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Abslract

Ata Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to
exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the
interaction between the beam and complex impedance of the induction modules. In general, the
detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse
length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis
of the several regimes of interest is presented.

l.,inae Model

We treat a cluster of beams drifting at velocity v, with line charge density ),, and current

I = X,v. It is assumed here that ali the beamlets (N ---16) effectively act in concert so that ),, and
I are the total values and v is the common velocity. The continuity equation, written in laboratory
frame quantities (z,t) is:

ai
---+_=0 . (1)
at Oz

A smoothed longitudinal field E, induced by interaction of I with the induction modules, acts
on v_

_v 0v _ qe
_+ v m E . (2)at Oz
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In general E is related to I through an impedance

E(m) =-Z(m) l(m). (3)

However in the present study the low frequency interaction is modeled as that of a resistance R
and capacity C in parallel. We may use the circuit representation:

0

0E I__E_E+
RC at C (4)

Most previous related work(l) has neglected the capacity, but included a direct space-charge

force proportional to 0X/OzThe present model appears to be more representative at low frequencies
for the Heavy Ion Fusion application. In general the capacity reduces growth rates compared with
the case of pure resistance by lowering the impedance as frequency increases.

A perturbation analysis is carried out for small variations from constant equilibrium values.
For:

V = VO + 8V ,

X=Xo + 8),,,

I=Io+8I,

E=SE,

the perturbed equations are:

8I = XoSV + VoSX, (5)

08),, 08I
_+_ =0, (6)
c')t /-)z

0Sv 0Sv qe 8E (7) .+v_= n--¥ '
0t az

__zE_+c)SE _
RC at C ' (8)



The values of R and C are related to beam parameters by considerations of system
efficiency. For a good match of source to beam load, R must not be to() different from the matched
value Ro = G/Io, where G is the average accelerating gradient. For the typical parameters G = I06

volts/rn and Io = 10(X)amp, we have Ro = 1000 D./m. In this case R could be reduced to 300 f2/m

without serious loss of efficiency. The characteristic time RC =-ot-1 should be a small fraction of
the pulse length to avoid excessive energy flow in charging the accelerating gaps. For the typical

• value C = 3 xl0 -10 F-m, we have RC = 90 ns, which is short compared with a typical 500 ns
pulse length.

In this simple model, time scales with RC = ot-l, where the "retarded time" variable

a:= t - z/v o is used. A second scale quantity

K = ,a/ qe_,o
V mvo2C

appears in the theory and scales the variable z. That is, ota: and Kz appear in a dimensionless
R)rmulation of Eqs. (5-8).

P_rturbation Analysis

If we neglect the self-force from space charge, proportional to 0_./0z, the coupled equations

for perturbed field and current are conveniently written using z and the retarded time 1:= t- Z/Voas
!ndependent variables. We have

c-)28I OBE
..... = K2C .... ,
_z2 Oa: (9)

ot+ _SE= - -N-
c ' (10)

Initial conditions on 8I are specified at z = 0 for 1:> 0; in this model no disturbance is able to

propagate backwards into the zones, a:< 0 or z < 0. If the initial perturbation is a time-dependent
velocity error generated at z = 0, the initial conditi()ns are:



81(o,-c)= 0,

8E(z,o) =0 ,

0 51(o,I:)_ f(1:)- %o Ogv(o,_:)
Oz vo 31: (1 1)

The solution is now found with the aid of a Laplace transff)rmatk,n in _:

(81,8E) = fo dz exp(if_z)(81,8E) . (12)

Equations (9) and (10) yield

CSE = d_' _f('t___')__exp o: (a:'-'c)
n2K2 2_K2 ' (13)

8I=- or+ CSE, (14)

with inversion formula

{8I'8E}=f_ °_d-_-nexp(ifaz) (8]''2_ BE). (15)

The inversion contour runs above any singularities in the complex f] plane.

lt is instructive to examine the case of an impulsive perturbation f(_:) resulting from a

velocity step of amplitude AvoH('_-_o); from F_xt.(1 1)'

f('t) = A(go)_,8(l:-'Co).

Then Eq. (13) gives

CSE = A_.oH('¢-%) exp °'-f22 (_:-'c,,) . (16)
_2_K2 ff22_K2



The inversion may be written

CSE = A_,,H('c-%) F °° dfr2 exp(g)
2rr _22_K2 ' (17)

where we have defined

, g(f2,z,z) = -if2z - . (18)
_2_K2

'Fhe function [Eq. (17)] has been evaluated analytically for positive (l:,z), and may be regarded as

a Green's function for general t"(1:o). However, its complicated form does not give a qualitative

description of the pattern of growth with z and "t:. The saddle point analysis presented here, while

inexact, does provide this picture in several regimes of (z,a:). We set % = o in the following.

Note that there are poles in Eq. (17) on the real axis at !;2= + K. These points are
intrinsic singularities since the poles also appear in g. These singularities are associated with
"mountain ranges" containing saddle points as displayed in Figs. 1 and 2, An asymptotic

evaluation of 8E may be per-formed by the standard path of steepest descent method applied
around the these points.

Saddle Point An_aly_i,_

The stationm'y (saddle) points of g(f2) are the four solutions (f2s) of the quartic equation

( ] 2ot'l: K2_s0 = ag =-iz + , .

In general, two solutions lie in the lower half-plane and make little contribution to 8I. The pair in

ttle upper half-plane are found to be pure imaginm'y for A - ot_/Kz > 81(3',/3) and complex for

A < 8/(343) (see Figs. 1 and 2).

Denoting f2s = K(gt+ibt), we have the pa.rameterization in terms of It:

Class 1

, A > 8/(3",/3), tx> 11,,13,

. A = (ht2+ 1)2/2br , (20)

bl.2
g,; = btKz - -_ ota: .

1.12+1

Inversion contour is horizontal through the upper saddle.
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Fig 1. Topography of the _' plane (_'= _/K)for czl:/Kz > 8/(3",/3).
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Fig 2. Topography of the f2' plane for cz_/Kz < 8/(3",,/3).



A < 8/(3"43), bt < 1/"43,

3,=4br z_/bt 2+1 ,

_g +[_2+1 2bl._ '/2=- - , (211
J

Aot'c/2p.
Re(gs) ---btKz-o_a;+

(A/Zbt)2+41.t2V2

Inversion contour is oblique through each saddle point.

The special case of A = 8/(3',/3) has the upper half plane saddles coalesce at !.1.= 1/',/3.

Case of A<<I

Here the saddles lie close to the singularities _ = :t:K. Physically, z is large enough that

resonant growth can dominate at small "t. The quartic for f_s is readily solved by iteration from
these values to obtain

gs = + iKz{1-lA-) + ¢Kzot1: - 3 o:1:. ( 2 2 )4
_Caseof A>> 1

From Eq. (20) we _,'tve

bt = (2z_)1/3,

gs = _-_(2A)1/3 Kz - o_1: (23)

" The expected result that the RC decay should dominate at l_u'ge a: appears explicitly.

" Maximum Growth with z

If z is fixed and the real part of gs is maximum in 1: we find a point of the class 2-type

A = (ot't/Kz) < 8/(3",/3):



1 ._ .3535
la - .(g

=+ _ =+ .6124

oA_j.._= 3_3._= .5303, "
Kz 47-2-

Re (gs) = K__Z_z= 3536 Kz. "272 ' (24)

This sol ltion represents the peak of a wave packet moving backward in the pulse (increasing "c)

and forward in z with trajectory m:/Kz = .5303. The same result is obtained by perturbing the

beam sinusoidally at z = 0 for a long duration ('t), with frequency coo = cU_/3.

Application to Heavy Ion Fusion Driver,

The maximum growth is calculated here at a medium energy point in a fusion driver, with
ion parameters (T - 1000 MeV, m = 200 ainu, q = 1). We also adopt the previously given

quantities (C = 3 x 10-10 F-m, R = 300f2/m, Io = 103 A, Xp = 500 ns). Then we have (non-
relativistic calculation).

vo = .104 c, )Lo= 32.2 I.tC/m ,

a 1=90.0ns, K=7.33x10 4m -1,

oc'c= 5.56 "l:/'_p, Kz = 7.33 Zkm,

A = o_'clKz= .758 "l;/'l;p
Zkm '

From eqs. (24) we have the maximum growth point for a perturbation initiated at the pulse
head:

a:/'Cp= _5303 = .699 ,
Zkm .758

Re (gs) = .3536 Kz = 2.59 Zkm.

i

It is clear that this asymptotic limit is available within the 500 ns pulse length for z out to -1.4
km, and several e-fold of growth can occur over this distance. The growth rate is small
enougl_ that it may be possible to control it with a feed-forward system. Note that this
maxinmm growth rate, when associated with a perturbation of constant frequency at z = 0,
()CCLII'S at

vo- ct = 1.02 MHz ,
2_:{3-



which is very low considering the 500 ns pulse leng:h. For the more reasonable Vo = 10 MHz
we find the very low growth rate with distance of .636 km-1
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