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Review of Previous Work

Our adaptive methodology has made significant advances in the past few years. \Ve

have developed an efficient method of adaptive mesh refinement, henceforth AMR, which
,'

concentrates the Computational effort where it is most needed. The method is desi_gned

for problems with multiple length scales that need high res01ution over small portions

of the computational domain. Our method has been combined with several higher-order

versions of Godunov's method [Berger and Colella]. The increased resolution of this coin-

bined approach has enabled the study of fluid flow phenomena not previously possible.
For example, AMR was used in a study of mach reflection of a blast wave off an oblique

wedge. This has been used as a test problem for many years, in particular, see the survey

paper by Woodward and Colella [1984]. However, previous calculations were apparently

not fully converged. With the extra resolution provided by AMR, a Kelvin-Helmholtz-type

instability was computed along the slip line culminating in the jet at the bottom boundary.

This was not observed in the previous calculations, although experiments confirm its ex-

istence. The AMR code is now being used in several laboratories across the country. The

_wo dimensional AMR has been extended to incorporate moving quadrilateral meshes, and

work is in progress to simulate incompressible fluid flow. AMR has been combined with

other techniques, such as the front-tracking algorithm of [Chem _d Colella] and volume

of fluid (SLIC) techniques. Using AMR, my collaborators have been able to obtain close

agreement with shock tube experiments, verify or disprove theoretical conjectures, and

discover new phenomena in regimes not easily accessible to laboratory experiment [Colella

and Henderson].

AMR is based on the use of uniform, local grid refinements superimposed on an

underlying coarse grid. These embedded grid refinements can be recursively nested to

achieve a fixed level of accuracy in tile calculation. Unlike other embedded grid refinement

methods [e.g. Dannenhoffer], in our method the embedded fine grid cells are grouped

together into grid patches containing many refined grid cells, but also some coarse cells

that may not have needed to be refined. This is done so that all grids are uniform and

logically rectangular, which allows vectorization without using gather/s'._atter operations.

It also allows for a simple user interface; a finite difference scheme can be written for a

uniform rectangular grid without concern for the connectivity of each cell. The use of

fine grid patches also reduces the storage overhead, which is on a per grid basis for our

method, rather than the overhead, per grid point found in unstructured mesh calculations
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[Mavripilis and Jameson: Lohner]. The fine grids use a smaller time step as well. further

concentrating the work on the fine grids. Other adaptive methods for transient flows use

the same time step for the whole mesh [Lohner; Brackbill and Saltzman]. This is less

e_cient, since the Courant number on the adapted coarse ceils can be tiny. The additional

complications introduced by this method occur only at the interfaces of the fine and coarse

grids.

AMR uses an automatic error estimation procedure, based on Richardson extrap-

olation, to determine the regions in the domain where the resolution in the solution is

insuf_cient. These coarse grid cells are "flagged" as needing refinement. This past year,

we have developed a new automatic grid generation algorithm that groups these flagged

cells into rectangular grid patches [Berger and Rigoutsos]. Our new Mgorithm uses ideas

from pattern recognition and computer vision to find near optimal groupings of flagged

points into rectangles. Especially for three dimensional calculations, it is important to

minimize the area that is unnecessarily refined, while keeping vector lengths as long as
possible.

Great attention was paid to the efficient vectorization of AMR. For example, our initial

implementation of the boundary interpolation procedures for the fine grids took 40% of

the CPU time. A careful restructuring that minimized subroutine calls and performed

block memory transfers reduced that to approximately 10% of the run time. The interior

integration of a grid, which uses approximately 75% of the run time, has been clocked

at 75 megaflops on the XMP. AMR has developed from an experimental algorithm to a

highly efficient code that has been used for parameter studies and for production runs.

We have previously studied the parallel processing of AMR, so far only on shared

memory multiprocessors. The interesting question here concerned load balancing. The

. computational load changes dynamically in time, as well as being a function of space.

Since AMR already uses a domain decomposition approach to arrive at an accurate so-

lution, it was natural to try to use a domain decomposition approach to multiprocessing

AMR. The data structures that were developed for doing grid management and the inter-

grid communication were already in place, and were easily adapted to the new task of

inter-processor communication. Thus, I used a high level of parallelism based on grids,

rather than the DO loop level of parallelism that is frequently employed. In general, a

coarser granularity of parallelism incurs less synchronization and overhead costs than do

fine grained approached.

The binary decomposition algorithm [Berger and Bokhari] was used to load balance

the computation. It was implemented within AMR, by partitioning the grids themselves so

that each processor would entirely %wn" the grid in its region of space. If a grid extended

across a partition line, it was divided into two grids. Processors communicated with each

9



@0

otherthroughtheboundary oftheirrespectivegrids.

By parallelizing the code at such a high level, only five subroutines, accounting for

98% of the CPU time, needed to be modified. Using four processors, these five subroutines

were sped up by a factor of 3.6, giving an overall speedup of 3.4, or 87%. This 107_

imbalance in the computational load is due partly to the neglect of boundary work in the

work estimates (3_6), and partly to the inherent imbalance of partitioning fine grids only

at coarse grid lines (7%), a structural requirement of AMR. Despite this, and including

the serial degradation caused by creating more grids than are needed in the serial case.

the speedup is still a respectable 84.5%.

Proposed P_esearch

Our goal is to extend and combine these advanced numerical methods to tackle the

r. complex physics and geometry found in realistic three dimensional problems.

Cartesian mesh. methods

Our principal project will be tile development of a Cartesian mesh algorithm with

". adaptive refinement to compute flows around arbitrary geometries. We are interested in

": both time-accurate and steady-state calculations in two and three space dimensions. In

this approach, we keep a uniform rectangular (or Cartesian) grid and allow the boundary

" to intersect the grid cells in azl essentiMly arbitrary way (see Figure I).
J

This treatment of boundaries can be combined naturally with our AMR adaptive

strategy of using locally uniform meshes. We retain the advantages (efficiency and accu-

., racy) of uniform grids and are able to resolve fine scale flow features induced by complex

geometries. Previous calculations using Cartesian meshes have either been underresolved.

at the leading edge of an airfoil, for example, or inefficient, using tensor product meshes to

i, refine the leading edge, but leaving the grid lines extending wastefully out to the far field
_.;

_ [Choi and Grossman]. We are using our previously developed adaptive mesh refinement
.

algorithm to achieve accuracy comparable to the body-fitted meshes, where grid points

can be bunched in an a priori manner to improve the accuracy ¢,f the solution.

Figure 1 shows some preliminary examples of the method applied to the Euler equa-

•_ tions to compute the interaction of a shock impinging on two cylinders. The only grid

.: cells drawn in the figures axe the irregular cells formed where the grid intersects the body.
-,

:_ As the flow field becomes more complex, refined grids are used to increase the resolution.

, The location of these grids is indicated along with the density contours. The contour plots

themselves show the irdormation taken from the finest grid in each region. Note that the

cnntcur lines go smoothly across the grid interfaces between finer and coarse grids. The

time steps used correspond to a CFL number of roughly 0.5 on the regular grid cells,

though up to a thousand times larger on the smallest irregular ceils.
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