we are interested in the distortion of the invariant torus. 
This leads us to use the Fourier development 

Cf>,K,9) = Efa . t lQf**-"*) . (13.7) 
m»n 

It is useful to rearrange (13-4) by adding and subtracting terms so as to isolate 
terms linear in GA and Gg, We then take the Fourier transform for m ^ 0 to 
cast Eq. (13.4) in the form 

g = A{g) , (13.fi) 

where g = \gmn\ is a vector of Fourier coefficients and 

[//(*, K + GAJ) - // 0(ff) - v{K)GA] , m ? 0 , 

where i/(K) - dlio/dK, Notice that if we set GA to zero on the right hand side 
of Eq, (13.0), we obtain the Fourier coefficient for the generating function of 
first order perturbation theory as in Eq. (7.15). Equation (13.8) is a nunlincar 
algebraic equation for the Fourier coefficients gmn which Is equivalent to the 
nonlinear partial differential equation for G. 

To truncate the system of equations (13.8) and (13.9) for numerical solution 
we restrict (m, n) to some bounded set B of integers, with mjtQ, and put 

<V= Z »>»om B(/f) e^*-'> . (13.10) 
{m,n)eB 

In an iterative solution of (13.8) the set B is selected so that at Iterate (;» + 1) 
all Amn{gW) with (mtn) € B are greater than some preassigned small number; 
heTe SJW is the p** iterate. 

It is important to note that only the amplitudes jrm n for m ^ 0 are required 
to calculate GA; the m = 0 amplitude and also the function Ifi(K) can be 
determined from (13.4) a posteriori. Once GA is known, the distorted invariant 
curve may be obtained from Eq. (13.2) by taking a surface of section at some 
0o and plotting J(<p,8o) vs. & The new action K is constant by Hamilton's 
equation and is thus an input parameter. 

The equation in the form (13.8) is suitable for the examples treated below, 
but not for typical accelerator problems involving short nonlinear lattice ele­
ments. For the tatter, the Fourier analysis in 9 has alow convergence and should 
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be avoided. For an accelerator lattice we retain the Fourier analysis in 0, and use 
the periodic Green function for the operator itnu+ B/dff, as shown in Eq. (7.12). 
This leads to an integral equation for the amplitudes gm(K\ 6) which can be dis-
eretiicd to provide an equation for the variables gm[K]0t)tm > 1, where the 0, 
are mesh points located only in the nonlinear elements of the lattice. The solu­
tion is periodic in $ because we use the periodic Green function. An alternative 
procedure is to treat the equation as a system of differential equations In 0. The 
equation must be integrated only once around the accelerator with periodicity 
achieved by iteration, in analogy to nonlinear closed orbit calculations. 

13.2 AN iNTEGfUBLB EXAMPLE 

Before trying the method on nonintegrablc cases it is useful first to test 
the method on an integrablc example. In this section we show results from 
solving (13.8) - (13.10) by Newton's method (starting from 9 = 0). This first 
example is a locally intcgrable case in which some of the invariant surfaces may 
he expressed analytically, namely thr 4th order isolated resonance model with 

K(*,J,0) -. M + aJ2}2+ f J 2 cos (4« -0 ) , (13.11) 

where VQ, Q, and < are constants. This example has born treated in dtstai! in 
Rcf. 16; here we presrnt some of thr more difficult cases which were calculated. 

i 1 1 1 1 1 — i 1 1 1 1 r— 

I I I i I I 1 i 1 1 L 
-A 0 4 - 1 0 4 

^J cos* y j cos$ 

Fig. 9 4'A order resonance, (a) H-J solution (b) Exact solution 
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The most difficult curves to compute are the stparatritts around wide is­
lands, In this case first order perturbation theory gives very poor results. How­
ever, the direct solution of the Hamilton-Jacobi equation works surprisingly 
well in this case as is seen in Figures 9(a) and 9(b) Fig. 9(a) shows separatrices 
computed in 9 iterations with 31 modes in the set B. The points are plotted 
in normalized phase space [\fjcos4> vs. \ /Jsin0) at $ = 0. The inner sep-
aratrix (almost a square) and the outer separatrix (four lobes intersecting at 
right angles) are from two different calculations for two different values of K. 
Fig, 9(b) is a plot of curves from the exact analytic formulas for comparison. 
The separatrix curves and curves both outside and inside the resonance islands 
are included to guide the eye. The Hamilton-Jacobi solution is virtually indis­
tinguishable from the analytic curves. This test case is not simply academic 
since accelerators typically have small nonlinearity which yields large islands 
(or unbounded motion). In regions close to single resonances in nonintegrable 
systems similar results are obtained although the scparatrix in this case cannot 
be calculated since it is a thin band of chaotic motion. This leads tis to the next 
section where we show a nonintegrable example. 

13.3 THE Two RESONANCE MODEL 

This second example is nonintegrable and contains all the generic phenom­
ena of nonlinear mechanics in 11 or 2 degrees of freedom. In restricted regions 
of phase space it should describe the essential features of one dimensional beta­
tron motion in the presence of nonlhicarities. The example is the two-resonance 
model with the Hamiltonian 

H = VQJ + \aJ* + £| J 6 / 2 cos(5# - 30) + e a J 3 cos(8^ - 5$) .. (13.12) 

Equations (13.8) - (13.10) are solved with Newton's method for the invariant 
curve with a tune equal to the golden mean v. = (v/H - l ) /2 , which is between 
the two resonances. Here e, ia the exact perturbed tune, vt = dH\jdK, not 
the unperturbed tune v = n> + aK. To maintain the perturbed tune at the 
preassigned value, we include the equation f> = AH\fiK as a constraint in the 
iteration (see Ref. 16). This process is repeated Tor a s.^uence of resonance 
strengths C],eg (arbitrarily taking «i = 2ci) beginning with moderate strengths 
to look for the transition to chaotic behavior. 

The other parameters are chosen to be to = 0.5, a = 0.1, which places 
the resonance islands of the two resonances near J = 1.0 and J — 1.25. The 
sequence of resonance strengths and resonance half-widths AJ|, AJj shown 
here are as follows: 

(i) ( | = 2 < S = 8 x 10~ 5, AJi =0.049, AJ a = 0.054; 
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(u) «] = 2tj = KQ'\ AJ | =0.063, A ^ =0.070; 
[Hi) i\ ~ 2tj = 1.25 y. 10 «, AJj = 0.070, AJj = 0.07H; 

By the Chirikov resonance overlap criterion, the corrcsponding invariant 
curves should be close to breakup, since the resonance separation is JT) - Jrt = 
0.25. 

13.3.1 A New Criterion for the Break-up of a KAM curve 

In Ret. 16 a new criterion is proposed for the break-up of a KAM curve, the 
'transition to chaos1. The criterion is that the Jacobian of Eq. (13.3) vanish at 
some (0,0) as the t's are increased: 

50/6V = 1 + GK4, = dJ/dK - 0 . (13.13) 

At such a point it is in general impossible to solve uniquely for 0 as a function of 
0. To qualitatively understand the idea first write the solution for 0 assuming 
the Hamilton-Jacobi equation has been successfully solved. This is given by 

0 = 0o + v.O. (13.14) 

Therefore we have 

% - 1 <*"•> 
The heuristic picture is then that if we innnilesimafly change the initial condition 
for motion on the invariant curve, the phase motion (0) on the curve mapped 
into the original coordinates jumps discontinuousty. This would not happen on 
a smooth continuous invariant curve, but might happen on a curve with gaps. 

Before continuing the discussion of results of the two resonance model it is 
interesting to conjecture the generalization of F-q. (13.13). The key point is the 
non-invcrtibilityof (13.3). In higher dimensions the conjectured criterion is that 
the determinant of the Jacobian matrix of the second canonical transformation 
equation vanish. If we denote the old and new victor angle variables with bold 
face, then the second canonical transformation equation becomes 

9 = 9 + GK{9,K,B), (13.16) 

while the condition for the break-up of the KAM torus is 

Det(dV/dft) = Det ( /+ C « K ) ™ 0 • ( l 3 - 1 7 ) 

ee 



~ 1 i—' r~>—i—-—1—'—i | — ' — i — • — i — > — i — « — i — ~ 

1.20 - <°> - t , ° " (b) ~ 

0.4 -

I | 4 I—i ! — i — L _ _ i 1—i—1—i—I o '—' I — ' '—' I J —'—' I 
0 O.? 0/1 0.0 0.0 1.0 O 0.2 0.4 0.6 0.8 1.0 

* / ? w , +/2" 
Fig. 10 (a)Thc invariant curve and (b) dt/>/oty for (\ = 2«a =s 6 * KT 5 . 

13.3.2 Invariant curves and their break-up 

Figures 10(a), 11(a), and 12(a) show the invariant curves for the two res-
onancr model in Cartesian plots of J{4>,0 = 0) for cases (i), (ii) and (iii) 
respectively. Figures 10(b), 11(b), and 12(b) give the corresponding plots of 
di)/d4>[4>,e - 0). The latter quantity allows us to test condition (13.13), since 
the minimum values of cty/cty are quite insensitive to 6. The anticipated zeros 
of d\}>}d<j> arc on the verge of appearance in Fig. 12(b). 

In Figures 13(a), 13(b), and 14(b) we show enlargements of small portions 
of the invariant curves for cases (i), (ii) and (iti), together with points obtained 
by tracking from initial conditions on the appropriate curve. An orbit from a 
single initial condition was followed through JV turns in Q, with JV = 4000, 4000, 
and 1500 for cases (i), (ii) and (iii) respectively. 7'ic sood agreement between 
tracking and computed curves indicated in Figures 13(a) and 13(b) is maintained 
over the full range of 4>. Chaotic behavior is evident in cast (iii), but completely 
absent in case (ii). In Fig. 14(a) we show an intermediate case, fi = 2c a = 
1.2 x 10"* tracked for 3000 turns, which is ambiguous. Tt might represent a 
broken KAM curve or merely a high-order island chain not yet filled in. The 
scatter of points in Figures 14(a) and 14(b) is genuine, since the accuracy of the 
integration of Hamilton's equations has been checked by integrating back to the 
initial conditions. 

Comparing Figures 12(b) and 14(b) one sees that condition (13.13) is first 
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met at roughly that perturbation strength at which chaotic motion appears in 
tracking. Actually, the Ilamilton-Jacobi results for dil>/d<p (but not those for 
J) arc slightly ambiguous for <\ - 2<^ > 10 *, since i t such large perturbations 
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there is a limitation on the number or modes that can be accommodated while 
retaining convergence or Newton's method. Thus one cannot say precisely where 
(13.13) is first satisfied. A more precise determination of the transition should 
be possible by using a second canonical transformation or a modification of 
Newton's method. Assessing the results from tracking and dtyfd4> together, the 
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curve for the golden mean tune breaks up at E] = 2iz = (1.2 ± .05) x 10 *. 

The Hamilton-Jacob! method provides a promising alternative to canonical 
perturbation theory and its modern variants. Unlike perturbation theory its 
algebraic complexity does not increase as more accuracy is demanded, and the 
required computer programs are quite simple. The criterion in Eq. (13.16) for 
the transition to chaotic behavior in higher dimensional systems may provide a 
useful criterion for the break-up of K AM tori in the full 5-dimcnsional extended 
phase space of betatron motion. The reader interested in more details of this 
method should consult Ref. 16. 

13.4 A COMPARISON WITH THE RESIDUE CRITERION 

In this section we would like to make the connection between John Greene's 
residue criterion ' and the associated Hamilton-Jacob) equation. To do this 
we need to solve the Il-J equation over a finite time interval, locate an appropri­
ate fixed point of the resulting map, and linearize about that point t<. calculate 
the residue. 

To solve the H-J equation over a finite time interval it is necessary to re-
specify the problem and convenient to change notation slightly. We consider a 
canonical transformation (<£,/) »••• (&••/,) defined by 

J = 4 + & ( * , * , M i ) , . . 
A = # + £*{*,4.M0 . 

where 0,- is the initial time. The H-J equation which is appropriate for the finite-
time map consists of the requirement that the new Hamiltonian he identically 
zero 

Hi4,Ji + faS) + $t = 0 . (13.19) 

In this case the new coordinates are the initial conditions provided that we also 
impose the boundary condition 

In this case G is not a periodic function or. 6; however, it does satisfy 

since the original Hamiltonian is periodic in 0. 
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To study the neighborhood of a periodic orbit with period 2irq, we note that 
such a periodic orbit is a fixed point of the map in (13.18) at (^o, Jo) provided 
that 

&(<£<>, .*>, 0i + 2jw,P,) = O, (13 21) 
£/;(tfo(Jo,0« + 2Tg,ff,)=O . 

To calculate the residue of that fixed point we linearize for small deviations 
about it by setting 

<t> = 4>a + 6$ , fa = <h + 6<f>i , . . 
J — JQ •{• SJ , Ji = Jo + ^ Jj -

From (13.18) if we now keep terms linear in the deviation from the fixed point 
we obtain the linear map 

(SJ\ 1 (jl + $y)*-$„$jj 3*\(6JA 
\^)"1 + 94J\ -$JJ 1 A « J ' 

where all partial derivatives of Q are evaluated at (4>0,J0,6i + 2nqt6i). Denoting 
the matrix above as Affl, the frequency or tune vq of the oscillation about the 
fixed point is given by 

Trace(M ?) = 2 cos 2™, = * + ( 1 + M* " 9**$JJ . [ 13.24) 

Therefore, the residue is given by 

In the case of an "mtegrable system with Hamiltom&n Ho( J) we find 

9 = -II0{J)6 (13.26) 

which yields R — 0. 

In the case of a nonintegrable system we test the existence of some KAM 
curve with irrational frequency w by considering the residues Rn of a sequence 
of periodic orbits of increasing period 2JT^„ a s m M . The elements of the 
sequence correspond to frequencies in the continued fraction representation of 
w, say Pi/qi, pi/flj, -• •• According to Greene there are three distinct cases: 

1. R -* 0, there is a KAM curve with frequency w. 
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2. R —* ±00, there is no KAM curve with frequency w. 
3. R —+ /Zb, the transition case. 
If attention is restricted to solutions § with bounded second derivatives, 

then case (2) can arise only if 

I + V ( n ) -» 0. » -* °° • (13.27) 

Thin recalls the condition that 1 + G^x should first acquire a zero at transition; 
ef. Section 13.3.1. Trie latter condition refers to the G which generates an 
orbit covering an invariant surface, which is a different object from the £(") 
of (13.27). Nevertheless, for large n the orbit generated by 5<n> lies close to 
the surface generated by G. The failure of either condition, 1 4 $^j^ ^ 0 or 
1 + G+K 5* 0, means that the corresponding canonical transformation, (13.18) 
or (13.3), is no longer well defined. It seems reasonable that the two conditions 
(the former taken in the limit n —• 00) should fai! simultaneously as parameters 
approach critical values. 

14. RENORMALIZATION: THE ROUTE TO CHAOS 
In Sections 10.3, 10.-1, 12 and 13.3.1 we discussed techniques for determining 

the existence of invariant curves in non-integrable systems. In this section we 
continue by discussing the rcnormalizaUon explanation of tile break-up of a 
KAM curve. 

The residue criterion discussed in Section 12 is the driving force behind 
renormalization. Consider a KAM curve with a golden mean tune or winding 
number. Then examine the sequence of resonances which squeeze this KAM 
curve as discussed in Section 12.2. Then there is a critical rase in which the 
residues of the periodic orbits with longer and longer pctioris arc all equal. 
This leads one to suspect an asymptotic self-similarity between these resonances 
which suggests that a renormalization approach might be useful. 

The basic idea is then to find some transformation which links the proper­
ties of large islands about periodic orbits with low periods, to the properties of 
emaller islands about periodic orbits with longer periods. Once this transforma­
tion IB obtained, one can calculate the critical residue and study the properties 
of this self-similarity. 

To illustrate this technique we consider the two rrsonance problem. First we 
covert it to a convenient form, then we calculate the renormalization transfor­
mation approximately, and finally we study the renormalization group obtained. 
The technique used here is similar in spirit to Escande and Doveil in Refs. 18 
and 19, but the results obtained are equivalent to those obtained by Greene and 
MacKay in Rel. 20. For complete discussions of renormalization a la MacKay 
and Greene see Refs. 14, 21, and 22. 
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14.1 THE Two RESONANCE MODEL 

In this section we consider a. slightly different form of the two resonance 
model to begin renormalization. This form is inspired by the two resonance 
model of Escande and Doveil,1 ' 

We begin with the Hamiltonlan 

H — uaJ + u J 3 / 2 - (i cos(mi^ - m$) - ijcosfmjtfi --fijA) , (14.1) 

where ci and ti in this case are constant. We would like to convert this problem 
by changes of variables to one very similar to that considered by Escande and 
Dovcil, namely 

H = ^~Cconj>-Dtoa{k<t>~t) . (14,2) 

This can be accomplished with a sequence of trariformatians; however, before 
beginning it is useful to introduce two types oi •. (tling transformations which 
will be used together with the more standard cant 'cal transformations. 

14,1.1 Scaling The Time and the Momentum 

To begin it is useful to write down Hamilton's equations since the scaling 
equations can then be read off by inspection. In the old variables Hamilton's 
equations for the coordinates and momentum {q,p) are 

dqdH dp_ dH 
dt~~df ' * - ~ a f t M ' 3 > 

First we would like to change the scale of tho time variable while preserving the 
form of Hamilton's Equations. If we change to a new variable (' given by 

(' = at , (14.4) 

then the form of Hamilton's equations Is preserved if we set 

h' = — . (14.5) 

it is also useful at times to scale the momentum. While this does not 
preserve the Poisson bracket, it simply multiplies it by & constant. In this case 
a simple soiling of the Hamiltonian once again preserves the form of Hamilton's 
equations. Inspecting Hamilton's equations in Eq. (14.3) we see that if 

jf = \pt (14.6) 

the form of Hamilton's equations is preserved provided that 

// ' = AH . (14.7) 
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14.1.2 The 'Standard' Form of the Two Resonance Problem 

Now to convert the starting Hamiltonian of Eq. (14.1) to the standard form 
we begin with the canonical transformation ($, J) »-* (<j>,Ji) 

4> = m[0 - m$ 
J = mtJi (14.8) 

JT, = H - niJi , 

which yields the new Hamiltonian 

Hi = (mii/o - n)Ji + a—M? - fi cos^ - £j cos(&0 0) (M.9) 
2 mi 

where 

mi 
A = njmj — Rim2 

(14.10) 

Next we wouid like to reale the time variable. Following the previous sertion 
this can be done by setting 

A ( = — S 
m i 

Ht = Til „ 
(14.11) 

which yields the new Hamiltonian 

— ( l COS <P — £2 COS(*0 - ( I 
A A 

(14.12) 

Before scaling the momentum it is useful to complete the square in the 
^•independent part of / / j to yield 

H3 = ^ i ( J , - J ° ) ' - ^ 1 c o a ^ - ^ co3(fc* - I) + « n s t , (14.13) 

where 

FinaHy we shift the origin and scale the momentum variable with the transfor-
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matlon 
__ a m T V . - J?) 

V = ^ H , , 

which yields the final desired form 

Ccostf Dcc${k4>-i), (14.14) 

where 
ami „ ami 

r, a m t 
(14.15) 

To summarize the sequence of transformations, wc collect the changes or vari­
ables and the associated parameters below, 

fc _ HlH A = "a"»i - n\mi , 

* - m i 0 - M , i~"m\°" (14.16) 
„ _ n m l / r /Ox iQ - "I ~ m ' t ' 0 
P - - - J ( J I - J , ) , V - — : ^ | — • 

In these new variables the resonant amplitudes for the two resonances have been 
shifted to 

ft) - 0 , 
Pi =? 1/fc . 

Using the analysis of Section 12.4 the residues at the stable periodic orbits 
are given approximately by 

, , (14.18) 
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I-J. 2 THE UENORMAUZATION THANSFOHMATION 

In keeping with the residue criterion we. would like to examine the sequence 
of higher order islands which comes from the continued fraction representation 
of the frequency we ;ire considering. If we express the sequence of resonances 
Riven by the rule 

Hi - - n J- + , t 3 - (M.10) 
r>i4 m j 4 n»3 , 

wc find that this sequence limits on the irrational tune 

r 

where 
1 i v'5 

(M.20) 

(M.21) 

These numbers are. called NoMe numbers and the sequence generated is the con­
tinued fraction representation of the Noble number I*. The approach described 
here focuses on just these types of irrational numbers 

The two resonance terms which appear explicitly in the liamiltoni&n gener­
ate two sequences of driving resonance islands about their stable periodic orbits 
as discussed in Section 10. In addition, their interaction generates an infinite 
number of other fixed points and resonance islands. To sec this explicitly in per­
turbation theory we ran use the analysis in Section 7 to show that the resonances 
follow the sequence shown in Table 1. 
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To Gee this in a specific example consider the standard two resonance Hamil­
tonian in Eq. (14.2) with fc = 1. In Figs. 15(a) and 15(h) you see plots of the 
motion in phase space (a surface of section at ( = 0 mod 2ir) generated by 
integrating Hamilton's equations for this case. In Fig. 15(a) you see the two 
driving resonances centered at $ = T and p ~ 0, 1.0. Each sequence of islands 
is or course generated by a different initial condition integrated through many 
multiples of 2ir. Between the two driving resonances you sec a sequence of res­
onances. In Fig. 15(b) the momentum scale is blown up to show the detail of 
the higher order resonances. The 'dashed' curve in the center of Fig. 15(b) is a 
KAM curve with a tune or winding number of I /7 . The sequence of resonances 
shown are just those which correspond to ihe continued fraction approxima­
tions to l/-y, namely 0 /1 , 1/1,1/2, 2/3, 3/5, and 5/8. Note that the resonance 
islands rapidly squeeze the KAM curva and impress their shape on it causing 
it to weave through the gaps between the resonance islands. The sequence of 
resonances shown are those which must be checked with the residue criterion to 
see if the KAM curve exists. Notice that the island widths are rather ill defined 
due to some chaotic behavior and also due to the distortions of neighboring 
resonance islands. It is just this sequence of resonances which we focus on in 
this section. The elements of this sequence are obtained by simply adding both 
the numerators and denominators of the previous two resonances. Therefore, in 
the remainder of this section we will focus on resonance phases which add since 
these limit on the noble number which is between the two driving resonances. 

The basic idea is to find a transformation of the Hamiltonian which allows 
us to etudy the next higher order periodic orbits in this sequence and their 
associated resonance islands. 

To begin this process we perform a general canonical transformation close to 
the identity similar to that used in perturbation theory in Section 7. Consider 
the canonical transformation (p,^) >-» (pi,4>i) generated by 

FifAPi.O "= # 1 + t :f>,ji,,l) (14.22) 

with the transformation equations 

^1 — <j>+ Gp, 
p = P i + G * (M.23) 

V, = X + Gt , 

Then the new Hamiltonian is 

2 G* 
W> = ^ "•' -} + PlG* + G t ~ € c o s ^ ~ Dcr*{ty - t) (1-1.24) 

The simplest choice for the generating function is the choice which eliminates one 
of fr*fe explicit resonances from view, but yields explicit higher order resonances 
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in the new variables. Therefore we set 

PiG^ + G, =Croa<j> (14.25) 

which yields 

G = — s i n ^ (14.26) 
Pi 

If we now complete the substitution of nrw variables, and keep up to quadratic 
terms in the strength of the resonance we find 

Mx = ^- + —.(1+cos2<£,)-Dcos(fc<h-t)+—rs\n(k4>t-t)sin.£ + ••• . (14.27) 
2 4pf p, 

We wish to study the interactions of two resonances in which the phases 
add, since these resonances are closer and cloner to the Noble frequency T which 
lies between our initial two resonances. The other resonances are far away in 
phase space and will simply be dropped here. This yields 

Hi s r* J - - Dcos(Mi - ( ) - ^ £ cos|(l + W i - * ! + • • . (H-28) 
2 ZpJ 

which is once again a two resonance Hamiltonian but with one of the driving 
resonances and the next higher order resonance. To obtain the exact form of 
the two resonance Hamiltonian which wc started with, we must approximate the 
coefficient of the new resonance. To preserve the residue and for small island 
width we can set p\ to its value at the center of the island 

p, ~ ~ (14.29) 

which yields 

W( =: ^ - D coS(Jt0, - t) - * t l + * ) ' g P cos((l + lie)*, - ( ] + . . . . (14.30) 

Now that we have the new Hamillonian in the desired two resonance form, 
the next step is to make a sequence or transformations to convert this Hamil­
tonian to the one which we started with. This, however, is quite easy since we 
have already taken a more general Hamiltonian of this form in Eq. (14.1) and 
converted it in Section 14.1. Therefore, we can read off the transformation from 
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Eqs. (14.15) and (14.16). In this case we have 

mi - k , til = 1 
mj - - l i t , nj = 1 

A = - l , « = 1, 
(14.31) 

Substi tuting these values into the transformation equations we find the new 
Ilamiltonian 

v'2 

X' - '— - C'r.os 6' - D' cos(k'<j>' - t') , (M.32) 

where 

C" =k*D , 2 

It ' 
<t>' = k<S> - t , 

it1 = k*{){ - p) 

p' ---• - * 3 { p - ;<o) , 1 
F0 = V 2 -

(H.3H) 

For example consider k - 2. This transformation col lapses Air into 2n in 
time, in the A dimension wc blow-up x in ^ to 2x in <£', and finally I lie momentum 
zero is shifted and the scale blown up by a factor of R, Thus, wr look at longer 
times and at smaller resonance structure, but we have changed the scales to 
match the size of the driving resonances of the initial problem. 

Since we have converted the higher order problem to look just like the initial 
problem, we can study the transformations to higher and higher order resonances 
and periodic orbits by simply iterating the transformation equations. In the next 
section we proceed in this manner by studying the 'parameter ^-normalization 
group' . 

1 4 . 3 T H E R B N O R M A L I Z A T I O N G R O U P 

The parameter transformation which yields a sr.lf-similar problem is 

K ' k 
C'=kAD \U.M) 

It is useful to s tudy the first transformation separately since it is decoupled from 
the other two. 
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To calculate the fixed point of the map we set 

* = — ' 
which yields 

(M.35) 

If we restrict k to be positive, we find a fixed point at the 'golden mean' 

kt = t = 1.618 ••• . (14.37) 

Thus, in the new coordinates , the sequence of resonances limit at k = -y which 
means the fixed points approach 

-1 -i 
P t ~k'c~l (14.38) 

= 0.618"- . 
Thus the limiting KAM curve which is being tested here has a winding number 
of 1/7. 

Next we examine the coefficient renormalization. If we iterate the k equation 
to its fixed point, the map for the coefficient renormalizatton becomes 

2 2 

The map defined by Eq. (14.39) has an attracting fixed point at C = D = 0. 
Thus, for some initial C and D which axe sufficiently small, the higher order 
coefficients which approach the KAM curve go to zero. Since the residues are 
just proportional to C and D, they also go to zero in the same circumstances. 
Therefore, for small C and D the KAM curve exists by the residue criterion. 

This is not true Tor general C and D. The map in Eq. (14.39) also has a 
critical fixed point. To see this set 

t 
2 

~9 , (14.40) 
D = ±-GD 

which yields 

°-7 (14.41) 

This fixed point is a hyperbolic fixed point. To see this first scale C and D as 
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L 

Col Iowa: 

% (11-42) 

which yields the normalized transformation equation 

z' = y 
. (H.43) 

V = xy . 

Now we linearize about the critical fixed point (1,1) which yields the linear map 

ra-coo-
This map has eigenvalues 7, - l / - f which implies that the fixed point is 

a hyperbolic fixed point. The divergence in the unstable direction at the nlk 

iterate Is - | n while the convergence along the stable direction is {-l)n/fn. 
It is interesting and useful to calculate the extensions of the curves from the 

hyperbolic fixed point since one of them defines the boundary for the basin of 
attraction for the central fixed point. If we guess a form for the curve" 

y = ^ t (14.45) 

then substituting into Eq. (14.39) yields the condition 

sd'-M-i = 1 t ( 1 4 . 4 6 ) 

which yields 
11 = ^,-111. (14.47) 

Therefore, the 'stable' and 'unstable' curves are given by 

y 

y = X 

— -rl 
(14.48) 

To summarize the portrait in (C, D) 'phase space' see Fig. 16. In the area 
below the curve y = a:" 1 ' 1 iteration of the renormalization leads to the fixed 
point at x = y = 0. These points lie in the basin of attraction of the central 
fixed point. Iteration of initial x and y which start just above this line leads 
to rapid growth. Since by Eq. (14.18) the residues of the sequence of periodic 
orbits are juat proportional to C and D, the basin of attraction corresponds 
to residues going to zero and to the existence of the KAM curve with winding 
number I/-7. The outside corresponds to the nonexistence of the KAM curve, 
and finally the line between corresponds to the transition case. 
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Fig. 16 Critical parameters and the existence of KAM curves. 

Before continuing the discussion it is interesting to calculate the critical 
residues predicted by the simple ^normalization scheme shown here. Using Eq. 
(14.41} for the critical C and D and Eq. (14.18) for the residues we obtain 

which yields 

Re * 2ffV-r9 

Ri ~ 2 T J / 7

9 , 

R0 = Ri = 0.2597 • 

(14.49) 

(14.50) 

This is quite close to the values numerically calculated by Shenkcr and Kadanofi 32 

R = .2500888 . (14.51) 
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J4.3.1 Discussion 

It is useful to conclude this section with a brief discussion of the message of 
re-normalization and the residue criterion. Recall from Sections 10.2 and 10.4 
that the residue of a fitted point is related to the island width surrounding that 
fixed point; as the residue goes to zero so does the island width. If we look 
at a sequence or resonances which are in the continued fraction representation 
of the golden mean, then we examine a sequence of periodic orbits and islands 
around them which sq«ee2e in on both sides of the K AM curve with golden mean 
winding number, ir there is to be a smooth curve threading its way through thin 
ever finer detail, then the island widths must go to zero as the order increases. 
As we increase the strength of the driving resonances, the larger resonances 
far from the KAM curve do indeed get larger and distort the overall shape of 
the curve. However, since the residues and island widths still go to zero the 
KAM curve can still smoothly thread its way through this maze of islands. At 
the critical case something qualitatively different happens. The sequence of 
residues converges to a fixed value (about 0,25), and thus there are neighboring 
islands at all scales! It was just this observation which led us to ^normalization. 
The curve which threads through this maze and is squeezed by the sequence of 
islands, must have structure on all scales and thus cannot be a smooth curve. 
Just beyond this point as the driving resonances are increased, the KAM curve 
gets squeezed out of existence. 

The strength of renarmalization is that the technique allows one to under­
stand and calculate the structure on ever finer and finer scales by understanding 
the basic properties of the renormaltzation transformation. In particular one can 
calculate the critical behavior at the breaking point of a KAM ruive. 
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