R - - m_l
i e -

C T - Koot d-- a8

CROSS SECT10NS FROM COMPUTER EXPERIMENTS

] WASTER

P, A. Moldauer

DISCLAIMER

Thet buok was brepared 23 3n accuunl Of work 1pontored by an agency at the Uriiad States Guverniment.
Nenther the United Siares Government nor any &enc / thereo!, nor any of (hew emsfoyees, Makes dny
witfanly, enpreas ar ymphed, o astumes any legal dsothly wr rmpanubility for the deuracy,
complateness. or usatulness ab any information. apparstus. product. or proceys diclon or
Coptesmn(s AL s s Wwould ot nfnnge prvately owned fights Ralemncn herain to any waceic
tttttt nefCidl DIOULCL, P00, N wmtvite Dy frade name, trademe,i, anufaciuret Of utherwite, dney
nut necewrity  constitute o imply @3 endofsemant, cummerdation, of tavonng by the Unded
Stales Guvernmeny ue unv agency Thoreot, The vews snd ooinians of euthars kearesied nerein do not
necuciar ity siata or ratlect thas af (e United Statay Government ar sy agancy theroa?,

Prepared for

American Nuclear Society Meeting

1980 Advances in Reactor Physics and Shielding
Syn Valley, Idaho

September 14-17, 1980

®ISTRIBUTION oF THIS DOCUMENT IS UNLIMITER

" UG-AUA-USDOE

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the
o U S. DEPARTMENT OF ENERGY




CROSS SECTIONS FROM COMPUTER EXPERIMENTS

P. A. Moldauer

Applied Physics Division
Argonne National Laboratory
argonne, Illinois 60439, U.S.A.

ABSTRACT

The use of the width fluctuation corrected Hauser—Feshbach
formula is summarized and recent evidence which supports it as
conpared to other proposed formulas is reviewed. A new formula
for the channel fluctuation degree of freedom parameter is given,
and other recent developments are summarized.

The Hauser—-Feshbach formula is the basic tool for the calculation of
average compound nucleus reaction cross sections initiated by neutrons.
It was first derived some 43 years ago in Bethe's 1937 review of nuclear
physics,1 and was given wider applicability with the appearance of the opti~-
cal model of Feshbach, Porter, and Weisskopf.2 The practical use of this
formula was clarified in papers by Wolfenstein? and by Hauser and Feshbach"
and its accuracy was sharpened by the introduction of the width flunctuation
correction factor by Dresner® and by Lane and I..ynn.6 However in all these
years no satisfactory generally applicable derivation of the formula has
been found. Only in the weak absorption limit (small transmission factors)
is Bethe's old derivation applicable. Because of its widespread use, both
in applications and in basic physics, there has been a great effort in
Tecent years by a number of gr:oups7"12 to derive a formula that is appli-
cable also for strong absoption cases. These efforts have been at most
partially successful. It has not been possible so far, to average the
extremely complicated expression for the cross section which is obtained
when one includes the required constraints of unitarity and causality.

One way of circumventing these theoretica’. difficulties has been to
produce numerical averages of computer gensrated cross sections which
satisfy all required conditions and constraints. Suchk calculations have
been done principally at Argonne“'15 and in Heidelber:g.“‘-"18

I want to describe the results of recent calculations of this kind.
They seek to answer the following questions. What kind of formula best
describes average compound cross sections, how do the parameters in such
a formula depend on the dynamics of the reaction (e.g. numbers of channels
and their tramsaission factors), and finally, how sensitive are these
results “o the statistical assumptions that are made.




The method used is to draw R-matrix parameters7 19 at random from
appropriate statistical distributions (e.g. normally distributed level

amplitudes Y ue and level spacings having the Wigner distributions,) and
to construct from them R-matrices and from these numerical cross sections
which can then be averaged. 1 shall refer to these as computer experiments.

Several forms for the average cross section formula from partial wave
channel a to partial wave channel b have been suggested =12 The width
fluctuation corrected Hauser—-Feshbach formula!l 1l 45 of the form
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where the average is over the index p and the positive quantitives tu and

t, are distributed independently in u, and t, = L. tu is the sum over
competing channels. For all channels ¢
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where T, is the transmission factor for chamnnel c. The distributions of the
tﬁ are usuvally taken to be one of the family of chi-squared distributiouns
with frequency functions

£(x) = (5 ) x(i " (- z x)/(— (3)

so that with each channel ¢ is associated the positive degree of freedom v,

of the distribution function of the t®. Th2n the average cross section (1)
can be written "
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where the width fluctuation correction is given by the product of the two
factors

Cab '< > <ta2t:;’> , (5)
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The correlation enhancement factor Cyp has been evaluated in Eq. (6) for the
assumption that t2 and tb are uncorrelated for a # b. It ordinarily causes

an enhancement of the elastic cross section G5 by a factor of Wy =1 + 2/v,
and a corresponding reduction in all cross sections due to Gap which keeps

the total flux Iy aﬁ% = nTa/k§ the same. As a result the net elastic
enhancement due to Gp5 C;5 is less than Wye. The values of v, vary from

unity in the weak absorption limit to a value of up to 2 for strong absorp-
tion, as we shall see later. Therefore elastic enhancements vary from

between factors of 3 and 2. The value of v for lumped channels is a weilghted
sun of the v's for the component channels and so for lumped gamma ray channels
vy may be quite large. Similarly, if a fission channel is taken to include
twe or more fission modes, Vg may be greater than 2.

It is, however, also possible for the factor G,p to yield an enhancement.
This occurs if there are only a few strong channels competing so that the dis-
tribution of the total t, is given by small v, but channels a and b are weak,
so that t and tu contritute little to t, and are thus only weakly correlated

with t. 14 Then G, can approach the value of

o for v € 2
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We see that in such cases the enhancomants of both elastic and inelastic
cross sections can become arbitrarily large. Tha* this is indeed so can be

seen from Fig. 1 where the cross section enhancements obtained from computer
experiments are compared with the predictions of Eq. (4) 1%

The importance of these results lies in part in the practical possibility
of such large enhancements, and in part because these computer experlments
discriminate effectively against competing cross section formulasB: %, 16 531
of which include an elastic enhancement but do not envisage large enhance-
ments of nonelastic cross sections. For this reason we prefer Eq. (4) for
which there exists also some detailed theoretical support.11

The next questions is then, what are the values of the channel degree
of freedom parameters V.. In the low energy weak absorption limit the result
is well known. There the t§ are equal to 2w PCID. where the I'§ are the
familiar partial resonance widths which have a Porter-Thomas distribution
for which v. = 1. D is the resonance level spacing. For weak absorption
(T £ 0.2) the fornulas derived in Ref. (l11) work well. Many arguments have
heen given’1 why Je should vary from 1 to a value of 2 as the strong
absorption limit (-, = 1) is approached. These arguments are based on
applications of the central limit theorem but they do not take into account
the severe constraints which the unitarity condition imposes on cross sec~
tions. Recent1¥ systematic computer experiments were undertaken to study the
behavior of v,. 5 The results are shown in Fig. 2, where v, is plotted
against the sum of all competing channel transmission coefficients and dif-
ferent symbols are used for different values of T.. A least square fit to



a three-parameter formula which incorporates the qualitative features of
these results yields

ve = 1,78 + (1" ?1% - 0.78) ;70.228Z T . (8)

These values are then to be used to evaluate Eqs. (5) and (6) using the
integral expression.’>!l

1
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which can be evaluated satisfactorily by a twenty point Gauss-Laguerre quad—
rature. It is interesting to note that contrary to naive expectations v
does not go to 2 in the strong absorption limit. This indicates that the
unitarity effects are strong enough to spoil the statistical central limit
theorem arguments. In the many channel limit v appears to approach a value
of about 1.8 regardless of channel transmission factors.

In addition to these results, the dependence of v, upon the R-matrix
statistics were studied for the case of strong absorption (T = .99.) Results
were obtained by modifying the normal distribution of R-matrix pole amplitudes
Yya (having a fourth central moment 4 = 3.0) so that u; took on values of
2.77 and 3,26. The surprisingly large effect displayed in Fig. 3 again con-
tradicts the central limit theorem argument which is independent of starting
statistics. Perhaps even more surprising is the large dependence of Vv upon
the R~matrix level spacing distribution which is also displayed in Fig. 3.

In addition to the Wigner distribution of level spacings, with standard devia-
tion op = 0.523, calculations were performed with uniformly spaced levels
with op == 0.0, and with uncorrelated level position, that is an exponential
spacing distribution with op = 1.0, These results tend to explain the
difference of the present results (Eq. {(8)) from those of the Heidelberg
groupls‘le which obtained the expected value of v = 2 in the strong absorg-
tion limit with similar computer experiments. However, their R-matrix level
spacing distributions are generated from biased random number samples which
do not generate a Wigner distribution.!? Their actual spacing distribution
has a op = 0.475, which, by interpolation should yield the dotted curve

in Fig. 3, and thus, in consideration of statistical errors, is consistent
with v = 2 for all T = .99 cases which they considered.

Another question of recent interest has been what the effect of comr
peting direct reactions 1s upon average compound nucleus cross sections.
The method for dealing with this problem has been developed by Engelbrecht
and Weidermiiller??, who showed that the problem can be transformed to one
without direct reactions by means of a unitary transformation of the matrix
of average reaction amplitudes. As a result of this, average compound
nucleus cross sections that compete with direct reactions can acquire a
share of the elastic enhancement. However, as shown in Ref. (12}, this will
be of practical significance in only very special situations which are char-
acterized by fe« directly coupled channels and an average S~matrix that is
very close to a limiting condition imposed by the causality requirement.



In summary, the best presently available method for .the evaluation
of average compound nucleus cross sections is given by the width fluctua-
tion corrected Hauser Feshbach formula of Eqs. (4)-(6), (9) with the chan-
nel degree of freedom parameters V. determined by Eq. (8). The optical
model is used to obtain the transmission factors T, for the neutron channels.
For non~optical mode channels, such as fission and gamma ray emission, the
T, are evaluated from 27 I'(/D. Angular distributions are calculated as
described in Ref. (64), Section C. where Oy, is the same as tf.

Because of the great sensitivity of strong absorption average cross
sections to statistical assumptions, as shown in Fig. 3, it remains to be
investigated whether the R—-matrix parameter statistics are in fact the
same for all absorption strengths, as has been assumed here as reasonable
because the R-matrix itself is not affected by channel properties, such as
transmission factors.
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FIGURE CAPTIONS

Fig. 1. Enhancements, compared to Hauser—Feshbach, of small compound cross
sections for a variety of two, three and four channel cases. The
predictions of each of two theories lie within the shaded regions
bounded by the curves for v = 1 {all channels) above and v = 2
(all channels) below. In each case the upper shaded region cor-
responds to the width fluctuation effect in Eq. (4); the lower
region corresponds to the formula of Refs. 16 and 17. The points
show the average results and variances of computer experiments with

T(large) = 0.91 (two channel cases) and T(large) = 0.84 (three and
four channel cases).

Fig. 2. Channel degree of freedom parameters V vs. the transmission coef-
ficlent sum IT as calculated numerically with standard statistics
for various channel transmission factors T. The solid lines give
the results obtained from the formula of Eq. (8).

Fig. 3. Strong absorption dependence of the channel degree of freedom
parameters V upon R-matrix pole statistics as discussed in the
text. All channels have traunsmission coefficients T = 0.99.
The solid line is computed from Eq. (8) with standard statistics.

The dashed lines indicate the trend of the results with non-
standard statistics.
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