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OPTICAL CHAOS

Peter W. Milonni
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/L4SLGK4

T}Ie theoretical and experimental status of chaos in nonlinm r optics

and laser physics will be reviewed. Attention will th~)n bv focus(’d on the

pussil)i]ity of chaotic behavior in individual atoms and mo]wull)s drivl’n by

intlws~~ radiation fields.

I. hmduchn

I will begin by recalling a story that has been uwd to describe tht’

rvlatiun bctwwn scientists and certain agcncim that fund scientific rest’arrh.

In one version of the story there is a church in nwd of repair, and th(’

pri~)st impuscs a rule that anyone wishing to crlter the church must first

sprIId an

asks the

work, as

privst, “1

hour helping with threw r(’pairs. ont” day a pious man app~’ars illl(l

priest if he might p(.wSiblj rntvr the church without doing ;Iny

hc wants to deliver a mmsagc :() a frivnd inside. “NoI” si]~s th(’

know y~.)ur kind. \f’hilt you really cii!lw htm’ for is to pray, and I

Won’t id](JW’ it!”

1 do not know of any direct appliratit)ns t)f CIIWM to lawr t(’(”hllo logy,”

illl(l adlllit iit tll~’ OUt S(’t t!lat I hil V(’ (’oll~(” OL.; ,% to pray. It is l)ilrti(”lll:lrly

llIs~)IIIng to (]() so h(’r(’, wh(’r(’ th(l ;)iltror! saints hil V(’ r(’vt’;d(’d S,) 111111’11

ill)l)llt th(’ Illyst(’ri (*s of (Sll:l(ls.

(’!l;l(.!tl(’ l)(l)l;kvior ]I;Is Ill r(x”(’llt y(I;ITs 1)(’(*11 ~~lIs,IIv(vl in ]Il:lrly l;is(’r ;IIII!

IIlirl!]rl(’;ll (J]) II(; II SySt(IIIIS i II (’~Iul Il h;iv(’ I)(v’n (illIll [)r(llml)ly W;ls’) IIi)s(’rv(vl

f~lr II I;IIIy ytI;Ils, Ilut (JIIly III Itl(’ I;Is1 (I(,(o;I(III or s~J hxs (’tl:l(ls 1)(’(’11 ;1 slll)Jf ’1’l

(If (M;lr(’fill llIv(Isllg;lt l~Jll r;lthl’r IIl; lll il 11111S;111(’(’ f.~1 1)1’ nvoi(h’(1 1“01 Illst:lll (’(’.

it tins 1(11]~ Ixv’rl ~~t~s(hrv(’(1 th;, t ]Il;+l;ll)lll!i(s (“;III Il(Iv!’lIIjJ III I;w(’rs ;IIII! ,,11111:11

l);lr;lIIl(,tll(’ (JSI”Ill;Il(ifs wltt) (Iv’I’;I;i(’li 011 {tl(’ Ihl’1)11’tl(”;ll Sl(ll’, W(’ llll~:hl 111111’

;111 !’;!11 , [);11)!’1 I)y I!lllt’y ;111(1 (’IIIIIIIIIII)!J’ Ill W’hl(”tl ;1 11,11111’11(”;11 S1!lllll;lll( ,11 of

il SIII} (II’ 11111(1(’ 1;1s{’1 lll{lll’;lt {’(1 III(’ I) I15!.1111111} Ilr (1111[)111 f’llllslsllll~: ()( “;1 !lI’1 11’!.

(If :IIIIIIP,l I: LII(I(IIII sl)lk(’s “

\f”h;ll 1s (“11:1 {15 /[1),,11 (,)1” 1 I!ll”{,lllly ~;lw ;1 [1’1(’vlhl!lll Sllllw \\lll[ II



described how some cardiologists are using ideas of chaos and stra:lgt’

attractors in research on heart fibrillations. But as I indicated earlier, I am

not aware of any applications in laser technology where chaos has actually

been utzlwd. At the present time chaotic behavior in atomic, molecular, and

optical (AMOJ physics is being studied not fur any important applications,

but simpl,y because it is interesting in its own right, and because by louking

at interesting things we gain a deeper appreciation and understanding of th~’

world in general, and AMO physics in particular.

2. \l’hat iS w?

There now wems to be a general conscrlsus on the defirlztuJn 0[ Cllilt)S:

Chaos means very smzsitive dt’pendencc on initial conditions, i.e., at least

onc of the Lyapunov expunents of the system is pusitivc. By computing ttll’

Lyapunov exponents of a system, therefore, one can say tinarnbiguously
3whether its dynamics are chaotic,

To illustrate the idea of “very sensitive dep~~nd(~nc(~ on ini t iid

conditions” associated with a positive I.yapunov exponent, 1~’t us bri~fly

review some propcrtim of the Ilcrnoulli shift x = 2x11 (mod 1), i.e,,n+]

x= 2nxo (mod 1)
n

(21)

This is adrllitttdly a well -worn !?XilIIIJ)l(’ by now, but it illllStrilt(% ttl(’ poitlt

S() nic(’]y that I am will’ng, for th(’ l)t’ncfit of ttw bvginn(’rl to carry ii ft’w

coals to .N’(’w(’astl(’, N’LI nottI tht’ fullt)wing: (1) ‘1’!NI sysltIm (2, 1) CVOIV{’S

Ch:Lotl CiL]]~, i,(’, with v(’ry svnsitivr d(Iprn(l(’ncv on initi:ll conditions” ITtlr if

t 11(’ ‘Iiniti;ll con[lition’1 x is rh:lngl’d to x. 4 ((), th(’n XII is (sh;i II~(I(l I)y
(J

lllog2
2“1 = ~,/ (’ It is wolth pointing olit h(lr(’ thnt “v(’ry sl’llsiliv(’

()

(!(’1)(’11(1(’11(”(’011 illlliill ()()n(.litl(lns’l III thr (!(’fi Ilitioll t)f (’I];I(JS II I(IdrIS III f;l(’1

rq/(171r71/1(1/ s(’llsllivlty, ;1s in ttlis (’x;lIIII)I(’, In this (’x;lrlllJl(’ ttl(’ hllrlll)(’r lflj:~

Is ttl(’ I.y;lplll)ov (’xj)lllll’lltt illl(l ttl[’ f;l(’t tll; ll it is ]) IJSIIIV(’ ;lII!IW’S IIS t~~ S~l:”.

l)} (11’fltIIllIIll, th; ll th(’ sysl(IIIl (:) I ) (’xt]ll)ils (A(J(I.* A systorl] of (11111(’IIsIIIH .

I W’111 tl;lv(’ ;1 Wtllllt’ s~)(’(’lrljl)) of (“tl:]r;l(’t(lr]s[l( I,y; l])llllllv (’XI) (II I! ’II(S ( 1,(’:”:),

;111(1 Is (’llnlltll” If 1)11(’(1( 1]1(’ 1,(‘l’: Is gl(’;ltl’l ttlilll 71’!(1 (2) ‘1’11(’ (( ’11;11111( )

(’vllllltlllll of (2 I ) IIl:ly t)l’ (“011sl(l(’1( ’(1 ;1s l;llll :1)111 ;1s (“!)111 tossll l}: ( ‘;111 s
II

“11(’;I[15” If II 11(% lll’lwf ’(’11 () ;11111 1/:’, “[;111s” Ir II Is t)(’1w’(’1’11 1/;’ ;11111 I



}’v’rite the Xn’s in base 2, so that x = .dndn,+ldn-F2..., with each di = [J
n

or 1. Thus Xn is heads if dn = (J, tails if dn = 1. Now consider any

possible sequence of heads and tails, say HHTHTTHTHI1.,,, pruduce[i by

coin flipping. It

(2.1) by simply

heads and tails

distinguish the

described by (2

deterministic.

is easy to see that we can produce this same sequcmce with

choosing X. appropriately. That is, any possible sequence of

corresponds to a particular choice of Xo, and wc (.a II IIot

results of (random!) coin flipping from the ev(]lu:ion

1). This is true in spite of the fuct that (2?.1) is perfictl~

The thing that must be emphasized is that real physical systl’n]s

exhibit such deterministic chaos. A system may k dcscribwi by p(’rfl’(t ly

deterministic equations, and yet its dynamics may be as random as (’oirl

tossing. Such a systcm, bvcausc of its extreme sensitivity to initial

conditions, is ‘Iindetcrminab]ctt in spite of its dctcrnlillism, IVC can again US(I

(2,1) to i]lustratv this poir~. If x = .d1d2d,1..,(in(i1) t1,,, then x =() , n

.dIldn+ J... and, fur largr n, x obviously (.h!pcnds very scnsitivu]y on thu
n

precise value of x~). In practi:c wc cannot know x(, prw:isdy And in aIIy

CM(’ any CIJIH})ll L(!r Can d(’ii] 011]~ with a finit(’ string of digits. As a

prartica.1 matter, thrrrforv, a chaotic systrm is ultimatt’]y u7Lp7y:d2ct(l M i II

dt’tail.

III algorithmic cornpl(~xity th(~)ry a s(’(lum(’v is said tO Ix’ l’ran(iorl]’” if

th(’r(’ (’xists m) rul(’ for pro(i!l(’ing tht’ s(xluorl(’() sire; )](’r tharl just writirlg OIIt

th(’ (’ntirv sm~u:vl(’(’, That is, thur~’ is no short(’r I)rograrr) ff)r g(’rl~’ratirl[; lh(’

s(’(~u(’r]rt’ th,ill thv trivial (Jrl(’ of prirltirlg (Jut th[’ s(I(lII(”IIf’(1 I)it I)y I)it, ‘1’111’

systl’lrl [2 1) is krl~~wrl t(J iNL rarl[i~]lrl Irl llIIs s(II:s~Hfor :Ilr]lllsl al] x ,, l’, ,r :1

(’tlil(ll if” sysl(lrt) III(’ 1)(’s[ W’(’ (mar) (III, asi(!(’ frlll:l :l])]ll~r~lxltll:llil)rls, IS SIIII~Ily III

[)th.(’rv(’ ttl(’ syst[’rrl I’V(JIV(I; w(’ callr]l)t irl~’tIII :1 sirl];)l(’r ~!rt’[lli’tt)r, Ilkl’ ;I

~’lI~s(I(ifljrrll arl:llytl(’ S(llllt loll ‘1’() para~)l)l;lsf’ VI III N(IIIIII;III II, Ihf LI ,51

f/f”.$(’7”/p/ /(m ()/ [1 (“//(1(1/1(” ,w/,$/f’tH 1,s //If” .Y!/s/f”7H Il,$f 1/

At tht’ ott](’r (Ixtn’rl](’ ;ir(l “r(’l+ulilrt’ or Ilorl (“ll:lltti(’ sv;+t{’rlis Al) I) II YIIIIIS

(’x;lrrl~)l{’ 1s ;LIIy ~)(~rl(](ll(. SySl IIIII A rlll)r(l gIIII(IIiIl ty[)(, (If r{’xll];ll IIIIIt I,,~I IS

{ith{”rll)~’tl I)y a !/r~~isl/~fr.IJJ(l/(’.Y,rJ.$/(711in WIIIIII ;Irl} [’llflrillll;llt’ ::(1 ) IIf [III

S}sll’rll rll:lv II(I wllll(’rl ;IS J (ils(r(’1(’ 1“1111111’I s(,fl(’,~



N

x(t) = I
jcJcos(UJt + ‘j)

(2,2)

Quasipetiodic systems are never chaotic. In other words, if a system is

chaotic its Fourier spec!ra will nave nox]-discrete, broadband components.

Quasiperioclic SySt(?mS arc SLMIIetlIIIt!S Cd](’d “dIIl(Mt periodic” (Jr

“multipl y–periodic. ”

An important ft”ature cf a quasi periodic sys[~ml

property: for any t, and for any ( > 0, thcm exists a ‘1’

x(t) I < c. T!l~’rcforc the value x(t) wil; Ix’ rvachc’d an

times, ‘1’ht’ fr~’qucncy with which the funrt]on (2.2) has the value q is givt’n

by a thcor(w of ~a~:4,5 If the u. are lincar]y independent (it).,
J

incwnmensurcte frequencies), then the mean frequency L(q) of the vduc q i“

N
(2.3)

If a quasi pcri(dir syst(’rn hwi a fipcctrum c(mlp(MI(l of m:IIIy

illc(~!llrll(’l]sl]rat(’ frcqurnri[’s, lhc r(urrcllcc timtts may b(’ t’xt r~’fl](dy lil rg+’

itlld llIlol)S(’r Viil)l(” 111 pr:lctiw. A siil]])l(- (’xilr]]~)l(’ wh~’r(’ r(ICIII r(wc(~s ;~r(’
(i

(jljs(’rv;Ll)l(’ is providl’~1 t~y th[’ Jayn{’s.(’l]lll]]]il]gs III(NI(I1, In this m:I(ltIl ;I

tw(} StatL’ atoIrl intt’l:lt.ls with il singl(’ m(I(i(’ ()[ Lh(’ (’1(’(.trolI);lgl](’tit” (i(’l(l,

illl(l tll(’ rotating ‘Wil V(’ ;ll)l~roxilll:ltio{]” is Iliil(l(’, If 111(’ ;110111 is in th(’ (’x(’ il~vl

~l;llo ;lt t (), :lll~! its Irilll!iltil, il fr~’qu[’llry (’(111 ;11s th(’ fi(’1(1 rl(’(111(’11[’y, 111( ’11

11111 [)l(~l);ll]ill!y of its i)(’in}~tIst.It{IIl ut tirll(’ t IS

[11

)
.

l’(t) . p,, f’(Js’J(@Jl I l)t (:! 1)

II !) “

W’11(’1{’]) Is tt)l’ 1)11
II

;111(1!1 Is [11(’ 1{;11)1

rlll,(’1 1(,1: (2 1] tl;l!,

Il;ltllllly ttldl ltl(’ 1(’ :)1{’ II II IIiIlly II I)tlolt)rls ill 1111’ fl(’ltl,

1( ’(1111’ll(”v ‘1 II(I rfvllll(’11( f’ lI(IIIJVI~)I (If ttl(’ (( III; IS II II II II I(III]

I)(Y’11 (1(’s( 1111( ’(1 Ill 11’llll!i (If “(I II; II II IIIII (’011:111!+” ;1111!



,,7revival, and experimental evidence for such behavior has been found.8

Although it might be considered a “novel phenomenon, ,,9
it can also IN

argued that there is nothing terribly surprising about it: an~ quantum system

vith a ybrely discrete spectrum wiU displap such “collapse and revival, ” at

least if one waits long enough. We will return to quantum recurrences in

Section 7, but for now let us move on to discuss chaotic versus

quasiperiodic behavicr in macroscopic, dissipative systems.

3. CIKllis tii

In 1978 Casperson
10

reported some peculiar behavior of a low–pressure

He-Xe electric4ischarge laser. For certtin ranges of discharge current the

output at 3.51 P was oscillatory, even though the pumping and loss

parameters were constant in time. For sufficiently large values of the current

this “self-pulsing instability” resulted in apparently chaotic output, with a

broadband spectrum. Casperson
11

performed numerical simulations of this

behavior and noted that the self-pulsing instability could not be accounted

fur within a rate~quation analysis neglecting off-diagonal coherence in the

Bloch equations for a two-state atom. Furthermore the pulsing was obsmvcd

to be slow on the scale of the cavity transit time 2L/c, and so this

single- mode instability is unrelated tu mode-lucked pulsing involving many

longitudinal modes

Experiments IJy Abraharrl’~ grou~
i2 rcvea]d svvcral “universal” roll tt’s

to chaos associated with the Casperson instability, an(! numrriral

cxpt’rimrnts on th(’ Nlaxwvll-l]]orh equations showed qualitativc]y g(xd
13

Xgrfwmrnt with th~’ experiments. ‘1’hf’se numerical studius confirmtvl tlliit

th! chaotic bc)mvior is [!xplantiblt’ within the cont(’xt of th(! dctermznzslzc

MJXWCII-I]loch equations for a singlu-m(dv, Iloi)])lt’r-l)r[ ):l(!t’rl(’fi I?.s(’r:13

il =-:- (A + i) - ks)v /hI (:{ 1:1)

(J II))

(:! l(l)



m.-
$1 =_ ~cfl + KjdsW(s)v(s,t) (3.1(’)

--

+=- (K/O)~dsW(s)u(s,t) (3 lf)
-m

Here A is the frequency detuning of the field carrier frequency from the

atomic transition frequency, and the off-diagonal decay rate ~ is 27 times

the homogeneous linewidth (HWHhl) of the transition. The electric field in

the cavity is assumed to have the form A(t)cos[wt + @(t)], and fl = p,4/h,

where p is the transition dipole moment, is the Rabi frequency. ~c is the

field damping rate, determined mainly by the out~Jut coupling, 22 and Z1 are

the upper– and lower-level occupati~n probabilities, wit h correspond ng

pumping and decay rates Rj and ~j, and u, v are the off~iagona.1 Bloch

14 ~svariables. = ti/c is the Doppler sbft for an atom with velocity

component s along the cavity axis, and W(s) is the (nondimensional)

Maxwell-Boltzmann velocity distribution function. The parameter K =

2mNp2ti/fi, where N is the number density of lasing atoms,

In order to accurately ‘tresolve’t the Maxwell-Boltzmann distribution, it

is necessary to use z 50 – 200 velocity groups, so that the systmn (3,1) on

h computer is replaced by s 102 ordinary differential equations, Figure 1

shows results for A = (), RI = O, Itz = 8.5 M H1-9[~, ~c = 5.4/~, 71 =

o.38p, 72 = .(_l12fl, ~ = 61 hlI1z, K = 6,4 m 1923 St!c-z, and l)opplcr width

~uj) = 11(! NfIIz, (The numerical values of thr parar,leters arc disrussrd in

Rcfurence 13, ) Figure la shows the computed intracavity intunsity I(t) as a

function of tlmr, aftur the riec~.y of initial transients. }Vhrn NZ is raisld to

g,() ~ 10-9$) corrmponding to a Iargw disch;lrgr rurrvnt, thv mults ;Irt’

shown in Figure Ih. ~o~r thui a pcrzod douh/171g }L(JS ()(’(:1177’ ((1, Figur(’s II”
-. g

“’II(I ld show l(t) for 1{2 = 9,3 and !),4 = 10 /), r(w]m’1 iv~’iy, r(’v(’;llillg 7/lf17°f

pf7”iod doulhng.s, Slight furth(’r in(’r(’;ls~vi irl 1{~ i)rl)(llj[’(’ 111,)1(1 1)[’ri,~(l

(i~)llt)lil]gs and (’v(IIltIIally rha IJ,q ‘1’11(”rmll]ts a~)jx’;lr to I)t’ r(]r]sisl(’llt, ;11 lt’ust

qllalil; ltivt’ly, WI(II tht) utlivrrs;lllly thm)ry for 11)(’ 1)(’rlo(! dt)IIl)li IIg rollt(l It)

1
(“I I;IOS

I“igurt’ 2 shows r(’suits for I{z J. 5 [i M 10 !j~, A / (), ;111(1:1]1 th(’ (jttl~’r

I];ir:lrtl(’t(’rs ;IS III i’”1~,111(1I l’llw{’r SIMIIII;! IIf ttl,’ I’1(’1(1;Ir(’ sh~)wll for (;1) .l

:1 72!)/~, ( t)) A :{ “ ::);1, ((’) 3 :! ;l, i, ;111(1 (II) 3 :1 ;l?i~ 111 (:1) 111(’ 1(’



Figure 1. Period doubling to chaos as the pump rate is increased.

(a) (b)

((-; (d)

f) rhalls as th(I dvtuning is varird



is a single basic frequency a~d its harmomcs in the field spectrum, but as

the d~tun.ing A is increased there is the onset of two-frequency motion (b)

followed by the broadband signature of chaos (d). Here we are obser~ting the

so-called two-frequency route to chaos, or the transition from quasiperioclic

motion on a two-torus to chaos.1

We have also cbserved the route to chaos via llintermittency.lt In

Figure 3, for instance, we show results for ~ = 38 MHz, ~1 = 1.80, 72 =

.057~, Tc = 9~, K = 3.6 E 1021 see-2, &D = 110 MHz, R, = O, and a

variable pump rate Rz. Figures 3a – 3d ~it for Rz = 1.2875, 1.29, 1.33, and

1.40 x 10-5 ~, respectively. We have also observed “met astable chaos,” i e,

long chaotic periods followed by abrupt transitions to quasiperiociic motion.

r 1

Figure 3. Development of

I 1

chaos via intermittence.

These numerical 6tudies may be summarized by saying that we hare

obserued the best–known routes 10 chaos for dzssipativc systems in the regime

of the Casperson imslability, and that the numencal and laboratory

exp[nmcnts appeur to be conszstenf with each other.

There have been many recent experimental and thtwretical studies of



chaos in laser devices with saturable absorbers, feedback, tilted rn.irrors, etc.,

and the interested reader will have no trouble finding papers to read on the

sub~ct. We have chosen to discuss briefly only the Casperson instability

becase it remains one of the few examples where the three prevalent routes

to chaos in dissipative systems may be found in the same device.

4.-hQ@j*~-

A system is said to be bista?)le if it has two possible outputs for onc

and the same input. Optical bistability, which of course is of interest in

connection with optical computers, generally refers to an optical system with

two possible outputs for the same input intensity.
15,16 Consider, for

instance, a laser beam injected into a cavity containing N absorbing

two-state atoms per unit volume. For the case of homogeneous broadening,

and exact resonance between the atoms and the field, we have the

Maxwell-Bloch equations

i = - @ + (P/Ii)(A + AO)Z (4.laj

i = - ~z + 1) - (p/h)(A + Ao)v (4.lb)

A := - ~cA + (27rN/u4v (4.lC)

where A. is the constant amplitude of the injected field and A is the

amplitude of the intracavity field generated by the atoms. The steady -statr

solution of (4. I) gives the relation

X*= X + aX/(1 + X2) (4.2)

where X = (A + Ao)/ASll,T, ‘c, = ‘o/llsArlv ‘SAr~ = (h./p)~~, and a

= CO(j/27c, where a = 4 nNp2U/h& is the liflc~cntcr absorption coefficient.
o

Figure 4 is a plot of X VS. X. for a = 25, showing that the total field in

a cavity containing an absorbing mmlium c;m h a r~:ultivalucd function of

the in~ctcd field.
17,18

Figure 5 shows a ring cavity configuration fur an optiratly histald~’
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Figure 4. Plot of X vs. X. satisfying equation (4.2) for a = 25.

1

Figure 5. Ring cavity configuration for an optically bistablc dcvicc



device containing an absorbing cell. The possibility of chaos in such a
19

system was Erst noted by Ikeda: within a range cj input field intensities

the transmitted field undergoes a period doubling route to chaos. Experiments

on both “all-optical” and “hybrid” devices have nicely supported this
20,21

prediction.

5. ChaQLiq ““ “EdWl&lmdl@h

One of the simplest problems of nonlinear optics, at least conceptually,

is the coupling of two C( nter-propagating fields in a nonlinear medium.

However, even such a “si ..lple” system may have chaotic dynamics, Gacta,

d al.22 predicted that the polarization of light in such a system may vary

chaotically in time when the input intensity is sufficiently large, Thr

equations considered by these authors arc

and

(5.1)

(5,2)

The supcrsrripts f,b d~)nutc forward-- and t)ackward-propagatin fi(’ids,
(0) f)*2k

respvctive]y, and ~,
1] is the electric suscoptibi]ity tensor. Xi j and X. art’

IJ

1111)111Irlt(’nsltl(’s tht’ p{)larizalll)rl (’all v;lry (’ll;liltic:illy Ill tifll[’, ilS stlf)kvrl 111

10’lgllr(’ (i SII(-ll lYIl;IIIz:lti[)n chaos c:ltI (I((lir whil(’ th(’ tl)lnl tI;Lrlsllllllf’[1

IIltt’nsity IS consl;lnt ill 11111(1
22

l’l~l;lrlz;ltioll rh:l~Is Is not iIIIIfl INI 11) K(’rr 111~1111:1, t)ilt I:I;Iy (M~III



whenever there is a non!inear interaction of vectur fields. Gauth.ier, et al,23

have observed. polarization instabilities and chaos in an experiment employing

counter-propagating dye laser beams in sodium vapor,

(b)

Figure 6. Time evolution of the total

transmitted intensity and the intensity

of one component of polarization fur

~ << L/c and unequal input intensltirs

(!3w Reference 22.)

6.W~ti&~~/gSw

The Schrtidinger equation for a twtitate atom of transition frequrncy

U. in an electric field E may be written in the well-Known 131uch forrl] 14

i=-woy ((;.la)

If N twf~-+t:itt’ ;lt(JI1l S ]J(’r ilrlit Vollllllf” :lri’ (’(,111 :1111(’(1 in :1 (’;l\’lt) ~lllljll,lllll~~

a singl~’ fit’ld mfxlr, n~]d if W(I assurllt’ ttl(’ :lt~lllls ,al~’ ,all llllll~l(’{! tog(’1tl(’1

within a wav~’1~’ngt}l, th(’n wc can writv 111{1Nl:IxwiIll (Iq II;it II III

([; ;’)



with the atoms.

It is convenient to define the dimensionless parameter ~ = 87rNp2/huo.

For p = lDanduo =10
15 –1

sec , we have ~ = 2.4 x 10–23N. It is found

that the system (6.1) plus (6.2) exhibits chaos when @ z 1 or larger,

The system under consideration is just an extension of t}le

Jaynes-Cummings model mentioned earlier to the case of N atoms per unit

volume, ezcep! that the rotati?~g–wave approrination (R il’A) is not madr.

And in the present mode] the field is treated classically, i.e., we are dealing

with a semiclassical approximation to the usual Jayncs–Cumrrlings modrl.

This example of chaos in an Ah10 systcm is very intmesting, fur it is

a truly fundamental model. (Note that w(’ have not included any darllping

terms of any kind. ) It is dsu interesting because, when the ubiquitous Ii 11’A

is made, tke d~namics are predicted to be quasipetiodic, We reported these

results in 1983,24 at a time when we were first learning abou. chaos and

thnking about how it might manifest itself in fundamental modo]s of

light-matter interactions. liowfvcr, it was soon pointed out to us that t}lc

same model had been considerml at least seven years earlier by Bclubrt)v,

Zaslavskii, and ‘J’artakovskii!25 These authors used a slightly differrnt form

of”

is

t}w Interaction Iiarlliltonian, l)’ ! for thr prwwnt (discussion this diff’t’rtwc~’
2(!

ill(.orlst’qu~’rltid.

‘1’h’
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atom-fivld

trust the

“qllmtlllll

pmcnt (’x:lmpl~I can also bc thought of in t(’rr]ls of a singl(’

atom int~’ratting with a sing](’ cavity modr; chilos r~’suits if th(’

u)ulding str(’ngth is Iargr t’nough, IIut ttl(’n W(I can no long(’r

s[’lllit’lassical a~~~)roxilllilti~)ll, ;111(1 Illust Ia( dr(’ss qu(’stiulls of

Ch;los “

~ Quillltunl C’hilws

‘l-h’ Sllt)J!’(’[ of “(~ll;llltlllll (’tl:lo S’” is (’IIII(XIIII(UI WI III how, If ill ;111,

I’::15sI(;ll (“II;II15 (L;llril’s (Iv(’r Into (III;IIIIIIIII ltl(u)ly It 11;1s INI(’11 ;

SIIIIJI’1”1 , ;III(I 11111(’11 II;IS 1)(’IvI wrltt(vl ;Il)IIIIt It, ;III(I 1 (’;IIIIII)I

Nll(ltt(’(1 r(lvl(’w ill(’ fl(’1(1 !11 illl~ S[’111)11S W;l} 111S1(’:1(] I WI]!

th(lll~llts 1):1s1’(! Ill;llll’,v 1111 (Ill, (’I)IISI(I(,l ;IIII III or ;1 f(’w’ rll(hl(’1 Sys

(,(,ll[r(l~(.l~l;l]

Ill th(’ Sll:ll”(’

pl(w’llt Sllllll’

(’11)s

( III(I ar(’; l of lllv(’sl l~{:lll(lll (’{)11(’(’111s I!lol!!’1111’s of ,’I[;(’IIV;IIII {’S l’:ll! ’1.!’,}

1(’v(’l (Il!itlllllll lolls (’;111 (’NIIII)II S(’ll$l[lvlly t ;1 1111111111{’;ll I);ll;llll(’t(’f Whf ’11 I ‘If’
;1,,.

(’llrl[’s ~~)ll[llll}: (’I:ISSII’;II Sy!!tl’111 fil)(’s (’tl;llltll’ ‘1”111’ (’llt’l~;y 1(’V(’!5 (’:111 I)il\l’

(’fllll l)lll”;lll’(1 1(’v{’l !’111ss111):$,;111(1 111!’11 sl);ll’lll~;s 1’;111 fldlllw ;1 N’1}:111’1



distributicm,28 but it is not obvious precisely how these measures of

“quantum chaos” correspond to the classical chaos in thti srnsc of

exponential sensitivity on initial conditions and the consequent loss of

predictability,

The most obviou: question in the lattt)r context is whether the wave

function can evolve chaotically in time, with the kind of exponential

sensitivity to initial conditions exhibited by classical Chaotic trajectories. For

systems with purely discrete energy spectra Lhe answer is clearly that it

cannot. For such systems wc call write

(7.1)

where the En are the energy eigenvalues and the @n are the corrmp.)nding

eigcnvectors. Then

II Iv(q) - Vv,)l I = Icnl%-Cq,(yl)]
n

‘J’he quasi puriudirity of tliis norm means that two stat(t vrctors cann:lt

separate exponcntia.lly wilh tirm, iv., tit) C;lnm)t (wulvr chaotical!i.

Ttw fact that ~~t) is quwipt’riodir iml’lirs ttw quanf?fm rfcurnncc

thcorcm;29 if ~t[)) is th~’ statt’

numb(’r, th(’r~’ vxists a timt) ‘i’

quantum r(’(”urr(’n( ’(’ th(v)r(’111 is

such that I I 1{’1’) - W)l

ttl(’ ~llillo~ll(” of ttl(’ rl;lssi

any posit iv(”

< f, ‘Isllls

‘al ‘oirl(’ilr (’”

r(’(-urr(’nr(’ thw)rrtll, which says that any ihitial l)oint in th(’ ]JllilS(’ slxl[’tI of

:1 S~St(’111 of filllto W)llllll(’ IS r(’(-lll”r(’llt

‘1’his an;ilfq:y 1111111(’(li;ll(’t~ riLIS(’S ;1 sillll~l~’ I)ut of[(*n (]v~’llt)~lk[ul ~)(lilll,
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assumption of quasi periodicity to conclude? that the dynamics are recur rt’nt,

but it as the assumptum of quasiperaodicztg itscl! that renders quantum chuos

impossible in the sense of a posdzvc Lyapu710v erpone7U. Fur we have alrc;~dy

noted that quasipericdic means regular and predictable, never chaotic. Thus

I agree with the conclusions of the argument against quantum chaos in

systems with discrete energy (ur quasi l}ncrgy) spcrtra, if not with thf’

argument itself.

(IIaving said that, it must br not(’d that q~antum rwmurrcrl(’(’ an(!

classical Poincarc’ :ccurr~’ncc are ralhl’r diffl’rlmt things. \Vhur~’as ntwrlj}

points in classical phase SJ)il C(’ M~~ hiiVL’ quite diff~wnt rccu rr~’rlc~’ ti mlIs.
31

there can b(’ many similar quantum stat~’s with similar recur rcncv tim[’s )

An argument somctlrncs h(?arr.1against the possibility of quantum UhdlJS

is that the Schrtidingcr equation is linear and tht?rcfor~? cannot allow chaos,

which occurs only in nonlinear (or piccmvis(? Iinoar) systcrns, This argurl](’nt

is specious because, although th(’ tim(-dopci dent Whrijdingcr cqualiou can

be written as a set of linear ordinary diffcr(’ntial equations for prt)bahility

amplitudw, this set is generally t71jn?tc, and such infinite sets of !in(’ar

equatiuns can admit chaOs. lndL’cd it is possiblv to trilll$forlll :1

fillitc4irrl(’llsitlllal no7dzncur systlvn intu an illfillite~irllt’nsioll:ll ll?lfu7”

Sysll’r:l,

Anothvr argl]nltwt against ttw possibility of chaotic timv rvl~lutii)n of

lhc statt’ vt’ctur is that th(’ scalar IJrtdurt <~l(t)l ~l(t)> of two stat(’

v(’utors is invariant ill tin]t’, and th~’r(’for[” if two Slatwi ;II(’ sin] il;lr at [

[1, th(’y will r~”rll;lin silllilar,

At this point W(I riiust ;wknowllvlg(” the important (’011(’{I] )tII;Il
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J$ dNqdKp/)p2 =

This is analogous to

(1

(a/dt)<*

(7.3)

ITJZ> = ~, and suggests that c]assi(al

dzstn”butzorM of trajectories may have l(ISS scilsitivity to initial conditions

than the trajectorim thwnselvcs.

of course the more appropriate distribution function

is the \Vigncr distribution, which can k rvgardcd as the

of the classictd p. For a few models which hav(’ hcvn

fur our dis[mussiul]

quantum analogu~”

studied,
32,33 ~,,(,

Wigncr ciistributiun apprs to vary more r(’gularly in tirl](’ than th(’

classical distribution.

In the path -integral furrnulation all the classical paths contrit)ut~” to

the tlmc cvolutiun of a quantum system. Hcuristica]ly, wc can cxprct thl’

sun)lnation ovc: the irrrgular classical trajvrturi(’s to smooth” out th(’

Classic;d]y chaotic hCha Vi(Jr.

For systrms drivt’n hy tirr)(’–~)(’rio(li:” forces anoth(’r aspl’rt of ttlt)

quantum supp:[’ssiun of classical chaos clll~’rgl.’s, Ill th(! dassi(”al (1(’s(’r]])~ll)!l

th~’ mrandcring of chaotic trajwtorics in phase spacr leads to an (’fflv’liv(’ly

diffusivt’ Ix’tlilvi(]r in which tt)(’ (’n(’rgy, av(’rag(’d ovt’r triiJ(l(”l(Jrl(’S,

appruximatt’ly lin(’arly with tim(’ 11) tt,(’ quantum d(’s(’rl])tl(JIl (If il f(’w

systt’ms, how(’v(’rl if is follnd that thv dynalllics art’ rt’stri(-t~’d

rL’lilti V(’ly small nurnt)(’r of rig(’r]stntt’s, and lb.(’ ml(’rgy d(ws not grow

groiys

lIlo(i(’1

)v(’r il

ill(’ilrly

with tinl~’ for lolIg timm, I)llt trllds inst(’a(! to Siltllrilt(’, l;or ttl(’ lll(J(i(’i IJf

th(: ki(-ktd ~)OII(jI]l IIIII this IIiis t)(~(~ri (’xplaill(d 1)~ ~rli~lo~~~ to ,! II(I(IISI III

localizi,tio,,.: ]”” ‘‘i 11(’ t)ilSiC id(’il is 10 tr;lIISfi Jrlll th(’ (i~llilllli(’!i to tll(’ forll)

)
.
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randomness of the site energies is responsible for the Anderson !L)cd]Z~Li(JH,

i.e., the absence of quantum diffusion over the lattim. In (7.4), in contrast,

the Tn are nut assumed randon~ variables, but are determined by thr

driving period

pendulum.

But the

sequence (2.1).

and the energy levels (proportional to n2) of the unpcrturix’d

S(!qll(’llcc {’1’ } dots exhibit randunlm’ss, muclI lik~’ tll~’
11

l’his is connrctu.1 with th~? no in the definition of ‘1’11,whit’]]

in turn is conn~’rtcd tu !hr ml(’rgy luv~’1 structurr of thv p(’ndu]urll. ‘1’his

random pruprrty, rrsulting from the (]llilllt Urn wcrgy luvt’1 structure of th(’

unprrturl.d systvrn, provides thr anid(~gy tu And(’rst)n l(j(.;llizatit)n, an(l arl

explanation for the absunce of diffusive energy growth in thv

description of thv periodically kicktxl pendulum.

This analogy to Anderson localization is vury clqymt, but

to apply only to unbound(’d quantum systcr;~s, as in the kicktd
2where E incrcascs as n

n

qllhfltlllll

t appt’ars

p(’n(iul 11Ill

A numtwr of classiral analyst’s of atomic and molvru]ar systiIIl)L: in

~])p]l(’d fit’lds h~V(’ Sh(JWll

thv classical dt’scription of

tll(’ ~~J])(’ilrilll(”L’ of Ch;lo S

(NI 1’1;) of l:lrg~ mt)l,Irlil[Is

:lnd th(’ fart t!l;ll th(’

th:lt Ch:l(wi is arl illlpurt;lnt m(NltI of 1)~’h;lvi(jr in

such pro(m~’sst’s, l“or lnstanc~’, W(! have folllld tll;i[

in n]fNl(Ils of illfrfirl’(t lIllllti])l(*-~)tlotO1l” (Ix(’itdtloli
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would like to argue that no revolution will be necessary.

For a system like the kicked pendulum we should not Ix? tcrrih]y

surprised that the classical and quantum dynamics arc, for suffici~mtly long

times, quite diffmmt: as we move up thr cnrrgy scale thr cn(?rgy llIvtIl

sp~cings increase monotonically, and tht’ highur we go, the rnorc th(’

distinctly quantum featur~?s will manifest themselves. Note that thv

monotonic growth of cnt?rgy with quantum number n is a crucial point in

thr analogy to An(imson ](J~d]Z.atjOn.

The situation is difft’rent, of course, for arl atom or Xnol:’cule, wll(’rc

the energy spcctrurn is discrctc only up to an ionizilt. ion or dissorii~tion

limit. Detailed comparisons ul’twecn classical and qunntum dynamics h:ivtI

I.x’t’rl madr only for a fcw such systems,

by and Iargl?, that t!w two thwrics

pr(’liictiuns of ionization or dissociation

situation dues not ncccssitatc any radical

l)ut such colnp;lrisons how sh(J\vII,

arc Ill ~()()(] itgr(’(’]]11’nt in tll(’ir

probabilitic.s. 3B-4(J
IIcrc iigai n th~’

departure from conventional theory,

as I
3{)Aj1

will illllstrate with rmu]ts obtainml fur the driwn Mursc oscillator,

The liamiltOrlian fur the driv(m Morsv oscillator is

II = p2/2m + D(1 - (’-(~)~ - (iXl,:,,cos(u,,t) (:,5)

11 and (k itr(’ thr disstwi:ltiun energy and r:lflg~’ parillllt’t{’r, rtwp~’rt ivl’ly, of

tht’ Morsr pott’nti al, and d is th{’ di;)ol~” mt)mt’nt gradi(’nt ‘1’ht’ c]assi(’nl

(!(llliltioll$i of motiorl” Illily 1)(’ writt(’11 ill 111(’S(”:1](’(! fern]

wh(’r(’ 7 (1)1#/?l)t, s (tx, /1 TIQ)/l )112, K (11[, /(kl)l{~, illl(l 111(’

(11111(’11s10111(’ss p:lrillll(’1 (’l 1{ ll(t/#lllrl \\’(’ hil V1’ ill; lllll~ llSt’(! ~)illdlll(’t(’ls

(Q[)rl(lsl)oi)(llllg to [II(’ Ill’ 11101(1:.111(’, for WIIII-ll th~lr(’ ;II(I 24 IMIIIIIIIsl;III.Is II!

th’ Nfors(” ~)ol(’r)ll;ll In 1(’rr]ls ()( III(I S;IIII(I st:Il~vl v:lrl;ll~l~vi 11111Sltllll~llllj:fr

(I(lll;ltlllrl It

,)
l;)(’/ ;)/ ;; L/;)\”. t 1{ :!(I ,1 ~l:’k. Ii 1! ’11!.(//: )[’ ( ‘; “1”)

‘I’ll {.l)rllll:lf{, ttll’ (“1;1!,!!1(’;11 ;111(1 I[il:lrllllrll l)Ilvlllll,)rls, WI I (l!, Ill,
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the probability

1PD(t) = I<vnlwt)>lz
n

(7.s)

summed over the discrcle eigmlfunctions IVn>. The dissociation probability

at time t is then 1 – P (t). In the ciassicai
D

theory wc solve (7.6j fur an

ensemble of classicfil trljectorics, and ddine the dissociation probability as

tht’ jlwclz07L Of trajurt~rics that escape the hlorsc well.
3g,4u

In driven Iiar,iltonian systems, Chirikov’s classical resonance ()~:(’r]iij)

criterion42 may Ix used to predict th(? pmplitude of the driving forcl’

nmxssary fur the onsci of global chaos. In systems with dissociation or

ionization, however, the term “chaos” is somewhat ambiguous, for the

computation of Lyapunov exponents requires, in principle, a t + cu limit. In

d]ssuciating (or ionizing) systems, however, the dissociation may occur very

quickly, within a fcw cycles of thr driving force, and it is not clear how to

rigorously Mimi th(’ “transient cha(~s” in the pr(?~issociation dynamics. I:or

such systiIrns wc prrfcr tht’rrfurc to j~hras(’ thu qu(’stiun of “quantum ch:los’”

as follows: Ilolf), t] at all, durs clussirul ms071u71rc uIIc71up wL711f1s[ it.~ti!

quu7du7r~mtchunwully?

First lot us not(” th;lt th(’ siml)l(’st form of the rmonanr~” ov(’rl~lp

crit(vion

T’1(’(’t’ssilry

rt’sl)naflrv

allows us to prvdict filirly WCI1 thr critir:l] fit’1(1 Str(’ligttl K
(’

for Cli SS()(’iiLti()ll. Figure 7 C(]mpam K(, prwli(mhd I)y th(’ classical

(J V(’r]iill (’rlt(’rioll ( ), (sliissicd (Iy,)amics {s ), ar,d quilnlIIIII th(x)rv .

( + ) ii!i il fllllrlloll of th~’ inltlil] (’m’rgy It of th(’ unp(’rturlx’(1 hlt~rst’

fjsrillnt~)r l~lf;lll(’ 7;1 is for th(’ (“;15[’ of iill N L 1 [Slii$’iloal nonllll~ilr

rt’sllnilllt’~’, wht’r(’iis 1 l~ur[’ 71) is for mI N 4 r(lsf]n:ln[.~’ I“(Jr t Ill’ hll IIs(’

{Ist’ill;ltljr SIl(’h r[’s[jll:illt’~’s t)i.[.l]r Wh(’11 th[’ lils[’r fr(vl[i(’il~’y k’l

~tiI,)Jl E/P, Will’11’ d,, J!r)ft;’/lll is 111(1n:lturi~l osf’llliltltjll fr~’tll,~’ll~y

fIIr III(- IIt’;irly h;irrlv~lll~’ rtl{lli(~tl Il(vir tlI(I I)ottorll” of th(’ w(III, N~)tl.’ Ltl;ll tlI(’

lhl(’~’ Ijrf’(ll[tljrs for ti I)llltll’fl Ill 1“1}:111(’ 7 (’0111(”
1’
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resonances 41 Details and explanations may be found inmulti photon

References 39 and 4(J.

(a) (b)

Figure 7, Prcdicticms of the critical field strength necesary for dissociation

fur Iasrr frequencies at (a) N = “1 and (b) N = 4 ncmlinear rcsunanccs.

The width of a classical resonance turns out to be proportional tu ,}lr

Bquare rwt of the applied field amplitude. Based on the simpl:’st

semiclassical argumrntr. we concludt? that the number of quantum Icvo]s

c.oupkd by the field should also l.w proportional to the square root of tllv

fivld ampl)tude, and this surmise is corroburatrd prrtty WUI1 by our

nlJmrrical t!xpvrimmlt!i.
y),~()

Sincl’ ttw width of a classical rm[)nanc(~ ct)rrvs~)onds tt) a sprvad An of

th(’ numlm uf quantum Ivvrls mixvd I)y tht’ fi(Il(l, an ov(’rl:ll)ping of cliJss Ic:Il

H’Sollilll(’(’S is FISS()(’iilt [’(1 with th(’ lIliKirlg of a larg(’ 11111111)(’T of (~\li\I\tllll\

lrvtIls \Vh(’:1 this haplNIns fhc qua711um dy7,(177i ~c,$ ZS (“onl])lir(lt((l un(f (-(174

fri?nllf” ihf’ “r}~aotzc’- CIUSSICU1dgna 7111(’,s, hut thf” @(171/U7H d,~?l(17HH’.$ (J7’f
:]!),,~()

quu.~lj~tr7udlf’, not rha IItIr (:l;wiir; ally, r(w)hfln(x’ ov(’rlii~) r(’sIIlts 111

(ilffllslv(’ Illotloll” i H ph; ls(’ s])ii(”v, 1(’;idll,g to dlss(~ri:lti(jn Qll;lrlllllll

Illt’(sllalli(’;llly, it is th(’ spt(’n(l of po])ul, ilIII II wilh inrr[’:lslrlg fl(’ld strt 11~:1 !I

th:it glv(’s rls(’ t(I (Ilssl)ri; itl(m

\!’{” tl; lv(’ argll(vi for stIv~*l;il y~I;iIs th;ll (~II; IIIt II III syst(vlls wlttl iI



relatively small number of incommensurate energy levels or frequencies can

mimic classical chaos in their “randomness” and in the time it takes to
39,40,43observe recurrence phenomena. In particular, the wave function can

exhibit properties that are consequences of chaos – like broadband spectra,

“decaying”
43 _

correlations, and certain ergodic properties without evolving

chaotically in time.

Of course the view that quantum chaos is generally not possible, and

that quantum dynamics can only rnim.ic chaotic behavior in some

circumstances, will have to be modified if just one example of true quantum

chaos is discovered. Fox and Eidson
45

have argued that the chaos in the

Jayncs-Cummings model of Section 6 is an example of qua7~tum chaos. In

my opinion this is not the case Imausc the field has not been quantized..
Alekseev and Derman4b apparently have found an example of quantum chaus

in a system with stationary coherent states, where there is the maximum

possible correspondence at all times with the classical limit. If this is true

quantum chaos, it must nevertheless be acknowledged that such systems arl’

highly atypical,
46
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