

MONITORING OF OLYMPIC NATIONAL PARK BEACHES TO DETERMINE FATE AND EFFECTS OF SPILLED BUNKER C FUEL OIL

OCS/MMS--90-0061

Final Report

DE91 004522

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Prepared for:

U.S. Department of the Interior
Minerals Management Service
Pacific OCS Region
1340 West Sixth Street
Los Angeles, California 90017

Prepared by:

J. A. Strand
V. I. Cullinan
E. A. Crecelius
T. J. Fortman
R. J. Citterman
M. L. Fleischmann

Battelle/Marine Sciences Laboratory
439 West Sequim Bay Road
Sequim, Washington 98382

AC06.76RL01830

October 1990

This study was funded by the Pacific Outer Continental Shelf Region Office of the Minerals Management Service, U.S. Department of the Interior, Washington, D.C., under Interagency Agreement No. 10683.

DISTRIBUTION AND USE OF THIS REPORT IS UNLIMITED

Disclaimer

This report has been reviewed by the Minerals Management Service and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Bureau, nor does mention of trade names of commercial products constitute endorsement or recommendation for use.

SUMMARY

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that had been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine 1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, 2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and 3) how rapidly the oil has left the ecosystem.

Beach surveys to determine the distribution and fate of spilled Bunker C fuel oil were scheduled during the lowest tides in July and September 1989 and February 1990. A total of eight study sites was selected from inside Olympic National Park: four from areas of known contamination (Second Beach, Kayostla Beach, and beaches south of Cape Alava [Wedding Rocks] and north of Norwegian Memorial); and four areas of no known contamination (Ruby Beach and beaches south of Hole-in-the-Wall, Cedar Creek, and Norwegian Memorial). Additionally, four study sites of known contamination from outside the Olympic National Park (Sand Island in Grays Harbor, Ocean Shores near the breakwater, and beaches near Whale Creek and Point Grenville on the Quinault Indian Reservation) were selected. Infrared (IR) spectrophotometry of surface (0 to 15 cm) sediments and gas chromatography (GC) of surface (0 to 15 cm) sediments and invertebrate tissues were used to evaluate contamination levels.

Despite relatively high concentrations of oil (6255 and 19,015 $\mu\text{g/g}$ dry weight by IR) found on Sand Island in Grays Harbor during the second survey, the finding of relatively low concentrations of oil (63 to 250 $\mu\text{g/g}$ dry weight by IR), essentially trace amounts, associated with the coastal stations during the third survey suggests that little residual oil remains from the December 1988 Nestucca spill. Attempts to relocate oil on Sand

Island during the third survey were unsuccessful, suggesting that even this relatively high concentration of oil has been weathered and depurated.

The repeated findings of no detectable oil at Ocean Shores (North Jetty), even though this site initially was one of the most heavily oiled, suggests that open, high-energy, and sandy beaches cleanse themselves naturally much faster than do protected rock, cobble, and rubble beaches, such as those encountered at Kayostla Beach, Norwegian Memorial, and Cape Alava (Wedding Rocks). Our findings also suggest that clean-up of oil mats and oil debris following the Nestucca spill served to reduce the level of residual oil contaminating affected beaches.

Chromatograms of oil (both aromatics and saturates) found within Sand Island sediments during the second survey display patterns strikingly similar to those of Bunker C fuel oil collected from the barge Nestucca. The lower carbon preference index (CPI) (odd to even saturates ratio) values (0.92 and 0.94) of the Sand Island sediment samples also are indicative of an anthropogenic source of contamination. The evidence, then, strongly suggests that the oil found on Sand Island came from the barge Nestucca. There is, however, less certainty as to the source of oil found in sediments collected during the third survey at Norwegian Memorial, Kayostla Beach, Wedding Rocks, Second Beach, Ruby Beach, and Hole-in-the-Wall. The Norwegian Memorial, Kayostla Beach, Wedding Rocks, and Second Beach sediments contained some hydrocarbon components which are consistent with weathered Bunker C oil but also contained hydrocarbons that could be associated with other oils including those of biogenic origin. The chromatograms (both aromatics and saturates) for sediment from Ruby Beach and Hole-in-the-Wall were not consistent with comparable chromatograms for the Nestucca oil. This does not eliminate the possibility that oil in these samples represents highly weathered Bunker C, but because the uncertainty associated with determining the source is great, no conclusion can be made.

Concentrations of aromatic hydrocarbons in California mussels, razor clams, and other invertebrates following the Nestucca spill were all ≤ 100 ng/g (dry weight). Most concentrations were ≤ 45 ng/g (dry weight). These levels are significantly (10 to 100 times) lower than those found in

mussels collected in South Puget Sound, a relatively clean urban estuary, and the more polluted areas of Puget Sound (Commencement Bay and Elliott Bay) in recent years as part of the National Status and Trends Program for Marine Environmental Quality. Under the same program, concentrations of aromatic hydrocarbons in mussels found at coastal sites including Cape Flattery, Grays Harbor, and Coos Bay, Oregon ranged from 20 to 141 ng/g (dry weight) from 1986 to 1989. Based on the relatively low concentrations of known carcinogenic aromatic hydrocarbons (4 to 15 ng/g dry weight) contained in the shellfish collected during the present study, the estimated lifetime cancer risk is also low ($\sim 5 \times 10^{-7}$, assuming the consumption of 1.1 g/day).

Because relatively high concentrations of Bunker C oil were found on Sand Island in Grays Harbor, and because some biological tissues collected during the study contained detectable levels of carcinogenic aromatic hydrocarbons, we recommend to continue minimal sampling of sediments from Sand Island and of mussels from selected Olympic National Park beaches (Kayostla Beach, Norwegian Memorial North, Wedding Rocks) annually for the next 3 to 4 years.

ACKNOWLEDGMENTS

This final report summarizes studies conducted between June 15, 1989, and June 22, 1990, by Pacific Northwest Laboratory (PNL)^(a) for the U.S. Department of Interior, Minerals Management Service (MMS), Pacific OCS Division, Los Angeles, California, in cooperation with Olympic National Park, Port Angeles, Washington. This project was under the technical direction of Dr. John A. Strand, Battelle/Marine Sciences Laboratory, Sequim, Washington. Dr. Valerie I. Cullinan, also from Battelle/Marine Sciences Laboratory, designed, organized, and conducted the beach surveys of the Washington coast. She was assisted by Ms. Andrea J. Von Tom and Mr. Bruce W. Claiborne, both Northwest College and University Association for Science summer appointees, and Mr. Greg C. Spencer and Mr. Liam D. Antrim, both of Battelle/Marine Sciences Laboratory, and Dr. Strand. Mr. Timothy J. Fortman, Mr. Ronald J. Citterman, Ms. Mary L. Fleischmann, and Dr. Eric A. Crecelius analyzed environmental samples for total oil and grease (using IR) and aromatic and saturate hydrocarbon (using GC/mass selective and flame ionization detectors). Mr. John H. Aho, Mr. John H. Meyer, and Mr. Bruce B. Moorehead of Olympic National Park provided logistic support and accompanied the field team on the second beach survey, and Dr. Ahmad E. Nevissi, University of Washington, Seattle, Washington, acted as technical advisor to the project. Mr. Martin Golden served as the Contracting Officer's Technical Representative for MMS.

Ms. Laurel Black of Anaglyph Art Services, Sequim, Washington, provided graphic art support, and Mr. Andrew E. Plymale, Pacific Northwest Laboratory, Richland, Washington, served as technical editor. Ms. Judy E. Beck, Battelle/Marine Sciences Laboratory, was text processor.

(a) Pacific Northwest Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy.

CONTENTS

SUMMARY	iii
ACKNOWLEDGEMENTS	vii
1.0 INTRODUCTION	1
1.1 BACKGROUND	1
1.2 PURPOSE AND SCOPE	3
2.0 STUDY PLAN AND METHODOLOGY	5
2.1 SELECTION OF STUDY SITES	5
2.2 SELECTION OF SURVEY DATES	5
2.3 SURVEY DESIGN AND COMPOSITING STRATEGY	6
2.4 SEDIMENT SAMPLING	10
2.5 FAUNAL SAMPLING	13
2.6 ANALYTICAL CHEMISTRY	14
3.0 RESULTS AND DISCUSSION	17
3.1 SAMPLE COLLECTIONS AND LOCATIONS	17
3.2 INTERTIDAL AND SHALLOW SUBTIDAL SEDIMENTS	22
3.2.1 Total Oil and Grease	22
3.2.2 Aromatic and Saturate Hydrocarbons	24
3.3 INVERTEBRATE TISSUES	28
3.4 SOURCE IDENTIFICATION	41
3.4.1 Intertidal and Shallow Subtidal Sediments	41
3.4.2 Invertebrate Tissues	44
3.5 QUALITY-ASSURANCE RESULTS FOR CHEMICAL ANALYSES	46
3.5.1 Oil and Grease in Sediments	46
3.5.2 Saturate Hydrocarbon Compounds in Tissues and Sediments	46

3.5.3 Aromatic Hydrocarbon Compounds in Tissues and Sediments	47
3.6 PERSPECTIVE ON LEVELS OF RESIDUAL CONTAMINATION	47
3.7 FACTORS INFLUENCING WEATHERING AND DEPURATION	52
3.7.1 Time of Year	52
3.7.2 Type of Beach	53
3.7.3 Efficacy of Clean-up	53
4.0 CONCLUSIONS AND RECOMMENDATIONS	55
4.1 CONCLUSIONS	55
4.1.1 Contamination of Intertidal and Shallow Subtidal Sediments	55
4.1.2 Source of Oil Found on Washington State Beaches	55
4.1.3 Contamination of Biotic Assemblages	56
4.1.4 Factors Influencing Weathering and Depuration	56
4.2 RECOMMENDATIONS	57
5.0 REFERENCES	59
APPENDIX A1 SAMPLING INFORMATION	A1.1
APPENDIX A2 SEDIMENT SAMPLE COMPOSITING	A2.1
APPENDIX B INFRARED SPECTROPHOTOMETRIC OIL AND GREASE DETERMINATIONS IN SEDIMENT	B.1
APPENDIX C1 GAS CHROMATOGRAPHIC/MS ANALYSES OF TISSUES AND SEDIMENTS . .	C1.1
APPENDIX C2 GAS CHROMATOGRAPHIC/FID ANALYSES OF TISSUES AND SEDIMENTS . .	C2.1

FIGURES

1	Sample Strata within the Intertidal and Upper Subtidal Regions	7
2	Compositing Design	9
3	Faunal and Sediment Sampling Stations	11
4	Relative Locations of Each Study Site and Known Naturally Occurring Oil or Gas Seeps Along the Washington Coast	19
5	Beach Profiles for Oiled and Unoiled Sites Within the Olympic National Park and for Oiled Sites from Other Washington Coast Beaches	21
6	Sediment Concentrations of Total Aromatic Hydrocarbons	25
7	Sediment Concentrations of Total Resolved Saturate Hydrocarbons	27
8a	Tissue Concentrations of Total Aromatic Hydrocarbons From Oiled Beaches Within the Olympic National Park	29
8b	Tissue Concentrations of Total Aromatic Hydrocarbons From Unoiled Beaches Within the Olympic National Park	30
8c	Tissue Concentrations of Total Aromatic Hydrocarbons From Other Oiled Washington Coast Beaches	31
9a	Tissue Concentrations of Resolved Saturate Hydrocarbons From Oiled Beaches Within the Olympic National Park	33
9b	Tissue Concentrations of Resolved Saturate Hydrocarbons From Unoiled Beaches Within the Olympic National Park	34
9c	Tissue Concentrations of Resolved Saturate Hydrocarbons From Other Oiled Washington Coast Beaches	35
10a	Tissue Concentrations of Even Saturate Hydrocarbons From Oiled Beaches Within the Olympic National Park	36
10b	Tissue Concentrations of Even Saturate Hydrocarbons From Unoiled Beaches Within the Olympic National Park	37
10c	Tissue Concentrations of Even Saturate Hydrocarbons From Other Oiled Washington Coast Beaches	38

11	Total Ion Chromatograms for Surface Sediments Compared with Total Ion Chromatogram for <u>Nestucca</u> Oil	42
12	Total Ion Chromatograms for Surface Sediments	45

TABLES

1	Target Sampling Requirements of Intertidal and Shallow Subtidal Habitats	12
2	Study Sites Selected to Follow the Fate of Bunker C Fuel Oil	18
3	Extra Sediments and Sediment Composites with Above-Detection Limits of Total Oil and Grease	23
4	Sediment and Tissue Composite Samples and Extra Sediment Locations in Which Elevated Hydrocarbon Concentrations Were Found	26
5	Tissue Concentrations of Total Aromatic Hydrocarbons.	32
6	Tissue Concentrations of Total Resolved and Even Saturate Hydrocarbons	39
7	Summary of Saturate Hydrocarbon Ratios and Infrared Spectrophotometric Concentrations of Oil and Grease in Selected Environmental Samples	43
8	Hydrocarbon Concentrations for Uncontaminated Areas as a Function of Time After Oiling	50

1.0 INTRODUCTION

1.1 BACKGROUND

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that recently had been added to Olympic National Park (ONP). Due to the patchy nature of oil hitting the shoreline, all impacted beaches had areas that were heavily oiled and other areas without any visible contamination. The variation in oiling of the coast line ranged from the heavily oiled southern shores of Sand Island in Gray's Harbor and the rocky beaches of Norwegian Memorial to no apparent oiling of areas just north of Gray's Harbor and areas south of Norwegian Memorial.

Clean-up operations on selected beaches of ONP located significant quantities of weathering oil in intertidal environments. Although intertidal oil concentrations were reduced by the removal of oiled debris, concentrations from a few hundred to several thousand parts per million (ppm) remained intertidally after clean-up operations in some locations. Past experience indicated that buried oil from the spill could remain unweathered for three years or more (Teal et al. 1978; Burns and Teal 1979) and provide a continuing source of toxic exposure.

Literature on the biological impacts of oil spills demonstrates that every oil spill is unique. Different types of oil impact any one habitat type very differently (because such characteristics as toxic fractions, stickiness, and persistence vary greatly), and one type of oil can impact different habitat types differently (reviewed in Dethier 1988; Strickland and Chassan 1989). Thus, predicting the biological impacts of a specific oil spill is almost impossible. It is known, however, that oil can kill both plants and animals (by direct smothering, poisoning by toxic fractions, or narcotization leading to death by predation or from movement into an inappropriate habitat) and that sublethal effects, such as reduced growth rates or reproductive output, are also common. In addition, the presence of

oil in or on the substratum or in the water column can negatively impact organism recruitment to a habitat, slowing the post-spill recovery of the community. The effects actually can vary from virtual destruction of local communities to no detectable change to the local ecosystem.

Recruitment studies (Vanderhorst et al. 1980; 1981) following the experimental exposure of sediments to crude oil at 1000 and 2000 ppm indicate a recovery period of 3 to 5 years in intertidal communities. Similar long-term persistence, effects, and recovery were documented for the 1969 Falmouth, Massachusetts, and 1971 San Francisco Bay oil spills (Sanders et al. 1980 and Chan 1973, 1975, and 1977, respectively). After the latter spill, the 5-year recruitment (1971 to 1976) result showed no indications of lasting detrimental effects of Bunker C fuel oil on affected populations of marine life.

Given the buoyancy (specific gravity = 0.97) of the oil involved in the December 1988 Nestucca spill, there are probably no significant subtidal deposits in water depths greater than 20 m. Oil of this density will only sink when mixed with sediment suspended from the sea floor by wave action. This mechanism could result in the burial of oil masses within sediments and potential subsequent redistribution to adjacent areas (ESL Environmental Sciences Limited, unpublished data). After the spill of Bunker C into Chedabucto Bay, Nova Scotia in 1970, some subtidal sediments were nearly completely covered by oil. Six years later, sediments were found to contain 10 to 25,000 $\mu\text{g/g}$ hydrocarbons (by fluorescence) (Harding and Englarr 1989).

In addition to impacting recruitment, the presence of oil on the sea floor could profoundly affect the feeding, reproduction, and survival of many of the species found along the Washington coast. As an example, gray whales, known to be important predators on infauna in the Pacific Northwest (Oliver and Kvitek 1984; Kvitek and Oliver 1986), could be severely affected if their baleen were to become fouled with the tar-like residue of the spilled oil. Other species found along the Washington coast that are of great economic and ecological importance include the Dungeness crab and certain rockfish species. These species rely heavily or exclusively on benthic invertebrate prey and thus could be severely affected in contaminated habitats. The

contamination (tainting) of commercially or recreationally important marine resources is always a concern following an oil spill. More than one million razor clams are harvested from Ocean Shores annually (Ayres, in press), and unknown numbers of California mussels and razor clams are harvested by Native Americans and by visitors to Olympic National Park.

In rocky habitats, subtidal oil tends to collect in cracks and crevices. A 1987 subtidal survey of the Washington outer coast (Kvitek et al. 1988) found the vast majority of large epifauna (crabs, urchins, sea cucumbers) to be confined to these refugia, and these organisms are critical prey species in the diet of the endangered (as listed by the State of Washington) sea otter and other valued species.

Following the spill, the extent of weathering and release of persistent hydrocarbons to the water column from oil buried both intertidally and subtidally along ONP beaches was largely unknown. Seven months after the Arco Anchorage spill, oily sheens emanating from buried oil along the Ediz Hook shoreline were still evident (Word et al. 1987a, b). The potential for long-term effects of the Grays Harbor spill (Souse Brothers Ocean Towing Company) on marine life suggested that a monitoring program should be initiated to assess the fate and effects of unrecovered oil on the ONP beaches.

1.2 PURPOSE AND SCOPE

The U.S. Department of Interior, Minerals Management Service (MMS) provided the U.S. Department of Energy funding for Pacific Northwest Laboratory's Proposal No. 16058 through an Interagency Agreement. The proposal called for studying the fate of spilled Bunker C fuel oil from the Nestucca incident and determining the potential effects of the fuel on Washington coastal beaches. The Olympic National Park was a principal cooperator in the study. This proposal was submitted by Battelle/Marine Sciences Laboratory (MSL) and the University of Washington, who were the prime contractor and subcontractor, respectively, conducting the monitoring. (Pacific Northwest Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy.)

The key questions addressed by the research team were 1) How much oil remained on Washington coastal beaches following clean-up and weathering? 2) To what extent have intertidal and subtidal biotic assemblages been contaminated and/or affected? 3) How rapidly has oil left the system? and 4) How rapidly have the biotic assemblages recovered?

This report, the first of three, was prepared by MSL. It focuses on the fate of spilled Bunker C fuel oil in intertidal and shallow subtidal sediments. A second report, dealing with the fate of spilled oil in deeper subtidal sediments (0 to 20 m mean lower low water [MLLW]), is being prepared by the University of Washington and will be published later in 1990. The third report, also by the University of Washington and available in early 1991, will treat the potential effects of oiling on intertidal communities.

2.0 STUDY PLAN AND METHODOLOGY

To fulfill the purpose stated in Section 1.2, the following study plan and methodology were implemented.

2.1 SELECTION OF STUDY SITES

Study sites were selected by a consensus of staff from ONP, MMS, and MSL. A total of eight study sites were selected from inside the park; four from areas of known contamination, and four from areas of no known or very light contamination, to serve as reference sites. Additionally, four study sites of known contamination were selected from outside the park. Because of interest in the extent of residual oil, whether or not an area had been cleaned was an important criterion in site selection. Other important site-selection criteria included the presence or absence of valued biological communities, beach substrate type (sand, gravel, cobble), beach slope, and accessibility. It was particularly important to sample cobble beaches, because such substrates do not naturally depurate rapidly and are inherently difficult to clean. Study sites were also selected so as not to interfere with any other planned or ongoing research in the same general area. Study sites were established, as far away as practical, from known or suspected natural oil-seep areas.

2.2 SELECTION OF SURVEY DATES

Beach surveys to determine the distribution and fate of spilled Bunker C fuel oil were scheduled during the lowest tides in July and September 1989 and in February 1990. The July and September surveys occurred during the times when beach accretion was at or near maximum annual height. Any oil remaining on the target beaches at these times could have been buried under a meter or more of sand/sediment and been difficult to detect. The February survey occurred when beach accretion was minimal, i.e., when target beaches were at their lowest height. Any stranded oil remaining on the target beaches was then closer to the surface and potentially easier to detect.

2.3 SURVEY DESIGN AND COMPOSITING STRATEGY

In the very patchy shoreline environment impacted from oil spilled at sea, it is easy to miss the oil altogether when sampling. On the other hand, sampling directly in areas with visible residue, while important for determining a chemical signature of the residual oil, biases any comparisons between beaches. Because one of the objectives of this monitoring plan was to determine the adequacy of the clean-up program, comparisons between oiled and relatively clean beaches were highlighted. Therefore, random sampling was essential.

As is the case for most sampling strategies, random sampling is augmented by some form of structure. The resulting sampling convention is known as stratified random sampling. The terms statum and strata are used here to define sampling subpopulations and should not be confused with geologic strata. Stratification concentrates the sampling effort in those areas with a greater probability of containing oil residue without biasing later comparisons between beaches. Because wave action buries oil into the mixed sand and gravel beaches (Hayes and Gundlach 1979) and because the duration of wave action along the Washington coast is greatest at about the +4-ft elevation contour, the lower- and mid-intertidal zones were expected to contain the greatest amounts of oil residue. Thus, we chose sampling strata parallel to the shoreline and spaced them logarithmically such that sampling was greatest within the mid-and lower-intertidal zone (Figure 1).

The decision of how to sample each stratum is often based on logistical concerns. Sampling could be done randomly within each stratum or, alternatively, along a transect placed perpendicular to the coastline (e.g., beginning at a random position in the upper intertidal stratum and crossing each remaining stratum). Randomly sampling within each stratum would allow a greater area of coverage and, thus, a greater probability of encountering oil residue. However, sampling along a transect is much easier logically than locating many random sample collection sites within different strata. For making statistical comparisons between beaches, either method is appropriate. In the light of possible rough water conditions, safety, and time, transects starting from a random location within the upper intertidal stratum is

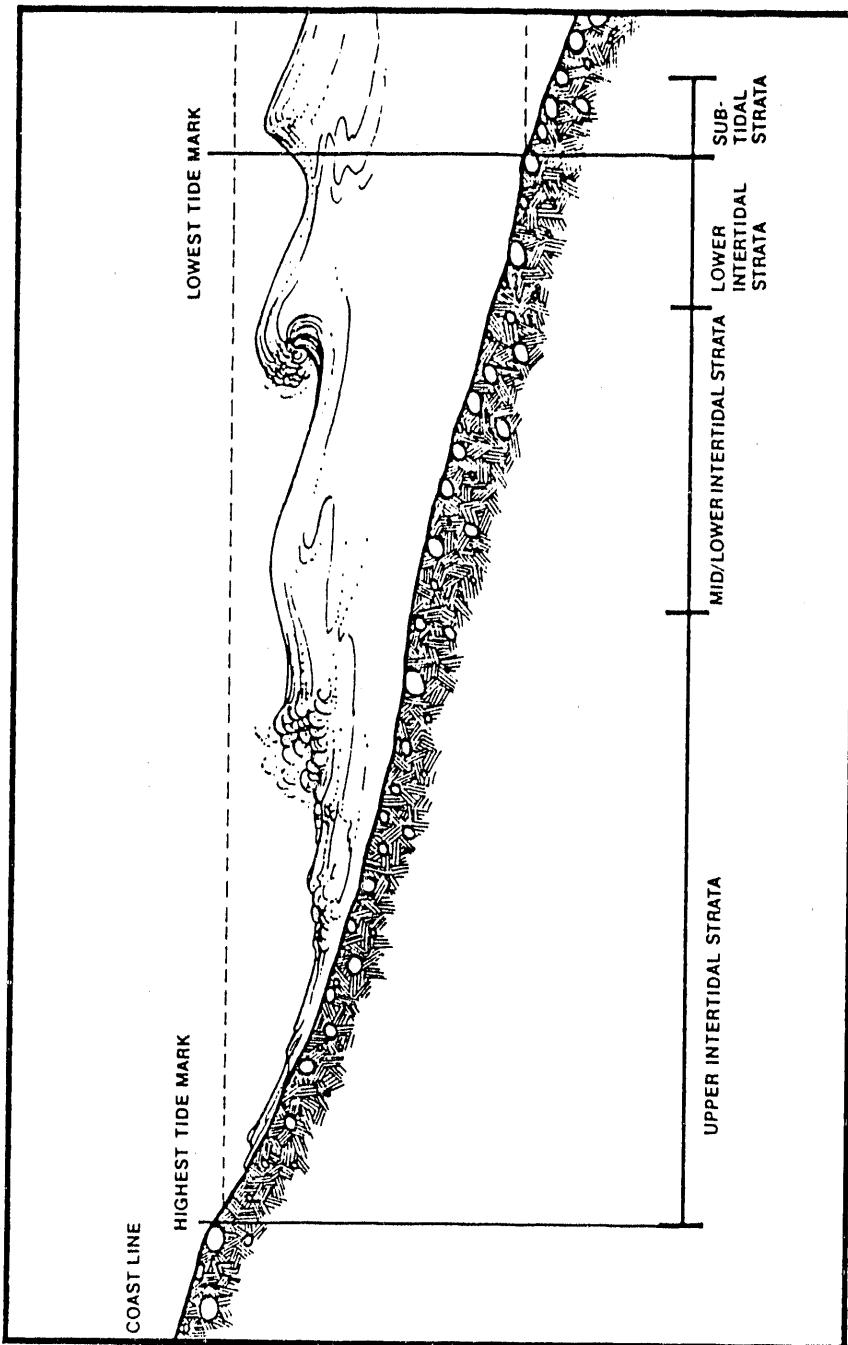
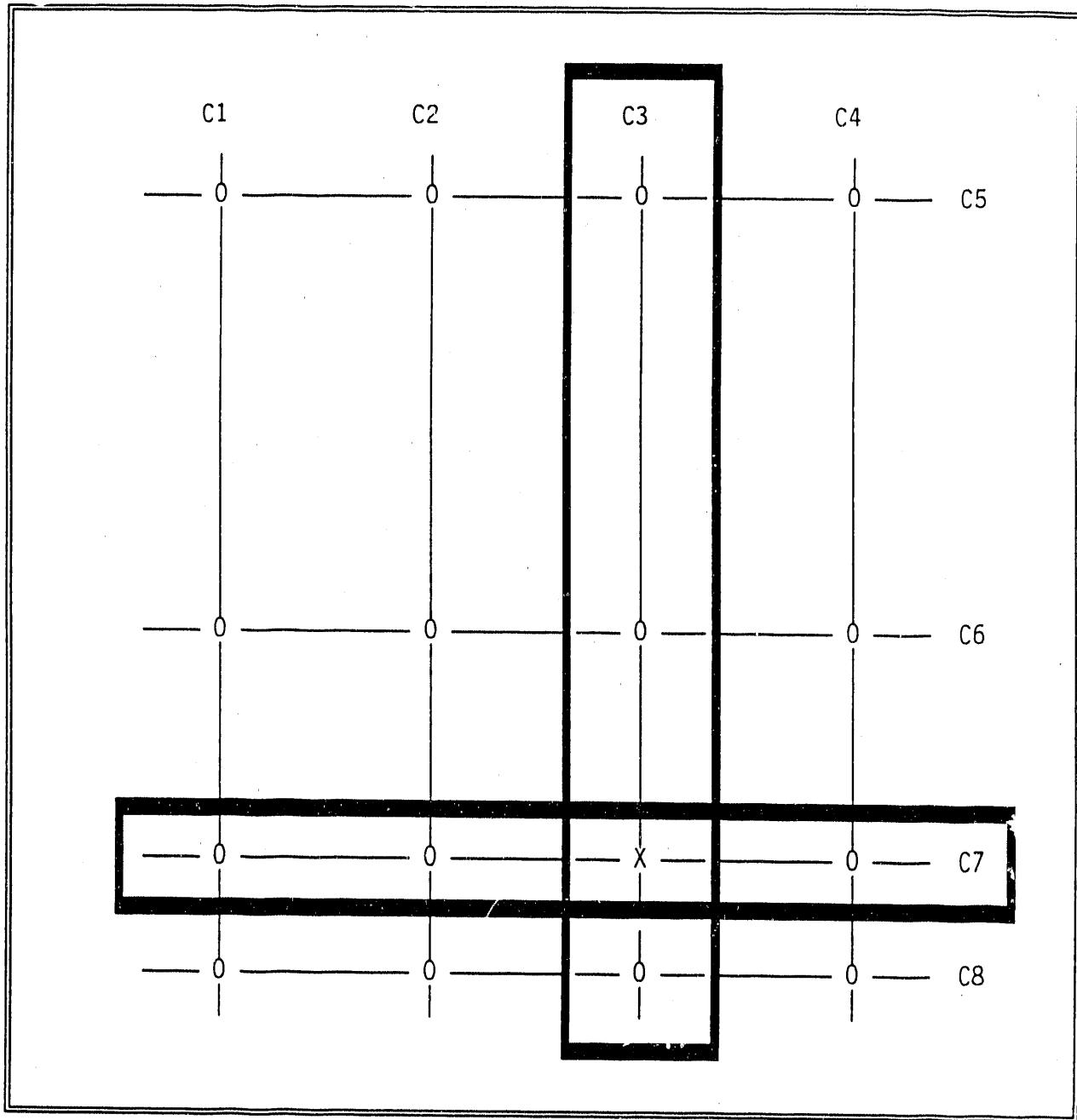


FIGURE 1. Sampling Strata Logarithmically Spaced Within the Intertidal and Upper Subtidal Regions for Monitoring the Fate of Residual Oil on Washington Coast Beaches

preferred. Further, this combination of parallel sampling strata crossed by perpendicular transects forms a grid or lattice design for which sample compositing is easily accommodated.


Sediment and tissue chemical analyses were conducted on composited samples to reduce costs and yet maintain a large spatial coverage. Samples were composited in such a way that samples were not diluted with clean sediments below a chosen level of concern (LC) and so that information on the location of observed oil residue was not lost. Compositing was done with equal quantities of materials from each sampling station included in a composite so that the analytical results represented the mean concentration of the oil residue for the beach location sampled.

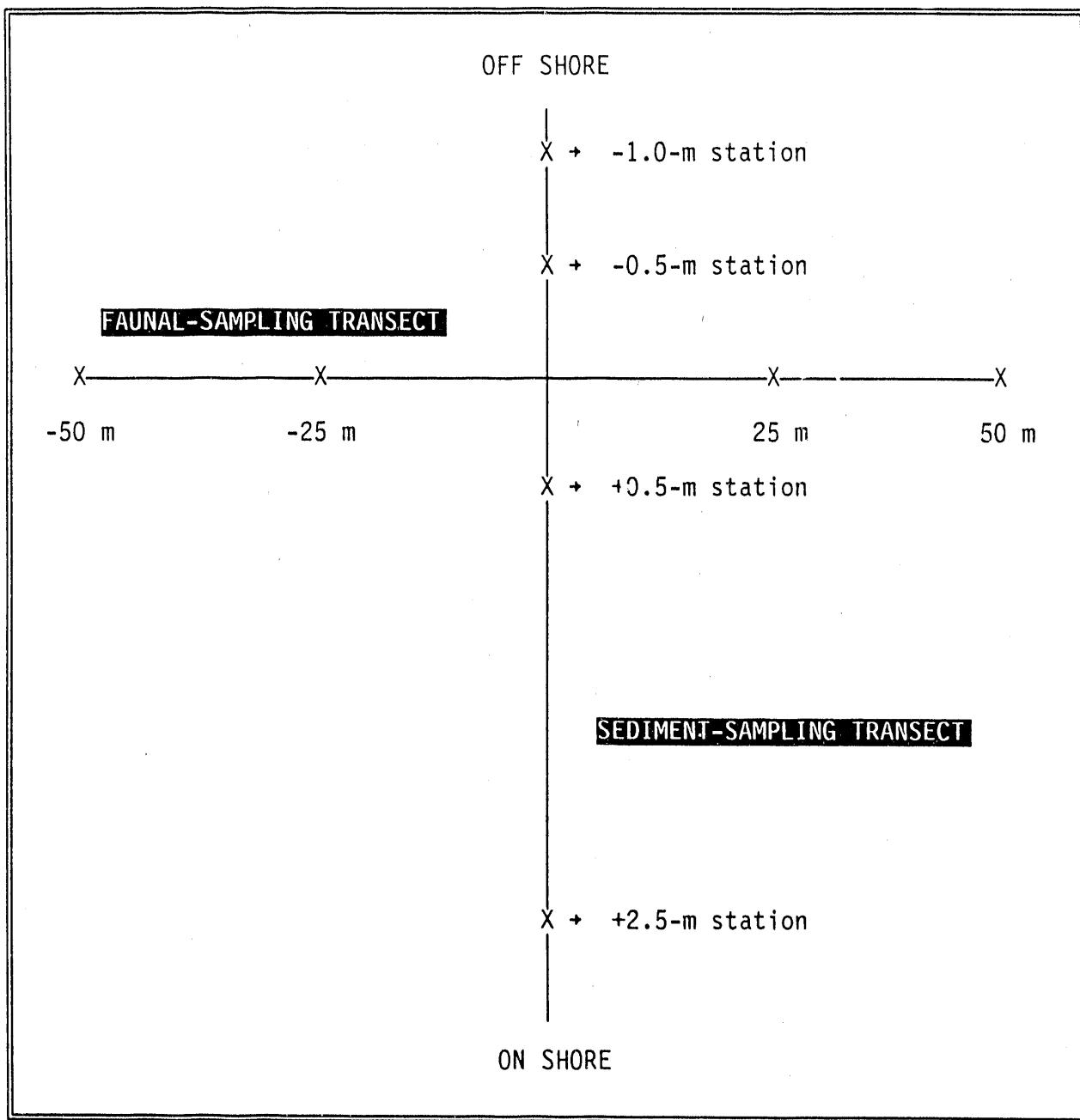
To minimize dilution of sediment samples, the number of composited samples (N) was determined by the formula

$$N \leq LC/DL$$

where DL is the analytical detection limit (Skalski and Thomas 1984). Data from Vanderhorst et al. (1980) show that along the Strait of Juan de Fuca, background levels of total hydrocarbon concentrations ranged from 20 to 140 ppm in intertidal sediments. Based on this data, an LC of 100 ppm was selected for the present study. The DL of infrared spectrophotometry (IR) for total hydrocarbon concentration is about 20 ppm; thus, to minimize dilution, no more than five samples were composited. For capillary gas chromatography (GC), the DL for both saturated and polycyclic aromatic hydrocarbons in sediment was about 10 parts per billion (ppb), yielding an N much greater than that for IR.

Compositing samples in similar rows (strata) and columns (transects) of a lattice design, as described above, preserves information on the location of oil residue without requiring an analytical analysis for each sampling station. For example, compositing samples 1) from the same transect and 2) from the same sampling strata but from different beach locations pinpoints the location of high contamination, since both composites (within a transect and within a sampling strata) will have a high concentration of oil if, and only if, any station within those composites has a high concentration of oil (Figure 2).

FIGURE 2. Compositing Design for Which Samples Are Composed Across Columns (C1 to C4) and Rows (C5 to C8). This design preserves the location of contamination without requiring chemical analysis at every sampling station (0). In this scenario, high oil residue was detected in composites C3 and C7, indicating contamination at sampling-station X.


2.4 SEDIMENT SAMPLING

Stations (four per transect) were logarithmically spaced so that sampling effort was greater within the lower intertidal zone (Figure 3). Thus, a total of 12 transects with four sampling stations each yielded a target of 48 sampling stations where sediment was to be collected (Table 1).

All four sediment samples from each transect were composited for chemical analysis. Similarly, all four sediment samples from each sampling strata from beaches with the same designation of contamination (high or low exposure to oil and within or outside the park boundaries) were composited for chemical analysis. Thus, from the 48 sampling stations, there were 24 composited sediment samples for chemical analysis (two duplicate analyses bring the total to 26 analyses). Note that the number of composited samples was less than the maximum allowable number of five, and thus samples were not diluted below 100 ppm, the determined level of concern.

The starting locations of transects were determined using a discrete uniform random-number generator with parameters 1 and 100 (the starting and ending values respectively, of the distribution). Each beach was assigned a pair of random numbers for locating the position of the survey transect. The first number determined the relative direction, north or south, of an arbitrary starting point. A value <50 indicated that the transect was north of the arbitrary starting point, a value of ≥ 50 that the transect was south of the arbitrary starting point. The second number determined the distance in meters from the arbitrary starting point to the location of the transect. The arbitrary starting point was selected without knowledge of either the direction or distance to the transect location.

For the first survey, identifying the location of intertidal and upper subtidal sampling sites required establishing a set of range marks (stakes or monuments) at the upland end of each beach transect and then determining tidal height (elevation) at four locations along the transect from the high-tide line to the upper subtidal zone. Keeping the range marks in line allowed the investigator always to find a location along the azimuth (bearing) line of the transect. Elevations (tidal height) at the four positions

FIGURE 3. Faunal and Sediment Sampling Stations (X). The stations form perpendicular transects such that each sampling station lies within a specific tide-height contour. Sediment sampling stations are spaced logarithmically within intertidal and subtidal sampling zones while the faunal sampling stations are equally spaced away from the sediment sampling transect between the +0.5-m and -1.0-m tide-height contour.

TABLE 1. Target Sampling Requirements of Intertidal and Shallow Subtidal Habitats

<u>Sample Type</u>	<u>No. Samples/ Station</u>	<u>No. Stations/ Transect</u>	<u>No. Transects</u>	<u>Total Samples</u>	<u>Composites Analyzed (a)</u>
Sediment (IR)	1	4	12	48	26
Sediment (GC)	1	4	12	48	16
Tissue (GC)	1	4	12	48	26

(a) Includes duplicates.

along the transect line were determined by level and stadia rod by referencing known tidal heights determined in accordance with the appropriate tide tables (NOAA 1988 and 1989).

Distances to each sampling location on each transect also were recorded. During the second and third surveys, sampling location on each transect was determined solely by distance from the high-tide-line monument. The lowest tides encountered in September 1989 and February 1990 often occurred before sunrise or after sunset, making it difficult to use a level and stadia rod. Also, based on elevation, it is not generally possible to sample the same location twice on any given transect, because of the continuous process of beach accretion or erosion. For example, the 8.2-ft-level sample was often located many meters closer to the high-tide line in winter than in summer.

As shown in Figure 3, sampling of sediment along each transect occurred at the +8.2-ft (+2.5-m), +1.1-ft (+0.5-m), -1.7-ft (-0.5-m), and -3.0-ft (-1.0-m) tidal contours. At the designated sampling locations, a 0.5-L sediment sample was collected from the top 15 cm of the beach surface. At each location, the sediment was collected from a 0.1-m surface area. Sediments from cobble areas necessarily were collected from depths shallower or deeper than 15 cm, depending on the depth of cobble. Samples were taken from the beach using a solvent-rinsed stainless-steel trowel and 5.08-cm-diameter butyrate cores and placed in labeled and dated collection jars, also solvent-rinsed. Sediment composition was recorded. At least once a day, a control (trip) blank was collected by following the same sampling procedure

except that no sediment was placed in the sample jar. Control blanks were analyzed using solvent extractions in the same manner as jars containing sediments. It should be noted, however, that while every attempt was made to sample the -3.0-ft tidal contour, weather conditions that could endanger the investigator attempting the sample sometimes necessitated sampling at a shallower subtidal depth.

2.5 FAUNAL SAMPLING

Faunal samples were collected from four sampling stations along a 100-m transect established parallel to the coastline along a tidal-height contour between the +1.1-ft and -3.0-ft sediment sample stations (Figure 3). Four sampling locations were placed 25 and 50 m from either side of the sediment sampling transect. The flexibility in designating the exact tidal height for this transect increased our ability to locate appropriate organisms for tissue analysis. We intended that the faunal transects for each beach location be located on the same tidal-height contour and substrate, or as close to these as possible. Procedures for locating faunal sampling sites were the same as those described above for locating sediment sampling sites.

A total of 10 organisms were collected at each station to allow for enough tissue for chemical analyses. The species collected depended on the substrate (sand, cobble, rock, etc.) of the beach selected for sampling (see Section 3.1). If a sandy beach was selected, razor clams (Siliqua patula) were collected. From a cobble or rocky beach, we expected to find California mussel (Mytilus californianus) or the sabellid polychaete (Eudistylia vancouveri). If these species were unavailable at selected sites, organisms-of-opportunity were collected. Upon collection, the organisms were transported immediately to the laboratory, where they were frozen at -18°C until dissection. After freezing, samples of tissue were obtained through dissection and packed in wide-mouthed glass jars with Teflon®-lined caps.

™ Teflon is a registered trademark of E. I. Dupont de Nemours, Wilmington, Delaware.

Samples were then refrozen and stored at -75°C until use. Sampling locations, dates of sampling, and MSL sampling numbers were recorded and affixed to each sample as it was collected.

Tissue samples from each of the two stations positioned an equal distance from the sediment transect were combined for a composite chemical analysis. A value of N equal to two was less than an allowable number, based on the data from Boehm et al. (1988), which suggested an LC of 0.5 ppm. The detection limit for GC on tissues was at worst 100 ppb, yielding $N \leq 5$. Thus, there were 24 composited tissue samples (2 duplicate chemical analyses brings the total to 26 analyses) (see Table 1). Note that compositing organisms from varying tidal elevations sacrifices any chance of determining the vertical variation in tissue hydrocarbon concentrations.

2.6 ANALYTICAL CHEMISTRY

All analytical and associated quality-assurance and -control procedures (including the use of standard reference materials, chemical spikes, and duplicate analyses) followed Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound (Tetra Tech, Inc. 1986). The analytical procedures for each sample type are outlined below with references to the specific techniques used.

Sediments

Analytical chemistry was conducted in stages, using composite samples to minimize unnecessary analytical costs. Composite sediment samples first were screened for oil residue by analyzing for total oil and grease using IR, a relatively inexpensive method of analysis. Samples were analyzed by a Beckman Acculab[®] Model 4 Infrared Spectrophotometer with a spectral range of 4000 to 600 cm^{-1} and a scan time of 2.5 to 27 min. Hydrocarbons were extracted from sediment with freon following the Standard Method 503 (APHA 1985). To distinguish between the target oil and oils of biogenic origin,

[™] Acculab is a trademark of Beckman Instruments, Inc., Fullerton, California.

the extract was mixed with silica gel to remove fatty acids. The extracts were placed into IR cells made of sodium chloride with a path-length of 14 mm, for maximum sensitivity.

Any sediment samples showing a signal above detection were analyzed by GC for a finer characterization of the source of contamination (fingerprinting). Samples were analyzed using a Hewlett Packard (HP) 5890A gas chromatograph equipped with a HP 7673A automatic sampler and a flame ionization detector (FID) or a 5970 mass-selective detector (MS). An HP 5895A gas-chromatographic workstation was used for control of the GC, integration, quantification, and preparation of the chromatograms. Sediment was analyzed using an extraction process developed by NOAA (Krahn et al. 1988). Briefly, methylene chloride was used to extract saturates and aromatics and was followed by alumina gel chromatography to purify the saturate and aromatic hydrocarbons for analysis by GC/FID and GC/MS, respectively.

Tissues

Composite tissue samples were homogenized using a Tekmar Tissumizer®. Five-gram subsamples of wet tissue were digested with 30 mL of 6 M KOH at 35°C for 18 hours, then extracted three times with 30 mL of ethyl ether, followed by U.S. Environmental Protection Agency Method 3611 (USEPA 1986) alumina column cleanup procedure to remove matrix interferences.

For both tissues and sediments, petroleum residues were characterized by relative peak areas for the concentration of individual identified normal branched saturate and polycyclic aromatic hydrocarbons, the ratios of nC₁₇/Pristane and nC₁₈/Phytane, and the carbon preference index (CPI) (odd to even saturates ratio). Changes in one or more of these characteristics provided an estimate of weathering and/or the degree of mixing with other potential sources of hydrocarbons. Chromatograms from all sediment and tissue samples were compared with chromatograms from identical analyses of the spilled oil obtained from the Washington State Department of Ecology.

• Tissumizer is a registered trademark of Tekmar Co., Cincinnati, Ohio.

3.0 RESULTS AND DISCUSSION

3.1 SAMPLE COLLECTIONS AND LOCATIONS

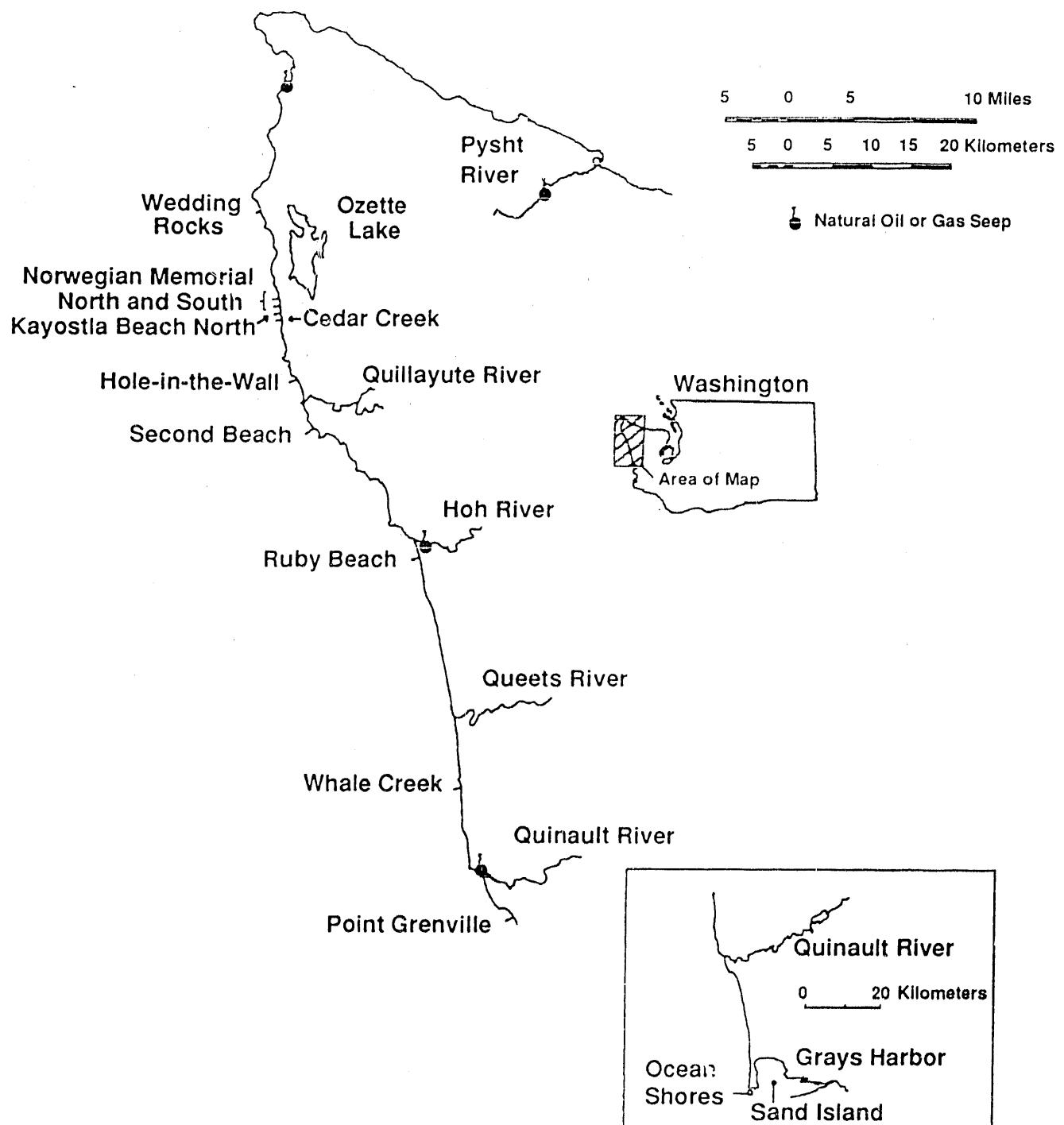
Sediment and faunal samples were collected from four oiled and four reference beaches inside the Olympic National Park and four oiled beaches outside the park (Table 2). The four sites outside the park were chosen from those sites most heavily oiled. Sand Island, an important nesting area for many marine birds, and Ocean Shores were some of the most heavily hit areas. Whale Creek and Point Grenville on the Quinault Indian Reservation, where shellfish make up an important part of the diet, were not as severely oiled. Three of the chosen oiled sites have a rock/cobble substrate, and the remaining five have a sand substrate. Of the four reference sites, two have cobble and two have sand substrates. All oiled beaches in this study were cleaned. At a minimum, cleaning was no more than the removal of oiled logs. Maximum cleaning was the removal of oil mats and the collection of oil with pompoms. Because of the patchy nature of the oiling of the Olympic National Park beaches, the close proximity of oiled and reference beach sites (Norwegian Memorial and Kayostla) was not considered a problem. In fact, all beaches along the Washington coast may have received some oiling, if not from the December 1988 spill, then from indiscriminate bilge pumping in the past.

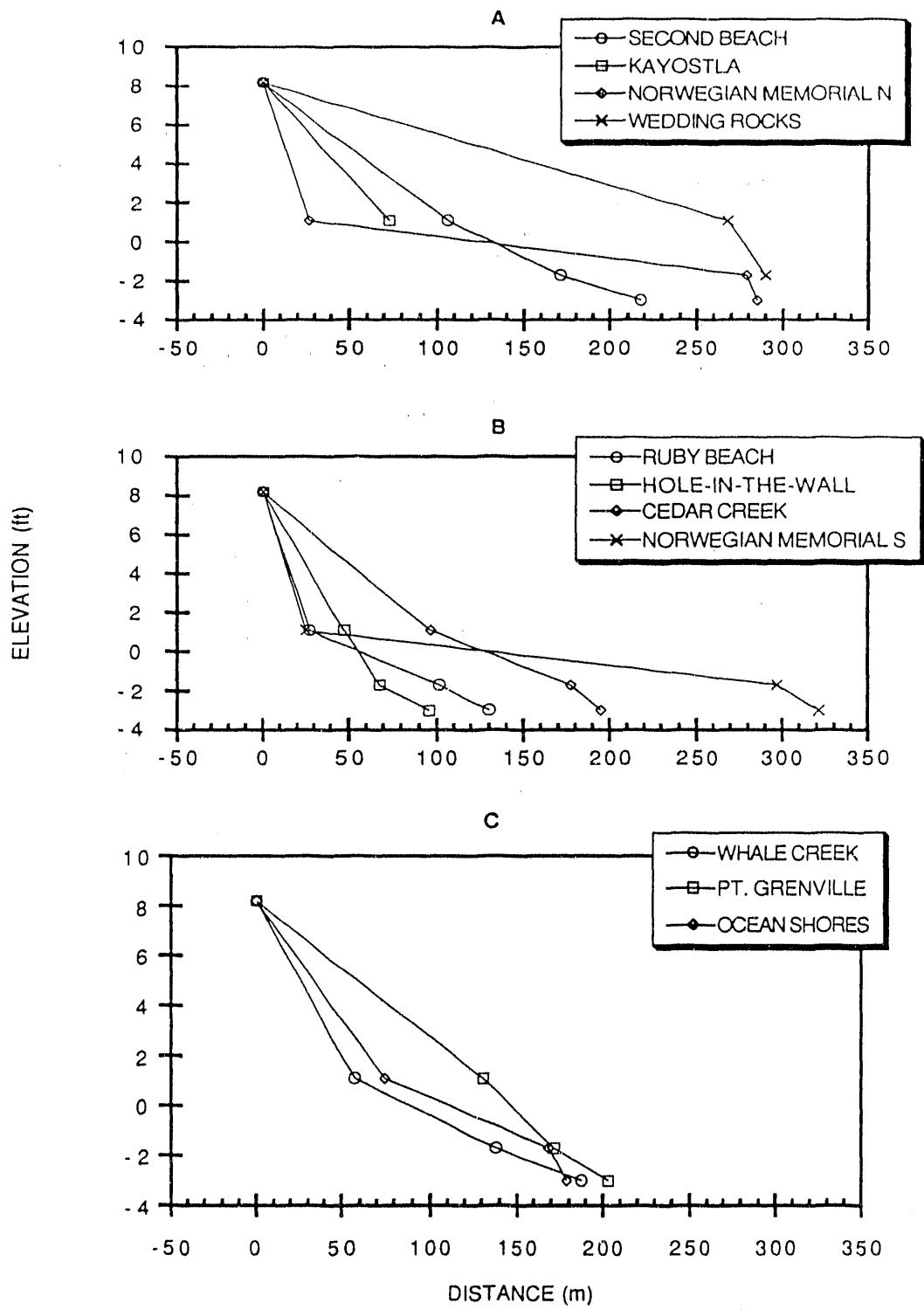
Figure 4 depicts relative locations of each study site and known natural oil seeps. Although natural seeps occur near the Pysht River, Hoh Head near Ruby Beach, east along the Hoh River (not shown) and near Taholah on the Quinault River, the only in situ oil occurs in microseeps in unnamed Middle Eocene melanges exposed at Shi Shi Beach and at Ruby Beach (Snavely and Kvenvolden 1989). The microseep at Ruby Beach may be within 2 km of the Ruby Beach reference site used in this study.

Three beach surveys were conducted at all sampling sites except Sand Island, which had only two surveys, due to poor weather conditions (Appendix A1). Because of severe weather, high wave action, and periodic unavailability of appropriate organisms, the full set of sediment and faunal samples was only achieved at one sampling site: Second Beach. Of the possible 12 sediment samples per sampling site, all sites had a minimum of 8 samples

TABLE 2. Study Sites Selected to Follow the Fate of Bunker C Fuel Oil Spilled on Washington Coastal Beaches in December 1988 (Holcomb 1989)

<u>Beach</u>	<u>Location</u>	<u>Status</u>	<u>Substrate</u>
Wedding Rocks	Olympic National Park	Light Oil	Rock/Cobble
Norwegian Memorial North	Olympic National Park	Heavy Oil	Rock/Cobble
Norwegian Memorial South	Olympic National Park	Reference	Rock/Cobble
Kayostla Beach North	Olympic National Park	Moderate-Heavy Oil	Rock/Cobble
Cedar Creek	Olympic National Park	Reference	Sand/Cobble
Hole-in-the-Wall	Olympic National Park	Reference	Rock/Cobble
Second Beach	Olympic National Park	Moderate-Heavy Oil	Sand
Ruby Beach	Olympic National Park	Reference	Sand
Whale Creek	Quinault Indian Reservation	Moderate Oil	Sand
Point Grenville	Quinault Indian Reservation	Transitory	Sand
Ocean Shores-North Jetty	Grays Harbor	Heavy Oil	Sand
Sand Island	Grays Harbor	Heavy Oil	Sand




FIGURE 4. Relative Locations of Each Study Site and Known Naturally Occurring Oil or Gas Seeps Along the Washington Coast

collected, except for Sand Island. All planned sediment composite samples were made, with the exception of the Sand Island composite from the first survey (Appendix A2). Of a possible six faunal samples per collection site, six sites had all six samples taken, and the remaining sites resulted in a minimum of three samples taken, again except for Sand Island, where no faunal samples were obtained.

The intertidal fauna at Sand Island appear to be restricted to sparse populations of clams occupying sediments too dense to excavate using a clam gun. Only the sample from Whale Creek (WC2+25) proved to be of insufficient weight for chemical analysis.

When possible, extra sediments, cores, and/or faunal samples were collected at some of the oiled beaches during each of the surveys. Because of suspected contamination from a small yet unconfirmed spill occurring in February 1990, extra samples were also collected from Hole-in-the-Wall and Ruby Beach during the third beach survey. Two sediment samples from a site further north of the Norwegian Memorial North transect (designated as HNMX) and from Goose Island in Grays Harbor also were taken during the third beach survey. The HNMX site is the location of a University of Washington transect. Because of the very gradual beach slope at Sand Island, sediment samples were only taken at +15.2-, +13.3-, +8.2-, and +7.8-ft tidal levels. The sediment sample taken at the +7.8-ft tidal height was 210 m from the +8.2-ft height. This sample was composited as if it were the +1.1-ft sample.

The beach profiles from the July and August 1989 survey at the selected sampling sites fell into four groups (Figure 5). Profiles for the Norwegian Memorial North and South sites and for Wedding Rocks have long gradual sloping beaches of 0.7°. Second Beach, Cedar Creek, Whale Creek, Ocean Shores, and Point Grenville fall into a middle range of moderately sloping beaches of approximately 1.1°. Ruby Beach and Hole-in-the-Wall had the steepest beach slopes, averaging approximately 2.3°. Sand Island had the least slope, 0.03°.

FIGURE 5. Beach Profiles for Oiled (A) and Unoiled (B) Study Sites Within the Olympic National Park and for Oiled Sites from Other Washington Coast Beaches (C) for July and August 1989. The profile for Sand Island is not shown.

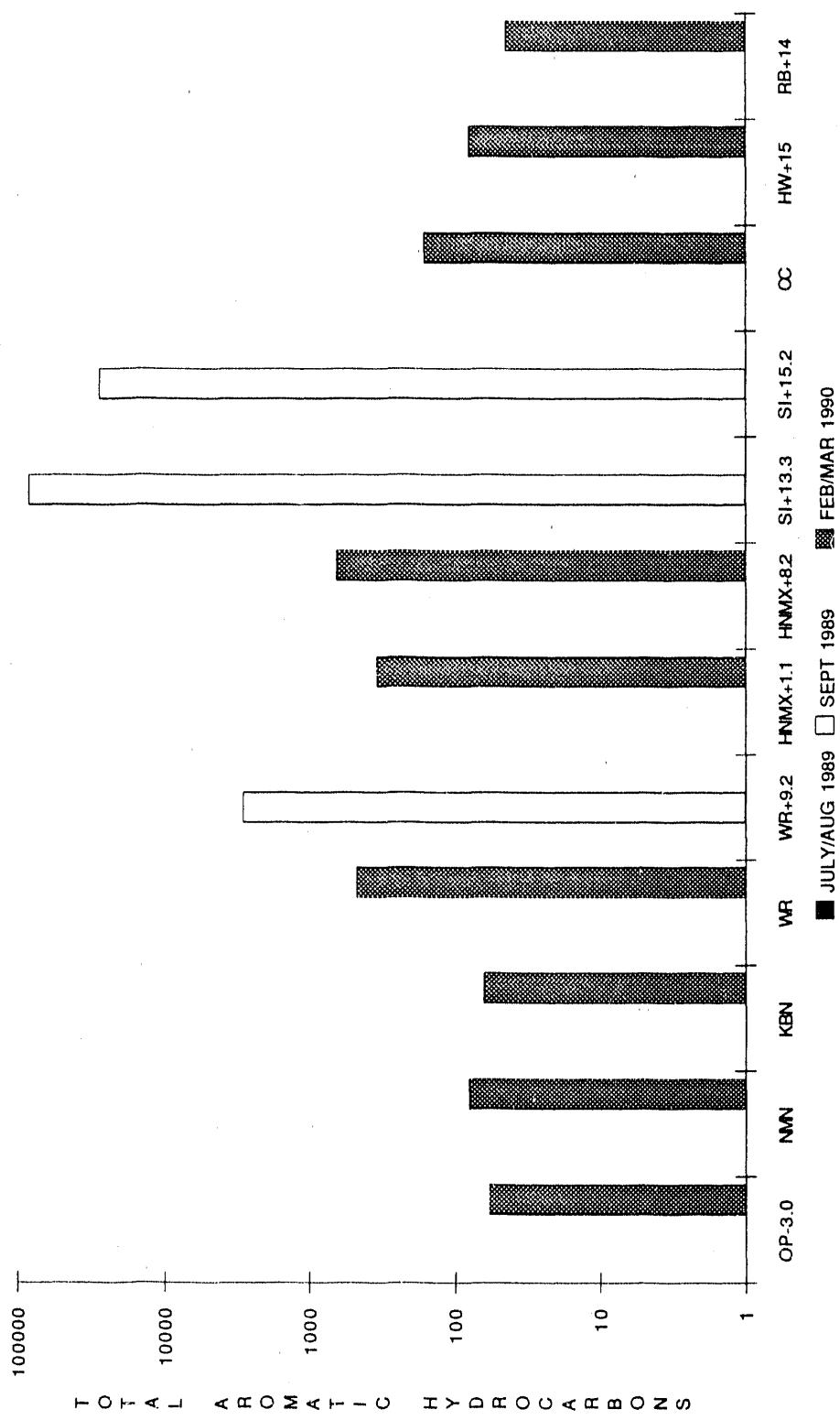
3.2 INTERTIDAL AND SHALLOW SUBTIDAL SEDIMENTS

3.2.1 Total Oil and Grease

All sediment composites and some of the extra sediments and cores were analyzed for total oil and grease using IR. Those analytical results showing above detection values are presented in Table 3. Analytical results for each sample are found in Appendix B. Sediments were extracted in two, four, and three batches for Surveys 1, 2, and 3 respectively. For Survey 1, all composite samples were less than the detection limits of 15 and 50.2 $\mu\text{g/g}$ respectively, for the two batches. Percent recoveries of a matrix spike were 91 and 51%. Because the composites contained essentially background levels, no sediment composites from the first survey were analyzed further.

The second survey extractions were conducted in four batches and had detection limits of 12, 30, 25, and 23 $\mu\text{g/g}$. Percent recoveries of a matrix spike were 97, 60, 55, and 75%, respectively. Only the sediments from Sand Island contained detectable levels of oil and grease, with concentrations of 6,255 and 19,015 $\mu\text{g/g}$ dry weight in sediments from the +15.2- and +13.3-ft tide levels, respectively. Oily residue was clearly visible in each of these samples, and a strong petroleum (Bunker C) odor was evident. These sediments were further analyzed for aromatic and saturate hydrocarbons. Because levels of total oil and grease at Norwegian Memorial, Kayostla Beach, and Whale Creek were below detection, extra cores from these sites were not analyzed.

The third survey extractions were conducted in three batches, but because of variable sample dry weights, a separate detection level was derived for each sample. The percent recoveries associated with these batches were between 95 and 96%. Detectable levels of total oil and grease were found in several sediment composites and extra sediments from the third survey, including samples OP3-3.0, WR3, NMN3, KBN3, HNMX+8.2, HNMX+1.1, RB3+14, and HW3+15. The composite, OP3-3.0--which includes sediments from the -3.0-ft tidal contour at Wedding Rocks (WR), Norwegian Memorial North (NMN), and Kayostla Beach North (KBN)--suggests that this elevation contour is potentially contaminated with oil. These eight composites, along with suspect extra sediments, were further analyzed for aromatic and saturate hydrocarbons.


TABLE 3. Extra Sediments and Sediment Composites from Washington Coast Beaches With Above-Detection Limits of Total Oil and Grease ($\mu\text{g/g}$ dry weight) as Detected by Infrared Spectrophotometry

<u>Location</u>	<u>Station/ Composite</u>	<u>Survey Date</u>	<u>Total Oil and Grease ($\mu\text{g/g}$)</u>
Wedding Rocks	WR	February/March 1990	63
Norwegian Memorial	NNN	February/March 1990	72
Kayostla Beach	KBN	February/March 1990	154
Oiled Park Beaches	OP-3.0	February/March 1990	251
<u>Extra Sediment/ Cores</u>		<u>Survey Date</u>	<u>Total Oil and Grease ($\mu\text{g/g}$)</u>
Sand Island	SI+13.2	September 1989	19015
Sand Island	SI+15.3	September 1989	6255
North of Norwegian Memorial	HNMX+8.2	February/March 1990	115
North of Norwegian Memorial	HNMX+1.1	February/March 1990	73
Hole-in-the-Wall	HW+15	February/March 1990	170
Ruby Beach	RB+14	February/March 1990	86

Several sediments from surveys 2 and 3 were rerun by IR either because the composite pairs produced conflicting results or because the sediments showing oil above the detection level were from unoiled beaches. Because of the nature of the compositing design, if any individual sample was contaminated with greater than background levels, then two composited samples should also reflect a greater-than-background level of oil and grease. Where sediment composites were rerun, one element of the pair was initially below detection and the second element initially produced concentrations above detection. All rerun sediment composites, however, confirmed a level of contamination below detection; thus, no further analysis was conducted. The two extra sediment samples from Ruby Beach and Hole-in-the-Wall, however, both produced greater-than-detection levels of total oil and grease on the rerun and therefore were analyzed further for aromatic and saturate hydrocarbons.

3.2.2 Aromatic and Saturate Hydrocarbons

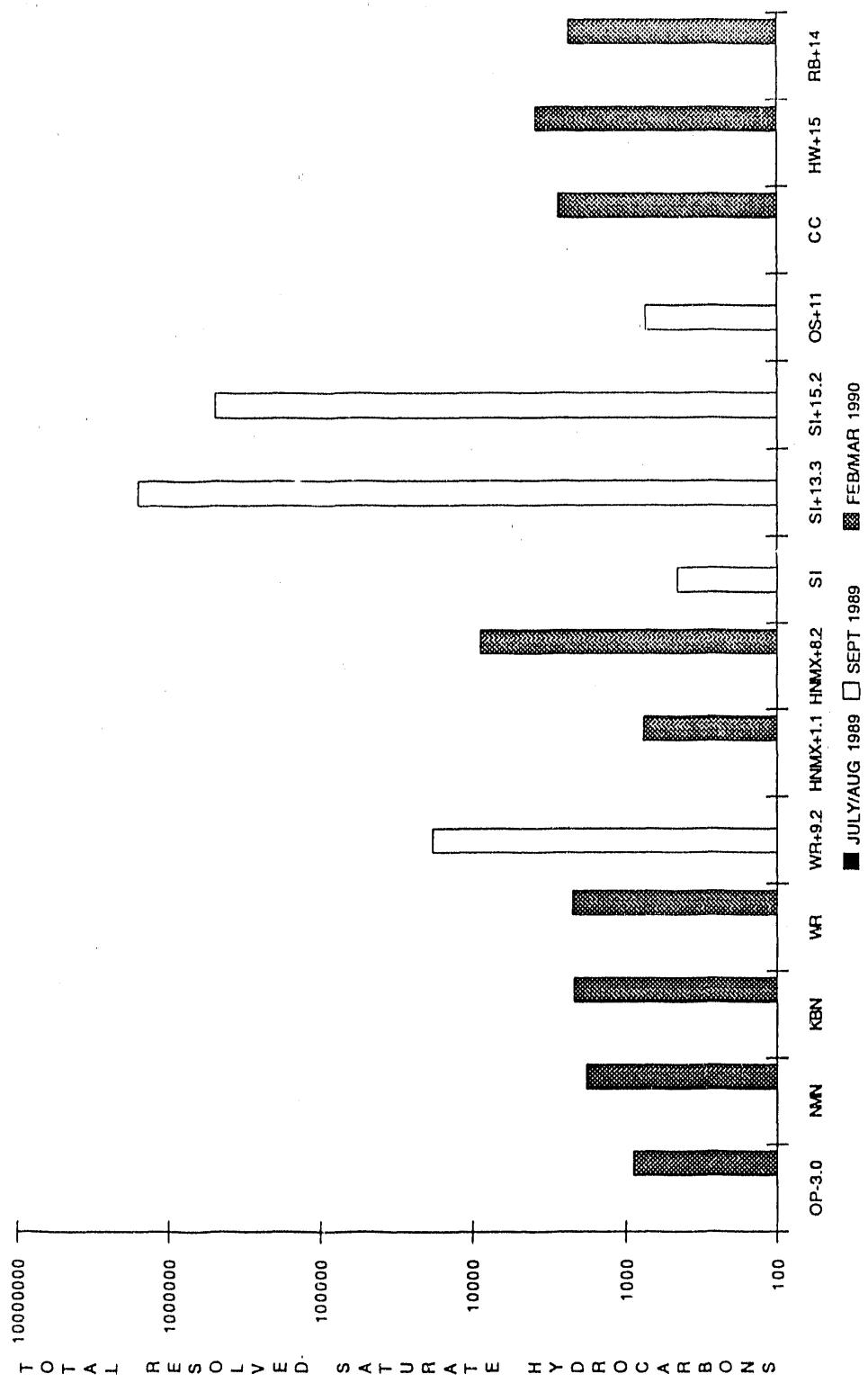
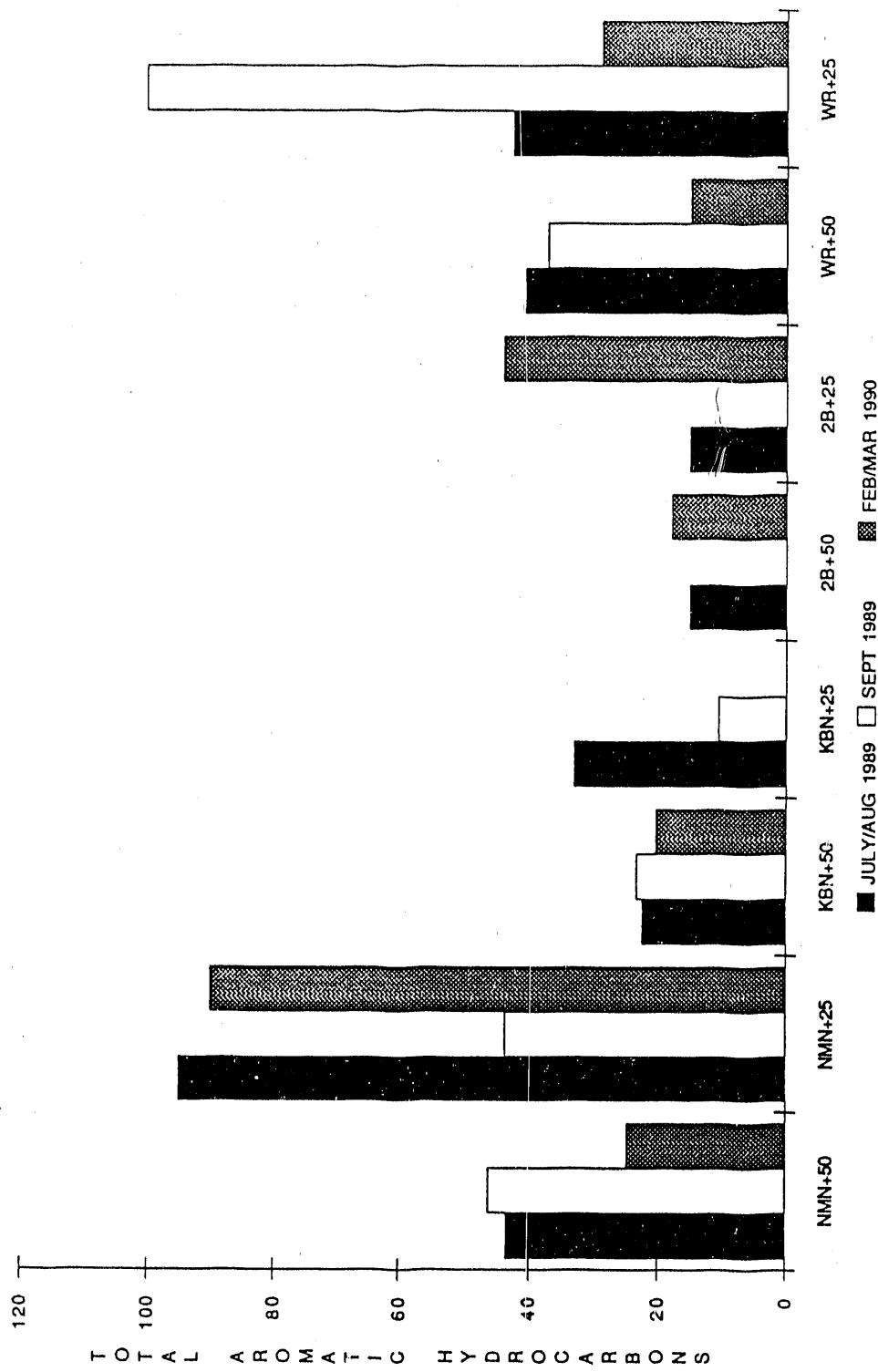

Two extra sediments from Wedding Rocks and Ocean Shores (WR2+9.2 and COS2+11) and two sediment composites from Sand Island and Cedar Creek (SI2 and CC3) from the second and third surveys were characterized by GC/MS and GC/FID, despite being below detection by IR upon reanalysis. The Ocean Shores sample and the composite from Sand Island demonstrated less than detectable concentrations of aromatic hydrocarbons (Figure 6 and Appendix C1) and mostly less than detectable concentrations of saturate hydrocarbons (Figure 7), and the Cedar Creek composite sample was used for quality assurance (Appendix C2). The sample from Wedding Rocks produced moderately low concentrations (2,875 and 18,236 ng/g dry weight, respectively) of both aromatic and saturate hydrocarbons. The HNMX sample also contained moderately low levels of both hydrocarbon fractions: 654 ng/g of aromatics and 14,178 ng/g of saturates. Only the extra sediments from Sand Island (SI2+15.2 and SI2+13.3) produced significant amounts of both categories of hydrocarbons. The sum of the aromatic hydrocarbons for these samples were 2227,624 and 83,399 ng/g dry weight, respectively. The sum of the resolved saturate hydrocarbons were 488,977 and 1,570,069 ng/g, respectively. Note that no sediment samples from the July/August survey had greater than detection levels of either aromatic or saturate hydrocarbons.

FIGURE 6. Sediment Concentrations of Total Aromatic Hydrocarbons (ng/g dry weight) Collected from Selected Sites Along the Washington Coast. See Table 4 for sample locations.

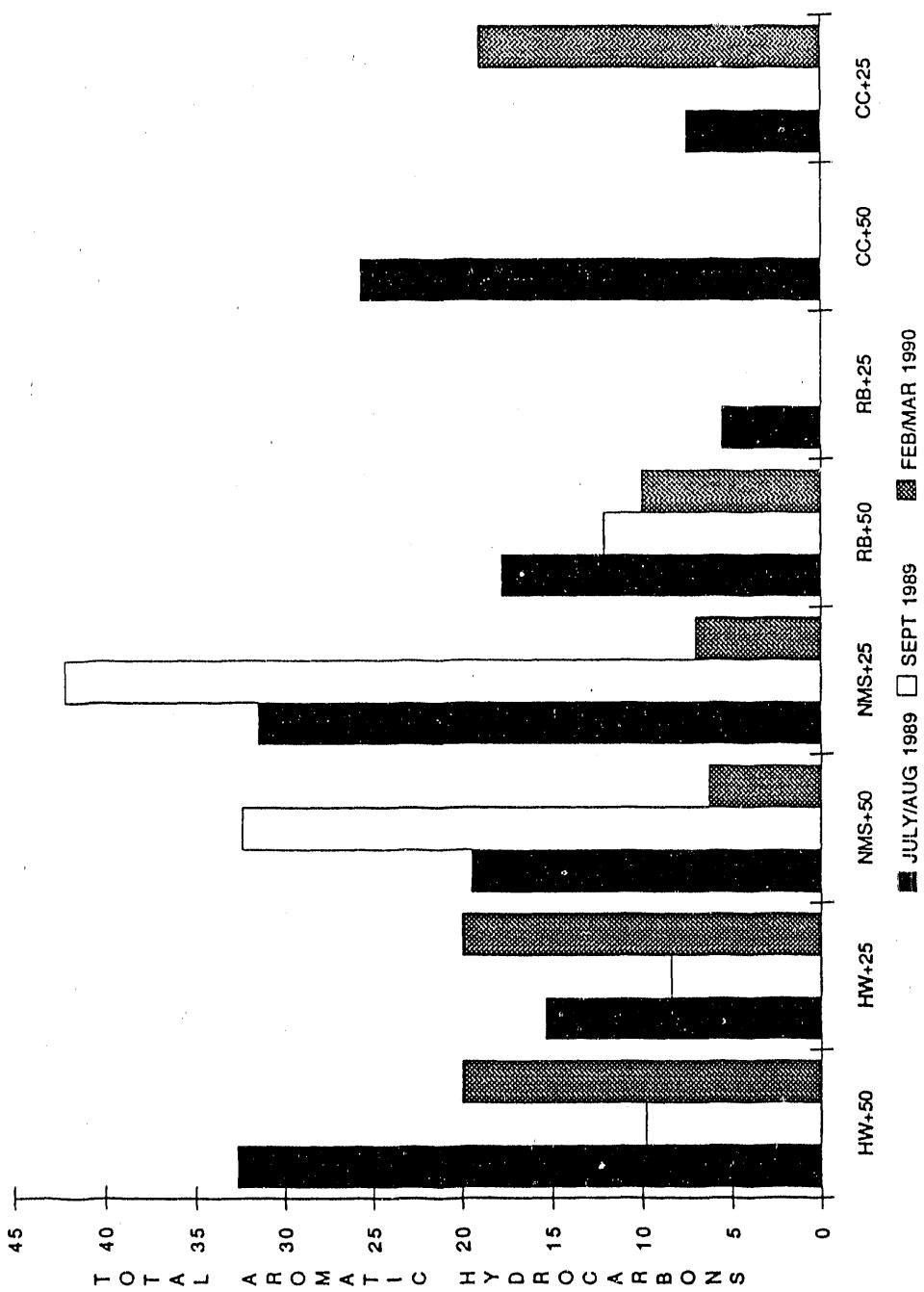
TABLE 4. Sediment and Tissue Composite Samples and Extra Sediment Locations in Which Elevated Hydrocarbon Concentrations Were Found

<u>Sediment Composites</u>	<u>Location</u>
OP-3.0	-3.0-ft contour from oiled beaches within the Park: Wedding Rocks, Norwegian Memorial North, Kayostla Beach, and Second Beach
NMN	Norwegian Memorial North
KBN	Kayostla Beach
WR	Wedding Rocks
SI	Sand Island
CC	Cedar Creek
<u>Extra Sediments</u>	
WR+9.2	+9.2-ft contour from Wedding Rocks
HNMX+1.1	+1.1-ft contour from an area north of Norwegian Memorial
HNMX+8.2	+8.2-ft contour from an area North of Norwegian Memorial
S1+13.3	+13.3-ft contour from Sand Island
S1+15.2	+15.2-ft contour from Sand Island
OS+11	+11-ft contour from Ocean Shores
HW+15	+15-ft contour from Hole-in-the-Wall
RB+14	+14-ft contour from Ruby Beach
<u>Tissue Composites</u>	
NMN+50, NMN+25	Norwegian Memorial North
KBN+50, KBN+25	Kayostla Beach
2B+50, 2B+25	Second Beach
WR+50, WR+25	Wedding Rocks
HW+50, HW+25	Hole-in-the-Wall
NMS+50, NMS+25	Wedding Rocks
RB+50, RB+25	Ruby Beach
CC+50, CC+25	Cedar Creek
WC+50, WC+25	Whale Creek
PG+50, PG+25	Point Grenville
OS+50, OS+25	Ocean Shores

FIGURE 7. Sediment Concentrations of Total Resolved Saturate Hydrocarbons (ng/g dry weight) Collected from Selected Sites Along the Washington Coast. See Table 4 for Sample Locations.


3.3 INVERTEBRATE TISSUES

All tissue composites were analyzed by GC/MS and GC/FID (Appendices C1 and C2). The tissue samples from oiled beaches within Olympic National Park had greater concentrations of total aromatic hydrocarbons than tissue samples from all other beaches (Figure 8a-c). Tissues from Norwegian Memorial North and Wedding Rocks ranged from 90 to 100 ng/g (dry weight). All other tissue concentrations were below 50 ng/g, and most were less than 20 ng/g. The extra tissue sample collected from a location farther north of the Norwegian Memorial North site (University of Washington transect) had a total aromatic hydrocarbon concentration of 24 ng/g.


Even though all tissues indicated low concentrations of total aromatic hydrocarbons (<100 ppb), analysis of variance of tissues collected from oiled beaches within the Olympic National Park demonstrated significantly greater ($p < 0.001$) concentrations of total aromatic hydrocarbons averaged over all species and surveys. There were no significant differences among the surveys averaged over location and species. However, there was a significant difference among species ($p < 0.05$), with razor clams showing the least contamination averaged over the three surveys (Table 5).

Tissue samples from Whale Creek and Point Grenville had the greatest concentrations of total resolved saturate hydrocarbon concentrations (Figure 9a-c). However, tissue samples from Kayostla Beach North and Hole-in-the-Wall had the greatest concentrations of even saturate hydrocarbons (Figure 10a-c), which do not include those saturates of biogenic origin.

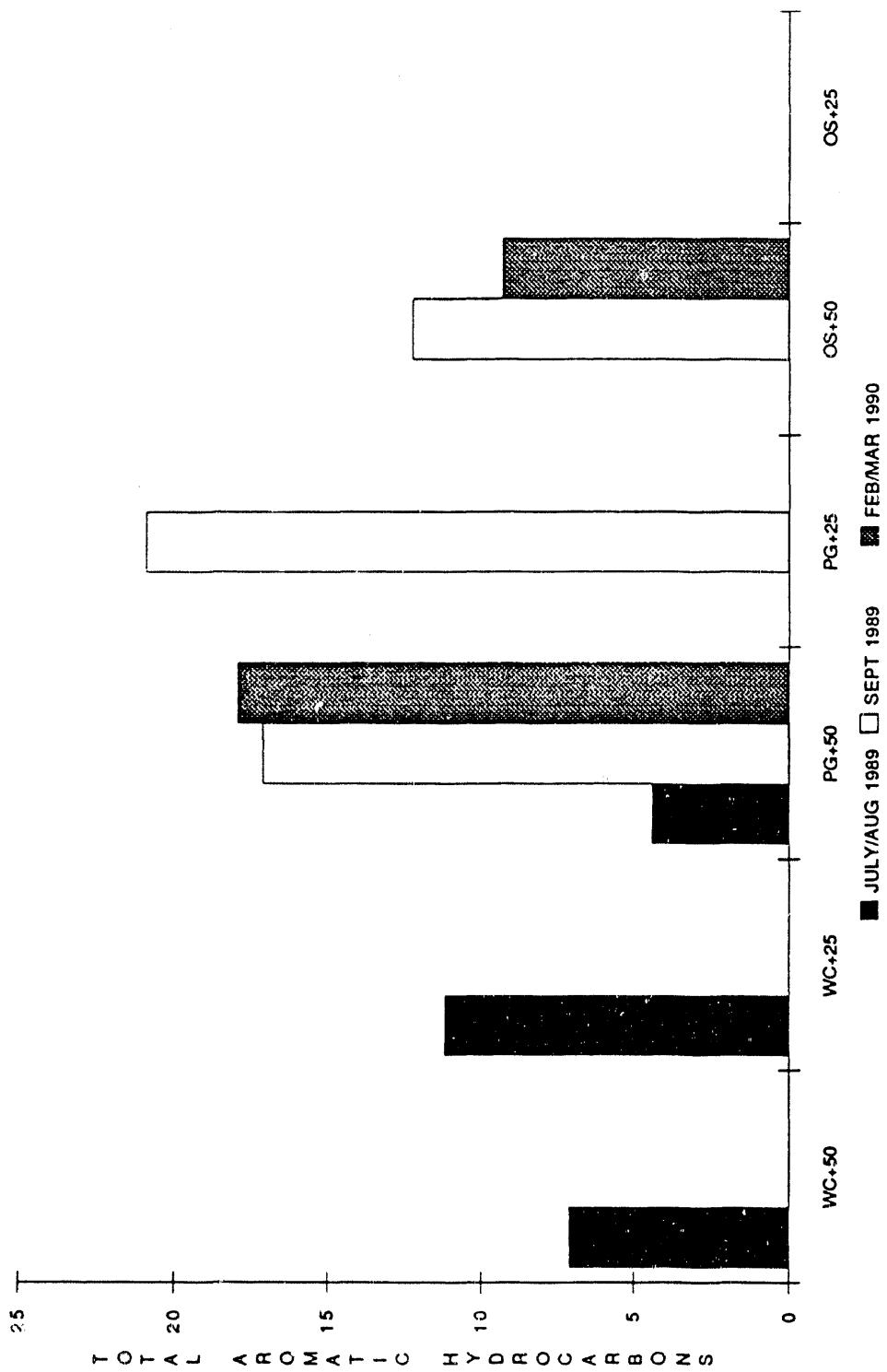

Thirteen tissue samples, five each from the oiled and unoiled (reference) sites within the Olympic National Park and three from sites outside the park, had concentrations of even saturates greater than 3500 ng/g dry weight. As expected, analysis of variance produced no significant differences ($p < 0.05$) among locations for either the total or the sum of the even saturates. Although it is not significant ($p < 0.05$), a trend exists for a reduced concentration of total and even saturates from the third-survey tissue samples averaged over locations and species. There was also not a significant ($p < 0.05$) difference among species averaged over location and surveys for either total or even saturates (Table 6).

FIGURE 8a. Individual Tissue Concentrations of Total Aromatic Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Oiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

FIGURE 8b. Individual Tissue Concentrations of Total Aromatic Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Unoiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

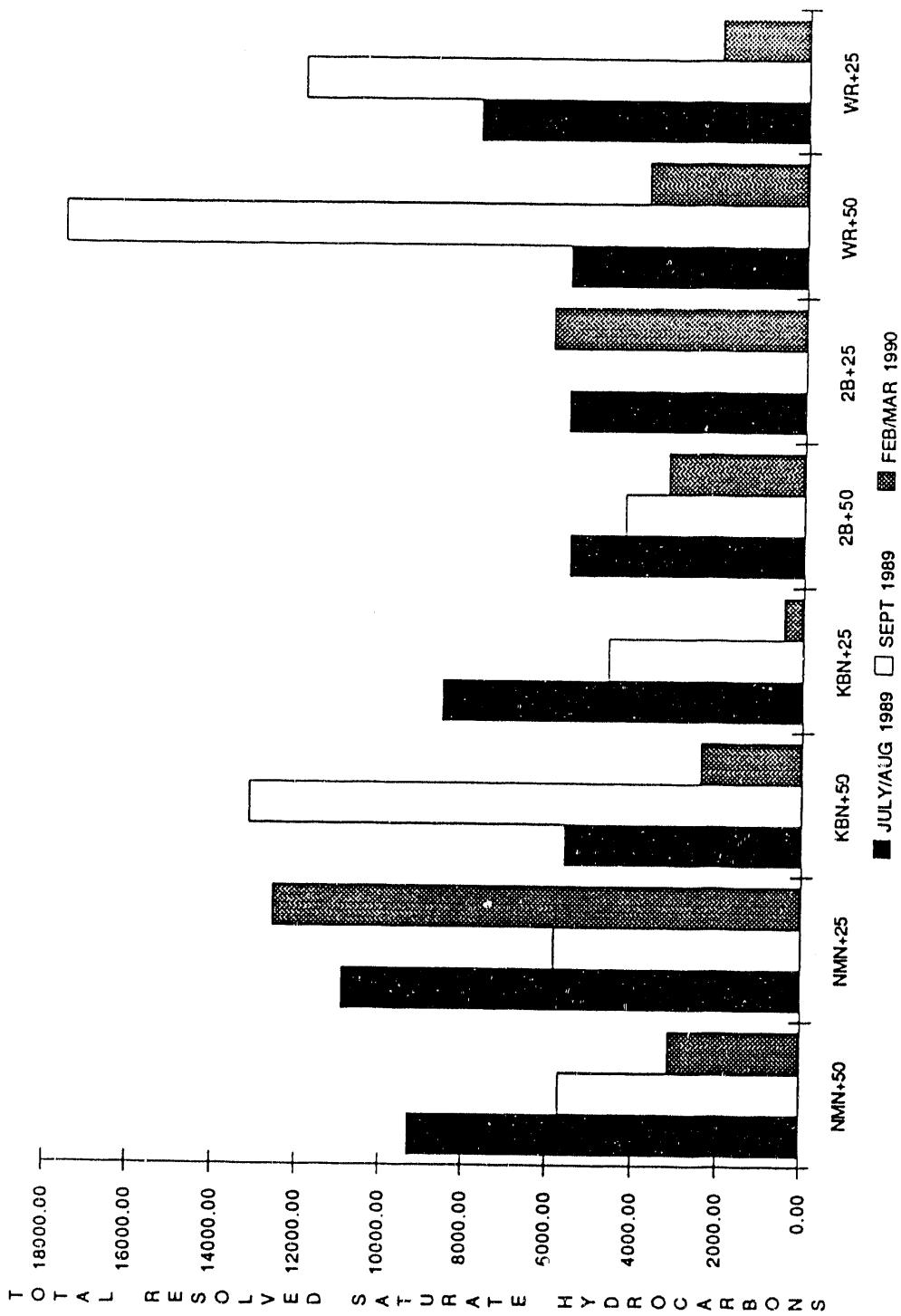
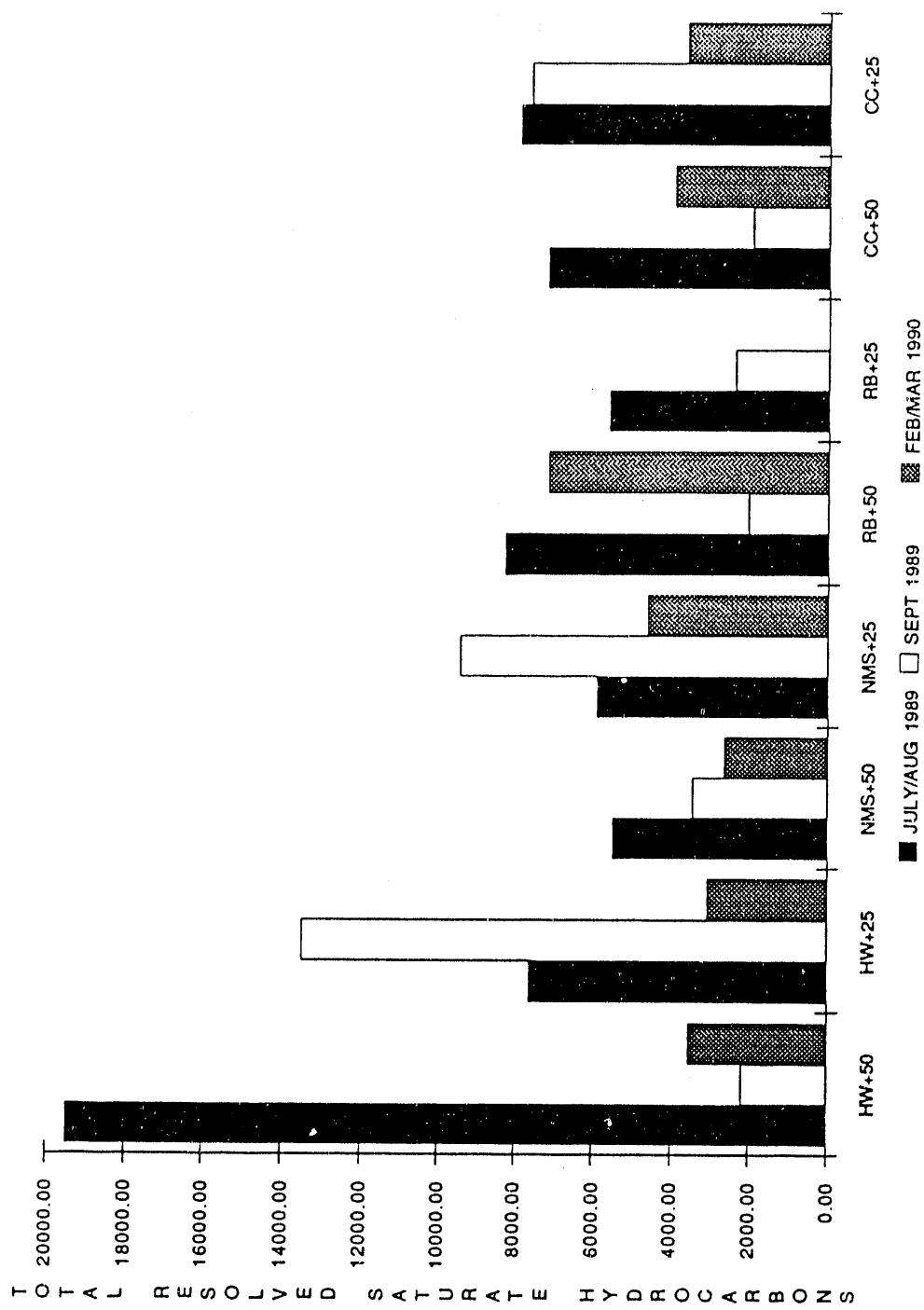
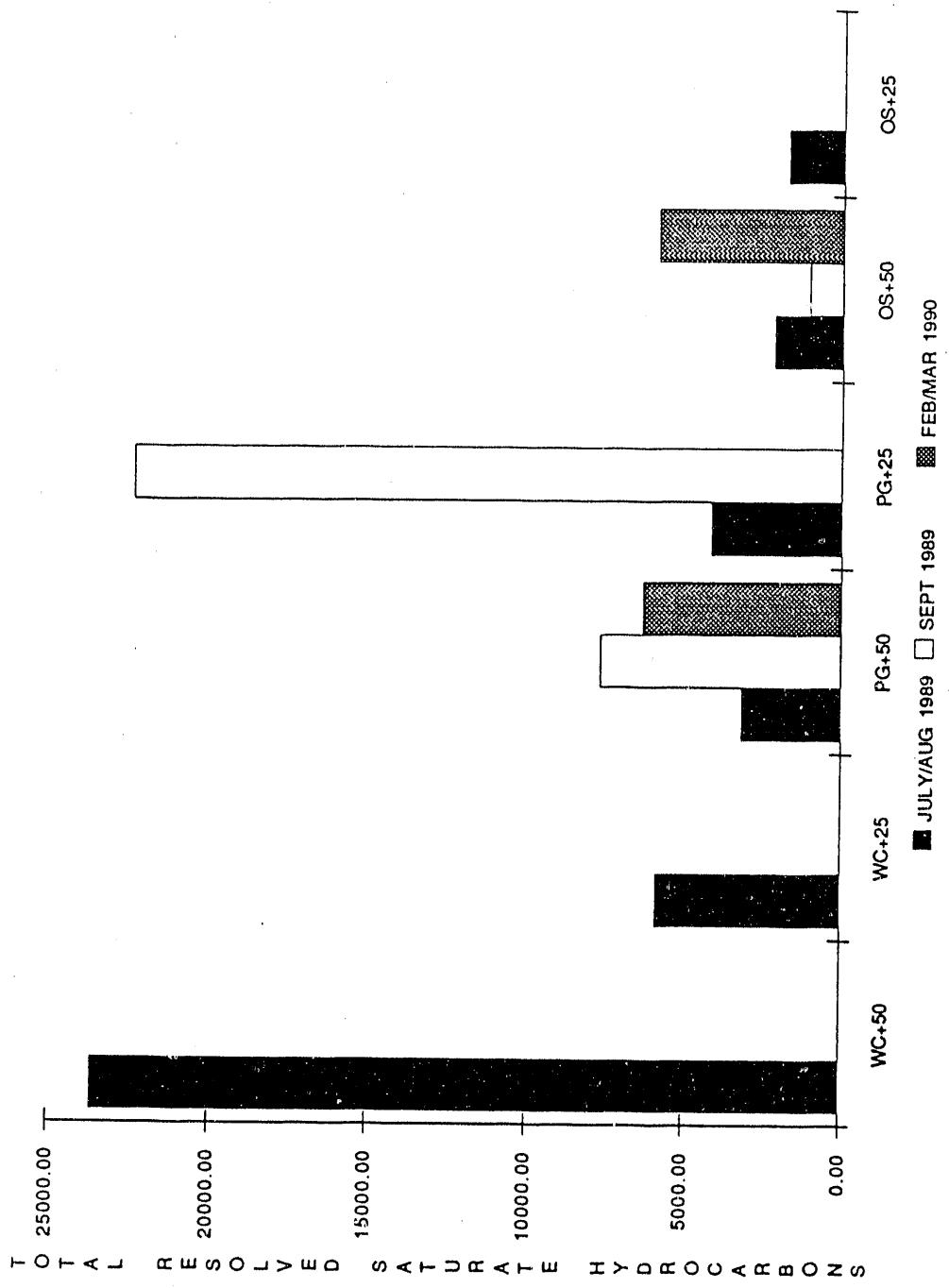


FIGURE 8c. Individual Tissue Concentrations of Total Aromatic Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Other Oiled Washington Coast Beaches. See Table 4 for sample locations.


TABLE 5. Tissue Concentrations of Total Aromatic Hydrocarbons (ng/g dry weight) Averaged Over Three Beach Surveys Following the December 1988 Oil Spill

<u>Location And Status</u>	Species			
	<u>California Mussels</u>	<u>Razor Clams</u>	<u>Other(a)</u>	<u>All</u>
Olympic National Park Oiled				
Mean	44	15	27	35
SD	32	0	17	27
N	13	2	8	23
Olympic National Park Reference				
Mean	11	9	22	15
SD	10	8	13	12
N	10	4	9	23
Washington Coast Beaches Oiled				
Mean	13	7	11	9
SD	4	9	--	8
N	3	7	1	11
All Beaches				
Mean	28	9	23	22
SD	28	8	15	22
N	26	13	1	57


(a) This category includes limpets, snails, chitons, polychaetes, and assorted crustaceans.

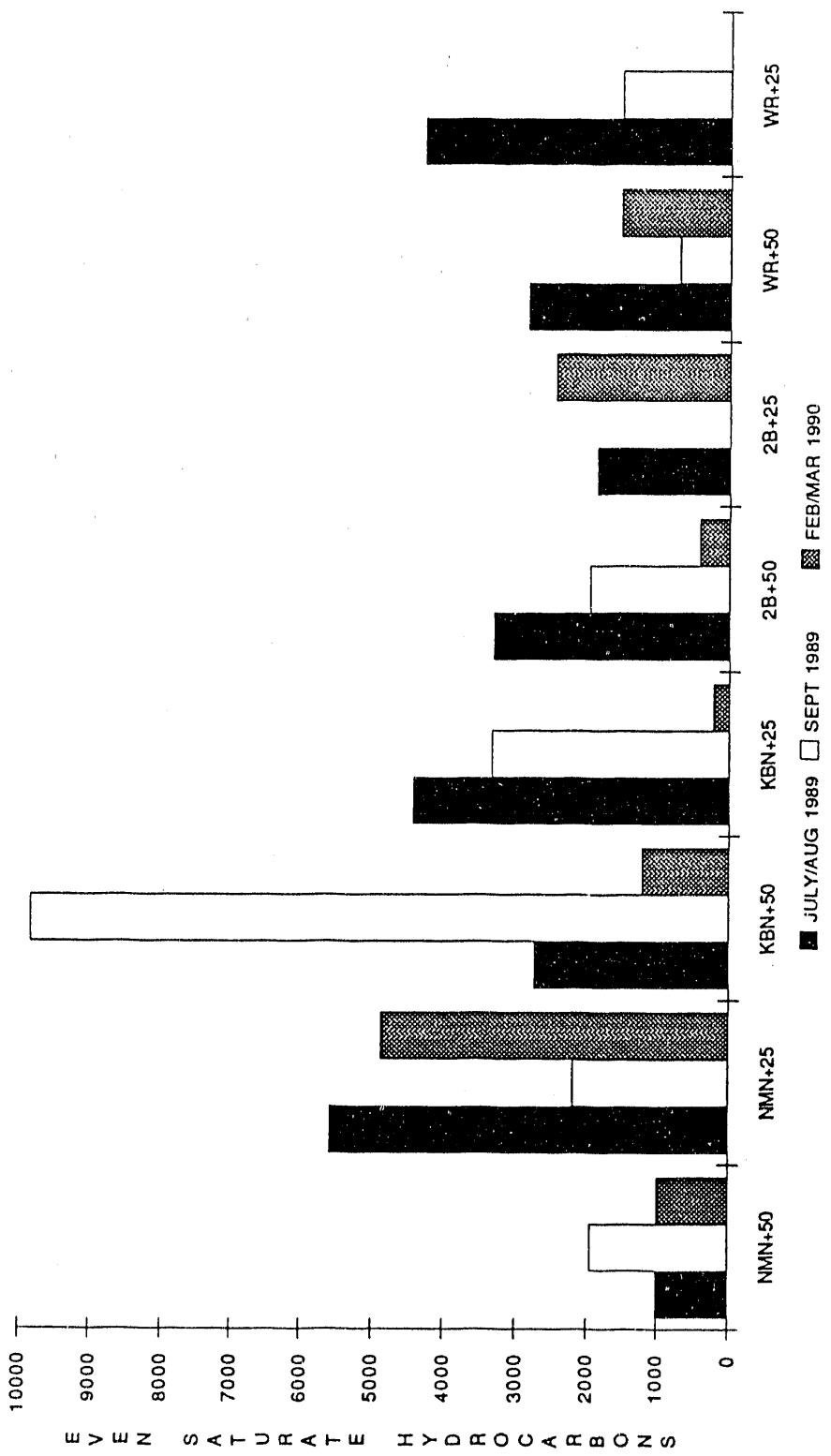

FIGURE 9a. Individual Tissue Concentrations of Total Resolved Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and other Invertebrates Collected from Oiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

FIGURE 9b. Individual Tissue Concentrations of Total Resolved Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Unoiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

FIGURE 9c. Individual Tissue Concentrations of Total Resolved Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Other Oiled Washington Coast Beaches. See Table 4 for sample location.

FIGURE 10a. Individual Tissue Concentrations of Even Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Oiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

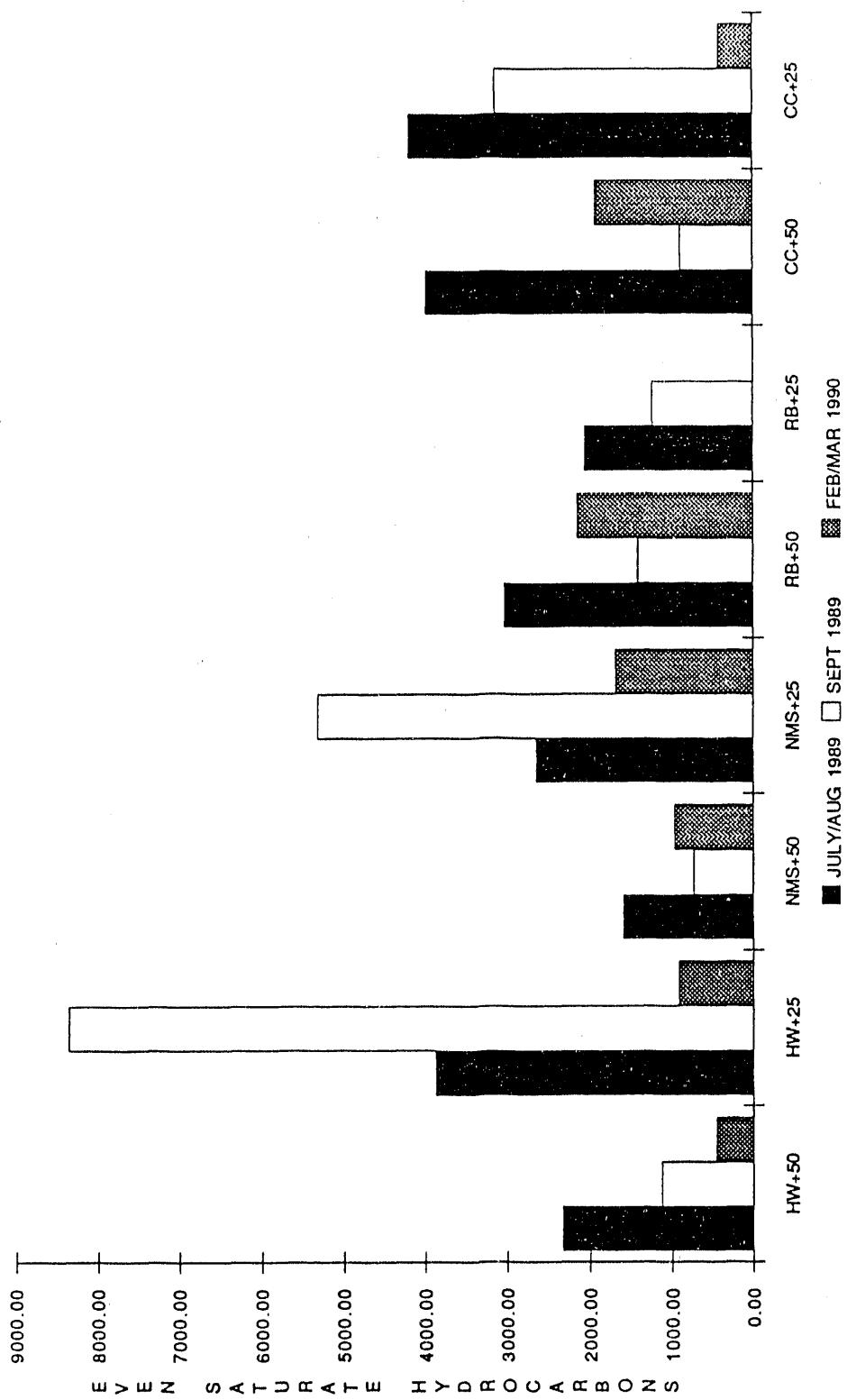
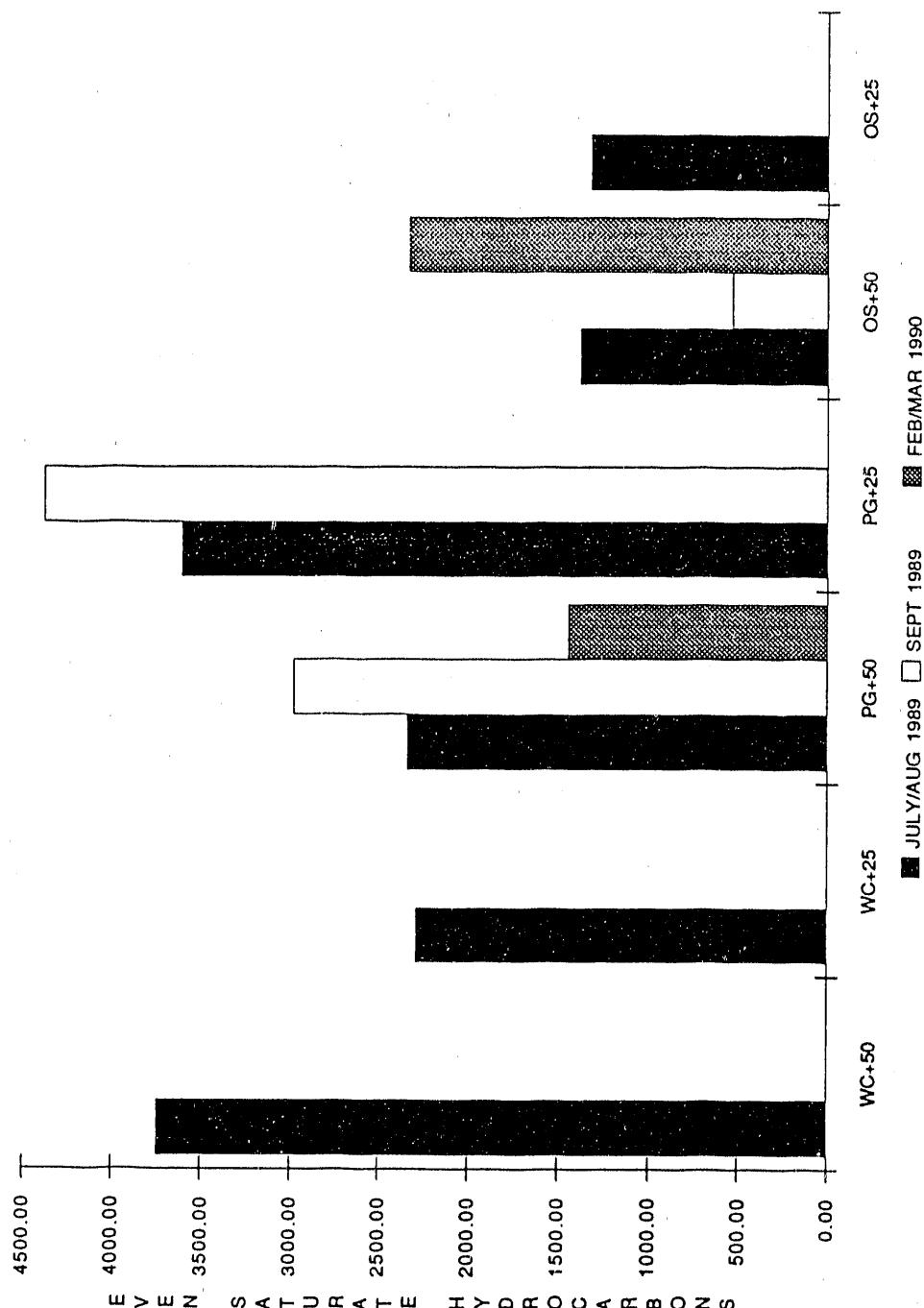



FIGURE 10b.

Individual Tissue Concentrations of Even Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Unoiled Beaches Within the Olympic National Park. See Table 4 for sample locations.

FIGURE 10c. Individual Tissue Concentrations of Even Saturate Hydrocarbons (ng/g dry weight) from California Mussels, Razor Clams, and Other Invertebrates Collected from Other Oiled Washington Coast Beaches. See Table 4 for sample locations.

TABLE 6. Tissue Concentrations of Total Resolved and Even Saturate Hydrocarbons (ng/g dry weight) Averaged over Three Beach Surveys Conducted on the Washington Coast Following the December 1989 Oil Spill

Location and Status	Statistic	Species			
		California Mussels		Razor Clams	
		Total Resolved	Even Saturates	Total Resolved	Even Saturates
<u>Olympic National Park - Oiled</u>	Mean	7939	2456	2597	5167
	SD(a)	4469	1839	29	1023
	N(b)	13	13	2	2
<u>Olympic National Park - Reference</u>	Mean	4818	1921	4571	1939
	SD	2361	1419	2934	813
	N	10	10	4	4
<u>Washington Coast Beaches - Oiled</u>	Mean	4403	1437	9267	2823
	SD	291	901	9588	1191
	N	3	3	7	7
<u>All Beaches</u>	Mean	6331	2133	7254	2516
	SD	3870	1595	7304	1062
	N	26	26	13	13

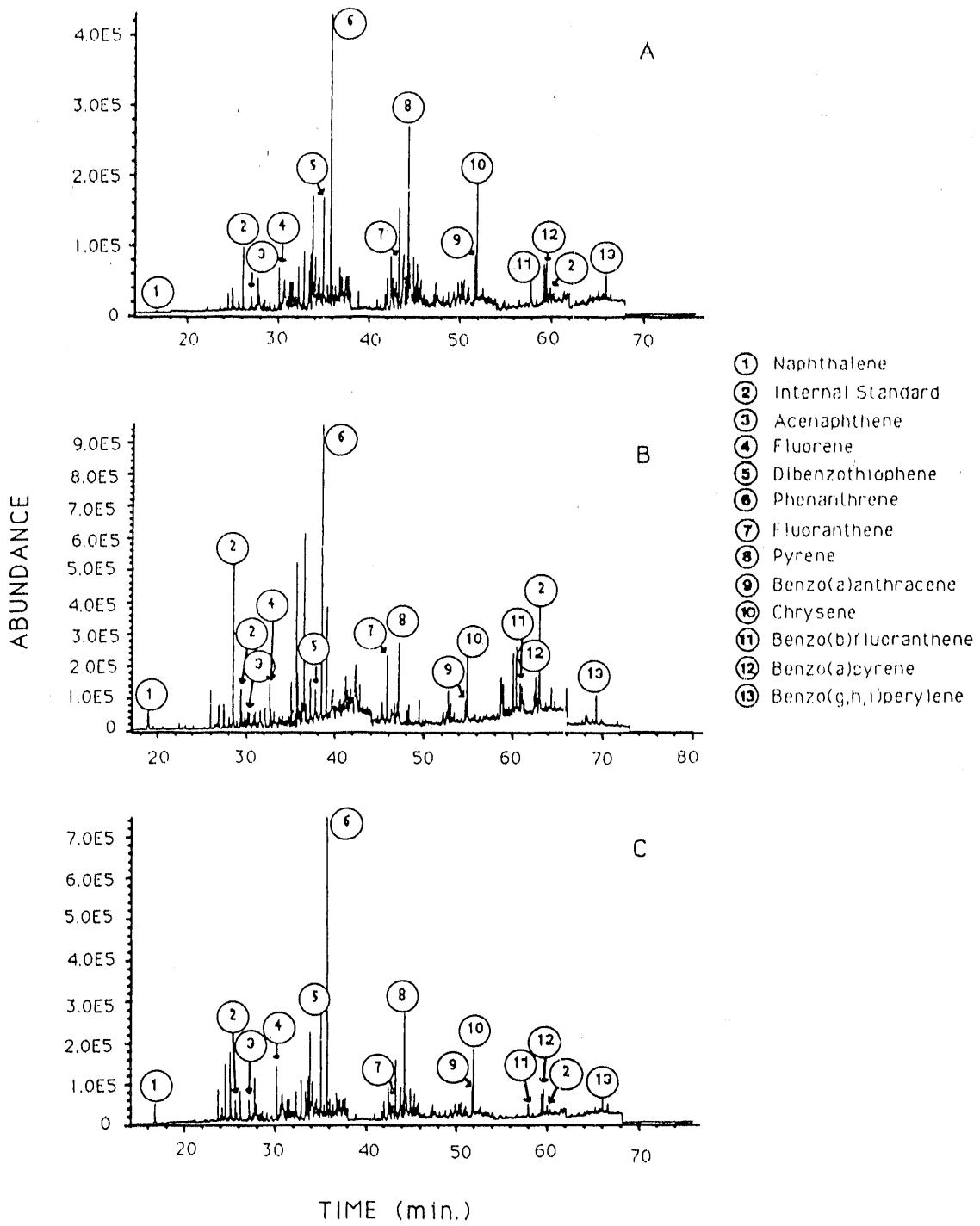
TABLE 6. (contd)

Location and Status	Statistic	Other (c)		All	
		Total Resolved	Even Saturates	Total Resolved	Even Saturates
<u>Olympic National Park - Oiled</u>	Mean	5167	2773	6770	2578
	SD (a)	3759	3009	4155	2190
	N (b)	8	8	23	23
<u>Olympic National Park - Reference</u>	Mean	8015	3055	6026	2368
	SD	5429	2457	4104	1851
	N	9	9	23	23
<u>Washington Coast Beaches - Oiled</u>	Mean	5873	2295	7631	2397
	SD	--	--	7884	1191
	N	1	1	11	11
<u>All Beaches</u>	Mean	6630	2887	6636	2458
	SD	4663	2571	4985	1869
	N	18	18	57	57

(a) SD = standard deviation.

(b) N = the sample size.

(c) This category includes limpets, snails, chitons, polychaetes, and assorted crustaceans.


Although the relatively low concentrations of petroleum hydrocarbons found in most molluscan tissues collected on oiled beaches during the third survey could reflect a low but continuous exposure to residual oil found within the sediments on oiled beaches, these low concentrations likely also reflect the relatively slow depurative abilities of molluscs in general. Vandermeulen et al. (1977) determined that clams from chronically oiled beaches transferred to oil-free water gradually lost tissue-bound hydrocarbons rapidly during the first 2 days, but much more slowly thereafter. Even after 92 days, depuration was incomplete with tissues retaining 30% of the initial hydrocarbon burden. Anderson et al. (1974) and Anderson (1975) also presented data indicating that molluscs do not depurate hydrocarbons rapidly.

3.4 SOURCE IDENTIFICATION

3.4.1 Intertidal and Shallow Subtidal Sediments

Chromatograms of oil (aromatics fraction) associated with Sand Island sediments in September 1989 display patterns strikingly similar to those of Bunker C oil collected from the barge Nestucca by the Washington State Department of Ecology in December 1988 (Figure 11). The lower CPI values (<1) associated with the Sand Island sediment samples also are indicative of an anthropogenic source of contamination (Table 7). The CPI values for the Nestucca oil, Alaska North Slope (ANS) crude oil, and Sand Island sediments are all essentially the same (0.90 - 0.94).

Additionally, the ratios of nC₁₇/pristane and nC₁₈/phytane for the Sand Island residues are comparable to those for the Nestucca oil (Table 7). Significant changes have been reported in these ratios after 6 to 9 months of weathering of intertidal sediments amended with ANS crude oil (Anderson et al. 1978), suggesting the presence of hydrocarbon-degrading microorganisms (Blumer and Sass 1972). The finding of little change in these key hydrocarbon ratios indicates that biodegradation played a relatively minor part in the weathering of the Sand Island residues. This is not surprising, since the oil on Sand Island was buried in relatively coarse sediments in the high (+13.3 to +15.2-ft) intertidal zone.

FIGURE 11. Total Ion Chromatograms (Polynuclear Aromatic Hydrocarbons) for Surface Sediments from Sand Island (A) and Norwegian Memorial - UW Transect (B) Compared with the Total Ion Chromatogram for Nestucca Oil (C). (The symbol E5 denotes values times 10^5 .)

TABLE 7. Summary of Saturate Hydrocarbon Concentrations, the Ratios of nC₁₇/Pristane and nC₁₈/Phytane, the Carbon Preference Index (CPI), and Infrared Spectrophotometric Concentrations (IR) of Oil and Grease in Selected Environmental Samples. See Table 4 for Sample Locations

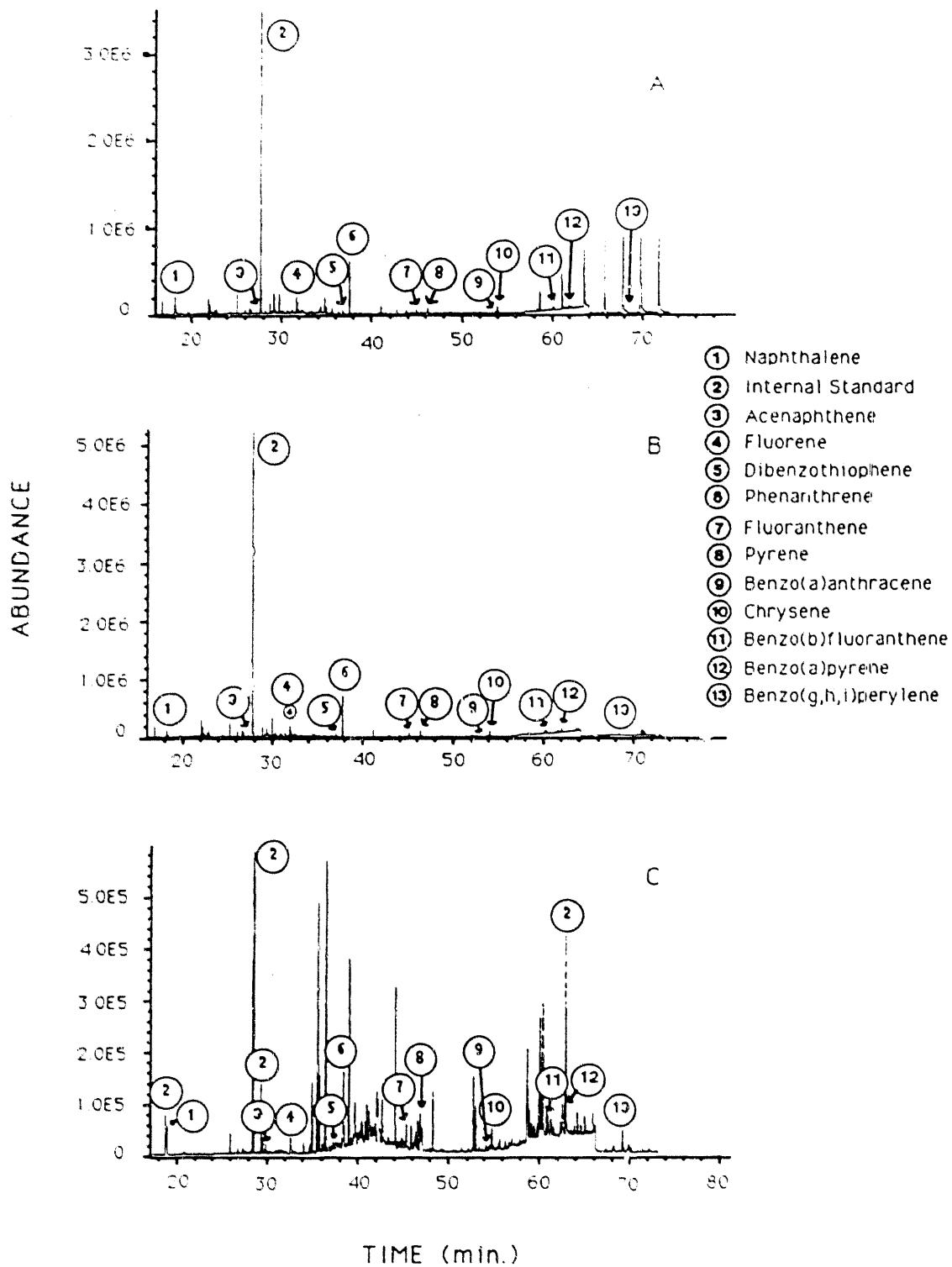
<u>Station</u>	<u>Saturate Hydrocarbon Concentration</u>	<u>Saturate Hydrocarbon Ratios</u>			<u>IR</u> (<u>µg/g</u>)
	nC ₁₇ -nC ₂₆ (mg/kg)	nC ₁₇ /Pristane	nC ₁₈ /Phytane	CPI	
<u>Nestucca</u> Oil	(a)	1.83	1.27	0.90	(a)
ANS Crude Oil	(a)	1.54	1.78	0.94	(a)
SI+15.2	339.45	1.33	0.90	0.94	6255
SI+13.3	962.05	1.67	1.16	0.92	19015
OP3-3.0	0.0006	(b)	(b)	0.67	250
HW+15	0.001	(b)	(b)	0.68	170
RB+14	0.001	(b)	2.20	1.02	86
HNMX+8.2	0.007	0.34	1.33	1.11	115
HNMX+1.1	0.0003	0.51	(b)	0.78	73

(a) Not calculated.

(b) Ratio not calculated because target hydrocarbon not detected.

The lack of significant weathering, however, is evident in the chromatographic analyses of both aromatic and saturate hydrocarbons from the Sand Island residues. The only significant changes that occurred are associated with light-ends (the more volatile compounds). While concentrations of the more volatile compounds from the Nestucca oil are relatively low, the notable difference when comparing the aromatic hydrocarbon fractions of each chromatogram is the absence of naphthalene from the Sand Island samples (Figure 11, Appendix C1). There are, however, few other changes. Dibenzothiophene, phenanthrene, pyrene, chrysene, benzo(b)fluoranthene, and benzo(g,h,i)perylene all persist in the Sand Island samples at generally the same relative concentrations as in the Nestucca oil.

Similarly, changes in saturate hydrocarbons are slight (Appendix C2). As anticipated, some of the saturate hydrocarbons (C₉ - C₁₃), although present in the Nestucca oil, are not detectable in either of the Sand Island


samples. However, the remaining saturate hydrocarbons (C₁₄ - C₃₆) were detected in the Sand Island samples, generally at the same relative concentrations encountered in the Nestucca oil.

Sediments collected during the third survey from the Norwegian Memorial University of Washington transect (Figure 11) and from the -3.0 ft contour from Wedding Rocks, Norwegian Memorial North, Kayostla Beach North, and Second Beach (Figure 12) may contain remnants of weathered Bunker C oil. The relative concentrations of fluorene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)- fluoranthene, benzo(a)pyrene, and benzo(g,h,i)perylene are comparable to the Nestucca oil. A complication to source identification, however, is that these samples contain other hydrocarbon components which are not consistent with Bunker C oil and may be of a biogenic origin. There is even less certainty as to the origin of oil associated with the samples collected from Ruby Beach and Hole-in-the-Wall. The chromatograms (aromatics fraction) for neither of these samples match the comparable chromatograms for the Nestucca oil (Figures 11 and 12). This does not eliminate the possibility that oil in these samples represents highly weathered Bunker C oil, but due to the uncertainty associated with determining its origin, no conclusion can be made.

3.4.2 Invertebrate Tissues

Likewise, chromatographic analyses of mussels, razor clams, or other invertebrates revealed little information useful in determining the origin of essentially trace quantities of aromatic hydrocarbons contained in some of their tissues. While no napthalenes were found in any of the tissues, phenanthrenes occurred in tissues from seven of the twelve sampled beaches, including Ocean Shores, Point Grenville, Second Beach, Kayostla Beach, Norwegian Memorial North and South (including the transect sampled by the University of Washington), and Wedding Rocks (see Appendix C2). What phenanthrenes were found, however, were generally less than 20 ng/g.

While many of the tissue samples yielded a CPI of less than 1.0, many of these have a low total concentration (<9 μ g/g) of normal branched saturate hydrocarbons (Appendix C2). On the other hand, most (8 of 12) of the tissue samples with a total concentration of normal branched saturates of >9 μ g/g

FIGURE 12. Total Ion Chromatograms (Polynuclear Aromatic Hydrocarbons) for Surface Sediments from Hole-in-the-Wall (A), Ruby Beach (B), and from a Composite Containing Surface Sediments from the -3.0-ft Tidal Contour at Kayostla Beach, Norwegian Memorial North, and Wedding Rocks (C) (The symbol E5 denotes values times 10^5)

have a CPI greater than 1. Because extensive weathering should have occurred since the spill, we might have expected a CPI greater than 1 from the loss of petroleum-derived saturate hydrocarbons. The CPIs being greater than 1 indicated that the odd-numbered organics, or biogenic hydrocarbons, were the dominant form of saturate hydrocarbons present.

Also surprising is the finding that most of the nC_{17} /pristane and nC_{18} /phytane ratios equalled or exceeded those calculated for the Nestucca oil and the oil found associated with intertidal sediments at Sand Island. Again, however, the usefulness of these ratios as indicators of biodegradation may be limited at such low hydrocarbon levels. If the target organisms had been contaminated by oil, we would have expected most of the samples to show nC_{17} /pristane and nC_{18} /phytane ratios of less than 1.83 and 1.27, respectively.

3.5 QUALITY-ASSURANCE RESULTS FOR CHEMICAL ANALYSES

3.5.1 Oil and Grease in Sediments

Two parameters (procedural blank and matrix-spike recovery) were used to evaluate the quality of the oil and grease in sediment data. Procedural blanks were usually less than 41 $\mu\text{g/g}$ dry weight, assuming a 10-g sediment sample. The detection limit, calculated as 3 times the standard deviation of the mean for blanks, was in the range of 12 to 50 $\mu\text{g/g}$. Matrix-spike recoveries ranged from 51 to 97%, but only two were below 60%.

3.5.2 Saturate Hydrocarbon Compounds in Tissues and Sediments

Tissue and sediment samples were spiked with a surrogate compound, o-terphenyl (OTP) before extraction. The percent recovery of OTP (shown in Appendix C2) is an indication of the recoveries of the saturate compounds. The recovery of OTP was usually in the acceptable range of 50 to 100%. Lower recoveries were usually observed for the lower-molecular-weight compounds, which are volatile. Several field samples were spiked with a known amount of eleven saturate compounds and then extracted. The percent recoveries for these matrix spikes usually were in the range of 40 to 140%. Procedural blanks were usually below the detection limit of approximately 100 ng/g for each compound.

3.5.3 Aromatic Hydrocarbon Compounds in Tissues and Sediments

Each tissue or sediment sample analyzed for Polynuclear Aromatic Hydrocarbons (PAH) was spiked with three surrogate compounds (d8-naphthalene, d10-acenaphthene, and d12-perylene) at the beginning of the extraction procedure. The percent recoveries of these surrogates indicate the recoveries of similar PAH compounds in the samples. The surrogate-recovery data were not used to correct any of the data. The recovery of d8-naphthalene was usually in the range of 20 to 60%, d10-acenaphthene was 30 to 90%, and d12-perylene was 60 to 120% (Appendix C1). Because d8-naphthalene is the most volatile PAH surrogate, this recovery is frequently below 50%. However, the surrogate recoveries are generally in the acceptable range.

Several field samples were spiked with known quantities of PAH compounds and then extracted and quantified to determine the percent recovery of matrix spikes. Matrix spike recoveries (shown in Appendix C1) were usually in the range of 50 to 120%, with the lowest recoveries for the most volatile compounds.

Procedural blanks were usually below the detection limits, which were in the range of 3 to 10 ng/g for individual PAH compounds.

3.6 PERSPECTIVE ON LEVELS OF RESIDUAL CONTAMINATION

For comparing the hydrocarbon levels in the present study with background or historical levels in the study area, only a few studies, unfortunately, are germane (Brown et al. 1979, 1981; Vanderhorst et al. 1980; Strand et al. 1986; Word et al. 1987a, b). While numerous studies on the fate of spilled oil, particularly Bunker C or No. 6 fuel oil, exist (McLeod et al. 1978; Nadeau 1978; Petersen 1978; Ayers 1978; Soule et al. 1978), there is, unfortunately, relatively little specific information as to how long Bunker C fuel persists in the marine environment. Betancourt and McLean (1973), however, found that Bunker C oil spilled from the tanker Arrow in Nova Scotia weathered only 20% after one year in low-energy environments such as on the shoreline above the limit of wave activity. By contrast, they found that high-energy environments weathered and depurated rapidly.

While we found relatively high concentrations of oil (6255 and 19,015 $\mu\text{g/g}$ dry weight) on Sand Island in Grays Harbor during the second survey, we found relatively low concentrations of oil (63 to 250 $\mu\text{g/g}$), essentially trace amounts, associated with the coastal stations during the third survey, indicating that little residual of the 1988 Nestucca spill remains. These findings suggest that the long-term impacts on intertidal communities should not be as severe as first believed. The lack of any appreciable hydrocarbon signal occurring in biological tissues examined during this study tends to support this suggestion. The relatively high concentrations of oil found on Sand Island were restricted to a narrow band 3 to 4 m wide over a 10- to 13-m stretch of beach on the southwest side of the island. Attempts to relocate this band of oil during the third survey were unsuccessful. Shifts in the configuration of sand dunes mediated by storm events during the winter of 1989/1990 undoubtedly were partially responsible.

Interestingly, oil was not found associated with beaches hypothesized to be oiled (Kayostla, Norwegian Memorial, Wedding Rocks) until the third survey (February/March 1990). Low concentrations of oil were also detected at Ruby Beach and at Hole-in-the-Wall (both hypothesized unoiled beaches), although analyses of all samples collected from both beaches during the first and second surveys (July and September 1989, respectively) failed to detect the contaminant. While it is difficult to eliminate the possibility of altogether missing the oil on our first two visits to the oiled beaches, the more likely reason for this finding is associated with the normal cycle of beach accretion and erosion. Because the spill occurred in December and January, when beaches were fully eroded, it follows that as beaches accreted sediments in summer and autumn months (also at the time of our first and second surveys), oil not removed by the clean-up crews was buried and hence inaccessible to our sampling. On sandy beaches, we generally sampled at a depth of 15 cm, though beach accretion on sandy beaches may total 1 to 2 m. Hence, when the beaches again eroded in the winter of 1990 (at the time of our third survey), the previously buried oil became accessible to our sampling methods.

With the exception of Ruby Beach (a sand beach), all those beaches showing residual oil during the third survey were classified as rock and/or

cobble beaches. Although the heaviest oiling occurred at Ocean Shores, near the North Jetty, none of our surveys detected any oil residual in this location. These results suggest, then, that high-energy (open) sand beaches can cleanse themselves quickly (in a matter of months), while the protected rock, cobble, and rubble beaches, encountered at Kayostla Beach, Norwegian Memorial, and Cape Alava (Wedding Rocks), require a substantially longer period (potentially years) for natural cleansing.

We have found no reports that address hydrocarbon levels in intertidal sediments along the outer Washington coast. However, three studies address hydrocarbon levels in intertidal sediments along the Strait of Juan de Fuca. In the first, Brown et al. (1979, 1981) sampled intertidal sediments at +2.0 ft (+0.6 m) at 10 sites along the Strait of Juan de Fuca to determine background levels of hydrocarbons. Total saturate and total unsaturate hydrocarbons were measured microgravimetrically after silica gel extraction, and selected alkane and aromatic hydrocarbons were determined by glass-capillary gas chromatography. Over three quarterly sampling periods, total saturate hydrocarbons ranged from less than 1 to 19 $\mu\text{g/g}$ dry weight, and total unsaturate hydrocarbons from 1 to more than 3 $\mu\text{g/g}$. The highest concentrations were at Ediz Hook, whereas the sampling site at the base of Dungeness Spit had among the lowest concentrations. After a spill of diesel fuel in Port Angeles Harbor, total saturate hydrocarbons measured microgravimetrically ranged from 7 $\mu\text{g/g}$ at Peabody Creek to 1500 $\mu\text{g/g}$ at the boat ramp. Any comparison between the microgravimetric results and the IR results presented here should consider that the IR method measures total oil and grease concentration and yields higher values than the microgravimetric method, which measures selected hydrocarbon concentrations of the total oil and grease in the sample.

The second study, which concerned field experiments to determine how intertidal areas recover from oiling, provides measurements of IR values in uncontaminated natural sediments used as controls in field experiments (Vanderhorst et al. 1980). The control sediments were naturally occurring sandy sediments from intertidal habitat at Protection Island and Sequim Bay in the Strait of Juan de Fuca. During the course of the experiments, periodic monitoring showed that the mean IR values ($n=3$) changed with time as

shown in Table 8. Vanderhorst et al. (1980) attributed the observed increase in IR values with time in the field to increasing organic content of the sandy sediments. These data indicate that background IR levels for sandy beach sediments can be expected to be within a range of 20 to 140 mg/kg dry weight.

The concentrations of oil and grease occurring on Washington coast beaches immediately following the Nestucca spill undoubtedly were many times higher than those measured during our latter surveys. The 6255 to 19,015 $\mu\text{g/g}$ oil and grease found on Sand Island in Grays Harbor during the second survey is a level likely to have occurred on other affected beaches of the Washington coast. The concentrations of total oil and grease in intertidal sediments at Ediz Hook following the December 1985 spill of ANS crude oil from the ARCO Anchorage was approximately 30,000 mg/kg (Word et al. 1987a, b). However, these high concentrations of total oil and grease were significantly reduced through clean-up procedures implemented by ARCO Marine, Inc. Average concentrations of residual oil and grease at the end of clean-up were 450 $\mu\text{g/g}$. The maximum observed average concentration within treated areas was about 1100 $\mu\text{g/g}$. Vanderhorst et al. (1980, 1981) showed in field experiments that residual oil concentrations in intertidal sediments decreased from about 2000 $\mu\text{g/g}$ to undetectable levels within 18.5 months. While the type of oil and the sediment characteristics in these studies are different than those analyzed in the present study, it would appear that those areas of the Washington coast oiled by the Nestucca spill are returning to essentially background levels with the same general kinetics. Presumably,

TABLE 8. Hydrocarbon Concentrations (mg/kg dry weight) for Uncontaminated Areas as a Function of Time After Oiling (Vanderhorst et al. 1980)

Total Hydrocarbon Concentration (mg/kg) by IR, $\bar{x} \pm \text{S.D.}$

<u>Areas</u>	<u>Time in Field</u>		
	<u>0 Months</u>	<u>3 Months</u>	<u>15 Months</u>
Sequim Bay	21 (± 8)	32 (± 15)	136 (± 52)
Protection Island	37 (± 10)	24 (± 7)	132 (± 54)

the disabled barge Nestucca farther seaward until emergency repairs could be affected, however, reduced the likelihood of more fresh oil reaching Washington Coast beaches.

3.7.2 Type of Beach

The area of the Washington coast most affected by the spill is characterized by unprotected, high energy, rocky headlands and sand beaches. Fortunately, this type of shoreline tends to cleanse itself most rapidly (ESL Environmental Sciences Limited, unpublished data). Most Bunker C stranding on the rocky shorelines of the Washington coast (Kayostla Beach, Norwegian Memorial, Wedding Rocks) was removed relatively quickly by wave action and a series of severe winter storms that occurred immediately following the spill. The relatively low concentrations of oil (63 to 250 $\mu\text{g/g}$ by IR), essentially trace amounts, associated with these coastal stations during the third survey confirmed that weathering and depuration proceeded rapidly. What residue remained was restricted to the more protected rock and cobble substrates associated with gently sloping beaches at Kayostla Beach and Norwegian Memorial. The finding of significantly decreased $n\text{C}_{17}/\text{Pristane}$ and $n\text{C}_{18}/\text{phytane}$ ratios associated with sediments collected in the Norwegian Memorial area (samples HNMX+1.1) of ONP also confirmed that weathering occurred very rapidly in selected Washington coastal sediments (Table 6). Additionally, even though the sand beaches at Ocean Shores (North Jetty area) were heavily oiled, oil was not detected during any of the three surveys conducted at this location, suggesting more rapid depuration from open sand beaches. Finally, even though very high concentrations of oil (6,255 and 19,015 $\mu\text{g/g}$ dry weight by IR) were found on Sand Island during the second survey, attempts to relocate this oil during the third survey proved unsuccessful, further indicating that weathering and depuration proceeded rapidly. Shifts in the configuration of sand dunes mediated by intense storm events during the winter of 1989-1990 were likely partially responsible.

3.7.3 Efficacy of Clean-up

Finally, clean-up was well organized and immediate. Clean-up crews visited all affected beaches; only one "set-aside" beach was established in

ONP to study potential effects of oiling on intertidal ecology. For the most part, oil in the form of "mats," smaller "patties," and "blobs" was easily picked up or scraped off rocks. Oiled debris consisting of kelp mats, eel grass, driftwood, and other flotsam were also readily removed for ultimate disposal in a certified landfill. Absorbent pads were only used during the first few days of the spill, when the oil was still fresh. Pompoms were installed and used effectively over cobble substrates containing buried oil at Norwegian Memorial. Intense winter storm activity accompanied by extremely high tides at the time of the spill refloated extensive amounts of stranded debris, effectively adding much natural oil-absorbent material to affected waters. Helicopter access to even the most remote beaches on the coast greatly facilitated the clean-up process. Logs too large for removal by truck or helicopter were burned at the site. Approximately 45,000 yd³ of oiled logs were burned on Washington coastal beaches (including those of ONP) following the spill.(a) Other logs as well as large rocks and boulders were "brush-torched" to remove oil, although this technique enjoyed only limited success. Oil adhering to logs and rocks was heated until formation of an ash, but rocks often exploded during this process, raising concern for operator safety. Propane-fired torches were also used on heavily oiled, cobble beaches of Vancouver Island, but again with little success (Harding and Englart 1989).

Clean-up on Vancouver Island following the Nestucca spill proceeded in much the same way and over essentially the same time frame. Canadian officials (Harding 1990) also indicated that a rapid and thorough clean-up program following grounding of the oil in early January 1989 served to reduce the impacts of the spill. The grounding of oil in locations where natural self-cleaning was at maximum (high wave action) also limited impacts.

(a) Personal communication, Lt. Mike Smith, Marine Safety Office, U. S. Coast Guard, Seattle District.

4.0 CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

4.1.1 Contamination of Intertidal and Shallow Subtidal Sediments

Although relatively high concentrations of oil (6255 and 19,015 $\mu\text{g/g}$ dry weight by IR) were found on Sand Island in Grays Harbor during the second survey, the relatively low concentrations of oil (63 to 250 $\mu\text{g/g}$ by IR), essentially trace amounts, associated with the coastal stations during the third survey indicate that relatively little oil residual remains from the 1988 Nestucca spill. Even the relatively high concentrations of oil found on Sand Island were restricted to a narrow band 3 to 4 m wide over a 10- to 13-m stretch of beach on the southwest side of the island, and attempts to relocate this band of oil during the third survey proved unsuccessful, further indicating that weathering and depuration have proceeded rapidly.

Additionally, even though the Ocean Shores (North Jetty) area was heavily oiled, oil was not detected during any of the three surveys at this location. This suggests that open, high-energy, and sandy beaches cleanse themselves naturally much faster than do rocky and cobble beaches. Our results also suggest that the clean-up of grounded oil mats and oiled debris following the Nestucca spill reduced the level of residual oil contamination on affected beaches.

4.1.2 Source of Oil Found on Washington State Beaches

Chromatograms of oil (aromatics fraction) found associated with Sand Island sediments during the second survey display patterns strikingly similar to those of Bunker C fuel oil collected from the barge Nestucca. The lower carbon preference index values (0.92, 0.94) of the Sand Island sediment samples are also indicative of an anthropogenic source of contamination. The preponderance of evidence, then, strongly suggests that the oil found on Sand Island came from the barge Nestucca.

There is, however, less certainty as to the source of oil found in sediments collected during the third survey at Norwegian Memorial, Kayostla Beach, Wedding Rocks, Ruby Beach, and Hole-in-the-Wall. The Norwegian Memorial, Kayostla Beach, and Wedding Rocks sediments contained some

components that are consistent with weathered Bunker C oil but also contained hydrocarbons that could be associated with other oils including those of biogenic source. The chromatograms (aromatics fraction) for Ruby Beach and Hole-in-the-Wall sediments were not consistent with comparable chromatograms for the Nestucca oil. This does not rule out the possibility that the oil found in these samples represents highly weathered Bunker C, but due to the uncertainty associated with determining the source, no conclusion can be made.

4.1.3 Contamination of Biotic Assemblages

Concentrations of PAH contained in California mussels, razor clams, and other invertebrates following the Nestucca spill were all \leq 100 ng/g (dry weight). Most concentrations were \leq 45 ng/g (dry weight). These levels are significantly (10 to 100 times) lower than those found in mussels collected in South Puget Sound, a relatively clean urban estuary, and the more polluted areas of Puget Sound (Commencement Bay and Elliott Bay) in recent years by the National Oceanic and Atmospheric Administration (NOAA) as part of the National Status and Trends Program for Marine Environmental Quality. Under the same program, concentrations of aromatic hydrocarbons in mussels found at coastal sites including Cape Flattery, Grays Harbor, and Coos Bay, Oregon ranged from 20 to 141 ng/g (dry weight) from 1986 to 1989. Based on the relatively low concentrations of known carcinogenic PAH (4 to 15 ng/g dry weight) contained in the shellfish collected during the present study, the estimated lifetime cancer risk should also be considered low (\sim 5 \times 10⁻⁷).

4.1.4 Factors Influencing Weathering and Depuration

Factors likely accounting for the relatively rapid weathering and depuration of oil from the Nestucca spill include 1) the time of year in which the spill occurred, 2) the type of beach or coastline affected, and 3) the timely and efficient clean-up. Because the spill occurred in winter, when air and water temperatures were lowest, most of the Bunker C fuel oil congealed into "blobs," "patties," and "mats." Large amounts of floating debris also tended to catch (adsorb) significant quantities of oil. The area of the Washington coast most affected is characterized by unprotected, high-energy sand beaches and rocky headlands, which tend to rapidly cleanse

themselves. Finally, clean-up was immediate and well organized. The large oil mats were easily picked up, and helicopter access to affected beaches facilitated removal of oiled debris.

4.2 RECOMMENDATIONS

Despite our conclusion that little oil remains from the 1988 Nestucca spill, the potential for buried, virtually unweathered oil resurfacing on Sand Island in Grays Harbor still exists. Sampling on Sand Island and the Washington coast in general was minimal, and our results and conclusions should be observed with that understanding. Because Sand Island is an important nesting ground for marine birds and because relatively high concentrations of Bunker C oil were found during the second survey, we recommend continuing minimal sampling of these sediments for the next 3 to 4 years. Sampling should occur during the lowest tides of February, when beach accretion is at its lowest, thus allowing the greatest potential of detecting resurfaced oil. We also recommend continuing use of a single randomly chosen transect and collecting sediments from the +15-, +13-, and +8-ft elevations annually.

Finally, because the quantities of shellfish harvested for consumption by both Native Americans and visitors to the Washington coast is relatively unknown and because small but detectable levels of carcinogenic aromatic hydrocarbons were found in some biological tissues collected from the Olympic National Park beaches, we recommend continuing minimal sampling of mussel tissues collected annually from the Norwegian Memorial area and Wedding Rocks for the next 3 to 4 years. Since the concentrations of aromatic hydrocarbons from the three surveys did not differ significantly, we cannot recommend any one sampling time over any other.

5.0 REFERENCES

APHA. 1985. Standard Methods for the Examination of Water and Wastewater, 16th Edition. American Public Health Association, Washington, D.C.

Anderson, J. W. 1975. Laboratory Studies on the Effects of Oil on Marine Organisms: an Overview. Publ. 4249, American Petroleum Institute, Washington, D.C. 70 pp.

Anderson, J. W., J. M. Neff, and S. R. Petrocelli. 1974. "Sublethal Effects of Oil, Heavy Metals, and PCBs on Marine Organisms." In Survival in Toxic Environments. M. A. Kahn and J. P. Bederka, Jr., eds. Academic Press, New York, pp. 83-121.

Anderson, J. W., R. G. Riley, and R. M. Bean. 1978. "Recruitment of Benthic Animals as a Function of Petroleum Hydrocarbon Concentrations in the Sediment." J. Fish Res. Board Can. 35:776-790.

Ayers, R. W. 1978. "The Effects of the Barge STC-101 Oil Spill on Shallow Water Invertebrates of Lower Chesapeake Bay." In Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, June 14-17, 1978, Keystone, Colorado. American Institute of Biological Sciences, Washington, D.C.

Ayres, D. L. (In press). The Spring and Fall 1989 Recreational Razor Clam Stocks. Washington State Department of Fisheries, Olympia, Washington.

Betancourt, O. J., and A. Y. McLean. 1973. "Changes in Chemical Composition and Physical Properties of a Heavy Residual Oil Weathering Under Natural Conditions." J. Inst. Pet. 59(569):223-230.

Blumer, M., and J. Sass. 1972. "Oil Pollution: Persistence and Degradation of Spilled Fuel Oil." Science 176:1120-1122.

Boehm, P. D., S. Freitas, J. Trefry, E. Crecelius, R. Hillman, H. Costa, R. C. Tuckfield, C. Peven, J. Brown, W. Steinhauer, N. Young, L. Altshul, J. Payne, G. Farmer, D. McNabb, A. Lissner, R. Sims, J. Clayton, T. Fogg, and R. Shokes. 1988. National Status and Trends Program Mussel Watch, Phase 2. Prepared for the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, by Battelle/Ocean Sciences, Duxbury, Massachusetts.

Brown, D. W., A. J. Friedman, D. G. Burrows, G. R. Snyder, B. J. Patten, W. E. Ames, L. S. Ramos, P. G. Prohaska, D. D. Gennero, D. D. Dungan, M. Y. Uyeda, and W. D. MacLeod, Jr. 1979. Investigation of Petroleum in the Marine Environs of the Strait of Juan de Fuca and Northern Puget Sound. National Oceanic and Atmospheric Administration, Seattle, Washington.

Brown, D. W., A. J. Friedman, P. G. Prohaska, and W. D. MacLeod, Jr. 1981. Investigation of Petroleum in the Marine Environs of the Strait of Juan de Fuca and Northern Puget Sound. National Oceanic and Atmospheric Administration, Seattle, Washington.

Burns, K. A., and J. M. Teal. 1979. "The West Falmouth Oil Spill: Hydrocarbons in the Salt Marsh Ecosystem." Estuarine Coastal Mar. Sci. 8:349-360.

Chan, G. 1973. "A Study of the Effects of the San Francisco Oil Spill on Marine Organisms." In Proceedings of the Joint Conference on the Prevention and Control of Oil Spills. Amer. Petrol. Institute. Washington, D.C. pp. 741-781.

_____. 1975. "A Study of the Effects of the San Francisco Oil Spill on Marine Life. Part II: Recruitment." In Proceedings of the Joint Conference on the Prevention and Control of Oil Spills. Amer. Petrol. Institute. Washington, D.C. pp. 407-461.

_____. 1977. "The 5-Year Recruitment of Marine Life After the 1971 San Francisco Oil Spill." In Proceedings of the 1977 Oil Spill Conference. Amer. Petrol. Institute. Washington, D.C. pp. 543-545.

Dethier, M. N. 1988. A Survey of Intertidal Communities of the Pacific Coastal Area of Olympic National Park, Washington. Report to the National Park Service. Olympic National Park, Washington. 60 pp.

Harding, L. E. 1990. Panel Presentations; Panel #1 - Coastal Habitats. In Proceedings of the Public Symposium on Restoration Following the Exxon Valdez Oil Spill. Restoration Planning Work Group, March 26-27, 1990, Anchorage, Alaska.

Harding, L. E., and J. R. Englarr. 1989. The NESTUCCA Oil Spill: Fate and Effects to May 31, 1989. Regional Program Report 89-01, Environment Canada, West Vancouver, British Columbia.

Hayes, M. O., and E. R. Gundlach. 1979. "Role of Dynamic Coastal Processes in the Impact and Dispersal of the AMOCO Cadiz Oil Spill (March 1978) Brittany, France." In Proceedings of the 1979 Oil Spill Conference (Prevention, Behavior, Control, Cleanup), p. 193-198. American Petroleum Institute, Los Angeles.

Holcomb, R. 1989. "Summary of Events and News Coverage 1988/1989 Grays Harbor Oil Spill," (Draft). Compiled by the Washington Department of Ecology, Olympia, Washington.

Krahn, M. M., C. A. Wigren, R. W. Pearce, L. K. Moore, R. G. Bogar, W. D. MacLeod, Jr., S. Chan, and D. W. Brown. 1988. New HPLC Clean-up and Revised Extraction Procedures for Organic Contaminants. NOAA Technical Memorandum NMFS F/NWC-153, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Seattle, Washington.

Kvitek, R. G., and J. S. Oliver. 1986. "Side-Scan Sonar Impressions of Gray Whale Feeding Grounds along Vancouver Island, Canada. Continental Shelf Research 6:639-654.

Kvitek, R. G., D. Shull, D. Canestro, E. Bowlby, and B. Troutman. 1988. Changes in Rocky Subtidal Communities within a Gradient of Sea Otter Predation Along the Olympic Peninsula Coast, Washington State. Final Report to Olympic National Park and the Washington State Department of Wildlife, Olympia, Washington.

MacLeod, W. D., Jr., L. C. Thomas, M. Y. Uyeda, and R. G. Jenkins. 1978. "Evidence of Argo Merchant Cargo Oil in Marine Biota by Glass Capillary G.C. Analyses." In Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, June 14-17, 1978, Keystone, Colorado. American Institute of Biological Sciences, Washington, D.C.

Nadeau, R. J. 1978. "The NEPCO 140 Oil Spill." In Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, June 14-17, 1978, Keystone, Colorado. American Institute of Biological Sciences.

NOAA. 1987. A Summary of Selected Data on Chemical Contaminants in Tissues Collected During 1984, 1985, and 1986. National Status and Trends Program for Marine Environmental Quality, Progress Report, NOAA Technical Memorandum NOS OMA 38. National Oceanic and Atmospheric Administration, Riverdale, Maryland.

NOAA. 1988. Tide Tables 1989 High and Low Water Predictions, West Coast of North and South America Including the Hawaiian Islands. National Oceanic and Atmospheric Administration, National Ocean Service, Riverdale, Maryland.

NOAA. 1989. Tide Tables 1990 High and Low Water Predictions, West Coast of North and South America Including the Hawaiian Islands. National Oceanic and Atmospheric Administration, National Ocean Service, Riverdale, Maryland.

Oliver, J. S., and R. G. Kvitek. 1984. "Side-Scan Sonar and Diver Observations of Gray Whale Feeding Grounds." Biol. Bull. 167:264-269.

Petersen, H. K. 1978. "Fate and Effect of Bunker C Oil Spilled by the USNS Potomac in Melville Bay, Greenland, 1977." In Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, June 14-17, 1978, Keystone, Colorado. American Institute of Biological Sciences.

Sanders, H. L., J. F. Grassle, G. R. Hampson, L. S. Morse, S. Garner-Price, and C. C. Jones. 1980. "Anatomy of an Oil Spill: Long-Term Effects from the Grounding of the barge Florida off West Falmouth, Massachusetts." J. Mar. Res. 38:265-380.

Snavely, P. D., Jr., and K. A. Kvenvolden. 1989. "Preliminary Evaluation of the Petroleum Potential of the Tertiary Accretionary Terrane, West Side of the Olympic Peninsula, Washington. A Geology and Hydrocarbon Potential." U.S. Geological Survey Bulletin 1892. U.S. Geological Survey, Denver, Colorado.

Skalski, J. R., and J. M. Thomas. 1984. Improved Field Sampling Designs and Compositing Schemes for Cost Effective Detection of Migration and Spills at Commercial Low-Level Radioactive Chemical Waste Sites. PNL-4935, Pacific Northwest Laboratory, Richland, Washington.

Soule, D. F., M. K. Wicksten, J. K. Dawson, M. Oguri, C. R. Feldmeth, and J. D. Soule. 1978. "The Impact of the Sansinena Explosion and Bunker C Spill on the Marine Environment." In Proceedings of the Conference on Assessment of Ecological Impacts of Oil Spills, June 14-17, 1978, Keystone, Colorado. American Institute of Biological Sciences.

Strand, J. A., E. A. Crecelius, R. A. Elston, G. W. Fellingham, and W. H. Pearson. 1986. Reconnaissance Level Assessment of Selected Sediments from Puget Sound. PNL-5471, Pacific Northwest Laboratory, Richland, Washington.

Strickland, R., and D. J. Chassan. 1989. Coastal Washington: A Synthesis of Information. Washington Sea Grant Program, University of Washington, Seattle, Washington.

Teal, J. M., K. A. Burns, and J. Farrington. 1978. "Analyses of Aromatic Hydrocarbons in Intertidal Sediments Resulting from Two Spills of No. 2 Fuel Oil in Buzzards Bay, Massachusetts," J. Fish. Res. Board Can. 35:510-520.

Tetra Tech, Inc. 1986. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. Final Report prepared for Puget Sound Estuarine Program TC-3991-04, Tetra Tech, Inc., Bellevue, Washington.

Tetra Tech, Inc. 1988. Health Risk Assessment of Chemical Contamination in Puget Sound Seafood. TC-3338-28 Final Report. Prepared for U.S. Environmental Protection Agency, Region X - Office of Puget Sound, Seattle, Washington.

USEPA. 1986. Test Methods for Evaluating Solid Waste: Physical/chemical Methods. 3rd ed. SW-846, U.S. Environmental Protection Agency, Washington, D.C.

Vanderhorst, J. R., J. W. Blaylock, P. Wilkinson, M. Wilkinson, and G. Fellingham. 1980. Recovery of Strait of Juan de Fuca Intertidal Habitat Following Experimental Contamination with Oil. DOC/EPA Interagency Energy/Environmental Research and Development Program Report EPA-600/7-80-140, U.S. Environmental Protection Agency, Washington, D.C. 73 pp.

Vanderhorst, J. R., J. W. Blaylock, P. Wilkinson, M. Wilkinson, and G. Fellingham. 1981. Effects of Experimental Oiling on Recovery of Strait of Juan de Fuca Intertidal Habitats. DOC/EPA Interagency Energy/Environmental Research and Development Report EPA-600/7-81-088, U.S. Environmental Protection Agency, Washington, D.C. 129 pp.

Vandermeulen, J. H., P. D. Keizer, and W. R. Penrose. 1977. "Persistence of Non-Alkane components of Bunker C in Leach sediments in Chedabucto Bay, and lack of their Metabolism by Molluscs." In Proceedings of the 1977 Oil Spill Conference (Prevention, Behavior Control, Clean-Up). American Petroleum Institute, Washington, D.C. pp 469-473.

Word, J. Q., J. R. Skalski, W. H. Pearson, J. A. Strand, R. B. Lucke, and J. A. Ward. 1987a. Effectiveness of Cleaning Oiled Beach Sediments at Ediz Hook Following the ARCO Anchorage Oil Spill. Final Report prepared by Battelle, Pacific Northwest Laboratories for ARCO Marine, Inc., Long Beach, California.

Word, J. Q., W. H. Pearson, J. R. Skalski, J. M. Gurtisen, R. B. Lucke, and J. A. Strand. 1987b. Reconnaissance of Petroleum Contamination from the ARCO Anchorage Oil Spill at Port Angeles, Washington, and Its Influence on Selected Areas of the Strait of Juan de Fuca. Final Report prepared by Battelle, Pacific Northwest Laboratories for ARCO Marine, Inc., Long Beach, California.

APPENDIX A1

SAMPLING INFORMATION

Beach	Date	Sediment Samples Achieved			Faunal Samples Achieved			Organisms Collected	
		+8.2 ft	+1.1 ft	-1.7 ft	-3.0 ft	+/- 50 ■	+/- 25 ■	+/- 50 ■	+/- 25 ■
RUBY BEACH	17-Jul-89	RB+8.2	RB+1.1	RB-1.7	RB+50	RB+25	RC	RC	RC
SECOND BEACH	18-Jul-89	2B+8.2	2B+1.1	2B-1.7	2B+50	2B+25	RC	RC	RC
HOLE-IN-THE-WALL	19-Jul-89	HW+8.2	HW+1.1	HW-1.7	HW+50	HW+25	L	L	L
KAYOSTALA BEACH NORTH	20-Jul-89	KBN+8.2	KBN+1.1	KBN-1.7	KBN+50	KBN+25	CM,L	CM	CM
CEDAR CREEK	20-Jul-89	CC+8.2	CC+1.1	CC-1.7	CC+50	CC+25	CM	CM	CM
NORWEGIAN MEMORIAL NORTH	21-Jul-89	NMN+8.2	NMN+1.1	NMN-1.7	NMN+50	NMN+25	CM	CM	CM
NORWEGIAN MEMORIAL SOUTH	22-Jul-89	NMS+8.2	NMS+1.1	NMS-1.7	NMS+50	NMS+25	L,AC,P	L,AC	L,AC,P
WEDDING ROCKS	23-Jul-89	WR+8.2	WR+1.1	WR-1.7	WR+50	WR+25	CM	CM	CM
WHALE CREEK	31-Jul-89	WC+8.2	WC+1.1	WC-1.7	WC+50	WC+25	RC	DC	DC
POINT GRENVILLE	01-Aug-89	PG+8.2	PG+1.1	PG-1.7	PG+50	PG+25	RC	RC	RC,CM
OCEAN SHORES	02-Aug-89	OS+8.2	OS+1.1	OS-1.7	OS+50	OS+25	RC,RM	RC	RC
SAND ISLAND	02-Aug-89								
NORWEGIAN MEMORIAL NORTH	12-Sep-89	NMN2+8.2	NMN2+1.1	NMN2-1.7	NMN2+50	NMN2+25	C,S	C,S	C,S
NORWEGIAN MEMORIAL SOUTH	12-Sep-89	NMS2+8.2	NMS2+1.1	NMS2-1.7	NMS2+50	NMS2+25	L,S	L,S	L,S
CEDAR CREEK	13-Sep-89	CC2+8.2	CC2+1.1	CC2-1.7	CC2+50	CC2+25	CM,C,S	CM,C,S	CM,C,S
KAYOSTALA BEACH NORTH	13-Sep-89	KBN2+8.2	KBN2+1.1	KBN2-1.7	KBN2+50	KBN2+25	L,S	C,S	C,S
HOLE-IN-THE-WALL	14-Sep-89	HW2+8.2	HW2+1.1	HW2-1.7	HW2+50	HW2+25	CM	L,C,S	L,C,S
SECOND BEACH	14-Sep-89	2B2+8.2	2B2+1.1	2B2-1.7	2B2+50	2B2+25	CM	P	P
WHALE CREEK	15-Sep-89	WC2+8.2	WC2+1.1	WC2-1.7	WC2-3.0	WC2+25	MS,H	MS,H	MS,H
POINT GRENVILLE	15-Sep-89	PG2+8.2	PG2+1.1	PG2-1.7	PG2+3.0	PG2+25	RC	RC	RC
RUBY BEACH	16-Sep-89	RB2+8.2	RB2+1.1	RB2-1.7	RB2+3.0	RB2+25	RC	RC	RC
WEDDING ROCKS	27-Sep-89	WR2+8.2	WR2+1.1	WR2-1.1	WR2+50	WR2+25	CM	CM	CM
OCEAN SHORES	28-Sep-89	OS2+8.2	OS2+1.1	OS2-1.7	OS2-3.0	OS2+50	CM	CM	CM
SAND ISLAND	28-Sep-89	SI2+8.2	SI2+7.8						

Beach	Date	Sediment Samples Achieved			Faunal Samples Achieved			Organisms Collected		
		+8.2 ft	+1.1 ft	-1.7 ft	-3.0 ft	+/- 50 ■	+/- 25 ■	+/- 50 ■	+/- 25 ■	+/- 50 ■
WEDDING ROCKS	23-Feb-90	WR3+8.2	WR3+1.1	WR3-1.7		WR3+50	WR3+25	CU	CU	CU
HOLE-IN-THE-WALL	27-Feb-90	HW3+8.2	HW3+1.1	HW3-1.7		HW3+50	HW3+25	CU	CU	CU
NORWEGIAN MEMORIAL NORTH	28-Feb-90	NW3+8.2	NMN3+1.1	NMN3-1.7	NMN-3.0	NMN3+50	NMN3+25	L,C,S	CU	CU
NORWEGIAN MEMORIAL SOUTH	28-Feb-90	NMS3+8.2	NMS3+1.1	NMS3-1.7		NMS3+50	NMS3+25	L,S	L,S	L,S
CEDAR CREEK	01-Mar-90	CC3+8.2	CC3+1.1	CC3-1.7		CC3+50	CC3+25	CU	CU	CU
KAYOSTLA BEACH NORTH	01-Mar-90	KBN3+8.2	KBN3+1.1	KBN3-1.7		KBN+50	KBN+25	L,C,S	S	S
SECOND BEACH	02-Mar-90	2B3+8.2	2B3+1.1	2B3-1.7	2B3-3.0	2B3+50	2B3+25	CU	CU	P
RUBY BEACH	05-Mar-90	RB3+8.2	RB3+1.1	RB3-1.7	RB3-3.0	RB3+50	RB3+25	CU	CU	CU
POINT GREENVILLE	06-Mar-90	PG3+8.2	PG3+1.1	PG3-1.7		PG3+50	PG3+25	CU	CU	CU
WHALE CREEK	07-Mar-90	WC3+8.2	WC3+1.1	WC3-1.7	WC3-3.0					
OCEAN SHORES	15-Mar-90	OS3+8.2	OS3+1.1	OS3-1.7	OS3-3.0	OS3+50				
SAND ISLAND	28-Mar-90	SI3+8.2						CU		

Beach	Date	Extra Sediments and Cores	Extra Faunal Samples			Organisms Collected
			+/- 50 ■	+/- 25 ■	+/- 50 ■	
SECOND BEACH	18-Jul-89	C2B-1.7				
KAYOSTLA BEACH NORTH	20-Jul-89	CKBN+4.0	KBN>100			
WHALE CREEK	31-Jul-89	CWC-3.0				
OSEAN SHORES	02-Aug-89	COS+8.2				
NORWEGIAN MEMORIAL NORTH	12-Sep-89	CNN2-1.1				
KAYOSTLA BEACH NORTH	13-Sep-89	CKBN2-1.7				
WHALE CREEK	15-Sep-89	CWC2-1.7	WC2+9.2			
OCEAN SHORES	28-Sep-89	COS2-1.1				
SAND ISLAND	28-Sep-89	SI2+15.2	SI2+13.3			
HOLE-IN-THE-WALL	27-Feb-90	HW3+15				
NORWEGIAN MEMORIAL	28-Feb-90	HNMX-8.2	HNMX+1.1			
KAYOSTLA BEACH NORTH	01-Mar-90	KBNS3+15				
RUBY BEACH	05-Mar-90	RB3+14				
OCEAN SHORES	15-Mar-90					
SAND ISLAND	28-Mar-90	SI3+15.2	SI3+13.3			
GOOSE ISLAND	28-Mar-90	GI-1	GI-2			

KEY

RC = RAZOR CLAMS
 L = SHIELD LIMPETS
 CM = CALIFORNIA MUSSELS
 AC = ASSORTED CRUSTACEANS
 P = POLYCHETATES
 DC = DUNGENESS CRABS

RM = RAY MUSSELS
 C = CHITONS
 S = SNAILS
 MS = MUD SHRIMP
 H = HOPPERS

APPENDIX A2

SEDIMENT SAMPLE COMPOSITING

(See Appendix A1 for Sample Locations)

Survey 1

<u>Composite ID</u>	<u>Samples Composited</u>			
NOP+8.2	RB+8.2	HW+8.2	CC+8.2	NMS+8.2
NOP+1.1	RB+1.1	HW+1.1	CC+1.1	NMS+1.1
NOP-1.7	RB-1.7	HW-1.7	CC-1.7	NMS-1.7
NOP-3.0		HW-3.0	CC-3.0	NMS-3.0
RB	RB+8.2	RB+1.1	RB-1.7	
HW	HW+8.2	HW+1.1	HW-1.7	HW-3.0
CC	CC+8.2	CC+1.1	CC-1.7	CC-3.0
NMS	NMS+8.2	NMS+1.1	NMS-1.7	NMS-3.0
OP+8.2	2B+8.2	KBN+8.2	NMN+8.2	WR+8.2
OP+1.1	2B+1.1	KBN+1.1	NMN+1.1	WR+1.1
OP-1.7	2B-1.7	KBN-1.7	NMN-1.7	WR-1.7
OP-3.0	2B-3.0	KBN-3.0	NMN-3.0	
2B	2B+8.2	2B+1.1	2B-1.7	2B-3.0
KBN	KBN+8.2	KBN+1.1	KBN-1.7	KBN-3.0
NMN	NMN+8.2	NMN+1.1	NMN-1.7	NMN-3.0
WR	WR+8.2	WR+1.1	WR-1.7	
ONP+8.2	OS+8.2	PG+8.2	WC+8.2	
ONP+1.1	OS+1.1	PG+1.1	WC+1.1	
ONP-1.7	OS-1.7	PG-1.7	WC-1.7	
ONP-3.0	OS-3.0	PG-3.0	WC-3.0	
OS	OS+8.2	OS+1.1	OS-1.7	OS-3.0
PG	PG+8.2	PG+1.1	PG-1.7	PG-3.0
WC	WC+8.2	WC+1.1	WC-1.7	WC-3.0

Survey 2

<u>Composite ID</u>	<u>Samples Composited</u>			
NOP2+8.2	RB2+8.2	HW2+8.2	CC2+8.2	NMS2+8.2
NOP2+1.1	RB2+1.1	HW2+1.1	CC2+1.1	NMS2+1.1
NOP2-1.7	RB2-1.7	HW2-1.7		NMS2-1.7
NOP2-3.0	RB2-3.0			
RB2	RB2+8.2	RB2+1.1	RB2-1.7	RB2-3.0
HW2	HW2+8.2	HW2+1.1	HW2-1.7	
CC2	CC2+8.2	CC2+1.1		
NMS2	NMS2+8.2	NMS2+1.1	NMS2-1.7	
OP2+8.2	2B2+8.2	KBN2+8.2	NMN2+8.2	WR2+8.2
OP2+1.1	2B2+1.1	KBN2+1.1	NMN2+1.1	WR2+1.1
OP2-1.7	2B2-1.7	KBN2-1.7	NMN2-1.7	
OP2-3.0	2B2-3.0			

Composite ID

	Samples Composited		
2B2	2B2+8.2	2B2+1.1	2B2-1.7 2B2-3.0
KB2	KB2+8.2	KB2+1.1	KB2-1.7
NMN2	NMN2+8.2	NMN2+1.1	NMN2-1.7
WR2	WR2+8.2	WR2+1.1	
ONP2+8.2	SI2+8.2	OS2+8.2	PG2+8.2 WC2+8.2
ONP2+1.1		OS2+1.1	PG2+1.1 WC2+1.1
ONP2-1.7		OS2-1.7	PG2-1.7 WC2-1.7
ONP2-3.0		OS2-3.0	PG2-3.0 WC2-3.0
SI2	SI2+8.2	SI2+7.8	
OS2	OS2+8.2	OS2+1.1	OS2-1.7 OS2-3.0
PG2	PG2+8.2	PG2+1.1	PG2-1.7 PG2-3.0
WC2	WC2+8.2	WC2+1.1	WC2-1.7 WC2-3.0

Survey 3Composite ID

	Samples Composited		
NOP3+8.2	RB3+8.2	HW3+8.2	CC3+8.2 NMS3+8.2
NOP3+1.1	RB3+1.1	HW3+1.1	CC3+1.1 NMS3+1.1
NOP3-1.7	RB3-1.7		CC3-1.7
NOP3-3.0	RB3-3.0		
RB3	RB3+8.2	RB3+1.1	RB3-1.7 RB3-3.0
HW3	HW3+8.2	HW3+1.1	
CC3	CC3+8.2	CC3+1.1	CC3-1.7
NMS3	NMS3+8.2	NMS3+1.1	
OP3+8.2	2B3+8.2	KBN3+8.2	NMN3+8.2 WR3+8.2
OP3+1.1	2B3+1.1	KBN3+1.1	NMN3+1.1 WR3+1.1
OP3-1.7	2B3-1.7	KBN3-1.7	NMN3-1.7 WR3-1.7
OP3-3.0	2B3-3.0		NMN3-3.0
2B3	2B3+8.2	2B3+1.1	2B3-1.7 2B3-3.0
KB2	KBN3+8.2	KBN3+1.1	KBN3-1.7
NMN3	NMN3+8.2	NMN3+1.1	NMN3-1.7 NMN3-3.0
WR3	WR3+8.2	WR3+1.1	WR3-1.7
ONP3+8.2	SI3+8.2		PG3+8.2
ONP3+1.1			PG3+1.1
ONP2-1.7			PG3-1.7
SI3	SI3+8.2		
PG3	PG3+8.2	PG3+1.1	PG3-1.7

APPENDIX B

INFRARED SPECTROPHOTOMETRIC OIL AND GREASE DETERMINATIONS IN SEDIMENT
(See Appendix A1 for Sample Locations and A2 for Composite Identification)

<u>Station</u>	<u>Oil & Grease (µg/g Dry Weight)</u>				
	<u>Survey 1</u>	<u>Survey 2</u>	<u>Survey 2 Rerun</u>	<u>Survey 3</u>	<u>Survey 3 Rerun</u>
WR	< 15	< 12		63	
2B	< 15	< 12		< 45	
NMN	< 15	< 12		72	
KBN	< 15	< 12		154	
OP+8.2	< 15	50	< 22	< 43	
OP+1.1	< 15	61	< 22	< 44	
OP-1.7	< 15		< 22	< 41	
OP-3	< 15	80	< 22	251	
HW	< 15	< 12		< 38	
NMS	< 15	< 12		< 40	
CC	< 15	< 12		< 45	
RB	< 15	< 12		< 42	
NOP+8.2	< 15	< 12		< 36	
NOP+1.1	< 15	< 12		< 45	
NOP-1.7	< 15	< 12		557	< 30
NOP-3	< 15	< 12		108	< 30
WC	< 50	121	< 22	< 40	
PG	< 50	92	< 22	< 45	
OS	< 50	97	< 22	< 42	
SI		34	< 22	< 43	
ONP+8.2	< 50	56	< 22	< 39	
ONP+1.1	< 50	< 30		< 43	
ONP-1.7	< 50	< 30		< 45	
ONP-3	< 50	< 30		< 44	
WR-BLK	< 25				
HW-BLK	< 50	< 25			
NMN-BLK	< 50			< 41	
KBN-BLK		< 25			
2B-BLK	< 50			< 41	
NMS-BLK		< 25			
CC-BLK	< 50				
RB-BLK	< 50			< 41	
WC-BLK	< 50	< 25			
PG-BLK	< 50				
OS-BLK	< 50				

Station	Oil & Grease (ug/g Dry Weight)			
	Survey 1	Survey 2	Survey 2 Rerun	Survey 3
BLANK 3/28				< 41
BLANK 4/3				< 41
COMPOSITE BLANK				< 41
% RECOVERY	91% 51%	55% 60% 97% 75%		96% 95%
DET. LIMIT	15 50	25 30 12 22		

Cores/Extra Sediments

HNMX+8.2			115	
HNMX+1.1			73	
KBN+4.0	< 25			
KBN>100	< 50			
KBN<15			< 41	
WR+9.2		78	< 22	
2B-1.7	< 25			
HW+15			119	170
RB+14			82	86
OS+8.2	< 25			
OS+11		26	< 22	
WC-3.0	< 25			
WC+14			< 41	
SI+15.2		6255	< 38	
SI+13.3		19015	< 36	
GI-1			< 36	
GI-2			< 38	

APPENDIX C1

GAS CHROMATOGRAPHIC/MS ANALYSES OF TISSUES AND SEDIMENTS

(See Appendix A1 for Sample Locations and Appendix A2
for Composite Identification)

GLOSSARY

<u>DATA BASE QUALIFIERS</u>	<u>MEANING</u>
\$	Flag used if secondary ion, rather than primary ion, is used for quantitation of an analyte (mass spectrometry methods, only). Qualifies analyte data.
H	Flag used to indicate that surrogate recoveries could not be measured because the sample was diluted for instrumental analysis. Qualifies surrogate data only.
%	Flag used when relative intensities of the primary/confirmation ion vary by greater than \pm 20% of these masses in the reference mass spectrum due to interferences to the confirmation ion. Qualifies analyte data.
ND	<u>Not detected</u> . This qualifier will be used when analytes are not detected in samples. The data base will automatically cross-reference the proper method detection limits (MDL) for data base users. Qualifies analyte data.
J	Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed (i.e., alkylated PAH compounds) or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the method detection limit but greater than zero. Qualifies analyte data.
B	<u>Value reported, but integrity possibly compromised by contamination</u> . This value will be inserted by the lab if unacceptable levels of the target analyte(s) is observed in the quality control samples above the detection limit or for other reasons that the lab justifies and documents. Qualifies analyte data.
G	<u>Value not reported because of matrix interference</u> . This qualifier will be used if a non-analyte interferes with the measurement or identification of a target analyte. Qualifies analyte, surrogate data.

DATA BASE
QUALIFIERS

MEANING

NA Not applicable. This qualifier is used by the laboratory if, for a specific project, selected analytes have not been measured at the direction of the Study Director. General.

& Surrogate recovery is outside control limits. Qualifies surrogate data.

COMPOUND LIST(a)

MEANING

NAPH	Naphthalene
NAPHQ	
ACENAPL	Acenaphthylene
ACENAPLQ	
ACENAPH	Acenaphthene
ACENAPHQ	
FLUOREN	Fluorene
FLUORENQ	
PHENAN	Phenanthrene
PHENANQ	
ANTHRAC	Anthracene
ANTHRACQ	
DIBENZ	Dibenzothiophene
DIBENZQ	
FLUORAN	Fluoranthene
FLUORANQ	
PYRENE	Pyrene
PYRENEQ	
BENaAN	Benzo(a)anthracene
BENaANQ	
CHRYSEN	Chrysene
CHRYSENQ	
BENbFLU	Benzo(b)fluoranthene
BENbFLUQ	
BENkFLU	Benzo(k)fluoranthene
BENkFLUQ	
BENaPYR	Benzo(a)pyrene
BENaPYRQ	
I123cdP	Indeno(1,2,3-c,d)pyrene
I123cdPQ	
DBahANT	Dibenz(a,h)anthracene
DBahANTQ	

(a) Measured in units dry weight.

COMPOUND LIST

(contd)

MEANING

BghiPER

Benzo(g,h,i)perylene

BghiPERQ

d8-Naphthalene (Surrogate recovery rate)
d10-Acenaphtene (Surrogate recovery rate)

D8NAPH%

d12-Perylene

D10ACEN%

D12PERL%

Tissue Samples

<u>SAMPID</u>	<u>UNIT</u>	<u>NAPH</u>	<u>NAPHQ</u>	<u>ACENAPL</u>	<u>ACENAPLQ</u>	<u>ACENAPH</u>	<u>ACENAPHQ</u>	<u>FLUOREN</u>	<u>FLUORENQ</u>
TNMN+50	ng/g	5.3	%, B		ND		ND		ND
TNMN+25	ng/g	9.0	B		ND		ND		ND
NMN2+50	ng/g	4.5	B		ND		ND	3.5	
NMN2+25	ng/g	6.7	B		ND	2.1		3.3	
NMN3+50	ng/g		ND		ND		ND		ND
NMN3+25	ng/g		ND		ND		ND		ND
NMNH3	ng/g		ND		ND		ND		ND
TKBN+50	ng/g	9.0	%,&,B		ND		ND		ND
TKBN+25	ng/g	12	%,&,B		ND		ND		ND
KBN2+50	ng/g	11	B		ND		ND	1.4	%
KBN2+25	ng/g	3.8	B		ND		ND		ND
KBN3+50	ng/g		ND		ND		ND		ND
KBN3+25	ng/g		ND		ND		ND		ND
T2B+50	ng/g	6.7	%,&,B		ND		ND		ND
T2B+25	ng/g	5.7	%,B		ND		ND		ND
T2B+25 SP	ng/g	211		288		302		346	
RECOVERY (%)		34		48		51		58	
T2B+25D	ng/g		ND		ND		ND		ND
T2B2+50	ng/g		ND		ND		ND		ND
T2B3+50	ng/g		ND		ND		ND		ND
T2B3+25	ng/g		ND		ND		ND		ND
TWR+50	ng/g	8.2	%		ND		ND		ND
TWR+25	ng/g	7.0	%,B		ND		ND		ND
TWR2+50	ng/g	5.0	B		ND		ND		ND
TWR2+25	ng/g	4.7	B		ND		ND	1.5	
TWR3+50	ng/g		ND		ND		ND		ND
TWR3+25	ng/g		ND		ND		ND		ND
THW+50	ng/g	9.3	%,B		ND		ND		ND
THW+25	ng/g	7.3	%,B		ND	2.6	%		ND
THW+25 SP	ng/g	285		316		360		411	
RECOVERY (%)		46		57		84		74	
THW2+50	ng/g	5.9	%,B		ND		ND		ND
THW2+25	ng/g		ND		ND	2.4	%		ND
THW3+50	ng/g		ND		ND		ND		ND
THW3+25	ng/g		ND		ND		ND		ND
TNMS+50	ng/g	5.7	B		ND		ND	2.6	
TNMS+25	ng/g	7.9	B		ND	2.3	%	1.9	
NMS2+50	ng/g		ND		ND	5.8		2.8	
NMS2+25	ng/g		ND		ND	6.3	%	3.5	%
NMS3+50	ng/g		ND		ND		ND		ND
NMS3+25	ng/g		ND		ND		ND		ND

SAMPID	UNIT	PHEHAN	PHENANQ	ANTHRAC	ANTHRACQ	DIBENZ	DIBENZQ	FLUORAN	FLUORANQ
TNMN+50	ng/g	13	%		ND		ND		ND
TNMN+25	ng/g	21	%	5.1	%	2.7	%		ND
NMN2+50	ng/g	19			ND	1.3	%	5.3	J
NMN2+25	ng/g	15			ND	1.4	%		ND
NMN3+50	ng/g	21			ND		ND		ND
NMN3+25	ng/g	41	%		ND		ND	11	%
NMNH3	ng/g	15	%		ND		ND		ND
TKBN+50	ng/g			ND		ND			ND
TKBN+25	ng/g	10	%, L		ND		ND		ND
KBN2+50	ng/g	11			ND		ND		ND
KBN2+25	ng/g	6.9	%		ND		ND		ND
KBN3+50	ng/g	13			ND		ND		ND
KBN3+25	ng/g			ND		ND			ND
T2B+50	ng/g			ND		ND			ND
T2B+25	ng/g			ND		ND			ND
T2B+25 SP	ng/g	368		403		5.7	%	471	
RECOVERY (%)		82		88		NOT SPIKED		79	
T2B+25D	ng/g	7.2	L		ND		ND		ND
T2B2+50	ng/g			ND		ND			ND
T2B3+50	ng/g	18			ND		ND		ND
T2B3+25	ng/g	8.3	%		ND		ND	5.8	%
TWR+50	ng/g	13	%		ND		ND		ND
TWR+25	ng/g	13	%		ND		ND		ND
TWR2+50	ng/g			ND	ND		ND		ND
TWR2+25	ng/g	9.7	%		ND		ND		ND
TWR3+50	ng/g	15			ND		ND		ND
TWR3+25	ng/g	29	%		ND		ND		ND
THW+50	ng/g	14	%		ND	1.4	%		ND
THW+25	ng/g	5.5	J		ND		ND		ND
THW+25 SP	ng/g	460		487		9.1		588	
RECOVERY (%)		82		88		NOT SPIKED		108	
THW2+50	ng/g			ND		ND			ND
THW2+25	ng/g	6.0	J, L		ND		ND		ND
THW3+50	ng/g	20	%		ND		ND		ND
THW3+25	ng/g	20	%		ND		ND		ND
TNMS+50	ng/g	8.1	J		ND	1.4	%		ND
TNMS+25	ng/g	8.6	J		ND		ND		ND
NMS2+50	ng/g	13		2.9	%	1.3	%		ND
NMS2+25	ng/g	15		2.8	%	1.3	%		ND
NMS3+50	ng/g	8.3	%		ND		ND		ND
NMS3+25	ng/g	7.0	%		ND		ND		ND

<u>SAMPID</u>	<u>UNIT</u>	<u>PYRENE</u>	<u>PYRENEQ</u>	<u>BENaAN</u>	<u>BENaANQ</u>	<u>CHRYSEN</u>	<u>CHRYSENQ</u>	<u>BENbFLU</u>	<u>BENbFLUQ</u>
TNMN+50	ng/g		ND	11		6.3	%		ND
TNMN+25	ng/g	3.5	%	15		8.4	%	5.8	%
NMN2+50	ng/g	3.6		3.7	%	5.4	%		ND
NMN2+25	ng/g	3.0	%	3.0	%	5.4	%		ND
NMN3+50	ng/g	3.8	%		ND		ND		ND
NMN3+25	ng/g		ND	23		15	%		ND
NMNH3	ng/g		ND	9.3	%		ND		ND
TKBN+50	ng/g		ND	4.7	%,▲		ND		ND
TKBN+25	ng/g		ND	5.6	%,▲		ND		ND
KBN2+50	ng/g		ND		ND		ND		ND
KBN2+25	ng/g		ND		ND		ND		ND
KBN3+50	ng/g		ND		ND		ND		ND
KBN3+25	ng/g		ND		ND		ND		ND
T2B+50	ng/g		ND		ND	4.7	%		ND
T2B+25	ng/g	3.0	%		ND		ND		ND
T2B+25 SP	ng/g	458		523		485		491	
RECOVERY (%)		76		88		82		83	
T2B+25D	ng/g	3.8	%,▲		ND	3.8	%	3.7	%,▲
T2B2+50	ng/g		ND		ND		ND		ND
T2B3+50	ng/g		ND		ND		ND		ND
T2B3+25	ng/g	5.2	%	8.8	%	11	%	4.0	%
TWR+50	ng/g		ND	6.5		4.2	%		ND
TWR+25	ng/g		ND	7.5		4.3			ND
TWR2+50	ng/g	1.9	J	3.7			ND	5.1	%
TWR2+25	ng/g		ND	6.1			ND	5.6	%
TWR3+50	ng/g		ND		ND		ND		ND
TWR3+25	ng/g		ND		ND		ND		ND
THW+50	ng/g		ND	6.0	%	3.0	J		ND
THW+25	ng/g		ND		ND		ND		ND
THW+25 SP	ng/g	573		657		614		876	
RECOVERY (%)		103		118		110		122	
THW2+50	ng/g		ND		ND	3.9	%		ND
THW2+25	ng/g		ND		ND		ND		ND
THW3+50	ng/g		ND		ND		ND		ND
THW3+25	ng/g		ND		ND		ND		ND
TNMS+50	ng/g	1.7	J		ND		ND		ND
TNMS+25	ng/g		ND		ND	2.7	J		ND
NMS2+50	ng/g		ND		ND		ND		ND
NMS2+25	ng/g	2.9	%	2.9	%	4.0	%		ND
NMS3+50	ng/g		ND		ND		ND		ND
NMS3+25	ng/g		ND		ND		ND		ND

<u>SAMPID</u>	<u>UNIT</u>	<u>BENkFLU</u>	<u>BENkFLUQ</u>	<u>BENaPYR</u>	<u>BENaPYRQ</u>	<u>I123cdP</u>	<u>I123cdPQ</u>	<u>DBahANT</u>	<u>DBahANTQ</u>
TNMN~50	ng/g		ND		ND		ND		ND
TNMN+25	ng/g		ND	5.6	%		ND		ND
NMN2+50	ng/g		ND		ND		ND		ND
NMN2+25	ng/g		ND	3.9	%		ND		ND
NMN3+50	ng/g		ND		ND		ND		ND
NMN3+25	ng/g		ND		ND		ND		ND
NMNH3	ng/g		ND		ND		ND		ND
TKBN+50	ng/g		ND		ND		ND		ND
TKBN+25	ng/g		ND		ND		ND		ND
KBN2+50	ng/g		ND		ND		ND		ND
KBN2+25	ng/g		ND		ND		ND		ND
KBN3+50	ng/g		ND		ND		ND		ND
KBN3+25	ng/g		ND		ND		ND		ND
T2B+50	ng/g		ND		ND		ND		ND
T2B+25	ng/g		ND	8.4	%		ND		ND
T2B+25 SP	ng/g	452		462		387		384	
RECOVERY (%)		78		77		65		85	
T2B+25D	ng/g		ND	4.5	%	17	%		ND
T2B2+50	ng/g		ND		ND		ND		ND
T2B3+50	ng/g		ND		ND		ND		ND
T2B3+25	ng/g	3.3	%		ND		ND		ND
TWR+50	ng/g		ND		ND	3.3	J		ND
TWR+25	ng/g		ND		ND		ND		ND
TWR2+50	ng/g		ND	8.8	%		ND		ND
TWR2+25	ng/g		ND	8.5	%	30	%	5.1	%
TWR3+50	ng/g		ND		ND		ND		ND
TWR3+25	ng/g		ND		ND		ND		ND
THW+50	ng/g		ND		ND		ND		ND
THW+25	ng/g		ND		ND		ND		ND
THW+25 SP	ng/g	643		646		635		681	
RECOVERY (%)		118		118		114		119	
THW2+50	ng/g		ND		ND		ND		ND
THW2+25	ng/g		ND		ND		ND		ND
THW3+50	ng/g		ND		ND		ND		ND
THW3+25	ng/g		ND		ND		ND		ND
TNMS+50	ng/g		ND		ND		ND		ND
TNMS+25	ng/g		ND		ND		ND		ND
NMS2+50	ng/g		ND	3.5	%		ND		ND
NMS2+25	ng/g		ND		ND		ND		ND
NMS3+50	ng/g		ND		ND		ND		ND
NMS3+25	ng/g		ND		ND		ND		ND

<u>SAMPID</u>	<u>UNIT</u>	<u>BghiPER</u>	<u>BghiPERQ</u>	<u>D8NAPH%</u>	<u>D10ACEN%</u>	<u>D12PERL%</u>	<u>TOTAL PAHs</u>
TNMN+50	ng/g	8	%	29	43	126	44
TNMN+25	ng/g	19	%	34	49	114	95
NMN2+50	ng/g		ND	30	56	89	46
NMN2+25	ng/g		ND	33	62	108	44
NMN3+50	ng/g		ND	13	40	61	25
NMN3+25	ng/g		ND	26	43	62	90
NMNH3	ng/g		ND	8	35	98	24
TKBN+50	ng/g	8.8	%,&	40	54	164	22
TKBN+25	ng/g	5.5	%,&	44	57	162	33
KBN2+50	ng/g		ND	43	75	130	23
KBN2+25	ng/g		ND	30	50	85	11
KBN3+50	ng/g	7.4	%	18	44	86	20
KBN3+25	ng/g		ND	0	13	91	0
T2B+50	ng/g	3.7	%,&	28	43	148	15
T2B+25	ng/g		ND	21	35	136	15
T2B+25 SP	ng/g	341		47	70	97	6378
RECOVERY (%)		57		AMOUNT SPIKED		595 ng/g	
T2B+25D	ng/g	43	&	18	51	156	83
T2B2+50	ng/g		ND	20	49	140	0
T2B3+50	ng/g		ND	25	43	81	18
T2B3+25	ng/g		ND	17	39	52	44
TWR+50	ng/g	7.7	%	24	36	75	41
TWR+25	ng/g	11	%	32	49	111	43
TWR2+50	ng/g	13	%	36	60	111	37
TWR2+25	ng/g	29	%	20	41	106	100
TWR3+50	ng/g		ND	16	32	82	15
TWR3+25	ng/g		ND	8	37	74	29
THW+50	ng/g		ND	32	68	97	33
THW+25	ng/g		ND	21	59	74	15
THW+25 SP	ng/g	579		42	63	106	8580
RECOVERY (%)		104		AMOUNT SPIKED		556 ng/g	
THW2+50	ng/g		ND	20	53	109	10
THW2+25	ng/g		ND	9	31	104	8
THW3+50	ng/g		ND	24	40	75	20
THW3+25	ng/g		ND	23	41	65	20
TNMS+50	ng/g		ND	36	71	94	20
TNMS+25	ng/g	8.2	%	52	73	105	32
NMS2+50	ng/g	3.1	%	20	67	105	32
NMS2+25	ng/g	3.5	%	19	66	109	42
NMS3+50	ng/g		ND	18	41	48	6
NMS3+25	ng/g		ND	16	45	64	7

<u>SAMPID</u>	<u>UNIT</u>	<u>NAPH</u>	<u>NAPHQ</u>	<u>ACENAPL</u>	<u>ACENAPLQ</u>	<u>ACENAPH</u>	<u>ACENAPHQ</u>	<u>FLUOREN</u>	<u>FLUORENQ</u>
TRB+50	ng/g	5.8	%,B		ND		ND		ND
TRB+25	ng/g		ND		ND		ND		ND
TRB2+50	ng/g		ND,&		ND,&		ND,&		ND,&
TRB2+25	ng/g		ND		ND		ND		ND
TRB3+50-1	ng/g		ND		ND		ND		ND
TRB3+50-2	ng/g		ND		ND		ND		ND
TCC+50	ng/g	10	%,B		ND		ND		ND
TCC+25R	ng/g		ND,&		ND,&		ND,&		ND,&
TCC2+50	ng/g		ND,&		ND,&		ND,&		ND,&
TCC2+25	ng/g		ND,&		ND,&		ND,&		ND,&
TCC3+50	ng/g		ND		ND		ND		ND
TCC3+25	ng/g		ND		ND		ND		ND
TWC+50	ng/g	7.1	B		ND		ND		ND
TWC+25	ng/g	8.6	B		ND		ND		ND
TPG+50	ng/g	4.4	%,B		ND		ND		ND
TPG+25	ng/g		ND		ND		ND		ND
TPG2+50	ng/g	4.7	%,B		ND		ND	1.3	
TPG2+25	ng/g	5.6	B		ND		ND		ND
TPG3+50	ng/g		ND		ND		ND		ND
TOS+50	ng/g		ND		ND		ND		ND
TOS+25	ng/g		ND		ND		ND		ND
TOS+25D	ng/g		ND		ND		ND		ND
TOS2+501	ng/g	5.6	B		ND		ND		ND
TOS2+502	ng/g		ND		ND		ND		ND
TOS3+50	ng/g		ND		ND		ND		ND
BLANK R5	ng/g	11	%,&		ND		ND		ND
BLANK 1	ng/g		ND		ND		ND		ND
BLANK 2	ng/g		ND		ND		ND		ND
BLANK 5	ng/g	11	%		ND		ND		ND
BARGE OIL	ug/g	172		< 26		107		250	

<u>SAMPID</u>	<u>UNIT</u>	<u>PHENAN</u>	<u>PHENANQ</u>	<u>ANTHRAC</u>	<u>ANTHRACQ</u>	<u>DIBENZ</u>	<u>DIBENZQ</u>	<u>FLUORAN</u>	<u>FLUORANQ</u>
TRB+50	ng/g		ND		ND		ND		ND
TRB+25	ng/g		ND		ND		ND		ND
TRB2+50	ng/g	4.5	J, *		ND, *		ND, *		ND, *
TRB2+25	ng/g		ND		ND		ND		ND
TRB3+50-1	ng/g	10	*		ND		ND		ND
TRB3+50-2	ng/g		ND		ND		ND		ND
TCC+50	ng/g	11	*		ND		ND		ND
TCC+25R	ng/g		ND, *		ND, *		ND, *		ND, *
TCC2+50	ng/g		ND, *		ND, *		ND, *		ND, *
TCC2+25	ng/g		ND, *		ND, *		ND, *		ND, *
TCC3+50	ng/g		ND		ND		ND		ND
TCC3+25	ng/g	19	*		ND		ND		ND
TWC+50	ng/g		ND		ND		ND		ND
TWC+25	ng/g		ND		ND		ND		ND
TPG+50	ng/g		ND		ND		ND		ND
TPG+25	ng/g		ND		ND		ND		ND
TPG2+50	ng/g	4	J		ND		ND		ND
TPG2+25	ng/g	5.7	J		ND		ND		ND
TPG3+50	ng/g	11			ND		ND	4.1	*
TOS+50	ng/g		ND		ND		ND		ND
TOS+25	ng/g		ND		ND		ND		ND
TOS+25D	ng/g		ND		ND		ND		ND
TOS2+501	ng/g		ND	2.5	*		ND		ND
TOS2+502	ng/g		ND		ND		ND		ND
TOS3+50	ng/g	9.3			ND		ND		ND
BLANK R5	ng/g		ND		ND		ND		ND
BLANK 1	ng/g		ND		ND		ND		ND
BLANK 2	ng/g		ND		ND		ND		ND
BLANK 5	ng/g		ND		ND		ND		ND
BARGE OIL	ug/g	1247		98		482		57	

<u>SAMPID</u>	<u>UNIT</u>	<u>PYRENE</u>	<u>PYRENEQ</u>	<u>BENaAN</u>	<u>BENaANQ</u>	<u>CHRYSEN</u>	<u>CHRYSENQ</u>	<u>BENbFLU</u>	<u>BENbFLUQ</u>
TRP+50	ng/g		ND		ND		ND		ND
TRB+25	ng/g		ND		ND		ND		ND
TRB2+50	ng/g	2.9	&	1.7	J, &	3.0	&		ND, &
TRB2+25	ng/g		ND		ND		ND		ND
TRB3+50-1	ng/g		ND		ND		ND		ND
TRB3+50-2	ng/g		ND		ND		ND		ND
TCC+50	ng/g		ND	2.6	%	2.1	J		ND
TCC+25R	ng/g		ND, &		ND, &		ND, &		ND, &
TCC2+50	ng/g		ND, &		ND, &		ND, &		ND, &
TCC2+25	ng/g		ND, &		ND, &		ND, &		ND, &
TCC3+50	ng/g		ND		ND		ND		ND
TCC3+25	ng/g		ND		ND		ND		ND
TWC+50	ng/g		ND		ND		ND		ND
TWC+25	ng/g		ND		ND		ND		ND
TPQ+50	ng/g		ND		ND		ND		ND
TPQ+25	ng/g		ND		ND		ND		ND
TPQ2+50	ng/g		ND		ND	2.6	J	4.5	%
TPQ2+25	ng/g	3.0			ND		ND	4.0	%
TPQ3+50	ng/g	2.8	%		ND		ND		ND
TOS+50	ng/g		ND		ND		ND		ND
TOS+25	ng/g		ND		ND		ND		ND
TOS+25D	ng/g		ND		ND		ND		ND
TOS2+501	ng/g		ND		ND	1.7	J		ND
TOS2+502	ng/g		ND		ND		ND		ND
TOS3+50	ng/g		ND		ND		ND		ND
BLANK R5	ng/g		ND		ND		ND		ND
BLANK 1	ng/g		ND		ND		ND		ND
BLANK 2	ng/g		ND		ND		ND		ND
BLANK 5	ng/g		ND		ND		ND		ND
BARGE OIL	ug/g	322		77		193		31	

<u>SAMPID</u>	<u>UNIT</u>	<u>BENkFLU</u>	<u>BENkFLUQ</u>	<u>BENaPYR</u>	<u>BENaPYRQ</u>	<u>I123cdP</u>	<u>I123cdPQ</u>	<u>DBahANT</u>	<u>DBahANTQ</u>
TRB+50	ng/g		ND		ND	12			ND
TRB+25	ng/g		ND		ND	5.6			ND
TRB2+50	ng/g		ND,▲		ND,▲		ND,▲		ND,▲
TRB2+25	ng/g		ND		ND		ND		ND
TRB3+50-1	ng/g		ND		ND		ND		ND
TRB3+50-2	ng/g		ND		ND		ND		ND
TCC+50	ng/g		ND		ND		ND		ND
TCC+25R	ng/g		ND,▲		ND,▲		ND,▲		ND,▲
TCC2+50	ng/g		ND,▲		ND,▲		ND,▲		ND,▲
TCC2+25	ng/g		ND,▲		ND,▲		ND,▲		ND,▲
TCC3+50	ng/g		ND		ND		ND		ND
TCC3+25	ng/g		ND		ND		ND		ND
TWC+50	ng/g		ND		ND		ND		ND
TWC+25	ng/g		ND		ND		ND		ND
TPG+50	ng/g		ND		ND		ND		ND
TPG+25	ng/g		ND		ND		ND		ND
TPG2+50	ng/g		ND		ND		ND		ND
TPG2+25	ng/g		ND		ND		ND		ND
TPG3+50	ng/g		ND		ND		ND		ND
TOS+50	ng/g		ND		ND		ND		ND
TOS+25	ng/g		ND		ND		ND		ND
TOS+25D	ng/g		ND		ND		ND		ND
TOS2+501	ng/g		ND		ND	2.4	J		ND
TOS2+502	ng/g		ND		ND		ND		ND
TOS3+50	ng/g		ND		ND		ND		ND
BLANK R5	ng/g		ND		ND		ND		ND
BLANK 1	ng/g		ND		ND		ND		ND
BLANK 2	ng/g		ND		ND		ND		ND
BLANK 5	ng/g		ND		ND		ND		ND
BARGE OIL	ug/g	< 7			77		< 7.4		10

<u>SAMPID</u>	<u>UNIT</u>	<u>BghiPER</u>	<u>BghiPERQ</u>	<u>D8NAPH%</u>	<u>D10ACEN%</u>	<u>D12PERL%</u>	<u>TOTAL PAHs</u>
TRB+50	ng/g		ND	25	41	95	18
TRB+25	ng/g		ND	23	38	65	5.6
TRB2+50	ng/g		ND,▲	11	40	40	12
TRB2+25	ng/g		ND	16	44	130	0.0
TRB3+50-1	ng/g		ND	23	43	83	10
TRB3+50-2	ng/g		ND	23	36	61	0.0
TCC+50	ng/g		ND	34	47	107	26
TCC+25R	ng/g	7.5	▲	10	28	78	7.5
TCC2+50	ng/g		ND,▲	10	37	64	0.0
TCC2+25	ng/g		ND,▲	7	27	43	0.0
TCC3+50	ng/g		ND	5	41	118	0.0
TCC3+25	ng/g		ND	28	43	81	19
TWC+50	ng/g		ND	55	78	97	7.1
TWC+25	ng/g	2.6	J	38	85	118	11
TPQ+50	ng/g		ND	28	52	131	4.4
TPQ+25	ng/g		ND	34	65	67	0.0
TPQ2+50	ng/g		ND	28	45	88	17
TPQ2+25	ng/g	2.8	J	54	67	122	21
TPQ3+50	ng/g		ND	6	20	52	18
TOS+50	ng/g		ND	34	81	100	0.0
TOS+25	ng/g		ND	28	55	122	0.0
TOS+25D	ng/g		ND	28	66	147	0.0
TOS2+501	ng/g		ND	34	60	93	12
TOS2+502	ng/g		ND	11	33	58	0.0
TOS3+50	ng/g		ND	13	29	71	9.3
BLANK R5	ng/g		ND	11	17	95	11
BLANK 1	ng/g		ND	24	38	101	0.0
BLANK 2	ng/g		ND	20	38	98	0.0
BLANK 5	ng/g		ND	11	17	95	11
BARGE OIL	ug/g	29		H	H	102	3132

Sediment Samples

<u>SAMPID</u>	<u>UNIT</u>	<u>NAPH</u>	<u>NAPHQ</u>	<u>ACENAPL</u>	<u>ACENAPLQ</u>	<u>ACENAPH</u>	<u>ACENAPHQ</u>	<u>FLUOREN</u>	<u>FLUORENQ</u>
0P3+3.0	ng/g	7.3			ND		ND	4.5	
NMN3	ng/g	3.0			ND		ND	7.5	
3HNMX+1.1	ng/g	9.7		1.1	%	4.3		19	
3HNMX+8.2	ng/g	1.5	%		ND	4.0		24	
3HMNX+8.2 REP1	ng/g	100			ND	13	%	65	
3HMNX+8.2 REP2	ng/g	110			ND	24		85	
KBN3	ng/g	2.4			ND		ND	7.3	
WR2+9.2	ng/g	320			ND		ND	683	
WR3	ng/g	40			ND	2.4		49	
CC3	ng/g	7.6			ND		ND	16	
CC3 SP	ng/g	41		49		48		68	
RECOVERY %		28		41		40		45	
HW3+15	ng/g	2.2	%		ND		ND		ND
RB3+14	ng/g	5.4			ND		ND	5.1	
SI2	ng/g		ND		ND		ND		ND
SI2+15.2	ng/g	< 573		< 584		< 900		3808	
SI2+13.3	ng/g	< 357		< 365		477	J	1617	%
COS2+11	ng/g		ND		ND		ND		ND
COS2+11 SP	ng/g	163		168		187		165	
RECOVERY (%)		96		98		99		98	
SED. BLANK	ng/g		ND		ND		ND		ND
SED. BLANK 2	ng/g	2.8	%		ND		ND		ND

SEDIMENT

DET LIMIT

< 9.0

9.1

14

11

<u>SAMPID</u>	<u>UNIT</u>	<u>PHENAN</u>	<u>PHENANQ</u>	<u>ANTHRAC</u>	<u>ANTHRACQ</u>	<u>DIBENZ</u>	<u>DIBENZQ</u>	<u>FLUORAN</u>	<u>FLUORANQ</u>
0P3+3.0	ng/g	23			ND	1.6	%	3.2	
NMN3	ng/g	29		1.2	%	1.8		5.9	
3HNMX+1.1	ng/g	150		3.0	%	17		32	
3HNMX+8.2	ng/g	340		5.0	%	45		52	
3HNMX+8.2 REP1	ng/g	650		6.6		81		73	
3HNMX+8.2 REP2	ng/g	740		9.2		95		89	
KBN3	ng/g	24			ND	2		4.7	
WR2+9.2	ng/g	1384			ND	67		27	
WR3	ng/g	240		1.4	%	7.6		12	
CC3	ng/g	78			ND			ND	
CC3 SP	ng/g	152		77		5.8		115	
RECOVERY %				84	65	NOT SPIKED		97	
HW3+15	ng/g	18			ND		ND		ND
RB3+14	ng/g		ND		ND		ND	4.9	
SI2	ng/g		ND		ND		ND		ND
SI2+7.35	ng/g	36747		2369		12988		2822	
SI2+5.5	ng/g	10102		781		3818		772	%
COS2+11	ng/g		ND		ND		ND		ND
COS2+11 SP	ng/g	164		168		NOT SPIKED		174	
RECOVERY (%)		97		99		0		103	
SED. BLANK	ng/g		ND		ND		ND		ND
SED. BLANK 2	ng/g	5.6			ND		ND		ND

SEDIMENT

DET LIMIT

5.9

6.4

6.0

3.6

<u>SAMPID</u>	<u>UNIT</u>	<u>PYRENE</u>	<u>PYRENEQ</u>	<u>BENaAN</u>	<u>BENaANQ</u>	<u>CHRYSEN</u>	<u>CHRYSENQ</u>	<u>BENbFLU</u>	<u>BENbFLUQ</u>
OP3+3.0	ng/g	5.9		1.0	%	5.0		2.5	%
NMN3	ng/g	7.8		2.7	%	9.9		4.7	
3HNMX+1.1	ng/g	43		13	%	3.0		17	%
3HNMX+8.2	ng/g	48		27		52		25	%
3HNMX+8.2 REP1	ng/g	80		32		73		21	%
3HNMX+8.2 REP2	ng/g	96		43		93		30	%
KBN3	ng/g	7.6		1.7		7.4		3.3	
WR2+9.2	ng/g	58		10		230		76	
WR3	ng/g	24		8.9	%	62		17	%
CC3	ng/g	16			ND	20		6.4	
CC3 SP	ng/g	128		122		132		128	
RECOVERY %		92		103		94		102	
HW3+15	ng/g	18			ND	3.5		1.6	%
RB3+14	ng/g	13			ND	2.8	%		ND
SI2	ng/g		ND		ND		ND		ND
SI2+7.35	ng/g	1624		3880		10787	%	1672	
SI2+5.5	ng/g	4473		1027		2709		455	
COS2+11	ng/g		ND		ND		ND		ND
COS2+11 SP	ng/g	168		202		193		213	
RECOVERY (%)		99		120		114		126	
SED. BLANK	ng/g		ND		ND		ND		ND
SED. BLANK 2	ng/g	4.5	%		ND		ND		ND
SEDIMENT									
DET LIMIT		3.6		3.3		3.3		2.5	

<u>SAMPID</u>	<u>UNIT</u>	<u>BENkFLU</u>	<u>BENkFLUQ</u>	<u>BENaPYR</u>	<u>BENaPYRQ</u>	<u>I123cdP</u>	<u>I123cdPQ</u>	<u>DBahANT</u>	<u>DBahANTQ</u>
DP3+3.0	ng/g		ND	1.0	%	0.8			ND
NMN3	ng/g		ND	2.1	%	1.1		0.7	%
3HNMX+1.1	ng/g		ND	11		5.1		2.8	%
3HNMX+8.2	ng/g		ND	14		3.8		4.3	
3HNMX+8.2 REP1	ng/g	17	%	25		6.6			ND
3HNMX+8.2 REP2	ng/g	21	%	32		23		24	%
KBN3	ng/g		ND	1.0	%	0.5	%	0.5	%
WR2+9.2	ng/g		ND	11		4.9		12	
WR3	ng/g		ND	4.1		1.9		3.3	%
CC3	ng/g	2.6	%	3.3	%		ND		ND
CC3 SP	ng/g	120		128		134		132	
RECOVERY (%)			99	105		113		111	
HW3+15	ng/g	2.0	%	4.9	%	5.0			ND
RB3+14	ng/g	1.7	%	2.7	%		ND		ND
SI2	ng/g		ND		ND		ND		ND
SI2+7.35	ng/g	328	%	3895	%	438		556	%
SI2+5.5	ng/g	< 97		957	%	< 104		139	%
COS2+11	ng/g		ND		ND		ND		ND
COS2+11 SP	ng/g	208		214		223		245	
RECOVERY (%)		123		127		132		145	
SED. BLANK	ng/g		ND		ND		ND		ND
SED. BLANK 2	ng/g		ND		ND		ND		ND
SEDIMENT									
DET LIMIT			2.4		2.9		2.6		3.1

<u>SAMPID</u>	<u>UNIT</u>	<u>Bgh:PER</u>	<u>Bgh:PERQ</u>	<u>D8NAPH%</u>	<u>D10ACEN%</u>	<u>D12PERL%</u>	<u>TOTAL PAHs</u>
DP3+3.0	ng/g	3.3		21	30	77	59
NMN3	ng/g	2.7		20	27	103	80
3HNMX+1.1	ng/g	11		16	29	113	342
3HNMX+8.2	ng/g	9		0	10	91	655
3HNMX+8.2 REP1	ng/g	25		27	53*	98*	1268
3HNMX+8.2 REP2	ng/g	39		32	67*	97*	1553
KB3	ng/g	1.6		20	26	82	64
WR2+9.2	ng/g	13		84	92	87	2876
WR3	ng/g	6.9		13	21	99	478
CC3	ng/g	9.3		37	51*	98*	164
CC3 SP	ng/g	140		31	48*	92*	1718
RECOVERY (%)		110					
HW3+15	ng/g	25		19	42*	87*	80
RB3+14	ng/g	9.2		18	29*	50*	45
SI2	ng/g		ND	78	84	98	0
SI2+7.35	ng/g	1485		H	98	130	83399
SI2+5.5	ng/g	397		55	89	99	27624
COS2+11	ng/g		ND	88	94	90	0
COS2+11 SP	ng/g	206		88	95	109	3039
RECOVERY (%)		122		AMOUNT SPIKED 169 ng/g			
SED. BLANK	ng/g		ND	91	95	51	0
SED. BLANK 2	ng/g	4.8		36	50*	101*	17
SEDIMENT							
DET LIMIT			2.3				

* d10Acenaphthalene was replaced with d10Fluorene and d12Perylene was replaced with d12Crysene

APPENDIX C2

GAS CHROMATOGRAPHIC/FID ANALYSES OF TISSUES AND SEDIMENTS
(See Appendix A1 for Sample Locations and Appendix A2 for
Composite Identification)

COMPOUND LIST(a)MEANING

n-C9	Value of analyte concentration or spike recovery
n-C9	Qualifier codes, e.g., ND (see glossary for C1)
n-C10	
n-C10Q	
n-C11	
n-C11Q	
n-C12	
n-C12Q	
n-C13	
n-C13Q	
n-C14	
n-C14Q	
n-C15	
n-C15Q	
n-C16	
n-C16Q	
n-C17	
n-C17Q	
PRISTAN	
PRISTANQ	
n-C18	
n-C18Q	
PHYTANE	
PHYTANEQ	
n-C19	
n-C19Q	
n-C20	
n-C20Q	
n-C21	
n-C21Q	
n-C22	
n-C22Q	
n-C23	
n-C23Q	
n-C24	
n-C24Q	
n-C25	
n-C25Q	
n-C26	
n-C26Q	
n-C27	
n-C27Q	
n-C28	
n-C28Q	
n-C29	

(a) Measured in units by dry weight.

(contd)

COMPOUND LIST

MEANING

n-C30	
n-C30Q	
n-C32	
n-C32Q	
n-C34	
n-C34Q	
n-C36	
n-C36Q	
OTP%	Surrogate recovery rate value

Tissue Samples

<u>SAMPID</u>	<u>UNIT</u>	<u>C9</u>	<u>C10</u>	<u>C10g</u>	<u>C11</u>	<u>C11g</u>	<u>C12</u>	<u>C12g</u>	<u>C13</u>	<u>C13g</u>	<u>C14</u>	<u>C14g</u>
TNMN+50	ng/g	17	J	126	ND	24	J	25	J	6375	ND	28
TNMN+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	76	ND	ND
TNMN2+50	ng/g	ND	ND	32	J	ND	ND	ND	ND	34	J	26
TNMN2+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TNMN3+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TNMN3+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TKBN+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TKBN+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TKBN2+50	ng/g	ND	ND	88	J	ND	ND	ND	ND	ND	ND	ND
TKBN2+25	ng/g	ND	ND	58	J	ND	ND	ND	ND	ND	ND	ND
TKB3+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TKB3+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T2B+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	89	ND	81
T2B+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T2B+25 SP	ng/g	ND	101	J	ND	127	J	ND	ND	181	J	30
RECOVERY (%)												
T2B2+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T2B2+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
T2B3+25	ng/g	ND	334	ND	ND	ND	ND	ND	ND	ND	ND	ND
T2B3+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TWR+50	ng/g	ND	129	ND	ND	ND	ND	ND	ND	ND	ND	ND
TWR+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TWR2+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TWR2+25	ng/g	ND	36	J	ND	ND	ND	ND	ND	ND	ND	ND
TWR3+25	ng/g	ND	268	ND	ND	152	ND	ND	ND	ND	ND	494
TWR3+25 SP	ng/g	ND	41	23	ND	159	ND	ND	ND	ND	ND	75
RECOVERY (%)												

SAMPID	UNIT	C15	C15q	C16	C16q	C17	C17q	PRISTAN	PRISTANQ	C18	C18q	PHYTANE	PHYTANEQ
TNNN-50	ng/g	143		129		506		72		119		32	
TNNN-25	ng/g	315		136		512		106		245		ND	
TNNN2+50	ng/g	183		75		599		ND		114		ND	
TNNN2+25	ng/g	165		65		696		ND		80		49	
TNNN3+25	ng/g			ND		264		ND		ND		ND	
TNNN3+50	ng/g	68	J			608		ND		ND		ND	
TKBN-50	ng/g	342		95		319		75		138		ND	
TKBN-25	ng/g	934		183		766		ND		206		ND	
TKBN2+50	ng/g	550		123		310		80		171		ND	
TKBN2+25	ng/g	67		48	J	104		ND		41		ND	
TKB3+25	ng/g		ND	ND		ND		ND		ND		ND	
TKB3+50	ng/g	140		ND		745		ND		ND		ND	
T2B+50	ng/g		ND	ND		ND		ND		175		ND	
T2B+25	ng/g		ND	ND		ND		ND		ND		ND	
T2B+25 SP	ng/g	191	J	262	J	ND		ND		ND		ND	
RECOVERY (%)													
T2B2+50	ng/g	212		26	J	276		157		146		42	
T2B2+50	ng/g		ND	ND		ND		ND		63		ND	
T2B3+25	ng/g	65	J	170		382		327		88		ND	
T2B3+50	ng/g	76	J	ND		131		114	J	ND		ND	
TWR+50	ng/g	299		112		280		ND		ND		ND	
TWR+25	ng/g	198		117		352		ND		ND		ND	
TWR2+50	ng/g		ND	ND		216		47	J	134		ND	
TWR2+25	ng/g	32	J	ND		145		ND		111		ND	
TWR3+25	ng/g		ND	ND		ND		ND		ND		ND	
TWR3+25 SP	ng/g	954		691		461		ND		478		ND	
RECOVERY (%)													
		145				105				73			

SAMPLE	C19	C19q	C20	C20q	C21	C21q	C22	C22q	C23	C23q	C24	C24q
TNNN+50	ng/g	214	ND	165	77	ND	406	ND	407	ND		
TNNN+25	ng/g	310	243	352	2076	1332	85	55				
TNNN2+50	ng/g	136	145	238	1678	532	805	1060				
TNNN2+25	ng/g	ND	ND	1274	167	277	30	J				
TNNN3+25	ng/g	ND	200	466	317	119	190	192				
TNNN3+50	ng/g	60	160	277	1467	1522	152	132				
TKBN+50	ng/g	224	380	292	256	8197	309	ND				
TKBN+25	ng/g	290	339	390	854	2488	286	176	39	J		
TKBN2+50	ng/g	ND	177	88	ND	ND	ND	ND	ND			
TKBN2+25	ng/g	98	575	ND	1330	2691	311	131	168			
TKB3+25	ng/g	47	ND	ND	ND	ND	ND	ND	ND			
TKB3+50	ng/g	61	223	ND	ND	ND	ND	ND	ND			
T2B+50	ng/g	ND	42	42	ND	ND	ND	ND	ND			
T2B+25	ng/g	ND	253	J	ND	382	ND	704	843			
T2B+25 SP	ng/g	ND	104	101	85	64	64	108	J	1110		
RECOVERY (%)											22	
T2B2+50	ng/g	64	ND	32	J	74	J	1653	103	97		
T2B2+25	ng/g	ND	469	103	1493	1493	260	431	409	532		
T2B3+50	ng/g	ND	303	303	361	ND	ND	ND	ND	673		
T2B3+25	ng/g	266	157	233	1325	1325	1325	130	118			
T2B3-50	ng/g	262	173	253	1568	1568	1568	298	336			
T2B3-25	ng/g	111	145	14292	ND	ND	ND	108	62			
TWR2+25	ng/g	77	97	9466	1063	1063	125	64	ND			
TWR3+25	ng/g	ND	914	480	ND	736	330	ND	1810			
TWR3+25 SP	ng/g	206	139	112	112	138	138	138	138			
RECOVERY (%)												

SAMPID	UNIT	C25	C25q	C26	C26q	C27	C27q	C28	C28q	C29	C29q	C30	C30q
TNMN+50	ng/g	276		82		8		226		198		207	
TNMN+25	ng/g	1131		533		748		1430		835		523	
TNMN2+50	ng/g	1496		133		433		ND		311		90	J
TNMN2+25	ng/g	ND		125		244		ND		ND		162	
TNMN3-25	ng/g	1145		1256		1235		1117		1606		706	
TNMN3+50	ng/g	184		185		185		200	J	411	J	133	J
TKBN+50	ng/g	208		146		224		152		427		229	
TKBN+25	ng/g	348		313		271		1404		552		318	
TKBN2+50	ng/g	64		70	J	ND		658		304		135	
TKBN2+25	ng/g	64		49	J	ND		346		161		90	J
TKB3-25	ng/g	64		ND		ND		44	J	135	J	ND	
TKB3+50	ng/g	ND		49		67		77		ND		44	
T2B+50	ng/g	107		132		137		ND		341		233	
T2B+25	ng/g	892		1030		1180		ND		ND		ND	
T2B+25 SP	ng/g	132	J	154	J	ND		1066		151	J	450	J
RECOVERY (%)													
T2B2-50	ng/g	120		ND		176		179		ND		258	
T2B2+50	ng/g	572		547		40	J	407		3261		ND	
T2B3-25	ng/g	ND		186		ND		263	J	ND		ND	
T2B3+50	ng/g	125		ND		ND		ND		ND		ND	
TWR-50	ng/g	242		127		273		875		333		ND	
TWR-25	ng/g	505		433		520		1214		597		453	
TWR2+50	ng/g	293		ND		274		ND		231		359	
TWR2+25	ng/g	345		ND		155		ND		ND		149	
TWR3+25	ng/g	ND		ND		ND		ND		2085		ND	
TWR3+25 SP	ng/g	301		263		ND		621		ND		446	
RECOVERY (%)													

SAMPLE	UNIT	C32			C34			C36			C36Q			RECOVERY			C10 - C30			C9 - C29		
		C32Q	C34	C34Q	C36	C36Q	C36Q	0%P	0%P	0%P	0%P	0%P	0%P	SUM (%)	SUM (%)	SUM (%)	SUM (%)	SUM (%)	SUM (%)	SUM (%)	SUM (%)	
TNMM-50	ng/g	160			76	J	17	J	51		9302		1017		7927							
TNMM-25	ng/g	616			ND		ND	ND	57		10923		5592		4619							
TNMM2+50	ng/g	160			48	J		ND	79		5710		1944		3558							
TNMM2+25	ng/g	841			48	J	23	J	74		5850		2198		2680							
TNMM3+25	ng/g	1659			521			ND	56		12571		4870		5520							
TNMM3+50	ng/g	94	J	59	J		ND	ND	65		3166		990		2023							
TKBN-50	ng/g	320			232		98		ND		59		5619		2739		2155					
TKBN+25	ng/g	ND		448			ND		ND		62		8530		4446		3636					
TKBN2+50	ng/g	496			ND			ND			115		13137		9831		2731					
TKBN2+25	ng/g	322			ND		ND	ND	ND		76		4614		3336		956					
TKB3+25	ng/g	ND			ND		ND	ND	ND		38		463		217		247					
TKB3+50	ng/g	ND			ND		ND	ND	ND		76		2421		1225		1143					
T2B-50	ng/g	ND			ND		101	J		ND	64		5559		3320		2138					
T2B-25	ng/g	ND			ND		638		ND		54		5599		1873		3087					
T2B+25 SP	ng/g	483	J	142	J		371	J			5888		4310		582							
RECOVERY (%)		81					62															
T2B2+50	ng/g	950			72	J		ND	63		4256		1959		1075							
T2B2+50	ng/g	ND			131			ND	85		7610		3059		4421							
T2B3+25	ng/g	834			ND			ND	71		5976		2443		2371							
T2B3+50	ng/g	1935			ND			ND	69		3254		408		797							
TWR+50	ng/g	317			241			158			45		5613		2843		2055					
TWR+25	ng/g	ND			265		201		48		7745		4293		2985							
TWR2+50	ng/g	963			197		155		154		17589		700		15527							
TWR2+25	ng/g	ND			76	J		ND	123		11945		1523		10345							
TWR3+25	ng/g	ND			ND			ND	70		2085		0		2085							
TWR3+25 SP	ng/g	682			ND		1111		ND		11556		6872		2891							
RECOVERY (%)		104			169																	

SAMPID	UNIT	C17 /		C16 / PHYTANE
		ODD/EVEN	PRISTANE	
TNMAN+50	ng/g	7.8	7.0	3.7
TNMAN+25	ng/g	0.8	4.9	
TNMAN2+50	ng/g	1.8		
TNMAN2+25	ng/g	1.2		
TNMAN3+25	ng/g	1.1		
TNMAN3+50	ng/g	2.0		
TKBN+50	ng/g	0.8	4.2	
TKBN+25	ng/g	0.8		
TKBN2+50	ng/g	0.3	3.9	
TKBN2+25	ng/g	0.3		
TKB3+25	ng/g	1.1		
TKB3+50	ng/g	0.9	14.0	
T2B+50	ng/g	0.6		
T2B+25	ng/g	1.6		
T2B+25 SP	ng/g	0.1		
RECOVERY (%)				
T2B2+50	ng/g	0.5	1.8	3.5
T2B2+50	ng/g	1.4		
T2B3+25	ng/g	1.0	1.2	
T2B3+50	ng/g	2.0	1.2	
TWR+50	ng/g	0.7		
TWR+25	ng/g	0.7		
TWR2+50	ng/g	22.2	4.6	
TWR2+25	ng/g	6.8		
TWR3+25	ng/g			
TWR3+25 SP	ng/g	0.4		
RECOVERY (%)				

SAMPID	UNIT	C9	C9	C10	C10	C11	C11	C12	C12	C13	C13	C14	C14	C14Q
TWR3+50		ng/g		ND		ND		ND		ND		ND		ND
THW+50		ng/g		ND	101	35	J	ND	ND	ND		ND		ND
THW+25		ng/g		ND	77	J	63	J	ND	ND		ND		ND
THW+25 SP		ng/g		ND	201	248	179		75		290		52	
RECOVERY (%)														
THW2+50		ng/g		ND		ND		ND		ND		ND		ND
THW2+25		ng/g		ND		ND		ND		ND		ND		ND
THW3+25		ng/g		ND		ND		ND		ND		ND		ND
THW3+50		ng/g		ND		ND		ND		ND		ND		ND
TNMS+50		ng/g		ND	116	111	J	ND	ND	ND		ND		ND
TNMS+25		ng/g		ND	68	J	41	J	ND	ND		ND		ND
TNMS2+50		ng/g		ND		ND		ND		ND		ND		ND
TNMS2+25		ng/g		ND		ND		ND		ND		ND		ND
TNMS3+25		ng/g		ND		ND		ND		ND		ND		ND
TNMS3+50		ng/g		ND		ND		ND		ND		ND		ND
TRB+50		ng/g		ND	112	78	J	ND	ND	ND		ND		ND
TRB+25		ng/g		ND		ND		ND		ND		ND		ND
TRB2+50		ng/g		ND		ND		ND		ND		ND		ND
TRB2+25		ng/g		ND		ND		ND		ND		ND		ND
TRB3+50-1		ng/g		ND		ND		ND		ND		ND		ND
TRB3+50-2		ng/g		ND		ND		ND		ND		ND		ND
TCC+50		ng/g		ND		ND		ND		ND		ND		ND
TCC+25		ng/g		ND		ND		ND		ND		ND		ND
TCC2+50		ng/g		ND		ND		ND		ND		ND		ND
TCC2+25		ng/g		ND		ND		ND		ND		ND		ND
TCC3+25		ng/g		ND		ND		ND		ND		ND		ND
TCC3+50		ng/g		ND		ND		ND		ND		ND		ND

SAMPID	UNIT	C15	C16q	C16	C16q	C17	C17q	PRISTAN	PRISTANq	C18	C18q	PHYTANE	PHYTANEQ
THW3+50	ng/g	ND	113	106	74	ND	219	ND	ND	ND	ND	ND	ND
THW+50	ng/g	126	100	439	74	ND	ND	ND	ND	45	ND	ND	ND
THW+25	ng/g	215	ND	834	ND	ND	ND	ND	ND	ND	ND	ND	ND
THW+25 SP	ng/g	351	502	164	135	574	103	ND	ND	ND	ND	ND	ND
RECOVERY (%)				90	33	J	111	ND	ND	ND	ND	ND	ND
THW2+50	ng/g	35	J	ND	182	ND	ND	ND	ND	ND	ND	ND	ND
THW2+25	ng/g	235	85	759	ND	ND	ND	ND	ND	ND	ND	ND	ND
THW3+25	ng/g	ND	ND	107	ND	ND	ND	ND	ND	ND	ND	ND	ND
THW3+50	ng/g	ND	ND	108	ND	ND	ND	ND	ND	ND	ND	ND	ND
TMS5+50	ng/g	78	ND	193	28	J	68	ND	ND	ND	ND	ND	ND
TMS2+25	ng/g	104	57	378	ND	ND	ND	ND	ND	61	ND	ND	ND
TMS2+50	ng/g	163	94	936	ND	ND	ND	ND	ND	52	ND	ND	ND
TMS2+25	ng/g	295	94	936	ND	ND	ND	ND	ND	74	ND	ND	ND
TMS3+25	ng/g	123	J	770	ND	ND	ND	ND	ND	ND	ND	ND	ND
TMS3+50	ng/g	79	J	543	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRB+50	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	95	ND	ND	ND
TRB+25	ng/g	ND	ND	ND	ND	ND	ND	ND	ND	63	ND	ND	ND
TRB2+50	ng/g	68	ND	46	J	31	J	37	ND	ND	ND	ND	ND
TRB2+25	ng/g	59	J	61	J	22	J	33	ND	ND	ND	ND	ND
TRB3+50-1	ng/g	71	J	76	229	126	J	54	ND	ND	ND	ND	ND
TCC+50	ng/g	152	92	169	111	ND	ND	ND	ND	120	ND	ND	ND
TCC+25	ng/g	290	ND	243	ND	ND	ND	ND	ND	78	ND	ND	ND
TCC2+50	ng/g	23	J	16	J	143	26	J	34	13	J	ND	ND
TCC2+25	ng/g	113	77	510	42	J	184	37	ND	ND	ND	ND	ND
TCC3+25	ng/g	ND	ND	149	81	ND	ND	ND	ND	ND	ND	ND	ND
TCC3+50	ng/g	ND	ND	84	J	ND	ND	ND	ND	ND	ND	ND	ND

SAMPID	UNIT	C19	C19q	C20	C20q	C21	C21q	C22	C22q	C23	C23q	C24	C24q
THW3+50	ng/g	126	119	250	163	341	421						
THW+50	ng/g	238	170	290	1563	166	41						
THW+25	ng/g	71	140	1208	2646	106	57						
THW+25 SP	ng/g	88	415	102	538	128	1557						
RECOVERY (%)			49		-380								
THW2+50	ng/g	35	J	ND	62	J	757	79	32	J			
THW2+25	ng/g	197		ND	174	ND	5378	907	173				
THW3+25	ng/g		ND	171	193	ND	ND	122	227				
THW3+50	ng/g	97		151	75	351	201	120	161				
TNMS+50	ng/g	76		81	492	1057	248						
TNMS+25	ng/g	65		78	ND	ND	222	40					
TNMS2+50	ng/g	148		104	ND	4750	218						
TNMS2+25	ng/g	177		208	ND	206	409						
TNMS3+25	ng/g	92		177	ND	111	194						
TNMS3+50	ng/g	53		98	751	1304	ND						
TRB+50	ng/g	101		98	1056	954	65	J	64				
TRB+25	ng/g	88		J	33	J	41	J	31	J			
TRB2+50	ng/g	30		20	J	655	41						
TRB2+25	ng/g	109		27	J	82	804	77	37	J			
TRB3+50-1	ng/g	134		317	435	266	544						
TRB3+50-2	ng/g	134		234	371	559	831						
TCC+50	ng/g	311		ND	356	1855	182						
TCC+25	ng/g	225		102	259	2449	112						
TCC2+50	ng/g	150		37	J	49	388	50	J	31			
TCC2+25	ng/g	144		76	118	1195	213	95					
TCC3+25	ng/g	130		186	423	ND	ND	142					
TCC3+50	ng/g	122		150	250	624	157	233					

SAMPID	UNIT	C25	C25q	C26	C26q	C27	C27q	C28	C28q	C29	C29q	C30	C30q
TWR3+50	ng/g	375		413		364		305	J			ND	
THW+50	ng/g	172		71		142		ND		1755		70	J
THW+25	ng/g	205		126		128		662		534		169	
THW+25 SP	ng/g	158		148		716		1414		307		605	
RECOVERY (%)								135					
THW2+50	ng/g	123		136		125		ND		216		84	J
THW2+25	ng/g	561		413		827		1885		485		327	
THW3+25	ng/g	148		181		159		177	J	ND		160	J
THW3+50	ng/g	119		139		107		ND		ND		ND	
TNMS-50	ng/g	754		290		ND		153		2093		309	
TNMS-25	ng/g	313		288		400		895		513		ND	
TNMS2+50	ng/g	560		125		467		330		237		46	J
TNMS2+25	ng/g	1714		184		453		ND		312		69	J
TNMS3+25	ng/g	335		384		350		302	J	501		179	J
TNMS3+50	ng/g	174		220		169		145	J	356		90	J
TRB-50	ng/g	73		93		139		1043		530		290	
TRB-25	ng/g	72		81		107		637		291		171	
TRB2+50	ng/g	51	J	59	J	70		550		86	J	62	J
TRB2+25	ng/g	29	J	59	J	72		222		94	J	40	J
TRB3+50-1	ng/g	454		459		444		351		362		201	J
TRB3+50-2	ng/g	1173		1235		1190		1041		1305		586	
TCC+50	ng/g	296		289		266		1076		474		249	
TCC+25	ng/g	209		111		244		1097		416		253	
TCC2+50	ng/g	ND		20	J	72		307		205		55	J
TCC2+25	ng/g	617		297		252		1058		341		165	
TCC3+25	ng/g	109		95	J	ND				ND		ND	
TCC3+50	ng/g	199		253		272		317		367	J	347	J

SAMPID	UNIT	C32	C32Q	C34	C34Q	C36	C36Q	RECOVERY	0TP (%)	SUM C9 - C36	C10 - C30	SUM EVEN	C9 - C29	SUM 0DD
TWR3+50	ng/g	414		124	J	145		63	3779	1534			1561	
THW+50	ng/g	13436		209		35	J	85	19497	2335			3363	
THW+25	ng/g	54	J	77	J	265		54	7637	3879			3362	
THW+25 SP	ng/g	578		88	J	741		75	10301	6423			2335	
RECOVERY (%)		94				86								
THW2+50	ng/g	135		47	J		ND	29	2192	1120			857	
THW2+25	ng/g	794		93	J	172		82	13478	8351			4069	
THW3+25	ng/g	968		479	J		ND	53	3075	917			711	
THW3+50	ng/g	950		450	J	958		54	3553	451			744	
TNMS+50	ng/g	74	J	89	J	52	J	98	5487	1594			3580	
TNMS+25	ng/g	422		254		113		70	5897	2643			2464	
TNMS2+50	ng/g		ND		ND		ND	61	3461	729			2732	
TNMS2+25	ng/g		ND		ND		ND	91	9419	5314			4105	
TNMS3+25	ng/g	123	J		ND	233	J	68	4616	1680			2581	
TNMS3+50	ng/g	106	J		ND		ND	65	2643	970			1568	
TRB+50	ng/g	2673		773		108		49	8260	3035			1671	
TRB+25	ng/g	1433		417			ND	42	5595	2067			1678	
TRB2+50	ng/g		ND	169			ND	43	2041	1414			426	
TRB2+25	ng/g	313		43	J		ND	31	2389	1239			590	
TRB3+50-1	ng/g	1647		415	J	132	J	69	7142	2148			2674	
TRB3+50-2	ng/g	1899		431	J		ND	45	12282	4670			5171	
TCC+50	ng/g	490		290		77		59	7177	3995			2324	
TCC+25	ng/g	1110		516		77		53	7896	4195			1998	
TCC2+50	ng/g	253		60	J	18	J	27	1950	899			692	
TCC2+25	ng/g	1875		164		42	J	58	7611	3145			2307	
TCC3+25	ng/g	2257			ND		ND	56	3640	421			881	
TCC3+50	ng/g	379		192	J		ND	60	3945	1923			1451	

<u>SAMPID</u>	<u>UNIT</u>	<u>ODD/EVEN</u>	<u>C17/ PRISTANE</u>	<u>C18/ PHYTANE</u>
THW3+50	ng/g	1.0		
THW+50	ng/g	1.4	6.0	4.9
THW+25	ng/g	0.9		
THW+25 SP	ng/g	0.4	1.2	
RECOVERY (%)				
THW2+50	ng/g	0.8	5.5	
THW2+25	ng/g	0.5		
THW3+25	ng/g	0.8		
THW3+50	ng/g	1.6		
TNMS-50	ng/g	2.2	6.8	
TNMS-25	ng/g	0.9		
TNMS2+50	ng/g	3.7		
TNMS2+25	ng/g	0.8		
TNMS3+25	ng/g	1.5		
TNMS3+50	ng/g	1.6		
TRB-50	ng/g	0.6		
TRB-25	ng/g	0.8		
TRB2+50	ng/g	0.3	1.5	
TRB2+25	ng/g	0.5	2.8	0.2
TRB3+50-1	ng/g	1.2	1.8	
TRB3+50-2	ng/g	1.1	1.5	
TCC-50	ng/g	0.6		
TCC+25	ng/g	0.5		
TCC2+50	ng/g	0.8	5.6	2.7
TCC2+25	ng/g	0.7	12.0	4.9
TCC3+25	ng/g	2.1	1.8	
TCC3+50	ng/g	0.8		

<u>SAMPID</u>	<u>UNIT</u>	<u>C9</u>	<u>C10</u>	<u>C10Q</u>	<u>C11</u>	<u>C11Q</u>	<u>C12</u>	<u>C12Q</u>	<u>C13</u>	<u>C13Q</u>	<u>C14</u>	<u>C14Q</u>
TWC-50		ng/g	ND	88	J	708	ND	ND	ND	ND	ND	ND
TWC-25		ng/g	ND	197			ND	ND	ND	ND	ND	ND
TPG-50		ng/g	ND				ND	ND	ND	ND	ND	ND
TPG-25		ng/g	ND				ND	ND	ND	ND	ND	ND
TPG2+50		ng/g	ND				ND	ND	ND	ND	ND	ND
TPG2+25		ng/g	ND				ND	ND	ND	ND	ND	ND
TPG3+50		ng/g	ND				ND	ND	ND	ND	ND	ND
TDS-50		ng/g	ND				ND	ND	ND	ND	ND	ND
TDS+50 SP		ng/g	ND				ND	ND	ND	ND	ND	ND
RECOVERY (%)												
TDS+25		ng/g	ND				ND	ND	ND	ND	ND	ND
TDS+25D		ng/g	ND				ND	ND	ND	ND	ND	ND
TDS2+50-1		ng/g	ND				ND	ND	ND	ND	ND	ND
TDS2+50-2		ng/g	62				ND	ND	ND	ND	ND	ND
TDS3+50		ng/g	ND				ND	ND	ND	ND	ND	ND
BLANK 1		ng/g					ND	ND	ND	ND	ND	ND
BLANK 2		ng/g					ND	ND	ND	ND	ND	ND
BLANK 5		ng/g					ND	ND	ND	ND	ND	ND
BARGE OIL												
		ng/g	ND				ND	227009	635575	1439084	3913328	

SAMPID	UNIT	C15	C15Q	C16	C16Q	C17	C17Q	PRISTAN	PRISTANQ	C18	C18Q	PHYTANE	PHYTANEQ
TWC+50	ng/g	ND	ND	97	88	137	ND	ND	ND	ND	ND	ND	ND
TWC+25	ng/g	ND	ND	48	J	60	ND	ND	ND	ND	ND	ND	ND
TPG+50	ng/g	ND	ND	ND	ND	ND							
TPG+25	ng/g	ND	ND	ND	ND	ND							
TPG2+50	ng/g	ND	ND	ND	ND	ND							
TPG2+25	ng/g	ND	ND	ND	ND	ND							
TPG3+50	ng/g	108	J	95	400	384	ND	ND	ND	ND	ND	ND	ND
TOS+50	ng/g	24	J	ND	46	J	76	ND	ND	32	ND	ND	ND
TOS+50 SP	ng/g	86	J	121	J	26	J	37	J	97	J	ND	ND
RECOVERY (%)				31						17			
TOS+25	ng/g	ND	ND	ND	ND	ND							
TOS+25D	ng/g	ND	ND	ND	ND	ND	ND	79	ND	ND	ND	ND	ND
TOS2+50-1	ng/g	18	J	12	J	64	J	25	J	11	J	ND	ND
TOS2+50-2	ng/g	77	ND	ND	129	122	ND	ND	ND	60	ND	ND	ND
TOS3+50	ng/g	171	J	209	486	322	ND	ND	ND	ND	ND	ND	ND
BLANK 1	ng/g	ND	ND	ND	ND	ND							
BLANK 2	ng/g	ND	ND	ND	ND	ND							
BLANK 5	ng/g	ND	ND	ND	ND	ND							
BARGE OIL	ng/g	3687672	3699562	3958975	2165041	3192770	2521765						

<u>SAMPID</u>	<u>UNIT</u>	<u>C19</u>	<u>C19Q</u>	<u>C20</u>	<u>C20Q</u>	<u>C21</u>	<u>C21Q</u>	<u>C22</u>	<u>C22Q</u>	<u>C23</u>	<u>C23Q</u>	<u>C24</u>	<u>C24Q</u>
TWC+50	ng/g	141		178		1026		1686		273		235	
TWC+25	ng/g	48		122		78		877		146		96	
TPG+50	ng/g	60		61		362		1021		119		76	
TPG+25	ng/g			ND				ND		ND		ND	
TPG2+50	ng/g	52		67		218		2469		89		61	
TPG2+25	ng/g	58		92		251		2358		95		69	
TPG3+50	ng/g	215		478		678		176		ND		207	
TOS+50	ng/g	54		32		J		56		716		153	
TOS+50 SP	ng/g	21		J		157		J		595		93	
RECOVERY (%)				32				31		J		472	
TOS+25	ng/g			ND		ND		ND		738		105	
TOS+25D	ng/g			ND		64		122		1375		115	
TOS2+50-1	ng/g			J		16		J		297		J	
TOS2+50-2	ng/g			116		143		113		1180		257	
TOS3+50	ng/g			172		406		471		239		510	
BLANK 1	ng/g			ND		ND		41		79		119	
BLANK 2	ng/g			ND		ND		ND		J		85	
BLANK 5	r/g			ND									
BARGE OIL	ng/g	3215828		3263812		2072925		1936588		1587042		1513655	

SAMPID	UNIT	C25	C25q	C26	C26q	C27	C27q	C28	C28q	C29	C29q	C30	C30q
TWC+50	ng/g	286		379		82		601		3308		444	
TWC+25	ng/g	201		182		153		686		1631		76	
TPG+50	ng/g	95		113		106		555		ND		424	
TPG+25	ng/g			ND		329		1790		ND		1135	
TPG2+50	ng/g	139		70		144		ND		1182		139	
TPG2+25	ng/g	166		97		197		1461		3101		89	
TPG3+50	ng/g	197		145		106		158		ND		ND	
TOS+50	ng/g	278		309		ND		30		ND		53	
TOS+50 SP	ng/g	54		72		150		424		183		170	
RECOVERY (%)						101		ND		ND		ND	
TOS+25	ng/g	200		244		ND		ND		ND		192	
TOS+25D	ng/g	151		160		93		65		166		166	
TOS2+50-1	ng/g	51		119		J		58		ND		40	
TOS2+50-2	ng/g	271		287		322		1559		406		265	
TOS3+50	ng/g	499		369		332		290		ND		164	
BLANK 1	ng/g	141		138		142		545		191		149	
BLANK 2	ng/g			ND		152		ND		ND		ND	
BLANK 5	ng/g			ND		76		87		704		ND	
BARGE OIL	ng/g	1285798		1118334		1190391		1113888		973545		1396514	

SAMPLE	UNIT	C32				C34				C36				C36Q				RECOVERY				C10 - C30				C9 - C29				
		C32	C32Q	C34	C34Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	C36	C36Q	
TWC+50	ng/g	14450		153				ND		110		23650			ND		3748			5212										
TWC+25	ng/g	210		84		J		ND		116		5873			ND		2295			3125										
TPG+50	ng/g		ND	73		J		ND		68		3149			ND		2345			732										
TPG+25	ng/g		ND	211				ND		53		4151			ND		3611			329										
TPG2+50	ng/g	2385		436				ND		167		7671			ND		2976			1874										
TPG2+25	ng/g	13768		219				ND		98		22349			ND		4384			3869										
TPG3+50	ng/g	2312		470		J		ND		76		6308			ND		1439			1703										
TOS+50	ng/g		ND	59		J		ND		92		2166			ND		1377			654										
TOS+50 SP	ng/g	260		J	27	J		51		J	46	3340			ND		2270			695										
RECOVERY (%)		67						13																						
TOS+25	ng/g		ND	93		J		ND		61		1719			ND		1322			305										
TOS+25D	ng/g		ND	76		J		ND		77		2767			ND		1964			648										
TOS2+50-1	ng/g		J	35		ND		J		37		1046			J		536			452										
TOS2+50-2	ng/g	817		152				ND		45		J	79		ND		6583			1753										
TOS3+50	ng/g	554						ND		ND		5854			ND		2337			2641										
BLANK 1	ng/g	123		J	69	J		ND		77		1872			ND		1047			634										
BLANK 2	ng/g		ND	76		J		ND		64		483			ND		323			85										
BLANK 5	ng/g	112		J		ND		ND		51		6832			ND		779			87										
BARGE OIL	ng/g	2374570		1344424		1144816				57		50973051					21784226			13638269										

C2.19

<u>SAMPID</u>	<u>UNIT</u>	<u>ODD/EVEN</u>	<u>RECOVERY (%)</u>	<u>C17/ PRISTANE</u>	<u>C18/ PHYTANE</u>
TWC+50		ng/g	1.4	1.1	
TWC+25		ng/g	1.4	0.3	
TPG+50		ng/g	0.3		
TPG+25		ng/g	0.1		
TPG2+50		ng/g	0.6		
TPG2+25		ng/g	0.9	0.0	
TPG3+50		ng/g	1.2	1.0	
TOS+50		ng/g	0.5	0.6	
TOS-50 SP		ng/g	0.3	0.7	
TOS+25		ng/g	0.2		
TOS-25D		ng/g	0.3	0.0	
TOS2+50-1		ng/g	0.8	2.6	
TOS2+50-2		ng/g	0.5	1.1	
TOS3+50		ng/g	1.1	1.5	
BLANK 1		ng/g	0.6		
BLANK 2		ng/g	0.3		
BLANK 5		ng/g	0.1		
BARGE OIL		ng/g	0.9	1.6	1.3

C2.20

Sediment Samples

SAMPID	UNIT	C9	C9q	C10	C10q	C11	C11q	C12	C12q	C13	C13q	C14	C14q
WR6+9.2	ng/g	123		352		455		573		664		869	
WR3 SED	ng/g	3	J	11	J	6	J	8	J	12	J	29	J
KB3 SED	ng/g	6	J	13	J	13	J	14	J	18	J	34	J
NNN3 SED	ng/g	4	J	6	J	8	J	7	J	11	J	21	J
NNNH3	ng/g		ND		ND		ND		ND		ND		ND
DP3-3.0 SED	ng/g	8	J		ND		ND	7	J	10	J	16	J
3HNMX+8.2	ng/g	17	J		ND		55	J	64	J	98		162
3HNMX+8.2 REP	ng/g	48			ND		163		178		259		371
3HNMX+1.1	ng/g	8	J	20	J	22	J	23	J	32	J	54	J
CC3 SED	ng/g	26	J	32	J	55	J	41	J	45	J	75	
CC3 SPIKE II	ng/g	25	J	69	J	52	J	89	ND	6	J	148	
3HW+15	ng/g		ND	12	J		ND		ND		ND		10
3RB+14	ng/g		ND		ND		ND		ND		ND		ND
COS2+11	ng/g	74		22	J	14	J	14	J	11	J	ND	
COS2+11 SP	ng/g	34	J	87	J	ND	107		55		ND	131	
RECOVERY (%)				38								78	
SI2	ng/g	28	J		ND		ND		ND		ND		ND
SI+15.2	ng/g		ND		ND		ND		ND		ND	12713	
SI+13.3	ng/g		ND		ND		ND		ND		ND	15421	
SED. BLANK S2	ng/g	63	J		ND		ND	15	J	ND	ND	ND	
BLK SED S3	ng/g		ND		ND		ND		ND		ND	ND	

<u>SAMPID</u>	<u>UNIT</u>	<u>C15</u>	<u>C15g</u>	<u>C16</u>	<u>C16g</u>	<u>C17</u>	<u>C17g</u>	<u>PRISTAN</u>	<u>PRISTANQ</u>	<u>C18</u>	<u>C18g</u>	<u>PHYTANE</u>	<u>PHYTANEQ</u>
WR2+9.2	ng/g	771		786		893		530		785		179	
WR3 SED	ng/g	20	J	28	J	85		ND	J	25	J	ND	
KB3 SED	ng/g	24	J	23	J	44	J	33	J	43	J	16	J
NMN3 SED	ng/g	13	J	14	J	33	J	ND	ND	ND	ND	ND	
NMNH3	ng/g	49	J	57	J	229		ND		72		ND	
DP3-3.0 SED	ng/g	13	J	17	J	47	J	ND	ND	ND	ND	ND	
3HNMAX+8.2	ng/g	160	J	168	J	289		1177		867		ND	
3HNMAX+8.2 REP	ng/g	301		280		387		1148		383		288	
3HNMAX-1.1	ng/g	47	J	47	J	92		162	J	ND		ND	
CC3 SED	ng/g	59	J	48	J	86		104	J	228		124	
CC3 SPIKE II	ng/g	123	J	140	J	88		87	J	260		97	
3HW+15	ng/g	8	J	14	J	84		ND	ND	602		ND	
3RB+14	ng/g	ND		ND		37	J	ND	ND	155		71	
C0S2+11	ng/g	ND		12	J	24	J	ND	ND	21	J	ND	
C0S2+11 SP	ng/g	128		189		ND		ND	ND	127		ND	
RECOVERY (%)				105						63			
SI2	ng/g	ND		ND		ND		ND		ND		ND	
SI+15.2	ng/g	20926		31487		43779		32940		36861		40994	
SI+13.3	ng/g	37639		65616		97345		58161		92509		79705	
SED. BLANK S2	ng/g	ND		ND		ND		ND		ND		ND	
BLK SED S3	ng/g	ND		ND		ND		ND		ND		ND	

SAMPID	UNIT	C19	C199	C20	C209	C21	C219	C22	C229	C23	C239	C24	C249
WR2-9.2	ng/g	645	911		870		1038		1207		1225		
WR3 SED	ng/g	449	142		162		168		171		198		
KB3 SED	ng/g	59	67		76		90		103		271		
NWN3 SED	ng/g	56	49		60		59	J	69	J	218		
NWNH3	ng/g	127		223		385		364		477		613	
DP3-3.0 SED	ng/g		ND	86		93		85		105		200	
3HMAX-8.2	ng/g		ND	506		499		484		637		593	
3HMAX-9.2 REP	ng/g	537		482		609		659		771		788	
3HMAX-1.1	ng/g		ND			ND		ND		ND		ND	
CC3 SED	ng/g	286	102		111		107		113		106		
CC3 SPKE II	ng/g	239	203		110		216		112		330		
3NW+15	ng/g		ND	93		86		72	J	90		165	
3RB+14	ng/g	163	40	J	49	J	49	J	63	J	114		
C0S2+11	ng/g	23	J	18	J	25	J	34	J	36	J	27	J
C0S2+11 SP	ng/g		ND	156		ND	163		13	J	504		
RECOVERY (X)				82			85					141	
SI2	ng/g		ND	11	J	13	J		ND	56	J	46	
SI+15.2	ng/g	39179		43262		21727		20913		17441		18061	
SI+13.3	ng/g	106106		115533		78843		77466		66377		66177	
SED. BLANK S2	ng/g		ND		ND		ND		ND		ND		
BLK SED S3	ng/g		ND		ND		ND		ND		ND		

SAMPID	UNIT	C25	C25q	C26	C26q	C27	C27q	C28	C28q	C29	C29q	C30	C30q
WR2+9.2	ng/g	1010	ND	942	ND	880	ND	730	ND	704	ND	501	J
WR3 SED	ng/g	170	ND	ND	ND	321	ND	302	J	300	J	216	J
KB3 SED	ng/g	123	ND	ND	ND	286	ND	256	J	237	J	ND	ND
NMM3 SED	ng/g	687	ND	767	ND	732	ND	658	ND	229	J	160	J
NMMH3	ng/g	697	ND	ND	ND	ND	ND	ND	ND	1266	ND	426	ND
OP3-3.0 SED	ng/g	808	ND	813	ND	1199	ND	899	ND	876	ND	430	ND
3HNMX+8.2	ng/g	35	J	ND	ND	1067	ND	1067	ND	1229	ND	640	ND
3HNMX+8.2 REP	ng/g	116	ND	127	ND	258	ND	206	ND	213	ND	63	J
3HNMX+1.1	ng/g	132	ND	138	ND	221	ND	306	ND	208	ND	170	J
CC3 SED	ng/g	286	ND	266	ND	420	ND	592	ND	483	ND	293	J
CC3 SPIKE II	ng/g	163	ND	149	ND	208	ND	299	ND	333	ND	186	J
3HW+15	ng/g	32	J	44	J	47	J	ND	ND	61	J	52	J
3RB+14	ng/g	ND	ND	16	J	ND	ND	201	ND	ND	ND	204	ND
COS2+11	ng/g	15168	ND	57	J	63	J	119	ND	62	J	46	J
COS2+11 SP	ng/g	70873	ND	9132	ND	12036	ND	10139	ND	13007	ND	11644	ND
RECOVERY (%)				56156	ND	59685	ND	53375	ND	45688	ND	67679	ND
SI2	ng/g												
SI+15.2	ng/g												
SI+13.3	ng/g												
SED. BLANK S2	ng/g												
BLK SED S3	ng/g												

SAMPLE	UNIT	C29				C30				C9 - C29		
		C32	C34	C36	C38	C39	C369	0TP	(X)	SUM C9 - C36	SUM EVEN	SUM ODD
WR2+9.2	ng/g	230	166	ND	21	18236	8709	8423				
WR3 SED	ng/g	82	82	39	77	2236	824	1208				
KB3 SED	ng/g	104	67	21	67	2158	847	1070				
NWN3 SED	ng/g	47	32	31	97	1792	791	892				
NWNH3	ng/g	2455	ND	175	63	9761	3179	3952				
OP3-3.0 SED	ng/g	76	61	78	131	901	411	277				
3HNMX+8.2	ng/g	178	69	71	68	8893	4170	3228				
3HNMX+8.2 REP	ng/g	447	271	52	85	14178	5661	6311				
3HNMX+1.1	ng/g	ND	64	ND	54	775	304	236				
CC3 SED	ng/g	27	25	ND	33	2756	1135	1367				
CC3 SPIKE II	ng/g	128	68	68	29	3833	2070	1359				
3HM+15	ng/g	163	75	36	146	3829	2119	1444				
3RB+14	ng/g	138	69	48	83	2354	993	1015				
C0S2+11	ng/g	84	49	25	98	748	242	348				
C0S2+11 SP	ng/g	197	ND	197	97	2473	1906	174				
RECOVERY (X)		67		102								
SI2	ng/g	ND	ND	ND	86	455	234	221				
SI+15.2	ng/g	17433	1023	9872	42	488977	194212	183323				
SI+13.3	ng/g	112455	58620	88860	52	1570069	609932	562336				
SED. BLANK S2	ng/g	ND	ND	ND	99	123	44	79				
BLK SED S3	ng/g	ND	ND	ND	57	316	0	316				

<u>SAMPID</u>	<u>UNIT</u>	<u>ODD/EVEN</u>	<u>C17/</u> <u>PRISTANE</u>	<u>C18/</u> <u>PHYTANE</u>
WR2+9.2	ng/g	1.0	1.7	4.4
WR3 SED	ng/g	1.5		
KB3 SED	ng/g	1.3	1.3	2.6
NNN3 SED	ng/g	1.1		
NNNH3	ng/g	1.2		
DP3-3.0 SED	ng/g	0.7		
3HNMX-8.2	ng/g	0.8	0.2	
3HNMX+8.2 REP	ng/g	1.1	0.3	1.3
3HNMX+1.1	ng/g	0.8	0.5	
CC3 SED	ng/g	1.2	0.8	1.8
CC3 SPIKE II	ng/g	0.7	1.0	2.7
3HW+15	ng/g	0.7		
3RB+14	ng/g	1.0	2.2	
COS2+11	ng/g	1.4		
COS2+11 SP	ng/g	0.1		
RECOVERY (%)				
SI12	ng/g	0.9		
SI+15.2	ng/g	0.9	1.3	0.9
SI+13.3	ng/g	0.9	1.7	1.2
SED. BLANK S2	ng/g		1.8	
BLK SED S3	ng/g			

END

DATE FILMED

12/31/90

