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ABSTRACT 

The impact  o f  hydrogen on t h e  mechanical p r o p e r t i e s  o f  t i t a n i u m  and i t s  

a l l o y s  concerns t he  f u s i o n  community because i t  may reduce t he  use fu lness  o f  

t i t a n i u m  as a  cand ida te  m a t e r i a l  f o r  f i r s t  w a l l  and b l a n k e t  s t r u c t u r e .  

The o v e r a l l  hydrogen embri ttl ement phenomena i s  r a t h e r  complex because the  

e f f e c t s  and r e a c t i o n s  have many in te rdependent  va r i ab les .  Fac to r s  t h a t  appear t o  

be most s i g n i f i c a n t  a r e  t he  temperature dependence o f  hydrogen so l  u b i l  i ty i n  a1 pha 

and be ta  phases, t he  hydrogen p a r t i a l  pressure around t i t a n i u m ,  and a l l o y  compo- 

s i t i o n .  Other f a c e t s  t h a t  e n t e r  i n t o  t he  embr i t t l emen t  phenomena i n  more s u b t l e  

ways a re  t h e  r e l a t i v e  amounts o f  alpha and beta phases present ;  t he  p r i o r  mech- 

a n i c a l  and thennal h i s t o r y  o f  t h e  m a t e r i a l  ; t h e  s t r e s s - s t a t e  and l o a d i n g  r a t e ;  

ope ra t i ng  temperature;  and t h e  amount o f  hydrogen w i t h i n  t h e  t i t a n i u m  as we l l  as  

i n  t he  surrounding reg ion .  

The t i t a n i u m  a1 1  oys t h a t  o f f e r  p r o p e r t i e s  worthy o f  c o n s i d e r a t i o n  f o r  f u s i o n  

r e a c t o r s  a r e  Ti-6A1-4V, Ti-6A1-2Sn-4Zr-2Mo-Si (T i -6242s)  and T i  -5Al-6Sn-2Zr-1Mo-Si 

(T i -5621s) .  The Ti-6242s and Ti-5621s a r e  be ing  cons idered because o f  t h e i r  h i g h  

creep r e s i s t a n c e  a t  e l eva ted  temperatures o f  500°C. Also, i r r a d i a t i o n  t e s t s  on 

these a1 1  oys have shown i r r a d i a t i o n  creep p r o p e r t i e s  comparable t o  20% c o l  d  worked 

316 s t a i n l e s s  s t e e l .  These a l l o y s  would be s u s c e p t i b l e  t o  s low s t r a i n  r a t e  

embr i t t l emen t  i f  s u f f i c i e n t  hydrogen concen t ra t i ons  a r e  obta ined.  Concentrat ions 

g rea te r  than  250 t o  500 wppm hydrogen and temperatures lower  than  100 t o  150°C a r e  

approximate t h r e s h o l d  c o n d i t i o n s  f o r  de t r imen ta l  e f f e c t s  on t e n s i l e  p r o p e r t i e s .  

I n d i c a t i o n s  a re  t h a t  a t  t h e  e l eva ted  temperature - low hydrogen pressure cond i -  

t i o n s  o f  t h e  reac to r s ,  t h e r e  would be n e g l i g i b l e  hydrogen embri ttl ement. 

Equal numbers of hydrogen, deuter ium, o r  t r i t i u m  atom a re  so lub le  i n  t i t a n i u m  

under equal c o n d i t i o n s .  No i so tope  e f f e c t s  were noted and t h e r e f o r e  any e f f e c t s  

noted f o r  hydrogen should apply  e q u a l l y  f o r  deuter ium o r  t r i t i u m  f o r  equal volume 

pe rcen t  concen t ra t ions .  

A  thorough rev iew o f  a v a i l  a b l e  i n f o r m a t i o n  revea led  l i t t l e  d i r e c t l y  appl i- 

cab le  data.  Because o f  t h i s  l a c k  o f  data, a  s u f f i c i e n t  data base must be gene- 

r a t e d  t o  p rov ide  q u a n t i t a t i v e  da ta  t o  determine t h e  e f f e c t s  o f  b o t h  i n t e r n a l  and 

environmental  hydrogen on t h e  most f avo rab le  t i t a n i u m  a1 1  oys a t  temperatures and 

pressures o f  i n t e r e s t  f o r  f u s i o n  reac to r s .  I d e a l l y ,  t h i s  da ta  base w i l l  a1 so 

yombine t h e  e f f e c t s  o f  r a d i a t i o n  darr~age as we l l  as ariy tlydrhogeri ef.fect;s. 
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1.0 INTRODUCTION AND SUMMARY 

T i tan ium a l l o y s  appear t o  o f f e r  advantages f o r  use as f i r s t  w a l l  and b l a n k e t  

s t r u c t u r e  i n  a  f u s i o n  r e a c t o r  based on a  combinat ion o f  f a c t o r s  which i n c l u d e  

, 
s t reng th ,  f a b r i c a b i l  i ty, cos t ,  c o r r o s i o n  res i s tance ,  an e s t a b l i s h e d  process ing 

i n d u s t r y ,  and low 1  ong-term res idua l  r a d i o a c t i v i t y  . Two pr imary  u n c e r t a i n t i e s  

rega rd ing  t he  use o f  t i t a n i u m  i n  a  f u s i o n  r e a c t o r  a re  r a d i a t i o n  damage r e s i s t a n c e  

and compa t i b i l  i ty w i t h  the  f u s i o n  r e a c t o r  environment, p a r t i c u l a r l y  w i t h  respec t  

t o  hydrogen. Hydrogen c o m p a t i b i l i t y  i s  p a r t i c u l a r l y  impo r tan t  because f i r s t  gen- 

e r a t i o n  f u s i o n  r e a c t o r s  w i l l  use deuter ium and t r i t i u m  as f u e l .  Since t i t a n i u m  

has a  h i gh  a f f i n i t y  f o r  hydrogen, the  p o t e n t i a l  e x i s t s  f o r  hydrogen embri t t l e m e n t  

and increased tr i  t i um i n v e n t o r y  i n  the s t r u c t u r e .  

I n  a  f u s i o n  r e a c t o r  t h e r e  a re  four  p r imary  sources o f  hydrogen and i t s  i s o -  

topes. These sources are:  

o  I n t e r a c t i o n s  of t h e  deuter ium and t r i t i u m  (D-T) f u e l  i n  the  plasma w i t h  

t he  f i r s t  w a l l  

o  Transmutat ion r e a c t i o n s  w i t h i n  t h e  t i t a n i u m  

o  I n t e r a c t i o n s  o f  t r i t i u m  i n  t he  b reed ing  m a t e r i a l  w i t h  t h e  b l a n k e t  s t r u c -  

t u r e s  

o  I n t e r a c t i o n s  o f  t r i t i u m  i n  t he  c o o l a n t  w i t h  t he  f i r s t  w a l l  and b l a n k e t  

s t r u c t u r e s  

The i n t e r a c t i o n s  between t he  D-T f u e l  and f i r s t  w a l l  a r e  a  combinat ion o f  

chemical r e a c t i o n s  between t h e  ti t a n i  urn and D-T f u e l  and p h y s i c a l  /chemical reac-  

t i o n s  r e s u l t i n g  from ene rge t i c  i ons  i n c i d e n t  on t h e  f i r s t  w a l l .  Dur ing t he  

r e a c t o r  burn c y c l e  t h e r e  w i l l  be D-T i ons  and n e u t r a l  hydrogen atoms from t h e  

plasma t h a t  t r a v e l  through t h e  plasma sc rape -o f f  zone and impinge a t  h i g h  speeds 

upon t h e  f i r s t  w a l l  i n  amounts t h a t  c o u l d  reach 1019 p a r t i c l e s  per  cm2 per  second 

as dep i c ted  i n  F i g u r e  1-1. Some' i ons  and atoms implanted i n  t he  f i r s t  w a l l  from 

t h e  plasma, w i l l  l eave  t he  f i r s t  w a l l  and r e e n t e r  t he  sc rape-o f f  zone because o f  

t h e  t o r r  vacuum i n  t h e  sc rape-o f f  zone. The amount o f  hydrogen and i t s  

i so topes  t h a t  remain i n  t h e  f i r s t  w a l l  w i l l  depend upon t he  f i r s t  w a l l  m a t e r i a l ,  

amount -of hydrogen i so topes  i n c i d e n t  upon t he  w a l l ,  temperature o f  t h e  w a l l ,  and 

hydrogen p a r t i a l  pressure i n  the ,  sc rape-o f f  zone. Dur ing  t h e  non-burn p o r t i o n  o f  

t h e  c y c l e  the  plasma chamber w i l l  be evacuated t o  10-4pa (10-6 t o r r )  and then back 

i l l e d  w i t h  D-T f u e l  t o  1 0 - l ~ a  t o r r ) ;  t h e r e f o r e  d u r i n g  t h i s  t ime  t h e  w a l l  



w i l l  be sub jec ted  t o  pure chemical i n t e r a c t i o n  w i t h  D-T f u e l  . The former burn  

c y c l e  i n t e r a c t i o n s  a r e  most impo r tan t  s i nce  they  rep resen t  t h e  l a r g e s t  t ime seg- 

ment i n  the  opera t ion ;  a l s o  t he  advanced tokamaks and EBT dev ice  a r e  cont inuous 

burn  machines. The e q u i l  i b r i u m  hydrogen concen t ra t i ons  r e s u l t i n g  from burn  c y c l  e  

i n t e r a c t i o n s  cou l  d  correspond t o  approx imate ly  22,700 appm (500 wppm) . 
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FIGURE 1-1 FUEL INTERACTIONS WITH FIRST WALL 

The t r ansmu ta t i on  r e a c t i o n s  o f  t h e  14  MeV f u s i o n  neut rons w i t h  t h e  t i t a n i u m  

s t r u c t u r e  r e s u l t s  i n  p roduc t i on  o f  hydrogen and he l ium throughout  t h e  m a t e r i a l .  

I n  general  , t h e  q u a n t i t y  o f  hydrogen produced by t ransmuta t ion  r e a c t i o n s  i n  a  

t i t a n i u m  a l l o y  i s  smal l .  

Hydrogen a1 so r e s u l t s  from i n t e r a c t i o n s  between t he  t i t a n i u m  and t r i t i u m  i n  

t h e  b reed ing  m a t e r i a l  and coo lan t .  T y p i c a l l y ,  t r i t i u m  w i l l  be b red  i n  l i t h i u m  

c o n t a i n i n g  b l a n k e t  reg ions  o f  a  r e a c t o r .  The t r i t i u m  concen t ra t i on  i n  the  breed- 

i n g  l o o p  w i l l  depend upon t h e  c a p a b i l i t y  o f  t he  process ing method used t o  r ecove r  

t h e  t r i t i u m .  Hydrogen t h a t  has been formed i n  t h e  breeder  m a t e r i a l  w i l l  be pre-  

sen t  i n  t h e  c o o l a n t  system. The ac tua l  amount o f  hydrogen depends upon t h e  system 

des ign,  b u t  f o r  a  he1 ium cooled system c o u l d  be r e l a t i v e l y  l a r g e .  

Look and ~ a s k e s ( l )  have performed c a l c u l a t i o n s  t h a t  p r e d i c t  hydrogen concen- 

- r a t i o n s  i n  a  t i t a n i u m  f i r s t  w a l l  o f  approx imate ly  1000 appm under proposed EPR 



and NUWMAK ope ra t i ng  c o n d i t i o n s .  Th i s  va lue of 1000 appm corresponds t o  22 wppm 

hydrogen. These concen t ra t i ons  o f  hydrogen and i t s  i so topes  a re  w e l l  below t h e  

a1 1  owable maximum 1  i m i  t s  o f  150 wppm (6800 appm) hydrogen a1 1  owed i n  p resen t  

t i t a n i u m  m a t e r i a l  s p e c i f i c a t i o n s .  Therefore,  hydrogen a t  these p r e d i c t e d  concen- 

t r a t i o n s  woul d  n o t  embri ttl e  the  ti tanium. 

However, o t h e r  i n v e s t i g a t o r s  be1 i eve  t h a t  hydrogen concen t ra t i ons  w i l l  be 

h i g h e r  than 1000 appm. Davis  and ~ m i t h ( 2 )  have p r e d i c t e d  e q u i l i b r i u m  D-T 

concen t ra t i ons  i n  t i t a n i u m  o f  50,000 appm which corresponds t o  1100 wppm 

hydrogen. Hydrogen concen t ra t i ons  o f  1100 wppm a r e  o f  a  magnitude t h a t  causes 

concern f o r  t he  embri ttl ement e f f e c t s  on ti t a n i  um a1 1  oys. 

The fus ion  environment a t  t he  f i r s t  wal l / b l a n k e t  area i s  p r e d i c t e d  t o  have 

ope ra t i ng  temperatures o f  300 t o  600°C w i t h  hydrogen pressures o f  10 t o  1 0 - I  Pa 

( 1 0 - I  t o  t o r r )  . The temperature o f  t he  b l a n k e t  i s  n o t  expected t o  fa1 1  be1 ow 
perhaps 200°C a f t e r  t h e  r e a c t o r  i s  i n  opera t ion ,  t h e r e f o r e  l ow  o r  room temperature 

phenomena i s  n o t  expected, except  under f a u l t  c o n d i t i o n s .  

The hydrogen- t i  tanium i n t e r a c t i o n  has been s t u d i e d  s i nce  t h e  1930 's  b u t  i t 

was n o t  u n t i l  t he  e a r l y  1950 's  when j e t  engine p a r t s  s t a r t e d  t o  f a i l  as a  r e s u l t  

o f  hydrogen embri ttl ement t h a t  ex tens ive  research  was i n i t i a t e d .  As a  r e s u l t ,  

cons ide rab le  i n f o r m a t i o n  has been ob ta ined  on r e a c t i o n s  w i t h  hydrogen and i t s  

e f f e c t s  on p r o p e r t i e s  o f  t i t a n i u m  and some o f  i t s  a l l o y s .  The i n t e r a c t i o n  i s  n o t  

a  s imple phenomena. 

The presence o f  hydrogen i n  t i t a n i u m  i s  n o t  always d e l e t e r i o u s .  Hydrogen 

embr i t t l emen t  o n l y  r e s u l t s  when hydrogen i s  n o t  r e t a i n e d  i n  s o l u t i o n  o r  when i t s  

c o n c e n t r a t i o n  exceeds t he  s o l u b i l i t y  1  i m i t s  o f  t he  a1 l o y  so t h a t  h.ydride p r e c i p i -  

t a t e s  o r  segrega t ion  can occur.  

Genera l l y  speaking, embr i t t l emen t  due t o  hydrogen man i f es t s  i t s e l  f i n  two 

d i f f e r e n t  forms: s u s c e p t i b i l i t y  t o  embr i t t l emen t  a t  h i g h  s t r a i n  r a t e s  ( impac t  

embri ttl ement) and embri ttl ement a t  1  ow s t r a i n  r a t e s  ( 1  ow s t r a i n  r a t e  embri ttl e- 

ment) .  Impact embr i t t l emen t  e f f e c t s  t h e  c h a r a c t e r i s t i c s  o f  p r o p e r t i e s  ob ta ined  a t  

h i g h  s t r a i n  r a t e s . s u c h  as Charpy impact  s t reng ths .  Low s t r a i n  r a t e  embr i t t l emen t  

e f f e c t s  slow s t r a i n  r a t e  p r o p e r t i e s ,  such as normal t e n s i l e  p rope r t i es . .  

Fac to r s  t h a t  appear t o  be most s i g n i f i c a n t  t o  t h e  embr i t t l emen t  phenomena a r e  

t he  temperature dependence o f  hydrogen s o l u b i l i t y  i n  a lpha and be ta  phases, t h e  

hydrogen p a r t i a l  p ressure  around t h e  t i t a n i u m ,  and t h e  a1 1  oy composi t ion.  Other 

'acets t h a t  e n t e r  i n t o  t h e  embr i . t t lement  phenomena i n  more s u b t l e  ways a re  t h e  



r e l a t i v e  amounts o f  a lpha and be ta  phases present ;  p r i o r  mechanical and thermal 

h i  s t o r y  o f  t h e  m a t e r i  a1 ; s t r e s s - s t a t e  and 1  oad i  ng r a t e ;  ope ra t i ng  temperature;  and 

amount o f  hydrogen p resen t  w i t h i n  t he  t i t a n i u m  r e l a t i v e  t o  t he  surrounding reg ion .  

The f o rma t i on  o f  hydr ides  i s  a  mechanism o f t e n  a t t r i b u t e d  t o  t h e  cause o f  

embri t t l e 1 n e n t . ( 3 ) ( ~ )  Th i s  i s  espec ia l  l y  t r u e  i n  impact embri ttl ement o f  a1 pha 

a1 1  oys where t i t a n i u m  hyd r i de  can p r e c i p i t a t e  from t i t a n i u m  d u r i n g  coo l  i ng from 

e leva ted  temperatures due t o  a  decrease i n  hydrogen s o l u b i l  i ty a t  room tempera- 

t u r e .  General ly ,  impact embri ttl ement i s  1  i m i  t e d  t o  a1 pha a1 1  oys, a1 though i n  

some 1  ow beta,  a1 pha-beta, and be ta  a1 1  oys, impact  embri ttl ement has been observed 

a t  hydrogen concen t ra t i ons  be1 ow t h e  1  im i  t o f  so l  u b i l  i ty. 

The presence o f  hydr ides  i s  n o t  n e c e s s a r i l y  e v i d e n t  i n  slow s t r a i n  r a t e  

embr i t t l emen t  o f  a l l o y s  c o n t a i n i n g  some beta.  There a r e  severa l  t h e s i s  on t h e  

mechanism caus ing embri t t l e m e n t  i n  a1 1  oys c o n t a i n i n g  be ta ,  however, i t  i s  gener- 

a l l y  agreed upon t h a t  hydrogen m ig ra tes  t o  t h e  r e g i o n  o f  a  c rack  t i p  and e i t h e r  

causes f o rma t i on  o f  hydr ides  t h a t  cannot be i d e n t i f i e d  by microscopy o r  causes 

d i s t o r t i o n  of t h e  l a t t i c e  t o  a  p o i n t  t h a t  propagates a  c rack  under low s t r a i n  

r a t e .  

I f  hydrogen i s  r e t a i n e d  i n  s o l u t i o n  and then  p r e c i p i t a t e s  o r  segregates under 

t h e  i n f l u e n c e  o f  s t r a i n ,  low s t r a i n - r a t e  embr i t t l emen t  can take  p lace.  Th i s  

embr i t t l emen t  occurs i n  bo th  a1 pha and be ta  a1 l o y s ,  p o s s i b l y  as a  r e s u l t  o f  pre-  

c i p i  t a t i o n  o f  small amount o f  hyd r i de  a t  t h e  alpha-beta i n t e r f a c e s .  P rope r l y  

c o n t r o l l e d  hea t  t rea tment  t o  keep hydrogen i n  s o l u t i o n  inc reases  t h e  r e s i s t a n c e  o f  

t i t a n i u m  a l l o y s  t o  low s t r a i n - r a t e  embri t t l e m e n t ;  however, alpha a1 1  oys exper ience 

l e s s  improvement i n  impact embri t t l e m e n t  s i n c e  g r e c i p i  t a t - i n n  o f  hyd r i de  i n  t h e  

a lpha phase cannot be prevented. I n  e i t h e r  case d u c t i l i t y  i s  r e s t o r e d  a t  e l eva ted  

temperatures. Table 1-1 i s  a  summary o f  embr i t t l emen t  t ypes  f o r  t i t a n i u m  a1 l o y s .  

The s o l u b i l i t y  o f  hydrogen i n  t i t a n i u m  depends upon a  v a r i e t y  o f  f a c t o r s ,  

many o f  which a r e  i n t e r r e l a t e d ,  such as temperature,  phase type (a lpha ,  be ta ,  o r  

a lpha-beta) ,  a l l o y i n g  elements, and r q u  i l ib r iu rn  hydrogen pressure around t h e  

t i t a n i u m .  No i so tope  e f f e c t s  have been observed; deuter ium and t r i t i u m  atoms 

d i s s o l v e  i n  t i t a n i u m  i n  much t h e  same manner as hydrogen on an atomic bas is .  That 

i s ,  t h e  number o f  deuter ium o r  t r i t i u m  atoms t h a t  w i l l  d i s s o l v e  i n  t i t a n i u m  i s  

equal t o  t h e  number o f  hydrogen atoms t h a t  w i l l  d i s s o l v e  i n  t i t a n i u m .  



Table 1-1 T i tan ium A1 l o y  Embr i t t l emen t  S u s c e p t i b i l i t y  

A1 1 oy Type 

A1 pha 

Near-A1 pha 

Beta 

Ernbri ttl ement 

S u s c e p t i b i l i t y  

Impact 

Low s t r a i n  r a t e  

Low s t r a i n  r a t e  

Low s t r a i n  r a t e  

C h a r a c t e r i s t i c s  

I n c r e a s i  ng s t r a i n  r a t e  

inc reases  s u s c e p t i b i l  i t y  

Decreasing s t r a i n  r a t e  

inc reases  s u s c e p t i b i l  i t y  

Decreasing s t r a i n  r a t e  

inc reases  s u s c e p t i b i l i t y  

Decreasi  ng s t r a i  n  r a t e  

inc reases  s u s c e p t i b i l  i t y  

A l i m i t e d  amount o f  data suggests t h a t  a t  e l eva ted  temperatures and l o w  

hydrogen pressures t h e r e  may be no d e l e t e r i o u s  hydrogen damage t o  t he  t i t a n i u m .  

The l ow  hydrogen pressure i n  t h e  r e a c t o r  c o n t r o l s  t h e  s o l u b i l i t y  o f  hydrogen i n  

t h e  t i t a n i u m .  The 10-I Pa t o r r )  hydrogen p ressure  would correspond t o  an 
approximate e q u i l i b r i u m  hydrogen c o n t e n t  i n  t i t a n i u m  a t  500°C o f  approx imate ly  100 

wppm. A t  t h i s  l e v e l ,  i t  i s  doub t f u l  t h a t  hydrogen would degrade t he  mechanical 

p r o p e r t i e s .  

E a r l y  wo'rk on mechanical p r o p e r t i e s  d i d  n o t  cover  a l l o y s  t h a t  a r e  commer- 

c i a l  l y  a v a i l  ab le  now and tended t o  i n v e s t i g a t e  h i ghe r  pressure ex te rna l  hydrogen 

( l o 5  Pa) r a t h e r  than the  10 t o  10-1 Pa (10-1  t o  10-3 t o r r )  f o r  f us i on .  The h igh  
pressure ex te rna l  hydrogen pressures woul d, a t  e q u i l  i b r ium,  correspond t o  h i g h e r  

i n t e r n a l  concentrations than  a n t i c i p a t e d  i n  t he  ' r e a c t o r .  Work t h a t  was done w i  t h  

lower  hydrogen pressures tended t o  be on e i t h e r  commercial o r  h i g h  p u r i t y  t i t a n i u m  

and n o t  a l l o y s  of i n t e r e s t .  There has been a resurgance i n  i n t e r e s t  i n  hydrogen 

e f f e c t s  on t i t a n i u m ,  p r i m a r i l y  due t o  i n t e r e s t  i n  t i t a n i u m  usage f o r  a i r c r a f t  

s t r u c t u r e s  and more r e c e n t l y  f o r  f u s i o n  reac to r s .  

The t i t a n i u m  a l l o y s  t h a t  o f f e r  p r o p e r t i e s  wor thy o f  c o n s i d e r a t i o n  f o r  f u s i o n  

r e a c t o r s  a r e  T i  -6A1-4V, TO-6A1-2Sn-4Zr-2Mo-Si , and ~ ' i  - S A I - G S ~ - ~ Z ~ - ~ M O - S ~  . 
The near  a lpha t i t a n i u m  a l l o y s  Ti-6A1-2Sn-4Zr-2Mo-.lSi (T i -6242s)  and Ti-5A1- 

6Sn-2Zr-lMo-.25Si (T i -5621s)  a r e  t h e  p r e f e r r e d  commerc ia l ly  a v a i l a b l e  a l l o y s  be ing 

cons idered  f o r  f u s i o n  because o f  t h e i r  h i g h  creep r e s i s t a n c e  a t  e l eva ted  tempera- 

t u r e s  o f  500°C6 A1 so, i r r a d i a t i o n  t e s t s  on these a1 1 oys have shown' i r r a d i a t i o n  



creep p r o p e r t i e s  comparable t o  20% c o l d  worked 316 s t a i n l e s s  s t e e l .  ( 5 )  

No hyd r i des  have been observed i n  duplex annealed Ti-6242s charged w i t h  

24,100 appm (530 wppm) hydrogen. Because o f  t h e  s i m i l a r i t y  o f  Ti-6242s and T i -  

5621s one would expect  s i m i l a r ,  b u t  n o t  i d e n t i c a l ,  hydrogen t o l e rance  w i t h o u t  

hyd r i de  f o rma t i on  i n  Ti-5621s. Because o f  t h e  1 wt. pe rcen t  l e s s  A1 and Mo i n  T i -  

5621S, somewhat 1 ower s o l u b i l i t y  o f  hydrogen c o u l d  be a n t i c i p a t e d .  

Both Ti-6242s and Ti-5621s a r e  cons idered near a lpha a l l o y s  b u t  t e c h n i c a l l y  

a re  a1 pha-beta a1 1 oys w i t h  predominant ly  a1 pha phase. These a1 1 oys would respond 

t o  hydrogen as a lpha-beta a1 l o y s  and t h e r e f o r e  be suscep t i b l e  t o  s l o w - s t r a i n  r a t e  

embr i t t l emen t  i f  s u f f i c i e n t  hydrogen concen t ra t i ons  a re  obta ined.  It i s  s i g n i f i -  

c a n t  t o  no te  t h a t  hydr ides  tend t o  d i s s o l v e  i n  t he  m i c r o s t r u c t u r e  a t  temperatures 

above 100 t o  150°C and a1 so hydrogen d i f f u s i o n  r a t e s  a re  inc reased  a t  e l eva ted  

temperatures a1 1 owing f o r  an equal i z e d  hydrogen c o n c e n t r a t i o n  w i t h i n  t he  mat- 

e r i a l .  Because o f  these c o n d i t i o n s  one c o u l d  expect  no d e l e t e r i o u s  temperatures 

above 150°C. 

The a lpha-beta a l l o y  Ti-6A1-4V does n o t  possess as h i g h  a creep r e s i s t a n c e  as 

near apha a l l o y s ,  however i t  i s  cand ida te  f o r  use a t  temperatures below 500°C. 

The Ti-6A1-4V a1 1 oy i s  advantageous because o f  i t s  low r e s i d u a l  r a d i o a c t i v i t y  and 

i t s  l a r g e  da ta  base. 

From a s tandpo in t  o f  maximiz ing t h e  hydrogen s o l u b i l i t y  t o  decrease t he  prob- 

a b i l i t y  o f  d e l e t e r i o u s  hydrogen e f f e c t s ,  a be ta  a l l o y  such as Ti-38644 would 

appear a t t r a c t i v e ,  however, s t a b i l i t y  and creep p r o p e r t i e s  o f  t h i s  a l l o y  above 

260°C a r e  low. 

The above conc lus ions  a r e  based on l i m i t e d  d i r e c t l y  a p p l i c a b l e  data.  A 

s u f f i c i e n t  data base must be generated t o  p rov ide  r e l i a b l e  data f o r  r e a c t o r  

design. 

Screening t e s t s  need t o  be run  t o  determine t h e  hydrogen s o l u b i l i t y  l i m i t s  o f  

t h e  a l l o y s  o f  i n t e r e s t  a t  room temperature and a l s o  a t  t h e  e l eva ted  temperatures 

(500°C) o f  f u s i o n  reac to r s .  T h i s  c o u l d  be accanpl i shed by metal  1 ographic  a n a l y s i s  

t o  determine t h e  c o n c e n t r a t i o n  a t  which h y d r i  des spontaneously appear a t  room 

temperature and then hea t ing  on a h o t  stage microscope t o  determine a t  what temp- 

e r a t u r e  t h e  hyd r i des  d i sso l ve .  The f e a s i b i l i t y  o f  develop ing coa t i ngs  t h a t  w i l l  

p reven t  o r  r e t a r d  t h e  abso rp t i on  and subsequent d i f f u s i o n  o f  hydrogen i n t o  t i t a n -  

ium should con t i nue  t o  be s tud ied .  



Subsequent t o  t h e  p r e l  i m i n a r y  screening t e s t s ,  t e n s i l e  t e s t s  need t o  be con- 

ducted a t  severa l  l o a d i n g  r a t e s  t o  determine s u s c e p t i b i l i t y  t o  slow s t r a i n  r a t e  

embri ttl ement. 

I n  a d d i t i o n  t o  t he  above screening t e s t s  an e f f o r t  w i l l  be r e q u i r e d  t o  pro- 

v i d e  q u a n t i t a t i v e  f r a c t u r e  mechanics data t o  determine t h e  e f f e c t s  o f  hyd'rogen on 

t h e  most f avo rab le  a l l o y s  a t  temperatures and hydrogen pressures o f  i n t e r e s t  f o r  

f u s i o n  reac to rs .  I d e a l l y ,  t h i s  data base w i l l  a l s o  combine r a d i a t i o n  damage and 

hydrogen e f f e c t s .  



2.0' SOLUBILITY AND ABSORPTION OF HYDROGEN I N  TITANIUM 

Hydrogen embr i t t l emen t  o f  t i t a n i u m  i s  r e l a t e d  t o  a  decrease i n  s o l u b i l i t y  o f  

hydrogen i n  t i t a n i u m  a1 1 oys near room temperature.  Therefore,  t h e  e f f e c t s  o f  

hydrogen can be approximated i f  t h e  s o l u b i l i t y  o f  hydrogen i n  t i t a n i u m  a l l o y s  i s  

known. Th i s  i s  espec ia l  l y  t r u e  f o r  the  a1 pha a1 l o y s ,  s i nce  spontaneous f o rma t i on  

o f  hyd r i des  occurs. when t h e  hydrogen concen t ra t i on  w i t h i n  t h e  metal exceeds t h e  

s o l u b i l i t y .  

It must be noted here  t h a t  f o r  t i t a n i u m ,  and o t h e r  meta ls  o f  t h e  exothermic 

occ lud ing  type, t h e  d i f f e r e n c e  between t h e  s o l u b i l i t y  o f  hydrogen and t h e  t o t a l  

amount o f  hydrogen which i s  absorbed by t h e  metal . Since one o f  t h e  ma jo r  char-  

a c t e r i s t i c s  o f  t h e  exothermic occ luders  i s  t h e  f o rma t i on  o f  a  hydr ide ,  i t  i s  pos- 

s i b l e  t o  r ep resen t  t he  e q u i l i b r i u m  c o n d i t i o n s  o f  t h i s  type metal-hydrogen system 

by a phase diagram analagous t o  t h e  phase diagrams which a re  used t o  r ep resen t  

normal m e t a l l i c  a l l o y  systems. These can then  be used t o  d e p i c t  t h e  d i f f e r e n c e  

between t he  two above-mentioned q u a n t i t i e s ,  as f o l  1  ows. 

As the  hydrogen c o n t e n t  o f  a  metal o f  t h i s  t ype  i s  inc reased  from zero, t h e  

i n i t i a l  hydrogen a d d i t i o n  w i l l  go i n t o  so l  i d - s o l  u t i o n  w i t h i n  t h e  metal  , thereby  

l e a v i n g  the  metal i n  a  s ingle-phase c o n d i t i o n .  However, p a r t i c l e s  o f  t h e  hyd r i de  

phase w i l l  e v e n t u a l l y  beg in  t o  be formed w i t h i n  t h e  meta l .  The s o l u b i l i t y  o f  

hydrogen should t h e r e f o r e  be taken as t h a t  compos i t ion  a t  which t h e  specimen 

leaves  t h e  s ing le-phase r e g i o n  o f  t h e  pseudo-equ i l i b r ium diagram and becomes a 

two-phase a1 1 oy. Th i s  d e f i n i t i o n  o f  so l  u b i  1  i ty i s  t h e r e f o r e  d i r e c t l y  equi.va1 e n t  

t o  t h a t  norma l l y  a p p l i e d  t o  t h e  so l  i d - s o l  u t i o n s  o f  metal  1  i c  a1 l o y  systems. 

However, t h e  hydrogen c o n t e n t  o f  t h e  specimen can be increased beyond t h i s  so lu -  

b i l i t y  1  i m i t  by t h e  fo rmat ion  of t h e  hydride-phase. Thus t h e  t o t a l  amount o f  

hydrogen which i s  absorbed by an exothermic occ lud ing  metal depends upon t he  

k i n e t i c s  o f  hyd r i de  fo rmat ion  and w i l l  always exceed t h e  s o l u b i l i t y ,  as i t  i s  

de f i ned  above. I d e a l l y  hydrogen should be absorbed u n t i l  a l l  t h e  metal has been 

conver ted  t o  t h e  hyd r i de  o f  t h e  maximum hydrogen con ten t .  (6 

2.1 SOLUBILITY 

F i g u r e  2-1 shows t h e  t i tan ium-hydrogen b i n a r y  phase diagram a t  105 pa 

( 1  atmosphere) e q u i l  i b r i u m  hydrogen pressure. (7)  Th is  shows maximum s o l u b i l i t y  o f  

hydrogen i n  h i g h  p u r i t y  i o d i d e  r e f i n e d  a lpha T i  i s  7.9 atomic pe rcen t  ( a /o )  o r  

,840 wppm and occurs a t  t h e  e u t e c t o i d  temperature o f  319°C. The maximum 



s o l u b i l i t y  o f  hydrogen i n  beta T i  i s  considerably h igher ;  49 a/o o r  10800 wppm and 

occurs a t  640°C. The gamma phase i s  t he  hydr ide  phase and does n o t  have a f i x e d  

composit ion, b u t  e x i s t s  over the  range o f  TiH t o  TiH2. 

HYDROGEN - ATOMIC PERCENT 
1 3 - 1 1 0 5 ~  

FIGURE 2-1 TITANIUM-HYDROGEN BINARY PHASE DIAGRAM 

A t  t he  eu tec to id  temperature o f  319°C the  s o l u b i l i t y  o f  hydrogen i n  the  beta 

phase i s  approximately 5 t imes t h a t  i n  alpha phase. When the  be ta  and beta + 

gamma boundary i s  ex t rapo la ted  t o  r o w  temperature, t he  s o l u b i l i t y  i n  beta i s  

approximately 18 a/o hydrogen. On the  o the r  hand, t he  low temperature p o r t i o n  o f  

the  alpha and alpha + gamma boundary was studied, and the  s o l u b i l i t y  o f  hydrogen 

i n  alpha phase a t  room temperature was determined t o  be 0.1 a/o.($)  The be ta  

phase has a much h igher  hydrogen s o l u b i l i t y  than alpha phase even a t  room temp- 

era ture .  Work us ing  e l e c t r o n  microautoradiograph has shown t h a t  i n  Ti-8Al-lMo-lV, 

hydrogen i s  concentrated i n  beta phase and along the  alpha - beta boundary. The 

r a t i o  o f  hydrogen i n  beta phase t o  hydrogen i n  alpha phase was about 20 t o  1 f o r  

Ii-8A1-1Mo-1V c o n t a i n i n g  40 wppm hydrogen.(9) Since a l a r g e  r a t i o ,  such as 20 t o  



1, f o r  s o l u b i l i t y  of  hydrogen i n  be ta  t o  a1 pha phase i s  a p p l i c a b l e  f o r  a1 1 t i t a n -  

ium a l l o y s ,  t h i s  exp la i ns  t h e  l a r g e  i nc rease  i n  s o l u b i l i t y  t h a t  occurs w i t h  t h e  

presence o f  even smal l  amounts o f  be ta  ,phase. 

The e f f e c t  of hydrogen pressure sur round ing  t i t a n i u m  i s  shown i n  F i g u r e  2-2 

wh,ich shows. t h e  e q u i l i b r i u m  t i tan ium-hydrogen phase diagram a t  several  hydrogen 

pressures. (10)  AS e q u i l  i b r i u m  hydrogen pressure i s  decreased, t h e  so l  u b i  1  i ty of  

hydrogen i s  decreased, e s p e c i a l l y  i n  t h e  be ta  phase. 

13-4POP HYDROGEN - ATOMIC PERCENT 

FIGURE 2-2 THE TITANIUM-HYDROGEN BINARY PHASE DIAGRAM AT SEVERAL 
HYDROGEN PRESSURES 

The e q u i l  i b r i u m  pressure o f  hydrogen over  h i g h  p u r i  ty ti tanium has been 

measured a t  500°C and pressures o f  10-1 and 105 Pa (10-3 t o  1000 t o r r ) .  S i m i l a r  

measurements were made f o r  t i tan ium-deute r ium and t i t a n i u m - t r i t i u m  a t  500°C w i t h  

no i s o . t o ~ e  e f f e c t s  noted-(11) F i g u r e  2-3 shows t h e  e q u i l i b r i u m  pressure  over  t he  

ti tanium-hydrogen system w i t h  r espec t  t o  hydrogen c o n c e n t r a t i o n  i n  t h e  t i t a n i u m  
from severa l  i n v e s t i g a t o r s .  T h i s  shows t h a t  as t h e  e q u i l  i b r i u m  pressure  sur-  

round i  ng t h e  t i t a n i u m  increases,  t h e  hydrogen c o n c e n t r a t i o n  w i t h i n  t h e  meta l  

increases.  F i g u r e  2-4 shows a s i m i l a r  cu rve  f o r  t h e  ti tanium-deuter ium system. 



A comparison o f  the .  two f igures  for  a 500°C temperature shows equal volumes o f  

hydrogen and deuterium concentrations i n  the t i tanium; the same charac te r i s t i cs  

were observed f o r  t i tan ium-t r i t ium.  Therefore, no isotope e f f e c t s  on s o l u b i l i t y  

are  expected t o  occur i n  reactor .  



Nagasaka and ~amashina(  12)  have i nves t i ga ted  the  sol  ub i  1 i ty o f  hydrogen and 

.deuterium i n  h igh  p u r i t y  alpha t i t a n i u m  i n  the  pressure range of 10-2 t o  1 Pa 

(10-4 t o  t o r r ) .  F igures 2-5 and 2-6 show the  r e s u l t s  o f  t h i s  i n v e s t i g a t i o n .  
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1 I ,  1 I I ,  I I ,  
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FIGURE 2-5 SOLUBILITY OF HYDROGEN IN a-Ti 
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I 
1 101 

I 
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FIGURE 2 4  SOLUBILITY OF DEUTERIUM IN a-Ti ' 

For t y p i c a l  r e a c t o r  temperatures and pressures such as 500°C and 10- I  Pa ( 1 0 ' ~  
o r r )  the s o l u b i l i t y  would be approximately 100 wppm f o r  hydrogen i n  t i t a n i u m  



and 200 wppm f o r  deuterium i n  t i tan ium.  These a re  concent ra t ions  by weight, 

t he re fo re  the  number o f  hydrogen and deuterium atoms d isso lved i n  t he  metal a re  

nea r l y  equal under the  same cond i t i ons  of temperature and pressure. The equat ions 

of s o l u b i l i t y  o f  hydrogen and deuterium i n  alpha and beta t i t a n i u m  i n  t h e  pressure 

range of t o  1 Pa t o  t o r r )  a r e  shown i n  Table 2-1(12). 

The s o l u b i l i t y  o f  hydrogen i n  t i t a n i u m  has been found t o  conform t o  S ieve r t s  

Law, which i s  C = A P exp ( -  H,/RT) where: 

C = s o l u b i l i t y  i n  wppm 

A = cons tant  

P = hydrogen e q u i l i b r i u m  pressure i n  t o r r  

= enthalpy o f  d i s s o l u t i o n  i n  ca l  g-at -  1 

R = gas constant,  1.987 c a l / m o l e / o ~  

T = temperature, OK 

TABLE 2-1 EQUATIONS OF SOLUBILITY OF HYDROGEN AND DEUTERIUM IN 
TITANIUM I N  PRESSURE RANGE 10-4 TO TORR 

Temperature ~ 1 6  c / f l  
System Range, "C (wppm t o r r - l / 2 )  (atomic r a t i o  t ~ r r ' l / ~ )  

To c l a r i f y  the  above table,  the  s o l u b i l i t y  of' hydrogen i n *  - t i t a n i u m  cou ld  be 
ca l  cu l  a ted from the  expression 

The in f luence o f  oxygen and n i t rogen  on the  s o l u b i l i t y  o f  hydrogen i n  pure 

t i t a n i u m  a t  temperatures below the  e u t e c t i c  p o i n t  was i n v e s t i g a t e d  by Lenning, 

Spretnak and ~ a f f e e . ( 1 3 )  Hydrogenated specimens were annealed a t  400°C f o r  64 
hours, cooled t o  a desi red temperature, he ld  a t  t h i s  temperature f o r  24 hours, and 

then water quenched. - These data show t h a t  n e i t h e r  oxygen nor  n i t rogen  has an 

appreciable i n f l  uence on the  sol u b i l  i ty o f  hydrogen i n  t i t a n i u m  a t  room tempera- 

tu re .  However, above 378°C bo th  of these elements s l i g h t l y  increase the  s o l u b i l -  

t y  o f  hydrogen i n  ti t a n i  um. (9  



The p rev ious l y  discussed work has d e a l t  w i t h  h igh  p u r i t y  una l loyed t i t a n -  

ium. The a d d i t i o n  o f  a1 1 o y i  ng elements a f f e c t s  hydrogen s o l u b i l i t y  bo th  from 

m i c r o s t r u c t u r a l  and hydrogen capac i ty  s tandpoint .  The sol u b i l  i ty o f  hydrogen i n  

t i t a n i u m  and i t s  a l l o y s  va r ies  w i t h  the  amount and type o f  phase present  (2) (8) 

Metal lograph ic  examinat ion of t i t a n i u m  a1 l o y s  i n d i c a t e  tha t ,  genera l l y  

the a l l o y s  c o n s i s t i n g  p r i m a r i l y  o f  alpha phase have a lower s o l u b i l i t y  o f  hydrogen 

than a l l o y s  t h a t  c o n s i s t  p r i m a r i l y  o f  be ta  phase. I n  the  case o f  mixed phase 

a l l o y s  (a lpha + be ta) ,  the  s o l u b i l i t y  increases w i t h  i nc reas ing  amounts o f  beta 

phase. 

A1 l o y i n g  elements such a Mo, Nb, C r ,  V, Mn, and Fe s tab i ' l  i z e  the be ta  phase 

a t  lower temperatures and the re fo re  increase the  o v e r a l l  hydrogen sol u b i l  i ty a t  

these temperatures as compared w i t h  unal 1 oyed t i tan ium.  I n  a d d i t i o n  t o  a f f e c t i n g  

the amount o f  beta phase present, s p e c i f i c  a l l o y s  appear t o  a1 low f o r  h igher  

hydrogen s o l u b i l i t y  than others. O f  the  be ta  s t a b i l i z i n g  elements, Mo appears t o  

a l low f o r  h igher  hydrogen s o l u b i l i t y  than Nb, C r ,  o r  V. Manganese and Fe have 

very 1 i ttl e e f f e c t  on the hydrogen sol  u b i l  i ty . 
The alpha s t a b i l i z e r s  a re  A l ,  Zr and Sn. O f  these, A1 i s  most s i g n i f i c a n t  

because i t  i s  used i n  l a r g e  concentrat ions i n  bo th  alpha and beta  a l l o y s .  The 

apparent e f f e c t  o f  A1 i s  t o  increase the  hydrogen s o l u b i l i t y  a t  low temperatures 

as shown i n  F i g u r e  2-7(15) w h i l e  a t  e leva ted temperatures the  A1 decreases the  
TEMPERATURE - OC 

FIGURE 2-7 ARRHENIUS PLOT OF SOLUBILITY LIMIT VS RECIPROCAL TEMPERATURE 
FOR SEVERAL Ti ALLOYS 



s o l u b i l i t y  as shown i n  F igu re  2-8. ( 2 )  ~t can be seen i n  F igu re  2-7 t h a t  a t  roan 

temperature the  hydrogen s o l u b i l i t y  was 21 wppm i n  unal loyed alpha t i t a n i u m  and 

the  so lub i l  i ty increased to 250 wppm f o r  t i t a n i u m  w i t h  10 atomic % A1 . I n  addi- 

t i o n  t o  the increase i n  hydrogen s o l u b i l i t y ,  Paton, e t  a1 (16) no t i ced  t h a t  hydr ide 

nucleated and grew w i t h  d i f f i c u l t y  i n  Ti-10 a/o A1 . This f i n d i n g  supported 

e a r l i e r  work (16) t h a t  A1 suppressed hydr ide p r e c i p i t a t i o n .  Paton, e t  a1 , (15) 

explained t h a t  along w i t h  hydr ide p r e c i p i t a t i o n ,  t he re  was a volume expansion, and 

t h a t  t h i s  expansion had t o  be taken up by the  ma t r i x  through e l a s t i c  and p l a s t i c  

work. The h igh  s t rength  of the  Ti-A1 a1 l o y  made e l a s t i c  and p l a s t i c  work more 

d i f f i c u l t ,  consequently. a h igher  supersaturat ion was needed f o r  nuc leat ion  and 

growth o f  the hydr ide phase. 
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FIGURE 2-8 INFLUENCE OF TEMPERATURE AND ALUMINUM CONCENTRATION ON APPARENT 
EQUILIBRIUM CONCENTRATION OF HYDROGEN IN TITANIUM 

. Hydrogen present  i n .  t i t a n i u m  i s  i n  a s t a t e  o f  dynamic e q u i l i b r i u m  between the  

ion ized atom o r  proton and hydrogen atoms i n  the  i n t e r s t i t i a l  s i t e .  There are  two 

types o f  i n t e r s t i t i a l  s i t e s  i n  t i tanium, octahedral and te t rahedra l  . Octahedral 

s i t e s  can accommode atoms o f  rad ius  0.59 A and te t rahedra l  s i t e s  can accommodate 

atoms o f  rad ius  0.315 A. Since the  hydrogen atom has a rad ius  o f  0.41 A, t h e  

m a j o r i t y  o f  i n t e r s t i  ti a1 hydrogen atoms w i l l  occupy octahedral s i t es .  Add i t ions  

o f  a1 umi nu. decreaje b o t h  the  "c" and the  "a" parameters o f  t he  hexagonal t i t a n i u m  

l a t t i c e ,  consequently octahedral s i t e s  w i l l  he s l i g h t l y  smal ler  than 0.59 A. A 

e t t e r  f i t  o f  hydrogen atoms i n  octahedral s i t e s  r e s u l t s  and t h i s  appears t o  be 



t he  reason why a1 uminum increases the  hydrogen s o l u b i l  i ty o f  t he  a1 pha phase. 

Beta phase has a te t rahedra l  hole o f  0.44 A rad ius  i n  which hydrogen cou ld  f i t  

very we1 1. This i s  general l y  be1 ieved t o  be the reason why hydrogen s o l u b i l i t y  i n  

the  beta phase i s  so much higher than i n  the  beta phase. (9 )  

Ha1 1 ( 17)  r e p o r t s  t h a t  hydr ide p rec i  p i  t a t i o n  i n  roan temperature a1 pha-beta 

Ti-6A1-4V was s t rong ly  dependent upon both  m ic ros t ruc tu re  and hydrogen content.  

Th is  i nd i ca tes  t h a t  the  formation o f  hydr ides i s  a f fec ted  by add i t i ona l  f ac to rs  

other  than sol ub i  1 i t y .  I n  equi axed T i  -6A1-4V gamma-hydri de p r e c i p i t a t i o n  began a t  

approximately 9100 appm (200 wppm) hydrogen; i n  the  f u l  l y  transformed cond i t ion-  

hydr ide p r e c i p i t a t i o n  began a t  approximately 36,400 appm (800 wppm) hydrogen; and 

i n  equixed a1 pha p l  us transformed beta m ic ros t ruc tu re  gamma-hydride p rec i  p i  t a t i o n  

began a t  approximately 50,000 appm (1100 wppm) hydrogen. 

The s i g n i f i c a n c e  o f  m ic ros t ruc tu re  i n  hydrogen absorpt ion by t i t a n i u m  i s  

i nd i ca ted  by studies i n  which cathodical  l y  charged samples were examined.(18) I n  

predominantly a1 pha a1 1 oys, hydrogen absorpt ion was 1 i m i  ted t o  a t h i n  sur face 

l a y e r  o f  hydride. When a beta network was present, hydrogen penetrated much more 

deeply i n t o  the  a l l o y .  Ac i cu la r  s t ruc tu res  having a more cont inuous beta network 

showed greater  absorpt ion than equiaxed s t ruc tures .  Large amounts o f  hydrogen 

were absorbed i n  a1 l o y s  conta in ing  moderate amounts o f  beta w i t h  no evidence o f  

hydr ide a t  the  sur face o r  i n  the  a l l oy .  One a l l o y  (Ti-8Mn) absorbed 12,100 wppm 

(37 atomic per cent)  dur ing  cathodic charging w i thou t  v i s i b l e  signs o f  hydr ide i n  

the s t ruc ture .  

a l so  repor t s  p r e c i p i t a t i o n  o f  gamma-hydride a t  approximately 13,600 
appm (300 wppm) hydrogen i n  room temperature alpha Ti-5A1-2.5 Sn a l l oy .  .He a l so  

noted t h a t  prolonged heat ing even a t  100°C was s u f f i c i e n t  t o  cause the  hydr ides t o  

decompose. 

W i l l e  and ~ a o ( ~ O )  have n o t  observed hydr ides i n  duplex annealed Ti-6A1-2Sn- 

4 ~ r - 2 ~ o - 0 . 0 8  S i  (Ti-6242s) charged. w i t h  24,100 appm (530 wppm) hydrogen. An e lec-  

t r o n  micrograph o f  t h i s  sample i s  shown i n  F igu re  2-9. The Ti-6242s i s  considered 

a near-alpha a l l o y  because i t  i s  a weakly beta s t a b i l i z e d  alpha-beta a l l oy .  How- 

ever, because i t  does have a continuous network o f  beta surrounding the  a1 pha 

phase i t  w i l l  r e a c t  t o  hydrogen i n  a manner more s i m i l a r  t o  the  alpha-beta a1 l o y s  

and d isso lve  h igher  concentrat ions o f  hydrogen before  hydrides w i l l  p r e c i p i t a t e .  

This i s  i nd i ca ted  somewhat by the  presence o f  hydrides a t  13,600 appm (300 wppm) 

hydrogen i,n a1 pha a1 1 oy Ti-5A1-2.5Sn reported by Hal 1 and lack  o f  hydr ides a t  

4,100 appm (530 wppm) hydrogen concent ra t ion  i n  Ti-6242s a1 1 oy . 





2.2 TOTAL ABSORPTION - A f t e r  the  s o l u b i l i t y  o f  hydrogen i n  t i t a n i u m  i s  

exceeded, the  t i t a n i u m  w i l l  cont inue t o  absorb hydrogen, w i t h  the  add i t i ona l  

hydrogen forming hydrides. The format ion o f  add i t i ona l  hydr ides coul d cont inue 

u n t i l  a l l  t he  t i t a n i u m  has been converted t o  a hydr ide  o f  t he  maximum hydrogen 

con ten t  i f  i dea l  cond i t i ons  e x i s t .  

The t o t a l  amount of hydrogen t h a t  can be absorbed by t i t a n i u m  i s  c o n t r o l l e d  

by sur face cond i t i ons  e f f e c t i n g  the  adsorpt ion o f  atomic o r  molecular hydrogen, 

and then d i f f u s i o n  of the  adsorbed sur face hydrogen i n t o .  the  bu l k  o f  t he  mat- 

e r i a l .  Var iables a f f e c t i n g  absorpt ion are the  sur face clean1 iness, temperature, 

and hydrogen p a r t i a l  pressure. The absorp t ion  o f  hydrogen a t  274OC as a f u n c t i o n  

of hydrogen pressure i s  shown i n  F igure  2 - 1 0 ( * l )  Shown i s  t h e  l i n e a r  dependence 

o f  adsorp t ion  upon the  square r o o t  o f  the  hydrogen pressure, i n d i c a t i n g  t h a t  the  

d i s s o c i a t i o n  o f  molecular t o  atomic hydrogen i s  occur ing a t  t he  surface. A1 so, 

the r a t e  a t  which hydrogen i s  absorbed w i l l  be q u i t e  dependent on sur face area, so 

t h a t  the  amount absorbed i n  a g iven t ime w i l l  increase as the  r a t i o  o f  sur face 

area t o  volume increases. 
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FIGURE 2-10 EFFECT OF PRESSURE ON THE RATE OF HYDROGEN ABSORPTION BY 
IODIDE TITANIUM AT 2740C 



The presence of an ox ide f i l m  on thelmeta l  sur face can considerably r e t a r d  

absorp t ion  of hydrogen' by t i tan ium.(22)  (23) Presumably, t h i  s  e f fec t  i s  due t o  t h e  

prevent ion  o f  t he  a b s o r p t i o n , o f  the  adsorbed l a y e r  o f  hydrogen o r  hydr ide on the  

surface. An i n d i c a t i o n  o f  t h e  e f fec t i veness  o f  an ox ide l a y e r  i s  shown i n  F igure  

If s u f f i c i e n t  t ime i s  al lowed f o r  the  ox ide f i l m  t o  be absorbed i n t o  

the  metal,  absorp t ion  of hydrogen occurs a t  i t s  normal ra te .  This  i s  i n d i c a t e d  by 

the  behavior o f  the  sample, i n  F igu re  2-11 having a very t h i n  ox ide l aye r .  Cooling 
the  sample t o  room temperature a f t e r  format ion o f  t he  oxide f i l m ,  fo l lowed by 

reheat ing,  r e s u l t s  i n  l o s s  of much o f  t he  p r o t e c t i v e  i t i e s  o f  t he  oxide f i l m ,  

apparent ly  because o f  crack ing.  

TIME - SECONDS 

FIGURE 2-11 REACTION RATESAT 6 9 8 0 ~  AND PRESSURE OF HYDROGEN WITH HIGH-PURITY 
TITANIUM HAVING VARIOUS OXIDE-FILM THICKNESSES 

I f  the  ox ide f i l m  i s  unstable o r  has been damaged by abrasion, hydrogen 

absorpt ion can occur. Covington(24) ~ ( 2 5 )  r e p o r t s  t h a t  absorpt ion o f  hydrogen from 

hydrogen con ta in ing  environments can occur more r a p i d l y  a t  temperatures above 

80°C. Laboratory t e s t s  have shown t h a t  2% moisture i n  hydrogen gas e f f e c t i v e l y  

passivates t i t a n i u m  so t h a t  hydrogen absorp t ion  does n o t  occur a t  pressures o f  5.6 

MPa (800 p s i )  and temperatures t o  315OC. 



Any abrasion t o  destroy the  cont inuous oxide f i l m  increases s u s c e p t i b i l i t y  t o  

hydrogen absorpt ion. co t ton(26)  repo r t s  t h a t  abrasion w i t h  i r o n  i s  p a r t i c u l a r l y  

de le te r i ous  because hydrogen r e a d i l y  d i f f u s e s  i n  i r o n ,  and a  microscopic '  p a r t i c l e  

o f  i r o n  embedded i n  the  t i t a n i u m  sur face so as t o  penetrate t h e  ox ide f i l m  a f f o r d s  

ready access f o r  hydrogen to the  base t i tan ium.  

Char lo t  and ~ e s t e r m a n ( 2 ~ )  r e p o r t  t h a t  vapor b l a s t i n g  o r  sandblast ing made a  

t i t a n i u m  sur face very suscept ib le  t o  hydrogen absorpt ion,  whereas a  p i c k l e d  sur- 

face was l e a s t  suscept ib le  to hydrogen absorpt ion. 

van Deventer and ~ a r o n i ( ~ * )  have performed s tud ies  on Ti-6A1-4V and Ti6242S 
t h a t  i n d i c a t e  order  o f  magnitude decreases i n  pe rmeab i l i t y  through samples w i t h  

e i t h e r  anodized o r  n i  t r i d e d  surfaces. S i m i l a r  r e s u l t s  have been repor ted  by 

Braganza(29) f o r  Ti2N coated h igh  p u r i t y  t i t an ium.  These decreases i n  perme- 

a b i l  i ty r e s u l t  from changing the absorp t ion  c h a r a c t e r i s t i c s  o f  the  t i t a n i u m  sur- 

faces. 

The i n f l u e n c e  o f  temperature on the  absorp t ion  o f  hydrogen i n  t i t a n i u m  i s  

shown i n  F igure  2-12.(21) The h igh  p u r i t y  t i t a n i u m  absorbed approximately 14 

t imes more hydrogen a t  29g°C than a t  249°C a f t e r  100 minutes. 
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FIGURE 2-12 EFFECT OF TEMPERATURE ON HYDROGEN ABSORPTION OF 
IODIDE TITANIUM AT A HYDROGEN PRESSURE OF 2840 Pa 



The importance of a1 l o y  content  on the  absorp t ion  o f  hydrogen i n  t i t a n i u m  i s  

i n d i c a t e d  by the  data shown i n  F igure  2 - 1 3 . ( ~ ~ )  Absorpt ion occurs very r a p i d l y  a t  

698°C i n  a l l  f o u r  ma te r i a l s ,  t he  l e v e l i n g  o f f  o f  the  curves i n d i c a t i n g  an approach 

toward t h e  e q u i l  i b r i um concent ra t ion  o f  hydrogen. It i s  seen t h a t  absorpt ion was 

most r a p i d  i n  Ti-8Mn, l e s s  r a p i d  i n  i od ide  and i n t e r s t i t i a l  -conta in ing  t i tan ium,  

and Ti-4A1-4Mn a l l o y .  As w i l l  be shown i n  Sect ion 3, t he  d i f f u s i o n  c o e f f i c i e n t  

v a r i e s  i n  the  order  o f  l a r g e s t  to smal les t  i n  i o d i d e  t i t an ium,  Ti-4A1-4Mn, 

commercial-puri ty t i t an ium,  and Ti-8Mn, there fore ,  i t  must be assumed t h a t  some 

f a c t o r  i n  a d d i t i o n  to composit ion, poss ib l y  m ic ros t ruc tu re ,  i s  a l so  a f f e c t i n g  the 

r e s u l t s .  

13-4205 TIME - SECONDS 

FIGURE 2-13 REACTION RATES OF TITANIUM ALLOYS WITH Hz AT 6980C AND 
13.3 X 103 Pa PRESSURE 

2-.3 FUSION APPLICABILITY - For  f u s i o n  energy app l i ca t i ons ,  i t  i s  advisable 

t o  maximize the  hydrogen s o l u b i l i t y  i n  t i t an ium,  w i t h i n  t h e  c o n s t r a i n t s  o f  t r i t i u m  

inventory ,  t o  prevent  hydr ide formation; t h e r e f o r e  t i t a n i u m  a l l o y s  con ta in ing  

aluminum and molybdenum should c o n t r i b u t e  t o  t.his goal. Hydrides were n o t  ev ident  

a t  room temperature i n  the  near-a1 pha T i  -6A1-2Sn-4Zr-2Mo-0.08Si (Ti6242S) a1 1  oy 



w i t h  24,100 appm (530 wppm) hydrogen, i n d i c a t i n g  t h a t  reasonably h igh  l e v e l s  o f  

hydrogen can be accommodated. Temperatures above 100°C have been repor ted  t o  

decompose hydrides. Th is  i s  an important  p o i n t  i n  f u s i o n  reac tors  because w a l l s  

i n  commercial reac to rs  a re  expected t o  be a t  e levated temperatures. Since sol u- 

b i l  i ty i s  s t r o n g l y  dependent upon a1 1  oy composit ion and micros t ruc ture ,  i t  w i l l  be 

necessary t o  conduct t e s t s  t o  accura te ly  determi ne sol u b i  1  i t y  o f  a1 1 oys and heat  

t reatments being considered. 

The t o t a l  amount of hydrogen t h a t  can be absorbed i n t o  t i t a n i u m  i s  g rea te r  

than the  s o l u b i l i t y  o f  hydrogen i n  t i t an ium,  because t i t a n i u m  i s  an exothermic 

occluder.  Various sur face treatments shoul d  be eval uated which coul d  l i m i t  o r  

c o n t r o l  t he  hydrogen t h a t  cou ld  be absorbed through the  sur face l aye r ,  thus  

decreasing the  t i t a n i u m  inventory.  



3.0 DIFFUSION RATES OF HYDROGEN IN  TITANIUM 

D i f f u s i o n  ra tes ,  s o l u b i l i t y ,  and absorpt ion o f  hydrogen are  h e l p f u l .  t o  assess 

the  p o t e n t i a l  o f  t i t a n i u m  f o r  c e r t a i n  f u s i o n  r e a c t o r  components. Hydrogen d i f f u -  

s ion  i n t o  and o u t  o f  a  t i t a n i u m  f i r s t  wa l l  s t r u c t u r e  dur ing  opera t iona l  c y c l i n g  

may be c r i t i c a l  w i t h  regard t o  the e f f e c t ,  i f  any, on the  p rope r t i es  o f  the  

ti t a n i  um. 

Hydrogen i s  d isso lved i n  t i t a n i u m  i n t e r s t i t i a l l y ,  and d i f f u s e s  r a p i d l y  

through the  metal. The d i f f u s i o n  r a t e s  d i f f e r ,  depending upon p u r i t y  and/or a l l o y  

composit ion o f  t he  t i t a n i u m  and whether the  m ic ros t ruc tu re  i s  alpha o r  beta. 

The d i f f u s i o n  c o e f f i c i e n t  can be expressed by the  f o l l  owi ng equat ion: 

t 
D = D~ exp - - 

RT 

where: D = d i f f u s i o n  c o e f f i c i e n t ,  cm2/sec 
T  = temperature,, OK 

E = a c t i v a t i o n  energy constant ,  ca l /mole 

Do = constant ,  cm*/sec 
R = gas constant ,  1.9865 cal/mol°K 

The v a r i a t i o n  o f  d i f f u s i o n  c o e f f i c i e n t  has been i nves t i ga ted  f o r  commercially 

pure and h igh  p u r i t y  i od ide  t i t an ium,  alpha and beta t i t an ium,  and i n  several 

t . i tan ium a l l oys .  These f i n d i n g s  a r e  presented i n  Table 3-1. 

Measurements made dur ing  degassing s tud ies  were used t o  approximate t h e  d i f -  

f u s i o n  c o e f f i c i e n t s  f o r  i tems ,g through k above. I n  the  absence o f  sur face 

e f f e c t s ,  the  degassing c o e f f i c i e n t  i s  equal t o  t he  d i f f u s i o n  c o e f f i c i e n t .  

From the  d i f f u s i o n  c o e f f i c i e n t s  ca l cu la ted  i n  Table 3-1, t he  d i f f u s i o n  r a t e  

i n  beta t i t a n i u m  a t  a  temperature o f  69g°C, ( I t em g) i s  h igher  than t h a t  i n  alpha 

T i  ( I tems e  and f ) .  Also ev iden t  i s  the  s i m i l a r i t y  o f  t he  d i f f u s i o n  c o e f f i c i e n t s  

f o r  a l l oyed  t i t a n i u m  ( i tems h  through m) except f o r  h i g h l y  beta 13V-llCr-3A1 ( I t e m  

m). A  suggested exp lanat ion  f o r  the s i m i l a r i t y  o f  d i f f u s i o n  c o e f f i c i e n t s  f o r  most 

t i t a n i u m  a1 1  oys ( Items h  through 1  ) i s  t h a t  a1 1  o y i  ng b locks f r e e  movement o f  

hydrogen through the  metal - ( l o )  An exp lanat ion  f o r  the  much h igher  d i  f f u s i o n  

c o e f f i c i e n t  f o r  13V-llCr-3A1 a l l o y  ( I tem m) i s  n o t  apparent. Holman, e t  a l .  (30 
compared t h e i r  r e s u l t s  w i t h  d i f f u s i o n  c o e f f i c i e n t s  on h igh  p u r i t y  ~ i . , ( 3 1 )  as shown 

i n  F igure  3-1. I n  t h i s  case i t  appears t h a t  a l l o y i n g  increased the  d i f f u s i o n  

: o e f f i c i e n t  t o  l e v e l s  h igher  than those o f  h igh  p u r i t y  a l l  beta t i tan ium.  



TABLE 3-1 DIFFUSION COEFFICIENTS 

I tem 

a 

b 

Mater i  a1 

Comm. Pure T i  

Comm. Pure T i  

Comm. Pure T i  

Comm. Pure T i  

Iod ide T i  

Iod ide T i  

Iod ide T i  

T i  -4A1-4Mn 

TY pe 

a1 pha 

a1 pha 

a1 pha 

a1 pha 

a1 pha 

a1 pha 

beta 

D = D~ exp - L 
R T 

Do , E 

cm2/sec ca l  /mole 

0.9 x 10-2 12,400 

0.27 X 10-2 14,200 

Reference 

10,22 

10,41 

10,14,22 

24 

10,31,42 

10,22 

31,42 

10,14,22 

10,14,22 

10,14,22 

10,14,22 

10,14,22 

30 

Wai sman, e t  a1 . (32)(33)  have inves t iga ted  the  d i f f u s i o n  o f  hydrogen i n  t i t a n -  

ium w i t h  respect t o  composition, temperature and s t ress  grad ient  con t r i bu t i ons .  

The i r  work, which was conducted on commercially pure (CP) t i t a n i u m  and Ti-6A1-4V, 
i n d i c a t e s  t h a t  the  d i f f u s i o n  of hydrogen i s  a f fec ted  by the  above fac tors .  

Pontau, e t  a1 . (171, have inves t iga ted  deuterium concent ra t ion  p r o f i l e s  i n  T i ,  

Ti-6A1 , and Ti-6A1-4V a f t e r  10 key D3+ imp lan ta t i on  a t  room temperature. The 
s i n g l e  phase alpha .Ti and Ti-6A1 a l l o y s  re ta ined  the  deuterium near the  surface, 

w i t h i n  0.5 m, wh i l e  i n  the  alpha-beta Ti-6A1-4V a l l o y ,  on l y  about 5 percent  o f  

t he  deuterium remained near the. surface, 3.9 hours a f t e r ,  imp lanta t ion .  (See F igure  
3-21. The behavior o f  t he  T i  and Ti-6A1. a re  s i m i l a r  w i t h  the  a1 uminum s l  i g h t l y  



FIGURE 3-1 DIFFUSION COEFFICIENT VS TEMPERATURE 

FIGURE 3-2 DEUTERIUM RETENTION VS TIME FOR ANNEALED Ti, COLD-WORKED Ti, 
ANNEALED Ti-GAI, AND ANNEALED Ti-6AIdV-& FLUENCE = 1 X 1 0 2 2 ~ l m 2  



i nc reas ing  the s o l u b i l i t y  o f  the  deuterium i n  the  a1 l oy .  The presence o f  t he  beta 

phase i n  t h e  Ti-6A1-4V causes the  deuterium t o  r a p i d l y  d i f f u s e  i n t o  the  bu l k  of 

the  a l l o y ,  thus no deuter ides form. The t ime dependence o f  the  deuterium reten-  

t i o n  a t  the  sur face o f  samples a t  room temperature i s  a l so  shown i n  F igure  
3-2.(17) Pure anneal ed T i  and Ti-6Al samples maintained nea r l y  cons tant  deuterium 
l e v e l s  du r ing  the  t e s t .  O f  p a r t i c u l a r  i n t e r e s t  i s  t h a t  t he  deuterium concentra- 

t i o n  o f  c o l d  worked pure t i t a n i u m  decreased s t e a d i l y  i n  the f i r s t  0.5 m surface, 

i n d i c a t i n g  enhanced d i f f u s i o n  r a t e  from the  c o l d  working, such t h a t  nea r l y  a l l  o f  

the  deuterium migrated from the near-surface reg ion  w i t h i n  27 hours. 

An i n d i c a t i o n  o f  d i f f u s i o n  r a t e s  i s  the  r a t e  a t  which a gas permeates through 

a metal 1 i c  membrane. Several i n v e s t i g a t i o n s  have been conducted on permeabi 1 i t y  

o f  hydrogen through ti t a n i  urn. 
Van Deventer and Maroni(Z8) have performed hydrogen d i  ssol u t i o n  and perme- 

a b i l i t y  s tud ies  on Ti-6A1-4V and Ti-5Al-6Sn-2Zr-1Mo-Si. They s t a t e  t h a t  t he  per- 

m e a b i l i t y  o f  the  t i t a n i u m  a1 l o y s  as compared t o  convent ional 300 se r ies  s t a i n l e s s  

s tee l  was approximately 1000 and 3000 t imes greater  f o r  t h e  Ti-6A1-4V and Ti-5A1- 

6Sn-2Zr-1Mo-Si a1 1 oys, respec t i ve l y .  They a1 so r e p o r t  t h a t  T i  -6A1-4V w i t h  e i t h e r  

anodized o r  n i t r i d e d  sur faces had pe rmeab i l i t i es  about an order  o f  magnitude l e s s  

than t h a t  o f  uncoated Ti-6A1-4V. The data f o r  the  n i t r i de -coa ted  Ti-6A1-4V i s  

shown i n  F igure  3-3. 

The presence of a sur face l a y e r  t o  i n h i b i t  hydrogen permeation i n t o  the  

t i t a n i u m  has been inves t iga ted .  Braganza, e t  a1 . (29) ,  have repor ted  t h a t  a l a y e r  

of i n t e r s t i t i a l  1~ b u i l t  T i 2 ~  can reduce the  hydrogen permeation i n t o  h igh  p u r i t y  
t i t a n i u m  by orders o f  magnitude. They concluded t h a t  t i t a n i u m  n i t r i d e d  a t  temp- 

era tures  be1 ow the  a1 pha-beta t rans format ion  d i sp lays  a s t ronger  i n h i b i t i n g  e f f e c t  

on inward hydrogen d i f f u s i o n  than when n i t r i d i n g  i s  performed near the  alpha-beta 

t rans format ion  temperature. 

The c u r r e n t l y  a v a i l a b l e  i n fo rma t ion  on d i f f u s i o n  r a t e s  does n o t  lend i t s e l  f 

t o  a c l e a r l y  re1  i a b l e  q u a n t i t a t i v e  ana lys i s  usefu l  t o  p r e d i c t  t he  c h a r a c t e r i s t i c s  

. o f  t he  t i t a n i u m  a l l o y s  being considered f o r  f u s i o n  reac tors .  Since d i f f u s i o n  data 

i s  so dependent upon a l l o y  compositi.on and m ic ros t ruc tu re ,  i t  w i l l  be necessary t o  

conduct t e s t s  on the  a l l o y s  and heat  t reatments o f  i n t e r e s t  t o  determine exact  

d i f f u s i o n  ra tes .  
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4.0 MECHANICAL PROPERTIES EFFECTS OF HYDROGEN ON TITANIUM 

The p a r t i c u l a r  type e f f e c t  t h a t  can'develop i n  t i t a n i u m  because o f  -hydrogen 

genera l l y  depends upon the r e l a t i v e  phases i n  the  mic ros t ruc ture .  Alpha t i t a n i u m  

i s  suscept ib le  t o  impact embri ttl ement, thus p rope r t i es  t h a t  a re  e f f e c t e d  a r e  

those which a r e  notch and/or s t r a i n  r a t e  sens i t i ve .  Hydrogen may cause a decrease 

i n  t he  notched impact s t rength ,  b u t  e f f e c t s  o f  hydrogen d imin ish  as s t r a i n - r a t e  i s  

decreased; normal room temperature t e n s i l e  p r o p e r t i e s  a r e  on l y  a f f e c t e d  a t  r e l a -  

t i v e l y  h igh  hydrogen concentrat ions.  (6.10) The embri t t l emen t  o f  h igh  p u r i t y  alpha 

t i t a n i u m  occurs a f t e r  the hydrogen con ten t  exceeds the  so l  u b i l  i t y  1 i m i  t. For  

impure alpha, the  c h a r a c t e r i s t i c s  are the  same, however, t he  amount o f  hydrogen 

needed t o  cause embri t t l emen t  i s  l e s s  than t h a t  needed to cause embr i t t lement  i n  . 

pure a1 pha ti t a n i  um. 

The a1 pha-beta a1 l oys  a re  suscept ib le  to s l  ow-s t ra in - ra te  embri ttl ement, thus 

normal t e n s i l e  p rope r t i es  may adversely be a f fec ted .  Under normal t e n s i l e  t e s t i n g  

cond i t ions ,  t h e  d u c t i l  i ty decreases as s t r a i n - r a t e  decreases. ( 6 )  The e x t e n t  of 

s l  ow-s t ra in - ra te  embri ttl ement o f  these a1 1 oys i s  a1 so dependent upon tempera- 

t ~ r e - ( 6 * ~ ~ )  Optimum cond i t i ons  f o r  s u s c e p t i b i l  i ty t o  embri t t l emen t  would appear 

t o  be s low-s t ra in - ra tes  app l i ed  a t  o r  near room temperature. 

Beta t i t a n i u m  a l l o y s  appear to be more t o l e r a n t  o f  hydrogen than the  o the r  

a l l o y  types because of h igher  hydrogen sol u b i l  i ty i n  the  beta phase. The beta  

a1 1 oys are  suscept ib le  t o  slow s t r a i n - r a t e  embri t t lement ;  however, h igher  hydrogen 

concent ra t ions  are general l y  necessary be fore  severe degradat ion o f  p rope r t i es  

occurs. 

The f o l l  owing sect ions w i l l  e labora te  on the  hydrogen e f f e c t s .  

4.1 MECHANICAL PROPERTY EFFECTS ON ALPHA TITANIUM - High p u r i t y  alpha t i t a n -  

ium w i t h  hydrogen above the  s o l u b i l i t y  1 i m i  t shows an increased tendency f o r  

impact embri ttl ement w i t h  i nc reas ing  s t r a i n  r a t e ,  decreasing temperature o f  t h e  

t e s t ,  and/or presence of a notch on the  surface o f  t he  ~ ~ e c i r n e n . ( ~ , ~ ~ )  Commercial 

p u r i t y  a1 pha t i t a n i u m  i s  suscept ib le  t o  de t r imenta l  hydrogen e f f e c t s  a t  1 ower 

hydrogen concent ra t ions  than h igh  p u r i t y  alpha t i tan ium.  F igure  4-1 shows the  

e longat ion  and reduc t i on  i n  area vs. hydrogen content  f o r  bo th  h igh  p u r i t y  and 

commercial p u r i t y  a1 pha t i tan ium.  Even though sol  u b i l  i t y  o f  hydrogen i n  a1 pha 

phase o f  commercial ly pure t i t a n i u m  i s  l e s s  than t h a t  i n  h igh  p u r i t y  t i t a n i u m  
' 6 vs. 8 atomic percent, r e s p e c t i v e l y  a t  400°C), s o l u t i o n  heat  t reatments 
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fo l lowed by slow coo l i ng  o r  quenching d i d  not  lead t o  the  format ion o f  a  hydr ide 

phase i n  a  commercially pure t i t a n i u m  w i t h  0.26 atomic percent hydrogen; a  compo- 

s i t i o n  t h a t  cou ld  show a  hydr ide i n  h igh  p u r i t y  a1 pha t i tan ium.(6)  These d i f f e r -  

ences between s o l u b i l i t y  o f  hydrogen i n  the  two examples above must be due t o  t h e  

presence of beta phase from small amounts o f  be ta -s tab i l  i z i n g  elements i n  the  l e s s  

pure metal and r e s u l t i n g  h igher  s o l u b i l i t y  o f  hydrogen i n  the  beta phase. Per- 

haps, nea r l y  a1 1  o f  the  hydrogen i n  the  beta phase. 

The notch-bend-impact-strength o f  t i t a n i u m  i s  a f f e c t e d  by p u r i t y  o f  t h e  

t i tan ium,  and a1 so by the  amount o f  beta present  i n  the a1 l o y  as a  r e s u l t  o f  

a l l o y i n g  elements. Comparison o f  F igure  4-2 and 4-3 shows t h a t  t he  impact 

s t reng th  o f  h igh  p u r i  t y  ti tanium i s greater  than commerci a1 p u r i t y  t i tan ium;  bo th  

show a  decrease i n  impact s t rength  a f t e r  room temperature aging. The lower impact 

s t reng th  o f  the  commerically pure t i tan ium,  even w i t h  low hydrogen content,  may be 

expla ined by the  presence o f  i m p u r i t i e s  and beta phase a t  t he  g ra in  boundaries. 

The a d d i t i o n  o f  hydrogen lowers the  impact res i s tance  o f  bo th  h igh  and commercial 

p u r i t y  t i tan ium,  w i t h  the  commerci a1 l y  pure t i t a n i u m  showing the  l a r g e s t  percent 

degradation. F igu re  4-4 shows the  e f f e c t  o f  small add i t i ons  o f  a1 l o y i n g  elements 

which a f f e c t  t he  amount o f  beta phase present. This f i gu re  i n d i c a t e s  t h a t  t h e  

impact res is tance o f  h igh  p u r i t y  t i t a n i u m  w i t h  up t o  approximately 2200 appm (50 

wppm) hydrogen i s  reduced by the  a d d i t i o n  o f  any a l l o y i n g  element. With hydrogen 

:ontents above 2200 wppm (50 wppm) t h e  a1 1  oying elements tend t o  lessen the  
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FIGURE 4 4  EFFECT OF SMALL AMOUNTS OF BETA ON HYDROGEN EMBRITTLEMENT OF 
HIGH-PURITY TITANIUM IN THE NOTCH-BEND IMPACT TEST AT ROOM 
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ef fec ts  o f  hydrogen on the impact res is tance as compared to pure t i tan ium.  The 

a d d i t i o n  of 1% manganese, 2% molybdenum, o r  4% vanadium i n d i v i d u a l l y  t o  t i t a n i u m  

showed the  g rea tes t  p o s i t i v e  e f f e c t  on minimiz ing the  decrease i n  impact res'is- 

tance due t o  the  presence o f  hydrogen. 

I n v e s t i g a t i o n  on the  e f f e c t s  o f  hydrogen on t i t a n i u m  w i t h  a1 pha-stabi l  i z e r  

element add i t i ons  i n d i c a t e  t h a t  room temperature impact s t rengths o f  Ti-A1 a l l o y s  

i s  n o t  necessar i l y  p ropor t iona l  t o  the  amount o f  aluminum as i s  shown i n  F igure  

4-5(10). It does i n d i c a t e  t h a t  5  w t .  percent o r  more aluminum provides f o r  h igher 

hydrogen contents (200 t o  300 wppm) before  a  r a p i d  decrease i n  impact s t rength  

occurs. 
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FIGURE 4-5 THE EFFECT OF HYDROGEN CONTENT ON THE ROOM-TEMPERATURE IMPACT 
STRENGTH OF TITANIUM-ALUMINUM ALLOYS 

Van Deventer and ~ a r o n i ( ~ ~ )  have s ta ted t h a t  t he  sur face c o n d i t i o n  and mech- 

an ica l  i n t e g r i t y  o f  a  near-a1 pha a1 1  oy Ti-5A1-6Sn-2Zr-1Mo-Si membrane used f o r  

permeation s tud ies  appeared to be unaf fected by approximately 2600 hours o f  hydro 

gen i n f i l t r a t i o n  under t y p i c a l  power reac to r  plasma-chamber cond i t i ons  w i t h  

respect  t o  temperature, 537 t o  625OC; hydrogen pressure, 10- I  t o  102 Pa; and gas 

composition. A1 though no physical  t e s t s  were conducted t o  measure proper t ies ,  i t  

does i n d i c a t e  t h a t  t he  ma te r ia l  was no t  c a t a s t r o p h i c a l l y  a f fec ted.  

4.2 EFFECTS ON ALPHA-BETA TITANIUM - The alpha-beta a1 l o y s  are suscept ib le  

t o  s l  ow s t r a i n  r a t e  embri ttl ement, t he re fo re  normal t e n s i l  e  p roper t i es  may be 

a f f e c t e d  by hydrogen. 



HVDROGEN CONTENT - ATOMIC 96 
0 0.5 1 .O g 150, I 

60 - 
s --- 

' I 

REDUCTION IN AREA 0 STRAIN RATE 
L 
a 9- 9- 0.10 INIMIN 

E - 0.02 INlMlN z 4 0 -  
0 
0 
3 .. . 
a 

ELONGATION 

1 2 0  
Z 
0 
a p 10 

S 
LY 

0 4 
1 1 I I I 

0 50 100 150 100 250 300 
13-4216 HYDROGEN CONTENT - WPPM 

FIGURE 4-6 THE EFFECT OF HYDR0GE.N ON THE ROOM TEMPERATURE TENSILE PROPERTla 
OF A Ti-140A ALLOY AT A SLOW AND A FAST STRAIN-RATE 

Figure  4-6 shows the  e f f e c t  o f  s t r a i n  r a t e  on the room temperature t e n s i l e  

p roper t i es  o f  Ti-140A a1 1 oy ( ~ i  - 2 ~ 0 - 2 ~ e - 2 c r ) .  ( 6 )  The e f fec t  o f  s t r a i  n-rate and 

temperature on the embri ttl ement o f  Ti-140A i s a1 so shown i n  F igu re  4-7. A t  a 

l oad ing  r a t e  o f  1 i n c h  per minute no decrease i n  reduct ion  i n  area was noted, 

whereas an 80 percent  decrease i n  reduct ion  i n  area occurred a t  lower load ing 

rates.  For  Ti-140A the  embr i t t lement  e f f e c t  disappears above about 90°C and below 

-50 t o  - lOO°C.  Thus, i f  Ti-140A i s  representat ive,  i t  appears t h a t  cond i t i ons  f o r  



s u s c e p t i b i l  i ty t o  hydrogen embri ttl ement o f  a1 pha-beta a1 l o y s  woul d  be optimum a t  

.or near room temperature when slow s t r a i n  r a t e s  a re  appl ied. 

Research a t  McDonnell Douglas Research Laboratory (35) has been corjducted on 

susta ined 1  odd c rack ing  o f  wedge openi ng l o a d i n g  specimens from Ti-6A1-6V-2Sn i n  

th ree  m i c r o s t r u c t u r a l  forms. F igure  4-8 shows t h e  e f f e c t  o f  hydrogen on 'c rack  

growth i n  a  d ry  argon atmosphere f o r  be ta  annealed, r e c r y s t a l  1  i z a t i o n  anneal ed, 

and s o l u t i o n  t r e a t e d  and aged mater ia ls .  Th is  f i g u r e  i n d i c a t e s  a  change i n  crack 

growth r a t e  n o t  o n l y  due t o  hydrogen b u t  a lso  due t o  d i f f e r e n t  mic ros t ruc tures .  

It i s  i n t e r e s t i n g  t o  note t h a t  the  changes i n d i c a t e d  f o r  the  beta and r e c r y s t a l  - 
1  i za t ion  anneal ed ma te r i  a1 occur a t  hydrogen contents a1 1  owed by a1 1  ti tanium 

~ ~ e ~ i f i c a t i o n s *  Yoder, e t  a1 (36) have observed s i m i l a r  phenomena and a  50 f o l d  
d i f f e rence  i n  crack growth res is tance i n  t i t a n i u m  depending upon the  g r a i n  s ize.  

1 0  WPPM H2 1 0  W P M  H 2  1 0  WPPM H2 - - - - 110 WPPM H z  . - - - - 70 WPPM H2 - - - - ,  400 WPPM H2 

STRESS INTENSITY - K (MPa rnl 
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FIGURE 4-8 EFFECT OF HYDROGEN CONCENTRATION ON CRACK GROWTH IN 
Ti-6AI-6V-2Sn IN DRY ARGON ATMOSPHERE 

Figure  4-9 shows the  e f f e c t  o f  hydrogen on the  room temperature reduc t i on  i n  

area o f  several alpha-beta a l loys . (6 )  The Mo con ta in ing  a l l o y s  are  l e s s  a f f e c t e d  

by hydrogen than the  Mn con ta in ing  a l l o y s  because Mo i s  a  much s t ronger  beta s ta -  

bi1ize.r. The Mn con ta in ing  a l l o y s  show a  l o s s  i n  d u c t i l i t y  a t  approximately 200 

wppm, however t h e  presence o f  A1 i n  Ti-4Mn-4A1 increases s i g n i f i c a n t l y  (1000 wppm) 

the  hydrogen necessary t o  cause a  decrease i n  duct11 i ty. 

VanDeventer and ~ a r o n i ( ~ ~ )  have s ta ted  t h a t  the  surface c o n d i t i o n  and nech- 

an i ca l  i n t e g r i t y  o f  a  Ti-6A1-4V membrane used f o r  permeation s tud ies  appeared 
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FIGURE 4-9 
nvDROGEN CONTENT - WPPM 

EFFECT OF  HYDROGEN O N  THE REDUCTION OF  AREA O F  A SERIES OF &' 
TITANIUM ALLOYS TESTED A T  A SLOW STRAIN-RATE A T  25% 

t o  be unaf fec ted  by approximately 1400 hours o f  hydrogen i n f i l t r a t i o n  under typ- 

i c a l  power reac to r  plasma-chamber cond i t i ons  w i t h  respect  t o  temperature, 377°C t o  

547°C; hydrogen pressure, 0.4 t o  4 Pa; and gas composit ion. No physical  t e s t s  

were conducted t o  measure proper t ies .  

Rhodes, e t - a l  - ( 3 7 )  have i nves t i ga ted  the  i n f l  uence o f  hydrogen on the  t e n s i l e  

p rope r t i es  o f  Ti-6A1-4V a t  room temperature and 350°C. The r e s u l t s  a re  shown i n  

Table 4-1. A t  room temperature the  h igher  hydrogen con ten t  (1000 vs. 10 wppm) 

increased the  u l t i m a t e  s t reng th  and e longat ion  w i t h  no s i g n i f i c a n t  e f f e c t  on t h e  

y i e l d  s t rength;  t h i s  was t y p i c a l  a t  bo th  the  0.05 and 0.005 s t r a i n  ra te .  A t  350°C 

the h igher  hydrogen content  increased the  u l t i m a t e  s t reng th  and had no e f f e c t  on 

the  e longat ion  a t  e i t h e r  s t r a i n  ra te .  The y i e l d  s t reng th  a t  350°C was apparent ly  

increased by the  1000 ppm hydrogen when tes ted  a t  0.05 s t r a i n  r a t e  whereas i t  

decreased when tes ted  a t  0.005 s t r a i n  ra te .  The r e s u l t s  o f  these t e s t s  a r e  

encouraging f o r  f u s i o n  app l ica t ions ,  as they show no s i g n i f i c a n t  degradat ion o f  
t i t a n i u m  mechanical p r o p e r t i e s  due t o  the presence o f  10 t o  10-1 pa hydrogen pres- 

sure a t  300 t o  600°C temperature cond i t i ons  expected i n  t h e  reac tor .  

Hoeg, e t  a1(38) have hydrogen charged Ti-6A1-4V t o  var ious  concent ra t ions  and 

subjected i t  t o  f r a c t u r e  toughness and convent ional t e n s i l e  t e s t i n g .  The r e s u l t s  
i n d i c a t e  t h a t  the  p r o p e r t i e s  were n o t  unduly in f luenced by hydrogen contents o f  up 

t o  499 wppm. Transmi ss ion  e l  ec t ron  microscopy reveal  ed t h a t  a t  hydrogen 

:oncentrat ions h igher  than 225 wppm, s t r a i n  induced hydr ide  p r e c i p i t a t i o n  
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TABLE 4-1 INFLUENCE OF HYDROGEN ON TENSILE PROPERTIES OF Ti-6A1-4V 

Y ie i  d S t rength  ( k s i  

Room Temperature 350°C 
S t r a i n  Rate S t r a i n  Rate 

Hydrogen 
Content  .005 .05 .005 .05 

1000 wppm 126.8 132.7 87.4 101.5 

U l t i m a t e  Tens i l e  S t rength  (k ,s i  ) 

Room Temperature 350°C 
S t r a i n  Rate S t r a i n  Rate 

Hydrogen 
Content .005 .05 .005 .05 

1000 wppm 154.0 155.1 114.6 112.7 

Tota l  E l  ongat ion (percent )  

Room Tem~era tu re  350°C 
S t r a i n   ate S t r a i n  Rate 

Hydrogen 
Content .005 .05 .005 .05 \ 



occurred ahead of the  crack t i p .  The de tec t i on  o f  s t ra in - induced p r e c i p i t a t i o n  i n  

the  p l a s t i c  zone a t  t he  crack t i p  i n d i c a t e s  t h a t  o ther  p rope r t i es  i n v o l v i n g  longer  

t imes under load, such as creep, s t ress  cor ros ion ,  and susta ined l oad  c rack ing  

res is tance cou ld  be impaired. 

W i l l e  and ~ a o ( ~ O )  a r e  c u r r e n t l y  f nves t i ga t i ng  the  e f f e c t s  o f  bo th  i n t e r n a l  
and ex terna l  hydrogen on f a t i g u e  c rack  growth o f  Ti-6242s a t  temperatures and 

pressures o f  i n t e r e s t  f o r  fus ion.  Resul ts  o f  room temperature t e n s i l e  t e a t s  a t  a 

s t r a i n  r a t e  of 7 x  10-5 set -1 on Ti-6A1-2Sn-4Zr-2Mo-0.8 Si w i t h  2400 appm (53 

wppm) and 24,100 appm (530 wppm) hydrogen a re  shown i n  Table 4-2 and reveal t h a t  

the  t e n s i l e  s t rengths  o f  t he  hydrogen charged specimens were s l i g h t l y  h igher  than 

those o f  t h e  as-received a1 1 oy. The d u c t i l  i t i e s  o f  t he  two groups were equiva- 

l e n t .  Scanning e l e c t r o n  microscopy o f  t he  f a i l e d  sur faces i n d i c a t e d  a d u c t i l e  

na ture  o f  f rac tu re .  I n i t i a l  f a t i g u e  crack growth r a t e  t e s t s  have been conducted 

a t  room and e levated temperatures w i t h  environment hydrogen pressures from 0 t o  

100 Pa (0.75 t o r r )  on Ti-6242s samples conta in ing  50 and 500 wppm i n t e r n a l  hydro- 

gen. These t e s t s  i n d i c a t e  t h a t  a t  room temperature the re  i s  an increase i n  t h e  

crack growth r a t e  w i t h  the  500 wppm hydrogen content,  as shown i n  F igu re  4-10; no 

e f f e c t  o f  environment hydrogen pressure was noted. Tests conducted a t  e leva ted 

temperatures i n d i c a t e  a decrease i n  crack growth r a t e  w i t h  h igher  temperatures, as 

shown i n  F igure  4-11. 

TABLE 4-2. TENS1 LE PROPERTIES OF T i  -62425 

U l t imate  Tens i le  E l  ongat ion, 
Ma te r i a l  Strength Y ie l  d  S t rength  Percent 

MPa k s i  MPa k s i  

As-Received 
Ti-6242s - 2400 aypii~ H 1089 158 1027 149 13.4 

(53 wppm H )  

Charged 
Ti-6242s 24,100 appm H 1130 164 1054 153 13.8 

(530 wppm H I  
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4.3 EFFECTS ON BETA TITANIUM - Craighead, e t  a1 ,(6) repor ted  t h a t  impact and 
t e n s i l e  p rope r t i es  o f  a  ser ies  o f  beta a l l o y s  were unaf fec ted  by hydrogen i n  h igh  

propor t ions .  For  example, an a1 1-beta a l l o y  con ta in ing  13.1 percent  Mo had a  

d u c t i l i t y  on the  order  o f  90 percent  a t  a  hydrogen content  o f  approximately 9 

atomic percent  (1900 wppm) . 
Paton, e t  a1 , (37) (39)  have i nves t i ga ted  t e n s i l e  p rope r t i es  of beta a1 l oys  T i -  

18M0,Ti-30V, and Ti-3A1-8V-6Cr-4Mo-4Zr over t he  temperature range -123°C t o  room 

temperature. The i n i t i a l  s t r a i n  r a t e  was 1.3 x  10-4/sec-l. Th is  work showed t h a t  

bo th  y i e l d  s t reng th  and Young's modulus decrease w i t h  i ncreasi  ng hydrogen content ,  

w h i l e  the  l a t t i c e  parameter increases. See F igu re  4-12, which shows t h a t  

p ropor t iona l  1  i m i  t and 0.2% o f f  s e t  y i  e l  d  s t reng th  decrease 1  i near l y  when p l  o t t e d  

as a  f u n c t i o n  o f  square r o o t  hydrogen concentrat ion.  When Young's modulus was 

p l o t t e d  versus square r o o t  hydrogen concent ra t ion  as i n  F igure  4-13, t he  modulus 

increased a t  -173OC and decreased a t  temperatures o f  -73 and 27°C. F igu re  4-14 

shows the  e f f e c t  o f  temperatures and hydrogen content  on Young's modulus o f  T i -  

l8Mo. I n  c o n t r a s t  t o  the  decrease i n  y i e l d  s t reng th  and propor t iona l  l i m i t  o f  T i -  

18Mo w i t h  respect  t o  hydrogen con ten t  (F igure  4-12), t h e  Ti-3A1-8V-6Cr-4Mo-4Zr 

a l l o y  shows an increase i n  these p rope r t i es  as i s  shown i n  F igu re  4-15. The 

authors pos tu la ted  t h a t  t h i s  d i f f e r e n c e  i n  p rope r t i es  was due t o  l esse r  s t a b i l i t y  

o f  T i  -3A1-8V-6Cr-4Mo-4Zr a1 1  oy i n  compari son t o  T i  -18Mo a1 1  oy. 

YIELD LIMIT 

FIGURE 4-12 YIELD STRESS AND PROPORTIONAL LIMIT OF Ti-1RMo-I4 ALLOYS PLOTTED 
VERSUS SQUARE ROOT HYDROGEN CONCENTRATION 



FIGURE 4-13 YOUNG'S MODULUS DATA FROM FIG. 2 REPLOTTED VERSUS SQUARE ROOT 
HYDROGEN CONCENTRATION 
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FIGURE 4-14 YOUNG'S MODULUS OF Ti-18Mo-H ALLOYS PLOTTED VERSUS TEMPERATURE 

driqui , e t  a1 ,(40) have investigated the e f fec ts  of internal and external 
hydrogen on mechanical properties of Beta I ,  VT15 and Beta I11 (Ti-11Mo-7Zr-5Sn) 
titanium alloy sheet. Figure 4-16 shows tha t  the elongation of tens i le  specimens 
hydrogen charged a t  the solution treating temperature (850°C) and pulled a t  s t ra in  
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FIGURE 4-15 YIELD STRESS AND PROPORTIONAL LIMIT OF BETA "C" AT  3WK PLOTTED 
VERSUS SQUARE ROOT HYDROGEN CONCENTRATION 

H CHARGED DURING AGING 
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FIGURE 4-16 INFLUENCE OF H CONTENT ON PERCENT ELONGATION OF BETA III S~I.I.ITIC)N 
HEAT TREATED AT 8-C FOH 15 MIN., ?HEN CHARGED AS INDICATED ON CHART 

r a t e s  of 104/sec -1 decreased w i t h  increas ing  hydrogen content ;  t h e  amount neces- 
sary t o  e m b r i t t l e  t h e  ma te r ia l  depended upon the  a l l o y  composit ion. 

They a1 so noted t h a t  the  i n f l u e n c e  o f  t h e  h.ydrogen was d i f f e r e n t  on material 
hydrogen charged du r ing  aging than ca thod ica l  l y  charged a f t e r  aging. F igure  4-17 

shows t h a t  there  i s  a g r e a t  d i f f e r e n c e  between the  room temperature percent  

e longat ion  f o r  Beta 111 t i t a n i u m  s o l u t i o n  t r e a t e d  a t  850°C f o r  15 minutes, then 

e i t h e r  a) hydrogen charged i n  a S i e v e r t s  apparatus dur ing  aging f o r  8 hours a t  

510°C o r  b )  aged f o r  8 hours a t  510°C fo l lowed by c a t h o d i c a l l y  hydrogen 

charging. The so f ten ing  or increase i n  e l  vr lgat ion r e s u l t i n g  from t reatment  (a ) ,  
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FIGURE 4-17 INFLUENCE OF H CONTENT ON E% OF BETA I l l  ST 114 HR, 850PC H CHARGED 
DURING HEAT TREATMENT (a-e) OR CATHODICALLY CHARGED AFTER 
AGING 8 HR AT 510oC (H) 

was c r e d i t e d  t o  a hydrogen induced beta s t a b i l i z a t i o n  which causes a decrease i n  

the  a1 pha phase p r e c i p i t a t i o n  dur ing  aging. Chargi ng d u r i  ng ag i  ng, t reatment  (a ) ,  

promoted increased e l  ongat ion t o  hydrogen contents up t o  4000 wppm H. The i n t r o -  

duc t ion  o f  hydrogen i n t o  t i t a n i u m  a t  e levated temperatures would represent  t h e  

s i t u a t i o n  present  i n  reac tor ,  t he re fo re  embr i t t lement  o f  Beta I 1 1  would not  appear 

t o  be a problem i n  reac to r  environment. 

Rhodes e t  have inves t iga ted  the  t e n s i l e  p roper t i es  o f  Beta I 1 1  i n  h igh  
pressure hydrogen and helium. Table 4-3 presents the  data t h a t  shows severe 

degradati,on o f  t e n s i l e  s t reng th  when tes ted i n  h igh  pressure (5000 p s i )  hydro- 

gen. This i n d i c a t e s  t h a t  t he  to lerance f o r  hydrogen i s  1 i m i  ted, however, these 

pressures are  n o t  being considered f o r  f us ion  r e a c t o r  environments. 

4.4 SUMMARY - The data presented i n  t h i s  sec t ion  shows the  complexity o f  t he  

hydrogen-t i  tanium i n t e r a c t i o n s  upon the  mechanical p roper t ies .  The data general l y  

i nd i ca tes  t h a t  t he  beta a l l o y s  are  more t o l e r a n t  o f  hydrogen t h a t  t he  alpha-beta 

a l l o y s  before  t e n s i l e  p roper t i es  are degraded. The a1 pha a1 loys  e x h i b i t  l i t t l e  

degradation o f  t e n s i l e  propert i 'es due t o  hydrogen; they are  suscept ib le  t o  impact 

embri ttl ement a t  hydrogen contents exceeding the  sol  ub i  1 i ty . 
The near-a1 pha ti t a n i  um a1 1 oys are present ly  considered the  p re fe r red  a1 1 oys 

due t o  t h e i r  super io r  e levated temperature creep st rength.  Both Ti-6242s and. T i -  

5G21S are  considered near-a1 pha a1 l o y s  b u t  techn ica l  l y  are  a1 pha-beta a1 1 oys w i t h  



TABLE 4-3 TENSILE PROPERTIES OF BETA I 1  I IN 34 MPa (5000 p s i )  
HELIUM AND HYDROGEN 

U l t ima te  

Test  Y ie l  d  Tens i le  
Specimen Pressure Strength Strength R. A. El ong. 

No. Ga s  PSI A ks i k s i  % % 

ST 745°C /5 min/W.Q. + Age 540°C/8 h rs  

5000 143.4 154.0 6.7 4.0 
He 5000 143.1 152.3 16.6 7.2 

ST 815°C /5 min/W.Q. + Age 540°C/8 hrs  

5000 143.4 150.4 7.1 6.6 
He 5000 137.6 147.2 13.8 8.8 

ST - So lu t i on  Treat  
W.Q. - Water Quench 

predominant ly a1 pha phase. These a1 1  oys woul d  respond t o  hydrogen as a1 pha-beta 

a1 1 oys and the re fo re  be suscept ib le  t o  s low-s t ra in  r a t e  embri t t l emen t  i f  s u f f i -  

c i e n t  hydrogen concent ra t ions  a re  obtained. It i s  s i g n i f i c a n t  to note t h a t  

hydr ides tend t o  d i sso l ve  i n  t he  m ic ros t ruc tu re  a t  temperatures above 100 t o  150°C 

and a1 so hydrogen d i  f f u s i o n  r a t e s  a r e  i ncreased a t  e l  evated temperatures a1 1  owi ng 

f o r  modest hydrogen concent ra t ion  ( 500 wppm) w i t h i n  t h e  ma te r ia l .  Because o f  

these cond i t i ons  one cou ld  expect no de le te r i ous  e f f e c t s  w i l l  be experienced w i t h  

these t i t a n i u m  a1 1  oys a t  t he  e levated reac to r  temperatures. 

Because o f  t he  l ack  o f  d i r e c t l y  app l i cab le  data, a  s u f f i c i e n t  data base must 

be generated t o  p rov ide  q u a n t i t a t i v e  data t o  determine t h e  e f f e c t s  o f  bo th  i n t e r -  

nal  and ex terna l  hydrogen on the  most favorab le  t i t a n i u m  a1 l o y s  a t  temperatures 

nd pressures o f  i n t e r e s t  f o r  f u s i o n  reac tors .  



5.0 CONCLUSION 

A thorough rev iew o f  a v a i l a b l e  i n fo rma t ion  on hydrogen e f f e c t s  i n  t i t a n i u m  

a l l o y s  under r e a c t o r  cond i t i ons  revealed l i t t l e  d i r e c t l y  app l i cab le  in fo rmat ion .  

The t i t a n i u m  a l l o y s  t h a t  o f f e r  p rope r t i es  worthy of cons idera t ion  f o r  f us ion  

reac to rs  a r e  T i  -6A1-4V, T i  -6A1-2Sn-4Zr-2Mo-Si ( T i  6242s) and Ti-5Al-6Sn-2Zr-1Mo-Si 

( ~ i - 5 6 2 1 s ) .  The Ti-6242s and Ti-5621s a re  being considered because o f  t h e i r  h igh  

creep res i s tance  a t  e leva ted temperatures o f  500°C. A1 so, i r r a d i a t i o n  t e s t s  on 

these a1 l o y s  have shown i r r a d i a t i o n  creep p rope r t i es  comparable t o  20% c o l d  worked 

316 s t a i n l e s s  s t e e l .  These a l l o y s  would be suscept ib le  t o  slow s t r a i n  r a t e  

embr i t t lement  i f  s u f f i c i e n t  hydrogen concent ra t ions  are  obtained. Concentrat ions 

g rea te r  than 250 t o  500 wppm hydrogen and temperatures lower than 100 t o  150°C a r e  

approximate thresh01 d  cond i t i ons  f o r  detr imenta l  e f f e c t s  on t e n s i l e  p roper t ies .  

I n d i c a t i o n s  a r e  t h a t  a t  the  e levated temperature - low hydrogen pressure condi- 

t i o n s  o f  the  reac tors ,  there  would be negl i g i b l e  hydrogen embri t t lement .  

Because o f  the  l ack  o f  d i r e c t l y  app l i cab le  data, a  s u f f i c i e n t  data base must 

be generated t o  prov ide  q u a n t i t a t i v e  data t o  determine the  e f f e c t s  o f  bo th  i n t e r -  

na l  and environmental hydrogen on the  most favorab le  t i t a n i u m  a l l o y s  a t  tempera- 

t u r e s  and pressures o f  i n t e r e s t  f o r  f u s i o n  reac tors .  I d e a l l y ,  t h i s  data base w i l l  

a l so  combine t h e  e f f e c t s  o f  r a d i a t i o n  damage as we1 1  as any hydrogen ef fects.  
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