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GEMERATION AND VCRIFICATION
OF FINITE MODELS AND COUNTEREXAMPLES
USING AN AUTOMATED THEOREM PROVER
ANSWERING TWO OPEN QUESTIONS™
P
: : : by
- P

Steve Winker

Two open questions in ternary Boolean algebras (i,
2,6] were answered with the aid of an existing
automated theorem-proving program without recourse
to any additional programming [6]. The new auto-
mated theorem-proving techniques developed in
answering the open questions are presented in this
paper; essentially the existing theorem prover is
‘used in a nonstandard way to seek and verify small
‘flnlte models and counterexamples for a first order
‘axiom system. Exhibiting a model of an axiom sys-
‘tem proves it consistent; this facility complements
‘traditional theorem-proving methods which can only
-prove inconsistency.

‘1. INTRODUCTION

!The solution of two open questions in mathematics
jwith the aid of an existing automated theorem-
‘proving program exhibits progress toward the long
‘standing goal that automated theorem provers be of
xa1d to mathematicians doing research. Tradition-
nally automated theorem provers have only focused
ion the attempt to prove a theorem true, while
ineglecting the search for a counterexample. Tech-
nlques (within the context of cur existing theorem-
.prov1ng program) are described in this paper for
ithe construction of small finite counterexamples
.in particular and models in general. The user
,must make some decisions about what sort of model
.to seek, but much of the work involved in search-
ing for models can be done automatically. To
repeat, no reprogramming is required to further a
;given model search or to attack a new problem or

‘'new set of axioms.

The two open questions answered concern indepen-
dence of axioms in an axiomatization of "ternary
Boolean algebras'" by A. A. Grau [2]; the results
are described fully in Winker and Wos [6]. It is
the purpose of this paper to present the new model-
finding techniques in detail. No new programming

*

This work was supported in part by NSF grant
MCS77-02703, and in part was performed under the
auspices of the U.S. Department of Energy while
in residency at Argonne National Laboratory.

JrGrau Ternary Boolean Algebra Axioms (see also
Appendix I):
1: FE(V,W,F(X,Y,2))=F(F(V,W,X),Y F(V W,2))
2 F(Y,A,X) =X
3: F(X,Y,G(Y))=X
4: F(X,X,Y)=X
5: F(G(Y),Y,X)=X __
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was required to implement the model-finding tech-

‘niques; rather, the use of certain special clauses

" (see Appendix II) enabled our existing theorem

prover to do the desired operations. The tech-
niques will be discussed in the context of the
question to which they were first applied: the
independence of axiom 2 of the Grau ternary
Boolean algebra axioms (Appendix II)} from the
remaining axioms,

In the interest of clarity the automatic verifica-
tion of a single completely defined model will be
discussed first; the model search techniques,
which are more involved, are deferred until sec-
tion 3.

2. VERIFICATION OF A FINITE MODEL

This discussion will begin by considering theoret-
ical aspects of model verification before
proceeding with a detailed description of ''model
verification runs'. First consider how a model
may be specified. A finite model for Grau axioms
1, 3, 4, and 5, and violating axiom 2, for
example, may be specified by giving a set of ele-
ments and full tables of values for the functions
F and G on those elements. One must then verify
that

(1) these values are consistent w1th axioms
1, 3, 4, and 5, and

(2) that axiom 2 is violated,
Axiom 2 is an equality. In order for it to be

violated, the two sides must be unequal for some
values (X,Y) and for this it is required that two

‘elements of the model be demonstrably unequal.

This is not a trivial matter to arrange., In par-
ticular, A-=B cannot be derived from a set of
equalltleq in A and B; equality of all elements is
consistent with any set of positive equalities.
Instead of deriving A-=B one must prove A-;=B to be
consistent with the equalities. Consistency can-
not be proven by the refutation techniques of:
traditional automated theorem proving, and so new

technlques are needed.

The method of "complete sets of reductions" [3]
enables one to prove consistency of, for example,

‘A+=B with certain sets of equalities, and thus

provides a starting point for the new techniques.
Essentially, if a set of demodulators [8] form a

‘complete set of reductions and do not demodulate

‘A and ‘B to the same term,

then A4=B plus those

.demodulators form a satisfiable set of clauses.

Steve_ Winker

}The procedures given in [3] for generating and

et .
[N




i
— o e e e nd L
testing complete sets of reductions are easily
performed using the standard paramodulation [7]
and demodulation -[8] features of our theorem-

proving program. i

.

Unfortunately not every system of equalities yields
a finite complete set of reductions (by undecida-
bility of the word problem) and even a finite set
may be unmanageably large. Indeed in the ternary
{Boolean algebra problems under consideration,
application of the standard procedure for genera-
,tion of a complete set of reductions from the
axioms }3] yielded a set of equalities which ex-
ceeded time and memory limitations. This difficul--
ty was overcome as follows: Set up another, in
some sense simpler set of equalities to define a
finite model, prove that the simpler equalities
form a complete set of reductions, and finally
prove that the original axioms are necessarily
satisfied in the model so defined. Two questions
‘then arise: first, how does one choose the simpler
set of equalities; second, how does one then verify
the axioms? Given a specific model, a simpler set
of equalities could be obtained by removing complex
equalities (e.g. axiom 1%} and adding simple ground
equalities (e.g. those of Appendix IB) to fill in
for the removed complex equalities in defining the
function tables, Actually the models were found

by the methods of section 3, which yield simple
equalities anyway.

Verification of the axioms is done automatically

in a "model verification run'"; model verification
runs will now be discussed in detail, ‘o specify
a model of an equational system, one must specify
a set of elements (considered to be distinct) and
functions on those elements corresponding to the

functions of thé system. The following require-

ments must be satisfied:

ey

' (2)

(3) Each axiom of the system must be
satisfied in each instance.

Each function must be well-defined.

Each function must be closed.

A function on a finite set of elements may be
‘specified by simply tabulating its values. The
function tables are supplied to our program in the
form of a set of "function defining equalities';
ifor an example see the model given in Appendix IB,
iThe value of F(tl,...tn)), where tl,...tn are
'model elements, is then defined to be the result
'of demodulating F(tl,...tn), using thé set of
"function defining equalities' as demodulators.
For example, in the model of Appendix IB,
F(A,G(A),G(A)) receives the value G(A)}; G(G(G(A)))
}receives the value G(A); G(G(A)) (G applied to the
.element G(A)) receives the value G(G(A)) because
'G(G(A)) does not demodulate. In this way evalua-
ition of functions of model elements is done using
‘our existing demodulation routine. Observe that
ione equality may stand for several function table
ientries.

|
|+See Appendix I
T
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‘elements, the term F(tl...tn), and then demodulat-
‘ing each such term.
‘obtained, F is closed.
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Closure ﬁé} be tested by fé}ming,'for each func-
tion F and each possible n-tuple tl...tn of model
If only model elements are f

Clauses for testing clo-
sure are given in Appendix IIB.

Well-definedness must hold for functions of a ;
model: any function of given model elements must i
be given a unique value. Equivalently, demodula- ' :
tion of a term F(tl,...tn) where the arguments are

model elements must yield a unique result no

matter how the demodulation is done. The simplest

.way to guarantee a unique result ("unique termina-

tion'") is to verify that the '"function defining
equalities’ form a ''complete set of reductions'.
This verification may be done by a paramodulation-
and-demodulation procedure as described in {3].

An alternative method for verifying unique termi-
nation is outlined in Appendix V but has not been
needed for the models examined so far. Note that
even though the axiom system being modeled may not
yield a complete set of reductions, the function
defining equalities for a particular model of that
system can still form a complete set of
reductions.

The condition that each axiom is true in each in-
stance is checked by forming each instance,
demodulating both sides of the equality, and
checking that the two sides become identical in
each case, For example, substituting A/V,

G(G(A)) /W, G(AY/X, A/Y, G(G(A))/Z in Grau Axiom 1
yields, after demodulation, A=A, verifying axiom 1
in this instance. A method for generating all the
instances is given in Appendix IIA, Our theorem
prover demodulates each automatically, then tests
each for subsumtion by X=X (equivalently, for
identity of the two sides). Checking satisfaction
of Axiom 1 formed the bulk of the work of verify-
ing each Grau model; 3 to the 5th power = 243
instances must be checked for a three-element
model. (The amount of checking can in some cases
be reduced if needed by symmetry and other consid-
erations; see Appendix III).

Note: If the function defining equalities form a
complete set of reductions, no axiom included
among those equalities (for example axioms 3-5 in
the model of Appendix IB) needs to be checked for
satisfaction in all instances. Proof: The check
is trivial. Apply the demodulator s=t to the
axiom instance su=tu giving tu=tu.

This "trivial check' is only valid when the axiom
is one of the function defining equalities and the

" fung¢ion defining equalities form a complete set

of reductions. In checking axiom 1 in the model
of Appendix IB, for example, axiom 1 must not be

"used as a demodulator, because axiom 1 is not one

of the function defining equalities. As a simple
example of an invalid "trivial check" consider a
model with elements A and B and equalities
JIJI(X)))=X for all X, J(A)=B, and J(B)=A, with
the latter two forming the complete set of reduc-
tions. J(J(J(X)))=X seems to be satisfied when °
the "trivial check" is applied; however when the
'latter two equalities are applied to J(J(J(A))}), B
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is obtained, not A. In doing the "trivial check" .
the implicit assumption is made that demodulating
using J(J(J(X)))=X gives the same result as demod-
ulating using the other equalities; this is not
true however because the three equalities together
do not form a complete set of reductions.

3. SEARCHING FOR FINITE MODELS

The NIUTP automatic theorem prover |4,5,7,8] was
used extensively in searching for the models we
|found as well as in verifying them. The model
isearches proceeded in three stages: preliminary
paramodulation runs, partial-model runs, and flnal
imodel-verification run, .
!Preliminary paramodulation runs can be used to
derive consequences of the axioms being modeled,
|to suggest what equalities do not follow from the
:axioms, and to test the effect of adding various
‘function-defining or other equalities to the axiom
system. For example:

1) The equality F(X,Y,X)=X was derived by
paramodulation from axioms 1, 3, 4, and § of
Appendix IA, filling in part of the function table
for F (in any model of axioms 1, 3, 4, and 5).

2) The failure to derive G(G(X))=X from the
above system (axioms 1, 3, 4, and 5) suggested
that models be sought in which G(G(A))~=A for some
A (see Section 4, Example of a Model Search).

3} Addition of the axiom F(X,Y,Z)=F(X,Z,Y) .to
the above system was rejected because paramodula-
tion then derived G(G(X)) X (G(G(A))~=A for some A
was desired).

4} Addition of G(G(G(X)))=G(X) to the above
system yielded no undesirable paramodulants; this
system thus seemed promising and was studied
further by means of "partial-model runs'.

Partial-model runs are begun when a model has been
partially specified: that is, when the set of
model elements (e.g. (A, G(A), G(G(A)))) has been
selected, and most but not all entries in the
function tables have been filled in.

‘A partial-model run is similar to a model verifi-
‘cation run., The similarities:

A set of model elements is input.

A set of function-defining equalities is input.
Closure, well-definedness, and satisfaction of
the axioms in all instances are tested as in
model verification.

The differences:

The function defining equalltles do not
completely define the functions., Rather, the

values for some terms (called ''undecided terms")
are left unspecified. ’

(@]
ﬂJ
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The closure test will not 1nd1cate closure, but
rather will yield a list of the undecided terms.

In a partial-model run, the check for satisfaction
of the axioms in all instances may yield any or

all of the following:

1) Equality of a model element to itself --

indicating satisfaction of an axiom in the

particular instance tested.

2) Equality of two model elements -- indicat-
ing that the partially defined functions already

_do not satisfy the axiom tested.

3) Equality of an undecided term to a model
element -- any such equality is input as a func-
tion defining equality in subsequent partial-model
and model-verification runs.

4) More complex ground equalities involving
undecided terms -- may be used to eliminate some
possible values for the undecided terms.

Example of a partial-model run: Axioms 1, 3, 4,
and 5 of Appendix I, plus the equality

© G(G(G(X)))=G(X), yield the first seven equalities

in Appendix IB; these were used as defining
equalities for a partial-model run. The model
elements A, G(A), and G(G(A)) were also input.

" The undecided terms were F(A,G(A),G(A)),

F(A,G(G(A)),G(G(A))), and F(G(G(A)),A,A). The
check for satisfaction of axiom 1 in all instances
yielded (among others) the equalities

F(A,G(G(A)),G(G(A)))=A
F(G(G(A)),A,A)=G(G(A))
F(F(A,G(A),G(A)),G(G(A)),A)=A

The first two were input as function defining
equalities in subsequent runs. The last equality
eliminates the poss1b111ty F(A,G(A),G(A))=G(G(A))
(as this and axiom 4 would demodulate the last
equality to G(G(A))=A indicating violation of
axiom 1), Each of the other two possibilities,
F(A,G(A),G(A))=A and F(A,G(A),G(A))=G(A), led to a
valid model. This ends the example.

Finally, when enough information has been gained
from paramodulation .and partial-model runs to
specify a likely model completely, that model is
verified in a model-verification run (as described
in section 2),

Notes on searching for models:

1) When making a partial-model run, it
‘appears desirable to instantiate axioms using only
‘the elements which are expected to be in the final
model. Instantiation using "undecided terms’
would yield more  axiom instances to check and more
complicated ground equalities.

2) A partial-model run with too many un-
decided terms may yield an unmanageable quantity
of cbmplex ground equalities. 1In this case para-
modulation runs might be used to find the conse-

_ quences of proposed function-defining equalities.

iy
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When more -function-defining equalltles have been
tested, found seemingly acceptable, and added to
the partial model, partial-model runs may again be

attempted, i'
by

3) a partial-model run may be considered
Ypromising" if no equality between distinct model
elements is derived. Each ‘'promising" partial-
model run in the author's brief experience has led
to a valid model. However the author doubts that
a '"promising" partial-model run guarantees that
there is a valid model: it might not be possible
to complete the function tables consistently with
the axioms being modeled. :

It is possible in modeling certain axiom
semigroups, having associativity as

4)
systems (e.g.

‘| the only axiom) to include all the axioms, plus

the function defining equalities, in a complete
set of reductions. In this case none of the
axioms need to be tested for satisfaction in each
instance (see the note at the end of Section 2)
and neither partial-model nor model-verification

.runs are required; the model search may be con-

ducted using paramodulation runs only.
4. AN EXAMPLE OF A MODEL SEARCH

Some of the automated theorem prover runs made in
searching for the model of Appendix IB are listed

‘below to indicate the degree of our reliance on
;the computer,
‘includes tests which appear inconclusive or
unnecessary in retrospect.

As might be expected, the search

1) Paramodulation runs proved Grau axioms 4
and 5 (sec Appendix I} from axioms 1, 2, and 3,
‘and incidentally derived G(G(X))=X from axioms 1,
.2, and 3.
i 2) A paramodulation run attempting to prove
raxiom 2 from axioms 1, 3, 4, and 5, proved neither
iaxiom 2 mor G(G(X))=X. Incidentally, F(X,Y,X)=X
‘was derived.

The failure tv prove axiom 2 motivated the
search for a counterexample. The fact that
G(G(X))=X was not derived suggested that a
model violating G(G(X))=X be attempted. Such
~a model would necessarily violate axiom 2. It
could be based on one generator (an A for
which G(G(A)4=A) rather than two (as A and B
for which F(B,A,A)4=A), possibly requiring
fewer elements, fewer defining relations, and
less computer time for verification.

3) Paramodulation run seeking consequences of
jaxioms 1, 3, 4, and 5, in conjunction with
G(G(G(X))) G(X), G(F(X Y,2))=F(G(X),G(Y),G(Z)),
and F(X,Y,2)=F(X,2,Y)., Axiom 2 was not provcd

but the last of these equalities together with
axioms 3 and 5 yielded G(G(X))=X.

Because a model with G(G(A)) =A was being
sought, the last equality was not used for
subsequent models. The possibility that
G(G(G(X)))=G(X) might imply G(G(X))=X was not
tested at this time. (The extra equalities

4 - Steve, Winker
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were added in an attempt to add enough struc-
ture to help get a model, but without satis-
fying axiom 2. Equalities known to be true in
ternary Boolean algebras were added so that
the known structure would be approached; for
example, G(G(G(X)))=G(X) is a weakening of
G(G(X))=X.)

4) A paramodulation run deriving consequences
of axioms 1, 3, 4, and 5, in conjunction with
G(F(X,Y,2))=F(G6(X),G(Y),G(Z)) and F(A,X,G(G(A)))=A,
derived . no undesirable consequences. The latter
equality, when X=A, is an instance of axiom 4;
when X=G(A) it is an instance of axiom 3; the
author hoped the generalization to X=G(G(A)) as
well, violating axiom 2, would lead to a model
violating axiom 2.

5) Partial-model run, using the first seven
function defining equalities of Appendix IB. The
next two equalities were derived (in checking
satisfaction of axiom 1). :

using all but the
The eighth

6) Partial-model run,
eighth equality of Appendix IB.
equality was derived.

The ninth equality was suggested, before runs
5 and 6 were made, by an examination of the
proof of G(G(A))=A from axioms 1, 2, and 3.

. This proof used the instance
F(A,G(G(A)),G(G(A)))=G(G(A)) of axiom 2; if
this term had the value A instead, G(G(A)) =A
would not be proven.

7) Model-verification run verifying the model
of Appendix-IB.

One goal of future work is to automate more of )
the interactive process illustrated here, conceiv-
ably following the general plan of Fig. 1.

USER INPUTS,

AXIOMS AND
LIST OF. ELEMCNTS

ADD AN EXTRA DELETE AN ADDED
EQUALITY _—*’v EQUALITY
' A PARAMODULATION ‘ A
OR
PARTIAL MODEL
RUN
Partial On t1
Model diction
i | Complete Model
Fig. 1. Flowchart for Model Search
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5. THE ROLE OF THE AUTOMATED THEOREM PROVER

. |
The theorem prover served as a "logical calcula-
tor", rapidly performing calculations which would
have been laborious if done by hand. The calcula-
tions were of two types: first, given a set of
equalities, obtain a list of consequences; second,
test the validity of a model or partial model,

The program helped the author to operate effec-
tively with an unfamiliar axiom system.

These benefits were obtained without recourse to
new programming, attesting to the generality and
flexibility of the existing theorem proving pro-
gram and techniques,

The program did not decide what sort of model to

iseek; this was up to the user, who made the
‘intelligent decisions,

Symmetry and other argu-
ments had to be made by the user (see Appendix

1Y),

The automated theorem prover is limited in the
nunber of instances of an axiom which can be veri-
fied. An axiom containing m variables, will when
there are n distinct elements have n to the m-th
power instances to be checked; when n to the m-th
power exceeds 500 to 5000 the cost of computer
time becomes high. Presumably various methods of
checking many instances at once can be developed
to deal with larger models (see Appendix III); one
would hope that some of these will be general-
purpose rather than problem-dependent,
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APPENDIX I. GRAU TERNARY BOOLEAN ALGEBRAS AND

MODELS

‘A.  AXIOMS FOR A GRAU TERNARY BOOLEAN ALGEBRA

!

;The ternary boolean algebra discussed herein was
first presented in [2]. The axioms are:

Axiom 1: F(V,W,F(X,Y,Z))=F(F(V,W,X),Y,F(V,W Z))
Axiom 2: F(Y,X,X)=X
Axiom 3: F(X,Y,G(Y))=X
Axiom 4: F(X,X,Y):X
Axiom 5: F(G(Y),Y,X)=X
Axioms 1, 2, and 3 imply 4 and 5 [1,6]. The tech-

niques of this paper were used to establish that
Axiom 2 is indepcndcnt of axioms 1, 3, 4, and 5
and that Axiom 3 is independent of AX1oms 1, 2, 4,
and 5 [6]. Other results, concerning the above
axioms, and discovered using the technlques of

l .

|
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;this paper, appear in [6].

1

'B. A MODEL FOR AXIOMS 1,

3, 4, AND 5 VIOLATING
AXIOM 2

.The following form a complete set of reductions,

defining closed functions F and G on three ele-
ments A, G(A), and G(G(A)). All variables are

‘universally quantified.

5 - Steve Winker

F(X,Y G(Y)) (Axiom 3)
F(X,X,Y) = (Axiom 4)
- F(G(Y) Y X) = X (Axiom 5)
F(X,Y,X) = (Consequence of Axioms
' 1 and 4)
G(G(G(X))) = G(X) Special hypothesis

F(X,G(G(2)),6(Z)) =
F(G(2),G(6(2)),X) =
F(A,G(G(A)), G(G(A)))
F(G(G(A)),A,A) = G(G(A))
F(A,G(A),G(A)) = G(A)

Implied equality
Implied equality
Implied equality
Implied equality
Special hypothesis

The functions thus defined satisfy axiom 1 in all
instances, as was demonstrated using our automated
theorem-proving program. The last three equali-
ties violate axiom 2; the model thus shows axiom 2

to be independent of axioms 1, 3, 4, and 5.

C. A MODEL FOR AXIOMS 1, 3, 4, AND 5, VIOLATING
AXIOM 2, BUT SATISFYING G(G(X)) =

Elements: A, G(A), C, G(C)

Function defining equalities:

Unit clauses F(X,Y,G(Y)) = X; F(XX,Y) =

F(G(Y),Y,X) F(X,Y,X) = X; G(G(X)) =

F(X,G(Z), Z) F(2,6(2),X) = X;
F(A,C,C) = and seven variants;
F(A,C,G(A)) = and seven variants.

The model has 8-fold symmetry given by the permu-
tations (A G(A)), (C G(C)), and (A C)(G(A) G(C)).
The variants of the last two equalities are ob-
tained by applying these symmetries; thus
F(G(A),C,C) = G(A). The equality F(A,C,C) = A and
its variants violate axiom 2.

APPENDIX II, CLAUSES USED FOR MODEL CHECKING RUNS

A. GENERATION OF AXIOM INSTANCES

All instances of axiom 1 (distributive axiom)

which may be formed by substituting the elements
A, G(A), and G(G(A)) for the variables, may be
generated by forming all hyperresolvents of the
following clauses:

Units Q(A); Q(G(A)); Q(G(G(A))); nucleus
AQ(V)  -Q(W) -QX) -Q(Y) -Q(Z) or
EQUAL (F(V,W,F(X,Y,2)), F(F(V,¥,X),Y,F(V,W,2)))

The general principles are: Write a clause Q(e)
for each element e in the proposed model. These
clauses serve as hyperresolution electrons. Write
the hyperresolution nucleus as the disjunction of

Athe equallty to be instantiated and, for each

amu 2




. For 77%

- . - i !

Reduc

1

tion

variable v appearing in the equality, the literal’
~Q(v). Hyperresolution will generate n to the
m-th power instances, where n is the number of
model elements and m is the number of variables
appearing in the equality being checked. -
Note: It would appear that generation of in-
stances could be done almost equally well by ‘Pl
deduction, or by forward chaining using an appro-
priate "nucleus" like | i
N i

CQMX) => (QCY) -> ... => EQUAL(eveyeen)ans)) o

The demodulation (simplification, reduction) of
the instances could then be achieved by any ,
general system of algebraic simplification., The -
author would appreciate hearing from other workers
who repeat these experiments with their programs.

B. TESTING OF CLOSURE

To test closure of a ternary function F, on ele-
‘ments A, G(A), and G(G(A)), form all hyperresol-
vents of the following clauses:

Q(A);
1Q(X)

QG ;
~Q(Y)

Q(G(G(A))); and nucleus
-Q(Z) or Q(F(X,Y,Z))

Demodulate each derived clause using the equali-
ties defining F. If each resulting clause is
_identical to Q(e) for some element e in the model,
‘then F is closed. Otherwise F is not closed: for
example if Q(F(A,G(A),G(A)) is derived and does
.not simplify, F(A,G(A),G(A)) has not been defined.
‘The general principles are: Write a clause Q(e)
for each element e of the proposed model. Write
ithe nucleus (for an n-ary function F) as:
<Q(vl)...

-Q(vn) or Q(F(Vl,...,vn))

%APPENDIX III. METHODS FOR REDUCING RUN TIME OF
; _PARTIAL-MODEL AND MODEL-
i VERIFICATION RUNS

iIf a fairly large model is being verified, the
number of instances of .axioms to be verlfled may
be reduced by symmetry and other considerations.

i .

For example, the four element model of Grau axioms
i1, 3, 4, and 5, described in Appendix IC, has a
iset of symmetries mapping any element into any
other. Thus in checking the instances of axiom 1,
only instances in which A is substituted for V
need be checked; instances in which G(A), C, or
G(C) is substituted for V will behave analogously.
The clauses used to generate the restricted set of
instances were: .

Q(A); Q(G(A)); Q(C); Q(6(C));
Q2(A); and nucleus
AQ2(V)  -Q(W) ~Q(X) -=Q(Y) 4Q(Z) or

|
i EQUAL (F(V,W,F(X,Y,2)), FFOV,W,X),Y,F(V,H,2))).

The use of -Q2(V) and Q2(A) causes only A to be
substltuted for V. The set of instances to be
checked may be further reduced by examining what
}llappens when V=W or V=G(W). When V=W,

6 - Steve Winker
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EQUAL (F(V,V,X),Y,F(V,V,2)), F(V,V,F(X,Y,2)))

‘reduces to EQUAL(F(V,Y,V),V) by Axiom 4, and

thence to EQUAL({V,V) by F(X,Y,X)=X. Thus (assum-
ing the defining equalities form a complete set

of reductions) instances where V and W are given

]

the same value need not be checked.
when V=G(W),

Similarly

EQUAL (F(F(G(W),W,X),Y,F(G(W),¥,2)),
F(G(W),W,F(X,Y,2)))

reduces to EQUAL(F(X,Y,2),F(X,Y,Z)) by Axiom 5;

again instances satisfying V=G(W) (e.g. G(A)/V,

" A/W; A/V, G(A)/W if G(G(A))=A) need not be checked

individually. Thus in checking the four element
model, only A/V with C/W or G(C)/W need be checked
in full; this may be done by generating all hyper-
resolvents of the following clauses:

Q(A); Q(G(A)); Q(C); Q(G(CY);

Q2(A); ,

Q3(C); Q3(G(C)); and nucleus

WQZ(V) ﬁQ3(W) WQ(X) ﬁQ(Y) ﬁQ(Z) or

EQUAL (F(V,W,F(X,Y,2)), F(F(V,W,X),Y,F(V,W,2)))

It is hoped that such tricks can be incorporated
in a general-purpose, fully automated package, but
at present the desired tricks are discovered and
set up by the user. Tricks of various kinds will

presumably become very important in verifying

large models, as the numbers of instances of cer-
tain axioms become enormous.”

CLAUSES FOR GENERATING A LIST OF
ELEMENTS AND A FUNCTION TABLE

APPENDIX IV.

To generate a list of elements of a model, gener-
ate all hyperresolvents of the following clauses

and their hyperresolvent consequences (demodulat-
ing each using the function defining equalities):

~Q(X)} or Q(G(X)) :

AQ(X) aQ(Y) -Q(Z) or Q(F(X,Y,2)) .

...(one such clausc for ecach function, as in
closure test)

and units Q(A); Q(B); ...

(one such clause for each generator of the.

model).

This is useful when a model has been found using
paramodulation runs only (Section 3, Note 4).

To generate a function table, generate all hypgr-
resolvents of the following clauses (demodulating
each using the function defining equalities):

~Q(X) -Q(Y) =Q(Z) or PF(X,Y,Z,F(X,Y,Z))
(for a ternary function F)

and units QA); Q(G(A)); ...

(one such clause for each element of the model).

The derived '"PF" clauses give the function table
entries for "F".
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APPENDIX V. AN ALTERNATIVE METHOD OF CHECKING
WELL-DEFINEDNESS IN.A MODEL- :

- VERIFICATION RUN b

S

If the function defining equalities for a proposed
model do not form a complete set of reductions,
the following test for well-definedness may be
used instead. (The reader is urged to contact the
author for details of this method if desired;
space considerations do not permit a full presen-
tation here.) First, design the demodulation
algorithm to satisfy two criteria: :

1) In demodulating a given term, fully
demodulate each subterm before applying demodula-
tors to the full term., For example, in
demodulating F(G(G(G(A))),A,A), demodulate
G(G(G(A))) to G(A) before applying a demodulator
to the term whose major symbol is F,

2) Demodulate a given ground term in the same
‘way each time it appears. If two demodulators
-apply, choose the same one each time. These
criteria insure that demodulation will act as a
well-defined function.

Then check the function defining equalities for
satisfaction in each instance, using the method
applied to Grau axiom 1 in Appendix IIA with the
above demodulation algorithm.

EAPPENDIX VI. APPLICATION TO MODELS OF FIRST ORDER
. NON-EQUATIONAL SYSTEMS

.The techniques of this paper might be applied to
non-equational systems by (1) rewriting each pred-
icate, "OR", and "NOT" as functions; (2) -supplying
‘function defining equalities for the above which
'yield "T" and "F'" as values, e.g. LT(1,2)=T,
OR(T,F)=T, NOT(T)=F; (-3) seeking and verifying
models as in the preceding part of the paper,
omitting T and F from the list of elements, The
author has not tried this technique and makes no
«claim for its practical utility.

|
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