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OFTICAL CHAOS

Peter W. Milonni
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Los Alamos, New Mexico 87545

Abstract
The theoretical and experimental status of chaos in nonlincar optics
and laser physics will be reviewed. Attention will then be focused on the
voussibility of chaotic behavior in individual atoms and molecules driven by
intense radiation fields.

I. lrtroduction

I will begin by recalling a story that has been used to describe the
relation between scientists and certain agencies that fund scientific rescarch.
In one version of the story there is a church in need of repair, and the
priest imposes a rule that anyone wishing to enter the church must first
spend an hour helping with these repairs. One day a pious man appears and
asks the priest if he might possibly enter the church without doing any
work, as he wants to deliver a message to a friend inside. "No," says the
priest, "I know your kind. What you rcally came here for is to pray, and |
won't allow it!"

I do not know of any direct applications of chaos to laser technology,
and admit at the outset that 1T have come ooy to pray. It is particularly
mspinng to do so here, where the patron saints have revealed so much
about the mysteries of chaos.

Chaotic behavior has in recent years been observed inomany laser and
noniinear optieal S_\'h‘ll‘lll.‘ii It could have been (and probably was') observed
for many years, but only o the last decade or so has chaos been a subjyect
of careful mvestigation rather than a nusance to be avoided  For anstance,
it has long been observed that anstabilities can develop an lavers and optical
parametiie osallators with feedoack  On the theoretical side, we mipght note
an carly o paper by Buley and ('umnnnp,.-i.”) i which a namencal simulation of
asinple mode Taser andicated the possibihity of output consisting, of " senes

of almost random spikes

What s chaos pood for™ 1 recently  saw a0 television show winch



described how some cardiologists are using ideas of chaos and strange
attractors in research on heart fibrillations. But as I indicated earlier, I am
not aware of any applications in laser technology where chaos has actually
been utiized. At the present time chaotic behavior in atomic, molecular, and
optical (AMO) physics is being studied not for any important applications,
but simply because it is interesting in its own right, and because by louking
at interesting things we gain a deeper appreciation and understanding of the
world in general, and AMQO physics in particular.

2. What is Chaos?

There now seems to be a general consensus on the definition of chaos:
Chaos means very sensitive dependence on initial conditions, i.e., at least
onc of the Lyapunov exponents of the system is positive. By computing the
Lyapunov exponents of a system, therefore, one can say unambiguously
whether its dynamics are chaot,ic.3

To illusirate the idea of "very sensitive dependence on  initial
conditions" associated with a positive Lyapunov exponent, let us briefly

review some properties of the Bernoulli shift X4l = 2x, (mod 1), ie.,

>
Il

2“x0 (mod 1} (2.1)

This is admittedly a well-worn example by now, but it illustrates the point
so nicely that T am will'ng, for the benefit of the beginner, to carry a fow
coals to Newcastle,. We note the following: (1) The system (2.1) evolves
chaotically, i.e., with very sensitive dependence on initial conditions. For if
the "imtial condition X, is changed to x, t ¢, then X, o8 changed by

O’
2":() = :Uv" Y821 s worth pointing ot  here that "very  sensitive

dependence oninitial conditions” in the definition of chaos means in fact
crponential sensitivity, as in this example. In this example the number log?
1s the Lyapunov exponent, and the fact that it is positive allows us to say,
by defimtion, that the system (21) exhibits chaos A system of dimension

I will have a whole spectrum of chartactenstic Lyapunov exponents (LCE,
and s chaotic Af one of the LOE s preater than zero (2) The (chaotic)

evolution of (2 1) may be considered as random as comm tossing, Call 4

"heads™ af at hes between 0 and 120 "tnls" of ot s between 1/2 and |
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Write the x,’s in base 2, so that x, = 'dndn-Hdn+2"" with ecach di = 0

or 1. Thus x s heads if d = 0, tails if d, = 1. Now consider any

possible sequence of heads and tails, say HHTHTTHTHH..., produced by
coin {lipping. It is easy to see that we can produce this same sequence with

(2.1) by simply choosing X, appropriately. That is, any possible sequence of
heads and tails corresponds to a particular choice of Xy and we cannot

distinguish the results of (random!) coin {lipping from the evolution
described by (2.1). This is true in spite of the fact that (2.1) is perfectly
deterministic.

The thing that must be emphasized is that real physical systems
exhibit such deterministic chaos. A system may be described by perfectly
deterministic equations, and yet its dynamics may be as random as coin
tossing. Such a system, because of its extreme sensitivity to initial
conditions, is "indeterminable" in spite of its determinism. We can again use

(2.1) to illustrate this poirv. If x, = dydyd,..d d then x = =

) 2°3V " "'nn+1

'dndn+l"' and, for large n, X obviously depends very sensitively on the
precise value of X, In practice we cannot know X, precisely. And in any

case any computer can deal only with a finite string of digits. As a
practical matter, therefore, a chaotic system is ultimately unpredictable in
detail.

In algorithmic complexity theory a sequence is said to be "random' if
there exists no rule for producing the sequence simpler than just writing out
the entire sequence. That is, there is no shorter program for generating the
sequence than the trivial one of printing out the sequence bit by hit. The

system (21) 18 known to be random in this serse for almost all X For a
(

chaotic system the best we can do, aside from appproximations, as simply to
observe  the system evolve, we cannot invent a simuler predictor, ke a
closed -form analytie solution. 'To  paraphrase  von Newmann,  the  best
description of a chaotic system s the system itself

At the other extreme are "regular” or non chaotic svatems  An obvious
example as any penodie system A more general type of regular motion s
desenbed by a gquasiperiodic systemn i whiech any coordimate x(t) of the

system o may be wnitten as a discrete Founer senes



N

x(t) = 2cjcos(wjt + 0j) (2.2)

J

Quasiperiodic systems are mnever chaotic. In other words, if a system is
chaotic its Fourier spec‘ra will have non-discrete, broadband components.
Quasiperiodic  systems are sometimes called "almost  periodic"  or
"multiply-periodic."

An important feature of a quasiperivdic system is the recurrence
property: for any t, and for any ¢ > 0, there exists a T such that |x(T) -
x(t)| < ¢ Therefore the value x(t) wili be reached an infirite number of
times. The frequency with which the function (2.2) has the value q is given

by a theorem of l\’ac:d’5 If the w, are linearly independent (ie.,

J
incommensurzie frequencies), then the mean frequency L(q) of the value q i«

—_ v ) N
L{q) = (27r2) 1Hdﬂd7]7] 2(()s(qa)[kl=llJo(a|('k|)
N

- kE]JU(,/G2 + 7'l o] (2.3)

If a quasiperiodic  system  has a  spectrum  composed  of  many
incommensurate frequencies, the recurrence times may be extremely large
and unobservable 1n practice. A simple  example where  recurrences  are
observable s provided by the Jaynes-Cummings model.® In this model a
two-state atom interacts with a single mode of the electromagnetic field,
and the rotating-wave approximation is made. If the atom is in the excited
state at t - 0, and s transitica frequency equals the field frequeney, then

the probability of its being exerted at time t s

m
)‘ 0
P(1) . P,"“ﬁ"(é“v/" poIn (2 4)
n oyl
where P, s the probabahty that there are imtially n vhotons in the ficld,

amd 80 s che Habn frequency The recwrrence behavior of the (quasiperiodie)

fmetion (24) b been descnbed e terms of "guantum collapse and



7 and experimental evidence for such behavior has been found.8

Although it might be considered a '"novel phenomenon,"9 it can also be
argued that there is nothing terribly surprising about it: any quantum system
with a purely discrete spectrum will display such “collapse and revivael,” at

least if one waits long enough. We will return to quantum recurrences in

revival,"

Section 7, but for now let us move on to discuss chaotic versus
quasiperiodic behavicr in macroscopic, dissipative systems.

3. Chaotic Lasers

In 1978 Casperson10 reported some peculiar behavior of a low—pressure
He-Xe electric—discharge laser. For certain ranges of discharge current the
output at 3.51 um was oscillatory, even though the pumping and loss
parameters were constant in time. For sufficiently large values of the current
this "self-pulsing instability" resulted in apparently chaotic output, with a
broadband spectrum. Caspersonll performed numerical simulations of this
behavior and noted that the self-pulsing instability could not be accounted
for within a rate-equation analysis neglecting off-diagonal coherence in the
Bloch equations for a two-state atom. Furthermore the pulsing was observed
to be slow on the scale of the cavity transit time 2L/c, and so this
single- mode instability is unrelated to mode-locked pulsing involving many
longitudinal modes

Experiments by Abraham’s grou;)12 revealed several "universal" routes
to chaos associated with the Casperson instability, and numerical
experiments  on  the Maxwell-Bloch  equations showed qualitatively  good
agreement with the ('.xp('rinwnls.13 These numerical studies confirmed that

the chaotic behavior is explanable within the context of the determnistic

Maxwell-Bloch equations for a single-mode, Doppler-broadened lasur:13
u = - (A4 ¢ - ks)v - fu (3.1a)
v o (A g kshu - v Szy zy) (3.1h)
7y Ry yuze v (3 1¢)

7, Ry vz + My (3 1d)



0 = - 7.0 + KJdsW(s)v(s,) (3.1¢)

3 = - (K/)[dsW(s)u(s, ) (3 10)

Here A is the frequency detuning of the field carrier frequency from the
atomic transition frequency, and the off-diagonal decay rate [ is 27 times
the homogeneous linewidth (HWHM) of the transition. The electric field in
the cavity is assumed to have the form A(t)cos[ut + ¢(t)], and Q = pA/R
where g is the transitior dipole moment, is the Rabi frequency. 7. I8 the

field damping rate, determined mainly by the out,ut coupling. z; and z, are
the upper— and lower-level occupation probabilities, with corresponding

pumping and decay rates Rj and 7j’ and u, v are the off-diagonal Bloch

variables.14 ks = ws/c is the Doppler shift for an atom with velocity
component s along the cavilty axis, and W(s) is the (one—dimensional)
Maxwell-Boltzmann velocity distribution function. The parameter K =
27er2uJ/h, where N is the number density of lasing atoms.

In order to accurately "resolve" the Maxwell-Boltzmann distribution, it
is necessary to use = 50 — 200 velocity groups, so that the system (3.1) on
a computer is replaced by = 102 ordinary differential equations. Figure 1
shows results for A = 0, Ry = 0, R, = 8.5 x 1()_9(3, T = 5401, v =
0.383, 72 = 0124, f = 61 MHz, K = 6.4 1‘.)23 sec—z, and Doppler width

bvyy = 110 MHaz. (The numerical values of the pararieters are discussed in

!
Reference 13.) Figure la shows the computed intracavity intensity I(t) as a
function of time, after the decay of initial transients. When Ry is raised to
9.0 = 1()'9/1, corresponding to a larger discharge current, the results are
shown in Figure 1h. Note that a perod doubling has occurred. Figures lc
~nd 1d show I{1) for K = 9.3 and 9.1 « l()_'(‘)/'i, respectively, revealing more
period  doublings.  Slight  further  increases in Ry produce  more  period
doublings and eventually chaos. The results appear to be consistent, at least
qualitatively, with the umversahity theory for the period doubling route to
chaos

Figure 2 shows results for Ry = 56 = 10 ”/i, A 0, and all the other
parameters as on Figure 1 Power spectra of the field are shown for (a) A

37200, (b) A 3700 () A 370 and (d4) A 3704 In (o) there
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is a single basic frequency and its harmonics in the field spectrum, but as
the detuning A is increased there is the onset of two—frequency motion (b)
followed by the broadband signature of chaos (d). Here we are observing the
so—alled two—frequency route to chaos, or the tranmsition from quasiperiodic
motion on a two-torus to chaos.1

We have also cbserved the route to chaos via "intermittency." In
Figure 3, for instance, we show results for 4 = 38 MHz, v, = 188, 71, =
0574, 7. = 9B, K. = 36 = 10! sec_2, bvp = 110 MHz, R, = 0, and a

variable pump rate R, Figures 3a — 3d z:¢ for R; = 1.2875, 1.29, 1.33, and
1.40 = 1070 f, respectively. We have also observed "metastable chaos," i.e,
long chaotic periods followed by abrupt transitions to quasiperiodic motion.

Figure 3. Development of chaos via intermittency.

These numerical studies may be summarized by saying that we have
observed the best-known routes lo chaos for dissipativc systems in the regime
of the Casperson 1instability, and that the numerical and laboratory
expemments appear to be consistent with each other.

There have been many recent experimental and theoretical studies of



chaos in laser devices with saturable absorbers, {~edback, tilted mirrors, etc.,
ard the interested reader will have no trouble finding papers to read on the
subject. We have chosen to discuss briefly only the Casperson instability
because it remains one of the few examples where the three prevalent routes
to chaos in dissipative systems may be found in the same device.

4. Chaos in Qptically Bistable Devices

A system is said to be bistable if it has two possible outputs for one
and the same input. Optical bistability, which of course is of interest in
connection with optical computers, generally refers to an optical system with
two possible outputs for the same input intensity.l‘r”16 Consider, for
instance, a laser beam injected into a cavity containing N absorbing
two—state atoms per unit volume. For the case of homogereous broadening,
and exact resonance between the atoms and the fieild, we have the
Maxwell-Bloch equations

v=~~0v+ (u/h)(A + Az (4.1a)
2=~z + 1) - (b/h)(A + A)v (4.1b)
A=~ 7A + (27Npw)v (4.1¢)

where AO is the constant amplitude of the injected field and A is the

amplitude of the intracavity field generated by the atoms. The steady-state
solution of (4.1) gives the relation

X, = X + aX/(1 + X (4.2)

where X = (A + A )/ Agyr X, = A [Agpaqy Agar = (W), and a
= ca()/2'yc, where a, = 41Nu2w/hﬁc is the line—enter absorption coefficient.
Figurc 4 is a plot of X vs. Xo for a = 25, showing that the total field in

a cavity containing an absorbing medium can be a multivalued function of
the injected ﬁeld.”’18

Figure 5 shows a ring cavity configuration for an optically bistable
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Figure 4. Plot of X vs. X, satisfying equation (4.2) for a = 25.

-

i.7£[:.._ T _q*"—.

Figure 5. Ring cavity configuration for an optically bistable device.



device containing an absorbing cell. The possibility of chaos in such a
system was first noted by Ikeda.:19 within a range c¢f input field intensilies
the transmitted field undergoes a period doubling route to chaos. Experiments

on both "all-optical" and "hybrid" devices have nicely supported this
prediction.20’21

5. Chaotic Polarization of Light

One of the simplest problems of nonlinear optics, at least conceptually,
is the coupling of two ccinter-propagating fields in a nonlinear medium.
However, even such a "si..ipie" system may have chaotic dynamics. Gacta,
et al.22 predicted that the polarization of light in such a system may vary
chaotically in time when the input intensity is sufficiently large. The
equations considered by these authors are

d ,10,;fb _ , . A0)pfb (22k) b f

% * ¢ HE = 1kj=§,£,\ij E;” + xi; Ej’) (5.1)
and

a o 3 — * ~ :* \* hl ]

i) + x;; = (A - B)(E-F )& + BEE; + E{E) (5.2)

The superscripts b denote  forward- and backward-propagating fields,
respectively, and X;, is the electric susceptibility tensor. xl((j))and Xijlk) are
the Fourier components  of Xij at zero spatial  frequency and  spatial
frequencies + 2k, respectively. The Debve relaxation cquation (5.2) applies to
a Kerr medium characterized by the real constants A, B and a response
time 7. For 7 << L/e, wnere Lois the lenpgth of the Kerr medium, the
medium response is effectively steady-—state.

Numerical soluticns of equations (6.1) and (5.2) show that when B ¢ 0
the pelanization of the transmitted light can be oscillatory when the total

input intensity (If 4 lh) is Jarge cnough, and that for sufficiently  large

input antensities the polarization can vary chaotically in time, as shown in

Figure 6 Such polanization chaos can oceur while the total  transmitted

intensity 18 constant in time

Polanzation  chaos s not umque  to Kerr omedia, but wmay ocenn



whenever there is a nonlinear interaction of vector fields. Gauthier, et al.23
have observed polarization instabilities and chaos in an experiment employing
counter-propagating dye laser beams in sodium vapor.

2 S:I T T
: - ﬂ(a) . : : !
= Figure 6. Time evolution of the total
— (L % IE") transmitted intensity and the intensity
5F == ,1 of one component of polarization for

7 << L/¢ and unequal input intensitics.
(See Reference 22.)
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6. Chaos in the Jaynes—Cummings Model
The 5chridinger equation for 3 two—state atom of transition frequency

w, in an electric field E may be written in the well-known Bloch form*4

X = - wy (6.1a)
y = wx + (2u/N)Ez (6.11)
z = - (2u/W)Ey (6.10)

If N two-state atoms per anit volume are contmmed in a cavity suppotting
a single ficld mode, and if we assume the atoms are all lumped together

within a wavelength, then we can write the Maxwell equation

"
F 4wt - 4nNp (6 2)

We are assuming for simpheity  that the cavity mode s exactly  resonant



with the atoms.

It is convenient to define the dimensionless parameter § = 87er2/hw0.

For u = 1 D and w, = 1015 sec_l, we have § = 24 x 10_23N. It is found

that the system (6.1) plus (6.2) exhibits chaos when § = 1 or larger.

The system under consideration 1is just an extension of the
Jaynes—-Cummings model mentioned earlier to the case of N atoms per unit
volume, ezcepy! that the rotating—wave approrimation (RWA) is not made.
And in the present model the field is treated classically, i.e., we are dealing
with a semiclassical approximation to the usual Jaynes—Cummings model.

This example of chaos in an AMO system is very interesting, for it is
a truly fundamental model. (Note that we have not included any damping
terms of any kind.) It is zlso interesting because, when the ubiquitous RWA
1s made, L.e dynamics are predicted to be quasiperiodic. We reported these
results in 1983,24 al a time when we were first learning abou. chaos and
thinking about how it might manifest itself in fundamental models of
light-matter interactions. However, it was soon pointed out to us that the
same model had been considered at least seven years earlier by Belobrov,
Zaslavskii, and Tartakovskii'®®> These authors used a slightly different form
of the interaction Hamiltonian, bt for the present discussion this difference
1S in('unm-quvntiul.m;

The present example can also be thought of in terms of a single
two-state atom interacting with a single cavity mode; chaos results if the
atom-field coupling strength is large enough. But then we can no longer
trust the semiclassical  approximation,  and  must  address  questions  of

"quantum chaos "

T Quantum Chavs

The subjeet of "gquantum chaos" is conecerned  with how, if at all,
crassical chaos carries over into quantum theory, It has been a controversial
subgect, and much has been wntten about at, and 1 ocannot an the space
alotted review  the field woany seoous way  Instead 1owill present some
thoughts based mam'y on the consideration of a few maodel systems

One area of anvestigation concerns . properties of agenvalues  Enerpey
level distotbutions can exhnbit sensitivity t a nonhnear parameter when the
cortesponding classical system goes chaotie i The encipgy levels can have

compheated  level  crossings, and  ther spacinps can follow  a Wigae



distribution,28 but it is not obvious precisely how these measures of
"quantum chaos" correspond to the classical chaos in the sense of
exponential sensitivity on initial conditions and the consequent loss of
predictability.

The most obviou: question in the latter context is whetker the wave
function can evolve chaotically in time, with the kind of exponential
sensitivity to initial conditions exhibited by classical chaotic trajectories. For
systems with purely discrete energy spectra che answer is clearly that it
cannot. For such systems wec can write

YWt) = 2](‘n|0_i(ﬁnt + 0n)¢n (7.1
n

where the En are the cnergy eigenvalues and the ¢n are the corresponding

eigenvectors. Then

[1¥ty) = o)1 = Ll = costy (17, @

~3
| §+1
~—

The quasiperiodicity of this norm means that two state vectors cannot
separate exponentially with time, i.e., ¥(t) cannot evolve chaotically.
The fact that (i) is quasiperiodic implies the quanfum recurrence

( R L
theorem?Y if w(t”) is the state vector at time t and ¢ 15 any positive
number, there exists a time i° such that || (T) - V(t())ll < «. This

quantum recurrence  theorem s the analogue of the classical  Poincare!
recurrence theorem, which says that any initial point in the phase space of
a system of finite volume is recurrent.

This analogy immediately rases a simple but often overlooked  puoint.
the fact that the state vector is recurtent shonld not by itsell be used as an
arguinent agiinst quantum chaos, just as the Pommcare” recurrence theorem
cannot be used to argue that there s no o clssical chaos' For the mere
recurrence  of  some amtal o state does not amply repnlar o hehiavion
(predictatnhity ), any rote than the recurrence of "heads™ in comn tossing,
means, there 1s no randomness there

The recurrence per se, then, cannot he used  as prool that quantum

. 30 .
chaos s mpossible, as sometimes :||;"uml‘ Fhese proofs bepan with the



assumption of quasiperiodicity to conclude that the dynamics are recurrent,
but 1t is the assumption of quasiperiodicity itself that renders quantum chaos
impossible in the sense of a positive Lyapunov ezponent. For we have already
noted that quasiperiodic means regular and predictable, never chaotic. Thus
I agree with the conclusions of the argument against quantum chaos in
systems with discrete energy {or quasicnergy) spectra, if not with the
argument itself.

(Having said that, it must be noted that quantum recurrence and
classical Poincare’ recurrence are rather different  things. Whereas nearby
points in classical phase space may have quite different recurrence times,
there can be many similar quantum states with similar recurrence times 3])

An argument sometimes heard against the possibility of quantum chaos
is that the Schrodinger equation is linear and therefore carnot allow chaos,
which occurs only in nonlinear (or piecewise linear) systems. This argument
is specious because, although the time—deperdent Schrodinger equaiion can
be written as a sct of linear ordinary differential equations for probability
amplitudes, this set is generally wnfinrte, and such infinite sets of lincar
equations can admit chaos. Indeed it is  possible to  transform  a
finite—dimensional  nonlinear  system  into  an  infinite—dimensional  lhnear
systerm,

Another argument against the possibility of chaotic time evolution of
the state vector is that the scalar product  <g(t)[¢2(t)> of two state
vectors s invariant in time, and therefore if two states e similar at
0, they will remain similar.

At this  point  we  must  acknowledge  the  important  conceptual
differences  between quantum mechanical  state vectors and  classical
trajectonies. In particular, the state vector is not the quantum analogue of a
classical  trajectory but rather corresponds, roughly  speaking, to a whaole
ensemble  of such  tragectonies  Soo the thing to compare with  the tine
evolution of the state vector s not the path an phase space of some
trajectory, but rather the evolution of some amtial distribution i elassieal
phase space  The question then anses  can o classical dustribution o phase
space evolre chaotically e tome e the sense of crponential sensitinty to the
il distribution”?

Consider the Liouville equation for the  phase space  distnibutin p
ol n {Ip} From this equation ot s easy (oo show, for conting e

distithntions, that the overlap of any two detnbations o constant e trine



%.[qudr"pplp2 =0 (7.3)

This is analogous to (d/dt)<yy|y.> = 0, and suggests that classical
distributions of trajectories may have less seasitivity to initial conditions
than the trajectories themselves.

Of course the more appropriate distribution function for our discussion
is the Wigner distribution, which can be regarded as the quantum analogue
of the classical p. For a few models which have been stu<iiv<l,32’33 the
Wigner distribution appears to vary more regularly in time than  the
classical distribution.

In the path-integral formulation all the classical paths contribute to
the time evolution of a quantum system. Heuristically, we can expect the
summation ove: the irregular classical trajectories to  smooth out the
classically chaotic behavior.

For systems driven by time-periodic forces another aspect of the
quantum suppression of classical chaos emerges. In the classical description
the meandering of chaotic trajectories in phase space leads to an effectively
diffusive behavior in which  the energy, averaged over trajectories, grows
approximately lincarly with time. In the quantum description of a few model
systems, however, it is found that the dynamics are restricted over
relatively small number of eigenstates, and the energy does not grow lincarly
with time for long times, but tends instead to saturate. For the model of
the kicked pendulum  this has been  explained by analogy  to Anderson

. . 3‘1 e : . . .
localization. I'he basic idea s to transform the dynamices to the form

(\\'“ t 'I‘n)('n - ) “..r(lnir (71
rn
o
Here c, 18 the amphtude for the nth cigenstate and 'l'“ AT nm )

where w belongs to the quasienergy specttum of  the peniodically drven
')
system with doving peniod T WU/, whete moand £ are the mass

and length of the pendulum, the coefficients \\'I need not coneern us here

Fquation (7-1) as of the same form as the Sehrodinger equation an the

bpeht binding model of Anderson locahization The 'l“ i that case are site

cnerpies, which e taken to be andependent random vanables "This assnmed



randumness of the site energies is responsible for the Anderson localization,
i.e., the absence of quantum diffusion over the lattice. In (7.4), in contrast,
the T, are not assumed random variables, but are determined by the

driving period and the energy levels (proportional o n2) of the unperturbed
pendulum.

But the sequence {'l‘“} does cxhibit  randomness, much like  the
sequence (2.1). This is connected with the n? in the definition of 'l‘", which

in turn is connected to the energy level structure of the pendulum. 'This
random property, resulting from the quantum energy level structure of the
unperturbed system, provides the analogy to Anderson localization, and an
explanation for the absence of diffusive energy growth in the quantum
description of the periodically kicked pendulum.

This analogy to Anderson localization is very elegant, but it appears
to apply only to unbounded quantum systeras, as in the kicked pendulum
where l')n increases as n2.

A number of classical analyses of atomic and molecular systeme in
applied fields have shown that chaos is an important mode of behavior in
the classical deseription of such processes. For instance, we have found that
the appearance of chaos in models of infrared multiple-photon  exeitation
(MPE) of large molecules can be responsible for a diffusive energy growth
and  the fact that the MPE  process s found  experimentally  to he
ﬂm-m'v---d('pvn(h'nl.35' 37

The most extensively studied system in this connection, of course, s
the microwave domzation  of highly exeited  hydrogen :llums.% For this
system the  classical theory  provides  remarkably  good  predictions for
iwomization  probabilities,  except for  certiin microwave  frequencies Not
surprismnply o quantum theory  procoades even mere aceurate predictions The
bip difference is that there is chaos o the classical theory but oot e the
quantum,

The Lack of any evidence for quantam chaos, ve o for anything, bt
tepular evolution of the wave fanction, seems to be roparded as some sort of
mystery  In fact one promnent researcher b expressed the view that, sinee
chaos a5 an observed fact of Natwee, and quantum theary appartently does
not adoat chaos, we must e faced with a foluee of quantum theory and

that we are "headed for a revolution ™ In the cemminder of thes lecture |



would like to argue that no revolution will be necessary.

For a system like the kicked pendulum we should not be terribly
surprised that the classical and quantum dynamics are, for sufficiently long
times, quite different: as we move up the energy scale the energy level
spacings increase monotonically, and the higher we go, the more the
distinctly quantum features will manifest themselves. Note that  the
monotonic growth of energy with quantum number n is a crucial point in
the analogy to Anderson lucalization.

The situation is different, of course, for an atom or molecule, where
the energy spectrum is discrete only up to an ionization or dissociation
limit. Detailed comparisons vetween classical and quantum dynamics have
been made only for a few such systems, but such comparisons have shown,
by and large, that the two theories are in good agreement in o their
predictions of ionization or dissociation prubabilities.:m_4U Here again the
situation does not nccessitate any radical departure from conventional theory,
as 1 will illustrate with results obtained for the driven Morse oscillator, 39~

The Hamiltomian for the driven Morse oscillator is

0= p2j2m + D1 - %)% - dxE; cos(w; t) (7.5)

D and « are the dissociation energy and range parameter, respectively, of

the Morse potential, and d is the dipole moment gradient. The classical

cquations of motion may be written in the scaled form

(12){/(112 - (-1/]!2)(("‘\ ('”2'\) ¥ 2Kcos(ur) (7.6)
where 7 (DBS/M), X ax, o hw/DBS K i JaDBE and e

dimmensionless  parameter B ha/ 2D We have mnly used  parameters
corresponding to the HF molecule, for which there are 24 bound states of
the Morse potential In terms of the sine sealed vanables the Sehrodinger

“(I”:lill)" I.;
. . ,. ‘ .. ', \ ', .
l"b"/l’l l“:"'/l’.\ ’ + I* (l [ ) ) L I\ .\"".“(II:')U" (ll- .l.)

To compare  the  classieal and gquantaum predictions, we doo the

following, In the quantum theory we solve (77) numencally, and compute



the probability
Po(t) = L <y, [#1)> 2 (8)
D n n ‘

cummed over the discrete eigenfunctions |wn>. The dissociation probability
at time t is then I — Pp(t). In the classical theory we solve (7.6) for an

ensemble of classical trajectories, and define the dissociation probability as
the fraction of trajectories that escape the Morse well.39'4U

In driven Hamiltonian systems, Chirikov's classical resonance overlap
criterion42 may be used to predict the amplitude of the driving force
nccessary for the onset of global chaos. In systems with dissociation or
ionization, however, the term '"chaos" is somewhat ambignous, for the
coinputation of Lyapunov exponents requires, in principle, a t -+ o limit. In
dissuciating (or ionizing) systems, however, the dissociation may occur very
quickly, within a few cycles of the driving force, and it is not clear how 1o
rigorously define the "transient chacs" in the pre—dissociation dynamics. For
such systems we prefer therefore to phrase the question of "quantum chaos"
as follows: How, 1f at all, does classical resonance overlup mantfest itself
quantumrn mechanically?

First. let us note that the simplest form of the resonance overlap

criterion  allows us to predict fairly  well the critical field  strength K.
necessary for dissociation. Figure 7 compares K(_ predicted by the classicil

resonance overlap eriterion (), classical dynamies (-), and quantum theory
(+) as a funcuon of the inival energy Fooof the unperturbed  Morse
oscillator. Figure 7a is for the ecase of an N = 1 clascical nonhncaar
resonance, whereas Figare 7h s for an N 4 resonance. For o the Morse
oscillitor — such  resonances  oceur when the  laser  frequeney

ul
|

Nu vl F/D, where w, V2Da/mis the natural oseillation frequency
for the nearly harmome motion near the bottom of the well. Note that the

three predictors for h, plotted an Figure 7 come anto better agreement oy

E/D anereases as might be expected - We o have  also found  that  the
differences between the elassical and guantum predictions are mosd

pronouneed near hpher order elassieal resonanees (N« 1) and quantum



multiphoton resonances. 3! Details 2nd explanaticns may be found in

References 39 and 40.
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Figure 7. Predictions of the critical field strength necesary for dissuciation
for laser {requencies at (a) N = 1 and (b) N = 4 ncnlinear resonances.

The width of a classical resonance turns out to be proportional tu Jhe
square root of the applied field amplitude. Based on the simplest
semiclassical argumentt we conclude that the number of quantum levels
coupled by the field should also be proportional to the square root of the
ficld amplitude, and this surmise is corroborated pretty well by our
numerical cxpvrim(‘nls.39'40

Since the width of a classical resonance corresponds to a spread An of
the number of quantum levels mixed by the field, an overlapping of classical
resonances is  associated with the mixing of a large number of qguantum
levels  When  this happens  the quanturn dyrnemacs s complicated and  can
mamae  the "chaotie”  clussical  dynamics, but the quantum dynamics are
quasipeniodie,  not c.'hm»!u'.al""m Classically, resonance  overlap  results an
diffusive  motion in phase  space,  leadig  to dissociation. Quantum
mechanically, it as the spread of population with increasing field  strongth
that gives nise to dissocration

We  have argued for several  years that  quantum systems  with a



relatively small number of incommensurate energy levels or frequencies can
mimic classical chaos in their "randomness" and in the time it takes to
observe recurrence phenomena.ag"w’43 In particular, the wave function can
exhibit properties that are consequences of chaos — like broadband spectra,
"decaying" correlations, and certain ergodic properi.ies43
chaotically in time.

— without evolving

Of course the view that quantum chaos is generally not possible, and
that quantum dynamics can only rmmmic chaotic behavior in some
circumstances, will have to be modified if just one example of true quantum
chaos is discovered. Fox and Eidson?® have argued that the chaos in the
Jaynes—Cummings model of Section 6 is an example of quantum chaos. In
my opinion this is not the case because the field has not been quantized.
Alekseev and Berman(16 apparently have found an example of quantuin chaos
in a system with stationary coherent states, where there is the maximum
possible correspondence at all times with the classical limit. If this is true
quantum chaos, it must nevertheless be acknowledged that such systems are
highly atypical 6

I would like to thank Dr. P.i. Belobrov and the organizing committee
for providing me with the opportunity to meet them and some of the other
Soviet researchers whose work I greatly admire.
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