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Abstract

An Induction Linac accelerating high ion currents at sub-relativistic energies is predicted to
exhibit unstable growth of current fluctuations at low frequencies. The instability is driven by the
interaction between the beam and complex impedance of the induction modules. In general, the
detailed form of the growing disturbance depends on the initial perturbation and ratio of pulse
length to accelerator length, as well as the specific form of the impedance. An asymptotic analysis
of the several regimes of interest is presented.

Linac Model

We treat a cluster of beams drifting at velocity v, with line charge density A and current

[= Av. It is assumed here that all the beamlets (N ~ 16) effectively act in concert so that A and

I are the total values and v is the common velocity. The continuity equation, written in laboratory
frame quantities (z,t) is:

?&4-?1:0. (1

ot 0z

A smoothed longitudinal field E, induced by interaction of I with the induction modules, acts
on v:

dv v qe
—Ftv_=mwE (2)

Jt dz
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In general E isrelatedto I through an impedance

E(w) =-Z(w) l(w) . 3)

However in the present study the low frequency interaction is modeled as that of a resistance R
and capacity C in parallel. We may use the circuit representation:

I
RC ot C (4)

Most previous related work(D) has neglected the capacity, but included a direct space-charge

force proportional to dA/dz The present model appears to be more representative at low frequencies
for the Heavy Ion Fusion application. In general the capacity reduces growth rates compared with
the case of pure resistance by lowering the impedance as frequency increases.

A perturbation analysis is carried out for small variations from constant equilibrium values.
For:

V=vg+0v,
A= KO + OA ,
= IO + 51 )
E = dE,
the perturbed equations are:
8l = Agdv + vodA , (5)
IO + _B_§I_ =0 (6
n o oz >
§§i+v?é\i=qﬁ?—6}3, (7)
Jt 0z
BE  9OE _ g1



The values of R and C are related to beam parameters by considerations of system
efficiency. For a good match of source to beam load, R must not be too different from the matched

value Rg = G/lg, where G is the average accelerating gradient. For the typical parameters G = 100
volts/m and g = 1000 amp, we have Rg = 1000 €2/m. In this case R could be reduced to 300 Q/m

without serious loss of efficiency. The characteristic time RC =1 should be a small fraction of
the pulse length to avoid excessive energy flow in charging the accelerating gaps. For the typical

value C =3 x10-10 F-m, we have RC =90 ns, which is short compared with a typical 500 ns
pulse length.

In this simple model, time scales with RC = a1, where the "retarded time" variable
T=1-2z/vg is used. A second scale quantity
qero
mv,2C

K=

appears in the theory and scales the variable z. Thatis, ot and Kz appear in a dimensionless
formulation of Egs. (5-8).

If we neglect the self-force from space charge, proportional to dA/dz, the coupled equations

for perturbed field and current are conveniently written using z and the retarded time T =t - /v, as
independent variables. We have

2a

P8 _ o0 B 9
I |5k = - 8L

*ro T e (10)

Initial conditions on &I are specified at z=0 for T2 0; in this model no disturbance is able to

propagate backwards into the zones, T < () or z < 0. If the initial perturbation is a time-dependent
velocity error generated at z = (), the initial conditions are:



dl(o,T1) =0,

0E(z,0) =0,

9 10,0 = fr) = ko 2001
0z © ot (1)

The solution is now found with the aid of a Laplace transformation in «:

o0

(BX,SE) =J dz exp(iQ2z) (81,0F) . (12)
0
Equations (9) and (10) yield

= . | 402
C6E=[ d‘t'-——w}—-exp{—@L(t'-‘t)} ,

3
o QK2 Lotk? (3)

. 2\ —~
8l =-{ow +-—]|C8E , (14)

ot
with inversion formula
+o0 a

(81, 5E)= I_m %—Eexp(-iﬂz) (dl, SE) . (15)

The inversion contour runs above any singularities in the complex Q plane.

It is instructive to examine the case of an impulsive perturbation f(t) resulting from a
velocity step of amplitude AvoH(t-14); from Eq. (11):

f(T) = A(T())A«)B{t"ﬁto) .
Then Eq. (13) gives

= AMAH(t-1,) exp { 00>

COE = T-To) | .
0’.K2 Qz-Kz( )} (16)



The inversion may be written

“+ oo
s _ dQ exp(g)
CBE = AAH(t-T,) J(_oo 2o gmf-}@ , (17)
where we have defined
2
(Q1,2) = -iQz - HLET) (18)
QK2

‘The function [Eq. (17)] has been evaluated analytically for positive (1,z), and may be regarded as
a Green's function for general f(to). However, its complicated form does not give a qualitative
description of the pattern of growth with z and t. The saddle point analysis presented here, while
inexact, does provide this picture in several regimes of (z,1). We set Ty = 0 in the following.

Note that there are poles in Eq. (17) on the real axis at Q =+ K. These points are
intrinsic singularities since the poles also appear in g. These singularities are associated with
"mountain ranges" containing saddle points as displayed in Figs. 1 and 2. An asymptotic
evaluation of 8E may be per-formed by the standard path of sieepest descent method applied
around the these points.

Saddle Point Analysis

The stationary (saddle) points of g(€) are the four solutions (€g) of the quartic equation

oz(ag) - iz + 20T K2Q,

0 Js (QE‘K2)2

In general, two solutions lie in the lower half-plarie and make little contribution to 8I. The pair in
the upper half-plane are found to be pure imaginary for A = at/Kz > 8/(3v3) and complex for
A < 8/(3V3) (see Figs. 1 and 2).

Denoting €25 = K(y+il), we have the parameterization in terms of p:

A>8/(3V3), p>1M3

A= (1) 2u (20)
2
gs = UKz - H oT .
p2+1

Inversion contour is horizontal through the upper saddle.
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Fig 1. Topography of the Q' plane (Q' = Q/K) for at/Kz > 8/(3V3).
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Fig 2. Topography of the Q' plane for at/Kz < 8/(3V3).
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Class 2
A< 8/(3V3), u<IN3,

A=4p2p?e 1 |
T T Y 1)

Aot/2u
(A/20 Prap2y?

Re(g,) = pKz-ot +

Inversion contour is oblique through each saddle point.
The special case of A =8/(3V3) has the upper half plane saddles coalesce at u= 143,

Case of A <<

Here the saddles lie close to the singularities Q =+ K. Physically, z is large enough that

resonant growth can dominate at small T. The quartic for Qg is readily solved by iteration from
these values to obtain

Qszik(lil%iﬂ)

gsziiKz(l-VX)-!-VKZ(X‘C-:}(IT. (22)

Case of A>>1

From Eq. (20) we hLave
1/3

w~a)”?,

1

) /

~3 3
gs~2(2A Kz - ot (23)

The expected result that the RC decay should dominate at large T appears explicitly.

Maximum Growth with z

If z is fixed and the real part of g, 1s maximum in T we find a point of the class 2-type
A = (at/Kz) < 8/(3V3):

)



—Q’i: =
Fr= 2= 5303,
Re(gs)=2%%=.3536 Kz . (24)

This sol ition represents the peak of a wave packet moving backward in the pulse (increasing 1)
and forward in z with trajectory at/Kz =.5303. The same result is obtained by perturbing the
beam sinusoidally at z =0 for a long duration (1), with frequency W, = a/N3.

licati He; lon Fusion Dri |
The maximum growth is calculated here at a medium energy point in a fusion driver, with
ion parameters (T = 1000 MeV, m = 200 amu, q = 1). We also adopt the previously given

quantities (C = 3 x 10-10 F-m, R = 300Q/m, Iy = 103 A, Tp = 500 ns). Then we have (non-
relativistic calculation). ‘

vo =.104 ¢, Ao =32.2 uC/m
ol =900ns, K=733x103mt,

ot =5561/tp , Kz=7.33 z,,

3 _ /Ty
A=oa1/Kz =.758 m

From egs. (24) we have the maximum growth point for a perturbation initiated at the pulse
head:

U _ 5303 _
Zm =758 000

Re (gs) = 3536 Kz = 2.59 7, .

It is clear that this asymptotic limit is available within the 500 ns pulse length for z out to ~1.4
km, and several e-fold of growth can occur over this distance. The growth rate is small
enough that it may be possible to control it with a feed-forward system. Note that this
maximum growth rate, when associated with a perturbation of constant frequency at z = 0,
oceurs at

V, = ;;Cg*ﬁ = 1.02 MHz ,



which is very low considering the 500 ns pulse length. For the more redsondble Vo = 10 MHz
we find the very low growth rate with distance of .636 km-!.
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