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ABSTRACT

The use of the width fluctuation corrected Hauser-Feshbach
formula is summarized and recent evidence which supports it as
compared to other proposed formulas is reviewed. A new formula
for the channel fluctuation degree of freedom parameter is given,
and other recent developments are summarized.

The Hauser-Feshbach formula is the basic tool for the calculation of
average compound nucleus reaction cross sections initiated by neutrons.
It was first derived some 43 years ago in Bethe's 1937 review of nuclear
physics, * and was given wider applicability with the appearance of the opti-
cal model of Feshbach, Porter, and Weisskopf.2 The practical use of this
formula was clarified in papers by Wolfenstein3 and by Ha user and Feshbach14

and its accuracy was sharpened by the introduction of the width fluctuation
correction factor by Dresner5 and by Lane and Lynn.6 However in all these
years no satisfactory generally applicable derivation of the formula has
been found. Only in the weak absorption limit (small transmission factors)
is Bethe's old derivation applicable. Because of its widespread use, both
in applications and in basic physics, there has been a great effort in
recent years by a number of groups7"*2 to derive a formula that is appli-
cable also for strong absoption cases. These efforts have been at most
partially successful. It has not been possible so far, to average the
extremely complicated expression for the cross section which is obtained
when one includes the required constraints of unitarity and causality.

One way of circumventing these theoretica . difficulties has been to
produce numerical averages of computer generated cross sections which
satisfy all required conditions and constraints. Such calculations have
been done principally at Argonne11"15 and in Heidelberg.16"18

I want to describe the results of recent calculations of this kind.
They seek to answer the following questions. What kind of formula best
describes average compound cross sections, how do the parameters in such
a formula depend on the dynamics of the reaction (e.g. numbers of channels
and their transmission factors), and finally, how sensitive are these
results vo the statistical assumptions that are made.



The method used is to draw R-matrix parameters7*19 at random from
appropriate statistical distributions (e.g. normally distributed level
amplitudes y^c and level spacings having the Wigner distributions,) and
to construct from then R-matrices and from these numerical cross sections
which can then be averaged, l shall refer to these as computer experiments.

Several forms for the average cross section formula from partial wave
channel a to partial wave channel b have been suggested.7""12 The width
fluctuation corrected Hauser-Feshbach formula11 is of the form

(1)

where the average is over the index u and the positive quantitlves ty and

ty are distributed independently in u, and ty = £c tj| is the sum over
competing channels. For all channels c

" Tc < 2 )

where Tc is the transmission factor for channel c. The distributions of the

t{] are usually taken to be one of the family of chi-squared distributions

with frequency functions
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so that with each channel c is associated the positive degree of freedom vc
of the distribution function of the tc. Than the average cross section (1)
can be written w
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where the width fluctuation correction is given by the product of the two
factors



The correlation enhancement factor Cab has been evaluated in Eq. (6) for the
assumption that ta and t̂  are uncorrelated for a ¥ b« It ordinarily causes
an enhancement of the elastic cross section oaa by a factor of Wa = 1 + 2/va
and a corresponding reduction in all cross sections due to Gaj, which keeps
the total flux Z^ oab ~ ffTa/kf the same. As a result the net elastic
enhancement due to Gaa C a a is less than Wa. The values of va vary from
unity in the weak absorption limit to a value of up to 2 for strong absorp-
tion, as we shall see later. Therefore elastic enhancements vary from
between factors of 3 and 2. The value of v for lumped channels is a weighted
sum of the v1 s for the component channels and so for lumped gamma ray channels
Vy may be quite large. Similarly, if a fission channel is taken to Include
two or more fission modes, v. may be greater than ?.•

It is, however, also possible for the factor Gab to yield an enhancement.
This occurs if there are only a few strong channels competing so that the dis-
tribution of the total t̂  is given by small vt, but channels a and b are weak,
so that tjj and tj} contribute little to ty and. are thus only weakly correlated

with t...1** Then Gaj, can approach the value of

'«* for v < 2

(l - | - ) for vfc > 2

We see that in such cases the enhancements of both elastic and inelastic
cross sections can become arbitrarily large. That this is indeed so can be
seen from Fig. 1 where the cross section enhancements obtained from computer
experiments are compared with the predictions of Eq. (4).1**

The importance of these results lies in part in the practical possibility
of such large enhancements, and in part because these computer experiments
discriminate effectively against competing cross section formulas8*9»16 all
of which include an elastic enhancement but do not envisage large enhance-
ments of nonelastic cross sections. For this reason we prefer Eq. (4) for
which there exists also some detailed theoretical support.11

The next questions is then, what are the values of the channel degree
of freedom parameters vc<s In the low energy weak absorption limit the result
is well known. There the t£ are equal to 2TT rjj/D, where the r§ are the
familiar partial resonance widths which have a Porter-Thomas distribution
for which vc = I. D is the resonance level spacing. For weak absorption
(T £ 0.2) the formulas derived in Ref. (11) work well. Many arguments have
heen given7"10 why tc should vary from 1 to a value of 2 as the strong
absorption limit ("-., = 1) is approached. These arguments are based on
applications of the central limit theorem but they do not take into account
the severe constraints which the unitarity condition imposes on cross sec-
tions. Recently systematic computer experiments were undertaken to study the
behavior of \>a.

15 The results are shown in Fig. 2, where va is plotted
against the sum of all competing channel transmission coefficients and dif-
ferent symbols are used for different values of Tc. A least square fit to



a three-parameter formula which Incorporates the qualitative features of
these results yields

v c 1.78 +(TC '2 1 2 - 0.78)e-0

These values are then to be used to evaluate Eqs. (5) and (6) using the
integral expression. »* *

fb

Gab = / dtMfl + A , * ) , (9)

which can be evaluated satisfactorily by a twenty point Gauss-Laguerre quad-
rature. It is interesting to note that contrary to naive expectations v
does not go to 2 in the strong absorption limit. This indicates that the
unitarity effects are strong enough to spoil the statistical central Unit
theorem arguments* In the many channel limit v appears to approach a value
of about 1,8 regardless of channel transmission factors.

In addition to these results, the dependence of va upon the R-matrix
statistics were studied for the case of strong absorption (T - .99.) Results
were obtained by modifying the normal distribution of R-matrix pole amplitudes
TMa (having a fourth central moment U4 = 3.0) so that U4 took on values of
2.77 and 3,26. The surprisingly large effect displayed in Fig. 3 again con-
tradicts the central limit theorem argument which is independent of starting
statistics. Perhaps even more surprising is the large dependence of v upon
the R-Matrix level spacing distribution which is also displayed in Fig. 3.
In addition to the Wigner distribution of level spacings, with standard devia-
tion OQ = 0.523, calculations were performed with uniformly spaced levels
with OQ 7* 0'0> antl with uncorrelated level position, that is an exponential
spacing distribution with oD - 1.0. These results tend to explain the
difference of the present results (Eq. (8)) from those of the Heidelberg
group16"18 which obtained the expected value of v = 2 in the strong absorp-
tion limit with similar computer experiments. However, their R-matrix level
spacing distributions are generated from biased random number samples which
do not generate a Wigner distribution.17 Their actual spacing distribution
has a On = 0.475, which, by interpolation should yield the dotted curve
in Fig. 3, and thus, in consideration of statistical errors, is consistent
with v = 2 for all T = .99 cases which they considered.

Another question of recent Interest has been what the effect of com-
peting direct reactions Is upon average compound nucleus cross sections.
The method for dealing with this problem has been developed by Engelbrecht
and Weidermuller20, who showed that the problem can be transformed to one
without direct reactions by means of a unitary transformation of the matrix
of average reaction amplitudes. As a result of this, average compound
nucleus cross sections that compete with direct reactions can acquire a
share of the elastic enhancement. However, as shown in Ref. (12), this will
be of practical significance in only very special situations which are char-
acterized by few directly coupled channels and an average S-matrix that is
very close to a limiting condition imposed by the causality requirement*



In summary, the best presently available method for the evaluation
of average compound nucleus cross sections is given by the width fluctua-
tion corrected Hauser Feshbach formula of Eqs. (4)-(6), (9) with the chan-
nel degree of freedom parameters vc determined by Eq. (8). The optical
model is used to obtain the transmission factors Tc for the neutron channels.
For non-optical mode channels, such as fission and gamma ray emission, the
Tc are evaluated from 2TJ rc/D. Angular distributions are calculated as
described in Ref. (64), Section C. where 0yc is the same as tfj.

Because of the great sensitivity of strong absorption average cross
sections to statistical assumptions, as shown in Fig, 3, it remains to be
investigated whether the R-matrix parameter statistics are in fact the
same for all absorption strengths, as has been assumed here as reasonable
because the R-matrix itself is not affected by channel properties, such as
transmission factors.
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FIGURE CAPTIONS

Fig. 1. Enhancements, compared to Hauser-Feshbach, of small compound cross
sections for a variety of two, three and four channel cases. The
predictions of each of two theories lie within the shaded regions
bounded by the curves for v = 1 (all channels) above and v = 2
(all channels) below. In each case the upper shaded region cor-
responds to the width fluctuation effect in Eq. (4); the lower
region corresponds to the formula of Refs. 16 and 17. The points
show the average results and variances of computer experiments with
T(large) = 0.91 (two channel cases) and T(large) = 0.84 (three and
four channel cases).

Fig. 2. Channel degree of freedom parameters v vs. the transmission coef-
ficient sum £T as calculated numerically with standard statistics
for various channel transmission factors T. The solid lines give
the results obtained from the formula of Eq. (8).

Fig. 3. Strong absorption dependence of the channel degree of freedom
parameters v upon R-raatrix pole statistics as discussed in the
text. All channels have transmission coefficients T = 0.99.
The solid line is computed from Eq. (8) with standard statistics.
The dashed lines indicate the trend of the results with non-
standard statistics.
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