

CONF-841117-12

UCRL- 90898
PREPRINT

NOTICE
PORTIONS OF THIS REPORT ARE UNCLASSIFIED
It has been reproduced from the best
available copy to permit the broadest
possible availability.

THE USE OF INDUCTION LINACS WITH NONLINEAR
MAGNETIC DRIVE AS HIGH AVERAGE
POWER ACCELERATORS

D. L. Birx, E. G. Cook, S. A. Hawkins,
M. A. Newton, S. E. Poor, L. L. Reginato,
J. A. Schmidt and M. W. Smith

This paper was prepared for submittal to the
Eighth Conference on the Application of
Accelerators in Research & Industry
North Texas State University
Denton, Texas
November 12-14, 1984
August 20, 1984

Lawrence
Livermore
National
Laboratory

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any *warranty*, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any *information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government thereof, and shall not be used for advertising or product endorsement purposes.*

THE USE OF INDUCTION LINACS WITH MONLINEAR MAGNETIC DRIVE
AS HIGH AVERAGE POWER ACCELERATORS*

D. L. Birx, E. G. Cook, S. A. Hawkins, M. A. Newton, S. E. Poor,
L. L. Reginato, J. A. Schmidt, and M. W. Smith

University of California,
Lawrence Livermore Laboratory,
Post Office Box 808/L-321
Livermore, California 94550

UCRL-88490

August 20, 1984

PPS 000744

ABSTRACT

The marriage of induction linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 Mev/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator is under construction at Lawrence Livermore National Laboratory (LLNL) to allow us to demonstrate some of these concepts. Progress on this project is reported here.

INTRODUCTION

Among the extended family of particle accelerators, the Linear Induction Accelerator (LIA) probably holds the position of being the least complex, at least in concept, because it is simply a pulse transformer in

* Work performed jointly under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract W-7405-ENG-48 and for the Department of Defense under Defense Advanced Research Projects Agency ARPA Order No. 4395, monitored by Naval Surface Weapons Center under document number N60921-84-WR-W0095.

MAILED

which the secondary winding is comprised of an electron beam rather than a length of wire.

The accelerating structures themselves are full of the things -
transformers are typically full of such as, ferro-(or ferri-)magnetic material,
and can be constructed so as to be quite rugged and relatively inexpensive.
They appear to be ideally suited for applications requiring high currents
(kiloamps) at modest energies.

The pulse lengths typically are limited by design practicalities to
 ≤ 100 ns, but machines with pulse lengths of up to 400 ns have been
constructed. Until recently, the duty factors of these accelerators has
been extremely modest, but in the near future we hope to demonstrate the
capability of operation at repetition rates of order 10^4 Hz.

The performance of these accelerators has also been limited by the
modulators which supply the drive. The requirements for very high power
levels ($\geq 10^{10}$ watts/modulator) in very short times ($\leq 10^{-8}$ s) could not be
met reliably at high repetition rates and average power levels. However,
recent advancements in magnetic compression technology have made available
power conditioning systems for LIAs that provide essentially unlimited life
times, high reliability, and average repetition rates exceeding 10^4 Hz.
This relatively simple and inexpensive approach to the generation of elec-
tron beams makes them attractive for a number of applications, including
sewage sterilization and food irradiation.

A DEMONSTRATION ACCELERATOR

Research conducted at LLNL over the past few years has culminated in
modulators based on nonlinear magnetic compression which are applicable as
drivers for LIAs.

A new 2 MeV, 10 ka LIA order construction at LLNL will provide a test bed for such drivers. While magnetic modulators have been deployed experimentally in isolated parts of both the Experimental Test Accelerator (ETA) and the Advanced Test Accelerator (ATA), this will be the first LIA where they are solely responsible for the accelerator drive. A simplified schematic of the accelerator and driver is provided by Fig. 1. The two magnetic modulators, designated there as MAG-I's, each supply a 15 gigawatt pulse of 80 ns duration to the accelerator (designated 2 MeV injector). The power is transported from each MAG-I to the accelerator via two 4-ohm water filled transmission lines. Due to anticipated difficulties in transmitting the full 500 kV drive voltage, the pulse sent through the cables is actually only one-third that level and is stepped up to full voltage by a transformer adjacent to each accelerator cell. Zn-Ni ferrite was chosen as the accelerator core material because of its excellent fidelity at these short time scales. The actual hardware involved in this transition is illustrated in Fig. 2.

A cross-sectional view of a MAG-I is provided by Fig. 3. These units provide a 25-fold compression of the 1000 J pulse delivered by each pair of intermediate storage units (IS-I) before sending it on to the accelerator.

INITIAL EXPERIMENTS

While most of the accelerator operating time will be dedicated to research on topics related to national defense, experiments on radiation food processing are already being scheduled.

These experiments will be carried out in conjunction with the University of California at Davis, and will be directed at documenting similarities and differences between this technique of radiation processing and the more conventional method of exposure to radioactive isotopes.

SUMMARY

The addition of pulse compression technology to the power conditioning system to LIAs makes possible the construction of rugged and versatile accelerators which can operate at unprecedented power levels. These devices may serve as useful tools in nondefense applications such as radiation processing.

1 MW PS CRC-1 4× IS-1 2× MAG-1 2 MeV injector Diagnostics

Figure 1. Initial configuration high brightness test stand (HBTS)

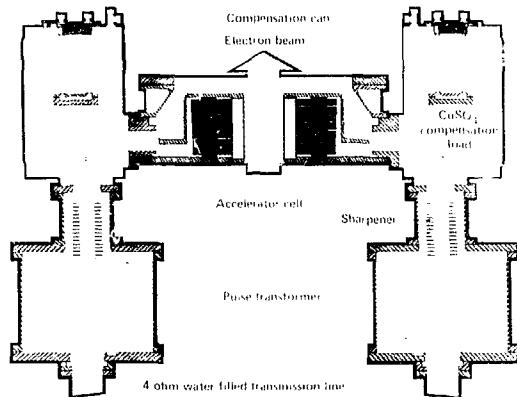


Figure 2. HV transition to accelerator cell.

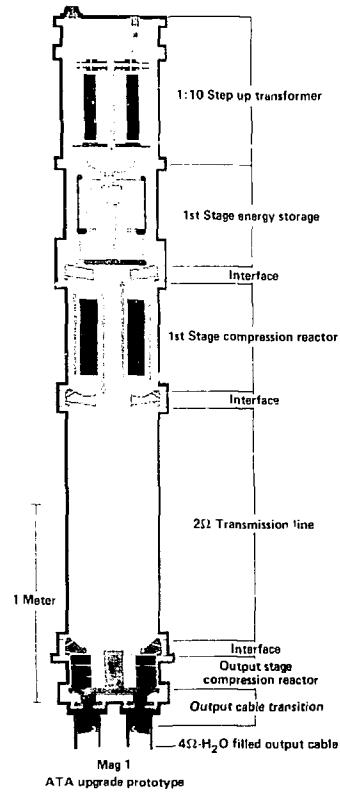


Figure 3. MAG-I cross-section.