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GENERATION AND VERIFICA'I'TON ! 
OF FINITE MODELS AND COUNTEREXAMPLES 1 

USING AN AUTOMATED THEOREM PROVER i 
ANSWERING TIVO OPEN QUESTIONS* f 

j j  I j 
1 .  P' ; ! 

Steve Winker 

1 I Northern I l l i n o i s  Univers i ty  
I !  I 
: I 
' ! :  

. lABSTRACT ! I was required t o  implement t h e  model-finding tech-  
; -  

. .  . , n iques ;  r a t h e r ,  t h e  .use o f  c e r t a i n  s p e c i a l  c l a u s e s  
[Two open quest ions  i n  t e r n a r y  Boolean a lgebras  11, ' (see  Appendix 11) enabled our  e x i s t i n g  theorem 
i2,6] were answered.with t h e  a i d  of  an e x i s t i n g  . 

prover t o  do t h e  des i red  operat ions .  The tech- 
&automated theorem-proving program without r ecourse  niques  w i l l  be discussed i n  t h e  context  of t h e  
t o  any a.dditiona1 programming [6]. The new auto- ' quest ion t o  which they were f i r s t  appl ied:  t h e  
mated theorem-proving techniques developed i n  independence of axiom 2 of t h e  Grau t e r n a r y  

,answering t h e  open quest ions  a r e  presented i n  t h i s  Boolean a lgebra  axioms (Appendix 11) from t h e  
lpaper;  e s s e n t i a l l y  the  e x i s t i n g  theorem prover i s  remaining axioms. 
/used  i n  a nonstandard way t o  seek and v e r i f y  small 
! f i n i t e  models and counterexamples f o r  a f i rs t  o rder  In  t h e  i n t e r e s t  o f ' c l a r i t y  t h e  automatic v e r i f i c a -  
!axiom system. Exhibi t ing a model of an axiom sys- t i o n  of a s i n g l e  completely def ined model will' be  
:tem proves i t  cons i s t en t ;  t h i s  f a c i l i t y  complements discussed f i r s t ;  t h e  model search techniques ,  

1 . t r a d i t i o n a l  theorem-proving methods which can only which a r e  more involved, a r e  de fe r red  u n t i l  sec- 

1 .prove inconsis tency.  t i o n  3. 
. , 

'1. INTRODUCTION 2. VERIFICATION OF A FINITE MODEL 

i ~ h e  s o l u t i o n  of  two open quest ions  i n  mathematics 
/wi th  t h e  a i d  of a.n e x i s t i n g  automated theorem- 
'proving program e x h i b i t s  progress  toward t h e  long 
! s t and ing  goal t h a t  automated theorem provers  be of 
: a i d  t o  mathematicians doing research.  Trad i t ion-  
! a l l y  automated theorem provers  have only focused 
ion t h e  attempt t o  prove a theorem t r u e ,  while 
Ineglect ing t h e  search f o r  a counterexample. Tech- 
iniques (wi thin  t h e  context  of  cur  e x i s t i n g  theorem- 
iproving program) a r e  descr ibed i n  t h i s  paper f o r  
i t h e  cons t ruc t ion  o f  small  f i n i t e  counterexamples 
, i n  p a r t i c u l a r  and models i n  general .  The use r  
]must make some dec i s ions  about what s o r t  of model 
. t o  seek, but much of t h e  work invol.ved i n  search- 

' 

l ing f o r  models can be: done automat ical ly .  To 
! r e p e a t ,  no reprogramming i s  required t o  f u r t h e r  a 
I :g iven  model search o r  t o  a t t a c k  a new problem o r  
!new s e t  of axioms. 
I 
I ~ h e  two open ques t ions  answered concern indepen- 
ldence of axioms i n  an axiomatization of  " t e rnary  
/Boolean a lgebras"  by A. A. Grau [2]; t h e  r e s u l t s  
l a r e  descr ibed f u l l y  i n  Winker and IVos [6J.  I t  i s  
1 t h e  purpose of t h i s  paper t o  p resen t .  the  new model- 
! f ind ing  techniques i n  d e t a i l .  No new progrmning  
i 

i " This work was supported i n  p a r t  by NSF gran t  
MCS77-02703, and i n  p a r t  was performed under t h e  

I ausp ices  of t h e  U.S. Department of Energy whi le  
i n  res idency a t  Argonne National Laboratory. I 

T Grau Ternary Boolean Algebra Axioms (see  a l s o  . 
Appendix I ) :  
1: F(V,II,F(X,Y,Z))=F(F(V,W,X),Y,F(V,IV,Z)) . . 
2: F(Y,X,X)=X 
3: F(X,Y,G(Y))=X . . 

4: F(X,X,Y)=X 
I ! 

5 : ..-E(G.(Y). , Y ,  X) =X . - - 

This discuss ion will begin by consider ing theore t -  
i c a l  a spec t s  of model v e r i f i c a t i o n  be fore  
proceeding rcvith a d e t a i l e d  d e s c r i p t i o n  of ffmodel 
v e r i f i c a t i o n  runs". F i r s t  consider  how a model 
may be spec i f i ed .  A - f i n i t e  model f o r  Grau axioms t 

1, 3, 4, and 5 ,  and v i o l a t i n g  axiom 2 ,  f o r  
example, may be s p e c i f i e d  by giving a s e t  of e l e -  
ments and f u l l  t a b l e s  of  values  f o r  t h e  func t ions  
F and G on those  elements. One must then v e r i f y  
t h a t  

(1). these  values  a r e  c o n s i s t e n t  with axioms 
- l., 3, 4, and 5, and 

(2) t h a t  axiom 2 i s  v i o l a t e d .  

Axiom 2 i s  an equa l i ty ;  I n  o rder  f o r  it t o  be  
v i o l a t e d ,  the  two s i d e s  must be unequal f o r  some 
va lues  (X,Y) and f o r  t h i s  it  i s  requ i red  t h a t  two 
'elements o f  t h e  model be demonstrably unequal. 
This  i s  n o t  a t r i v i a l  mat ter  t o  arrange.  In  pa r -  
t i c u l a r ,  A,=B cannot be der ived from a s e t  of  
e q u a l i t i e s  i n  A and B; e q u a l i t y  o f . a l l  e lements  is 
c o n s i s t e n t  y i t h  any s e t  o f  p o s i t i v e  e q u a l i t i e s .  
Ins tead of  de r iv ing  A-,=B one must prove A7=B t o  be  
cons i s t en t  wi th  t h e  e q u a l i t i e s .  Consistency can- 
no t  be proven by t h e  r e f u t a t i o n  techniques  o f -  
t r a d i t i o n a l  automated theorem proving, and so new 
techniques a r e  needed. 

The method of  "complete s e t s  of  reduct ions"  [3] 
enables  one t o  prove consis tency o f ,  f o r  example, 
A7=B wi th  c e r t a i n  s e t s  of e q u a l i t i e s ,  and t h u s  
provides  a s t a r t i n g  p o i n t  f o r  t h e  new techniques .  
E s s e n t i a l l y ,  i f  a s e t  of  demodulators [8 ]  form a 
.complete s e t  of  r educ t ions  and do n o t  demodulate 
'A  and.B t o  t h e  same term, then A,=B p l u s  those  
.demodulators form a s a t i s f i a b l e  s e t  of  c l a u s e s . .  
#The procedures given i n  [3] f o r  genera t ing  and , 

. I  
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t e s t i n g  complete s e t s  of  reduct ions  a r e  e a s i l y  : 
performed using t h e  s tandard paramodulation [7] 
land demodulation .[8J f e a t u r e s  of  our  theorem- 

I lproving program. I !  

I 
. . 

I ~ n f o r t u n a t e l ~  not  every system of  e q u a l i t i e s  y i e l d s  
la f i n i t e  complete s e t  of  reduct ions  -(by undecida- 
I b i l i t y  of  the  word problem) and even a  f i n i t e  s e t  
may be unmanageably l a rge .  Indeed i n  t h e  t e r n a r y  
Boolean a lgebra  problems under cons ide ra t ion ,  
:ap.plication of the  s tandard procedure f o r  genera- 
t i o n  o f  a  complete s e t  o f  reduct ions  from t h e  
/axioms 131 yie lded a  s e t  of  e q u a l i t i e s  which ex- 
iceeded time and memory l i m i t a t i o n s .  This d i f f i c u l -  
' t y  was overcome a s  fol lows:  s e t  up another ,  i n  . 
/some sense  simpler s e t  o f  e q u a l i t i e s  t o  de f ine  a  
: f i n i t e  model, prove t h a t  t h e  simpler e q u a l i t i e s  
i f o m  a  complete s e t  of  reduct ions ,  and f i n a l l y  
lprove t h a t -  t h e  o r i g i n a l  axioms a r e  n e c e s s a r i l y  
s a t i s f i e d  i n  t h e  model s o  def ined.  Two quest ions  
*then a r i s e :  f i r s t ,  how does one choose the  simpler 

I s e t  of e q u a l i t i e s ;  second, how does one then v e r i f y  
I ' , t he  axioms? Given a  s p e c i f i c  model, a  simpler s e t  
I 

I of  e q u a l i t i e s  could be obtained by removing complex 
I e q u a l i t i e s  (e.g. axiom li) and adding simple ground ~ e q u a l i t i e s  (e.g. those  of  Appendix IB) t o  f i l l  i n  
~ f o r  t h e  removed complex e q u z l i t i e s  i n  de f in ing  t h e  

i funct ion t a b l e s .  Ac tua l ly  t h e  models were found 
! by t h e  methods of s e c t i o n  3, which y i e l d  simple 

I e q u a l i t i e s  anyway. 

;Ver i f icat ion of the  axioms is  done automat ical ly  
. i n a  llmodel v e r i f i c a t i o n  run1!; model v e r i f i c a t i o n  
runs ~ i i l l  now be discussed i n  d e t a i l .  '1'0 spec i fy  
'a model o f  an equat ional  system, one must spec i fy  
a  s e t  of elements (considered t o  be d i s t i n c t )  and 
funct ions  on those  elements corresponding t o  t h e  
func t ions  of t h e  system. The following requ i re -  
ments must be s a t i s f i e d :  

1 ( 1  Each func t ion  must be well-defined. 

/ (2) Each func t ion  must be c losed.  

(3) Each axiom of  t h e  system must be 
s a t i s f i e d  i n  each ins tance.  

!A func t ion  on a  f i n i t e  s e t  of elements may be 
! spec i f i ed  by simply t a b u l a t i n g  i t s  values .  The 
Ifunction t a b l e s  a r e  suppl ied t o  our program i n  t h e  
/form of a  s e t  of  "function de f in ing  e q u a l i t i e s v ;  
* f o r  an example see  t h e  model given i n  Appendix IB. 
/The va lue  of F ( t 1 , .  . . t n ) )  , where tl,. . . t n  a r e  
!model elements, i s  then defined t o  be the  r e s u l t  

. !of demodulating F ( t 1 , .  . . t n )  , using t h e  s e t  of  
'"function de f in ing  e q u a l i t i e s "  a s  demodulators. I !For example, i n  t h e  model of  Appendix IB, 
IF(A,G(A) , G  (A).) r ece ives  t h e  value G (A) ; G(G(G(.A)) ) 
lreceives t h e  value G(A) ; G(G(A)) (G appl ied t o  the  
!element G (A) ) rece ives  t h e  value G (G (A)) be'cause 
IG(G(A)) does no t  demodulate. In  t h i s  way evalua- 
Ition of  funct ions  of  model elements i s  done using 
'our e x i s t i n g  demodulation rou t ine .  Observe t h a t  
lone e q u a l i t y  may s tand f o r  severa l  func t ion  t a b l e  

i e n t r i e s .  

I - , - . - - - - - - - - - - - - - - - - - - - . - - 
Closure may be t e s t e d  by forming, f o r  each func- 1 
t i o n  F and each p o s s i b l e  n- tuple  t l . . . t n  o f  model 
elements, t h e  term F(t1 . .  . tn )  , and then dcmodulat- 

' i ng  each such term. I f  only  model elements a r e  
obta ined,  F  i s  closed. Clauses f o r  t e s t i n g  c lo-  
s u r e  a r e  given i n  Appendix IIB. I 

i 
Well-definedness must hold f o r  func t ions  o f  a  
model: any funct ion o f  given model elements must 
be given a  unique value.  Equivalent ly;  demodula- 
t i o n  of  a  term F( t1 ,  ... t n )  where the  arguments a r e  
model elements must y i e l d  a  unique r e s u l t  no 
mat ter  how t h e  demodulation i s  done. The s imples t  

. way t o  guarantee a  unique r e s u l t  ("unique termina- 
t ion") i s  t o  v e r i f y  t h a t  t h e  "funct ion de f in ing  
e q u a l i t i e s w  form a  t lconplete  s e t  o f  reductions".  
This v e r i f i c a t i o n  may be done by a  paramodulation- 
and-demodulation procedure a s  descr ibed i n  [3] .  
An a l t e r n a t i v e  method f o r  v e r i f y i n g  unique termi- 
na t ion  i s  ou t l ined  i n  Appendix V but  has no t  been 
needed f o r  t h e  models examined so f a r .  Note t h a t  
even though the  axiom system being modeled may no t  
y i e l d  a  complete s e t  of  r educ t ions ,  t h e  func t ion  
de f in ing  e q u a l i t i e s  f o r  a  p a r t i c u l a r  model of t h a t  
system can s t i l l  form a  complete s e t  of 
reduct ions .  

The condi t ion t h a t  each axiom i s  t r u e  i n  each i n -  
s t ance  i s  checked by forming each ins tance ,  
demodulating both s i d e s  of  t h e  e q u a l i t y ,  and 

iiSee Appendix I  
- 

- -1 

checking t h a t  t h e  two s i d e s  become i d e n t i c a l  i n  
each case.  For example, s u b s t i t u t i n g  A/V,  
G(G(A))/IV, G(A)/X, A / Y ,  G(G(A))/Z i n  Grau Axiom 1 
y i e l d s ,  a f t e r  demodulation, A=A,  ' v e r i f y i n g  axiom 1 
i n  t h i s  ins tance .  A method f o r  generat ing a l l  t h e  
ins tances  i s  given i n  Appendix IIA. Our theorem 
prover  demod'ulates each au tomat ica l ly ,  then t e s t s  
each f o r  subsumtion by X = X  ( equ iva len t ly ,  f o r  
i d e n t i t y  o f  t h e  t w o , s i d e s ) .  Checking s a t i s f a c t i o n  
of Axiom 1 formed t h e  bulk of  t h e  work of v e r i f y -  
i n g  each Grau model; 3  t o  t h e  5 t h  power = 2 4 3  
ins tances  must be checked f o r  a  three-element 
model. (The amount of checking can i n  some cases  
be reduced i f  needed by symmetry and o t h e r  consid- 
e r a t i o n s ;  see  Appendix 111). 

Note: I f  t h e  func t ion  de f in ing  e q u a l i t i e s  form a  
complete s e t  of r educ t ions ,  no axiom included 
among those  e q u a l i t i e s  ( f o r  example axioms 3-5 i n  
t h e  model of  Appendix IB) needs t o  be checked f o r  
s a t i s f a c t i o n  i n  a l l  ins tances .  Proof: The check 
i s  t r i v i a l .  Apply t h e  demodulator s=t  t o  t h e  
axiom ins tance  su=tu  g iv ing  tu= tu .  

This  " t r i v i a l  check" i s  only v a l i d  when t h e  axiom 
i s  one of  the  func t ion  def ining e q u a l i t i e s  and t h e  
fun;$ion de f in ing  e q u a l i t i e s  form a  complete s e t  
of  reduct ions .  In checking axiom 1 i n  t h e  model 
of  App'endix IB, f o r  example, axiom 1 must n o t  be 

'used'  as  a 'demodulator,  because axiom 1 , i s  no t  one 
of  t h e  funct ion de f in ing  e q u a l i t i e s .  A s  a  s imple  
example of an i n v a l i d  " t r i v i a l  checkt1 consider  a  
model with elements A and B and e q u a l i t i e s  
J(J(J(X)))=X f o r  a l l  X ,  J(A)=B, and J(B)=A, with 
t h e  l a t t e r  two forming t h e  complete s e t  of  reduc- 
t i o n s .  ' J(J(J(X)))=X seems t o  be s a t i s f i e d  when . . 
the '  " t r i v i a l  checkt1 i s  app l ied ;  however when t h e  
[ l a t t e r  two e q u a l i t i e s  a r e  app l ied  t o  J ( J ( J ( A ) ) ) ,  B 
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%obtaked. ,  n o t  A. In  doing t h e  " t r i v i a l  check11 . ' The c losure  t e s t  w i l l  .not i n d i c a t e  c losure ,  b u t  

t h e  i m p l i c i t  assumption i s  made t h a t  demodulating . r a t h e r  w i l l  y i e l d  a  l i s t  of  t h e  undecided terms. 
/us ing  J ( J  ( J  (X))) =X g ives  t h e  same r e s u l t  a s  demod- 
u l a t i n g  using t h e  o t h e r  e q u a l i t i e s ;  t h i s  i s  not  I n  a  partial-model run, t h e  check f o r  s a t i s f a c t i o n  
t r u e  however because t h e  t h r e e  e q u a l i t i e s  toge ther  o f  t h e  axioms i n  a l l  ins tances  may y i e l d  any o r  
do no t  form a  complete s e t  of reduct ions .  I a l l  o f  t h e  following: 

I ,  

SEARCHING FOR FINITE MODELS 
! I :  1- . . 1) Equal i ty  of  a  model. element t o ' i t s e l f  -- 
I 

i n d i c a t i n g  s a t i s f a c t i o n  o f  an axiom i n  t h e  
The NIUTP automatic theorem prover 14,5,7,8] was p a r t i c u l a r  ins tance  t e s ted .  
/used ex tens ive ly  i n  searching f o r  t h e  models we 
[found a s  well  a s  i n  v e r i f y i n g  them. The model 2) Equal i ty  of two model elements -- i n d i c a t -  
isearches proceeded i n  t h r e e  s t ages :  pre l iminary ing t h a t  t h e ' p a r t i a l l y  def ined func t ions  a l ready  
jparamodulation runs ,  partial-model runs ,  and f i n a l  do n o t  s a t i s f y  t h e  axiom teste.d.  
!model-ver i f icat ion run. ' I  . 

i 3) Equal i ty  of  an undecided term t o  a  model 
iprelilninary paramodulation runs can be used t o  element -- any such e q u a l i t y  i s  inpu t  a s  a  func- 
d e r i v e  consequences of t h e  axioms being modeled, ' 

t i o n  de f in ing  e q u a l i t y  i n  subsequent par t ia l -model  
/ t o  suggest  what e q u a l i t i e s  do no t  folldw from t h e  ' and model-ver i f icat ion runs.  
:axioms, and t o  t e s t  the  e f f e c t  of adding var ious  
Ifunction-defining o r  o t h e r  e q u a l i t i e s  t o  t h e  axiom 4) More complex ground e q u a l i t i e s  involving 
system. For example: undecided terms - -  may be used t o  e l imina te  some 

poss ib le  values  f o r  the  undecided terms. 
1 )  The e q u a l i t y  F(X,Y,X)=X was derived by. 

paramodulation from axio~ns 1, 3, 4, and 5  of Example of a  partial-model run: Axioms 1, 3,  4, 
. Appendix IA, f i l l i n g  i n  p a r t  of  the  funct ion t a b l e  and 5  of Appendix I ,  p l u s  t h e  e q u a l i t y  

f o r  F  ( i n  any model of axioms 1, 3, 4, and 5 ) .  G(G(G(X)))=G(X) , y i e l d  t h e  f i r s t  seven e q u a l i t i e s  
i n  Appendix IB; these  were used a s  de f in ing  

i 2) The f a i l u r e  t o  de r ive  G(G(X))=X from the  e q u a l i t i e s  f o r  a  par t ia l -model  run. The model 
above system (axioms 1, 3, 4, and 5) suggested elements A ,  G(A), and G(G(A)) were a l s o  i n p u t .  

I 

I t h a t  models be sought i n  which G(G(A))7=A f o r  some ' The undecided terms were F(A,G(A) ,G(A)), 
A ( see  Sect ion 4, Example of a  Model Search).  F(A,G(G(A)) ,G(G(A))), and F(G(G(A11 ,A,A). R e  

I check f o r  s a t i s f a c t i o n  o f  axiom 1 i n  a l l  i n s t a n c e s  
3) Addition of the  axiom F(X,Y,Z)=F(X,Z,Y) . t o  y ie lded  (among o thers )  t h e  e q u a l i t i e s  

the  above system was r e j e c t e d  because paramodula- 
t i o n  then derived G(G(X))=X (G(G(A)),=A f o r  some A F(A,G(G(A)) ,G(G(A)))=A 
was d e s i r e d ) .  F(G(G(A1) ,A,A)=G(G(A)) 
, F(F(A,G(A),G(A)) ,G(G(A)) ,A)=A 

I . . 4) Addition of  G(G(G(X)))=G(X) t o  t h e  above 
system yielded no undesirable  paramodulants; t h i s  The f i r s t  two were input  a s  func t ion  de f in ing  
system thus  seemed promising and was s tud ied  e q u a l i t i e s  i n  subsequent runs .  The l a s t  e q u a l i t y  
f u r t h e r  by means of  "partial-model runst1. e l imina tes  the  p o s s i b i l i t y  F (A,G(A) , G  (A)) =G(G(A)) 

(as  t h i s  and axiom 4 would demodulate t h e  l a s t  
Partial-model runs a r e  begun when a  model has  been ' e q u a l i t y  t o  G(G(A))=A i n d i c a t i n g  v i o l a t i o n  of 
p a r t i a l l y  s p e c i f i e d :  t h a t ' i s ,  when t h e  s e t  of  axiom 1 ) .  Each of  t h e  o t h e r  two p o s s i b i l i t i e s ,  
model e lenen t s  (e.g. (A, G(A), G(G(A)))) has  been F(A,G(A),G(A))=A and F(A,G(A),G(A))=G(A), l e d  t o  a  
s e l e c t e d ,  and most but  not  a l l  e n t r i e s  i n  t h e  v a l i d  model; This ends t h e  example. 
funct ion t a b l e s  have been f i l l e d  i n .  

F i n a l l y ,  when enough informat ion has  been gained 
h partial-model run i s  s i m i l a r  t o  a  model v e r i f i -  from paramodulation.and par t ia l -model  runs t o  
'ca t ion run. The s i m i l a r i t i e s :  spec i fy  a  l i k e l y  model completely,  t h a t  model is 
I 

1 : v e r i f i e d  i n  a  model-ver i f icat ion run (as  desc r ibed  
/ A s e t  o f  model elements i s  input .  ' i n  s e c t i o n  2).  

I A s e t  of  funct ion-def ining e q u a l i t i e s  i s  inpu t .  ' 

I Notes on searching f o r  models: 

1 Closure,  well-definedness,  and s a t i s f a c t i o n  of  
I t h e  axioms i n  a l l  ins tances  a r e  t e s t e d  a s  i n  I model v e r i f i c a t i o n .  
! 

' The d i f fe rences :  
I . , 

I The func t ion  de f in ing  e q u a l i t i e s  do not  . 
i completely de f ine  the  func t ions .  .Rather, t h e  

I va iues  f o r  some terms ( c a l l e d  "undecided termsw) 
j a r e  l e f t  unspecif ied.  
I 
I - -.-- -. - . 

1) IVhen making a par t ia l -model  run,  it 
'appears d e s i r a b l e  t o  i n s t a n t i a t e , a x i o m s  using only 
, t h e  elements which a r e  expected t o  be i n  t h e  f i n a l  
model. I n s t a n t i a t i o n  using Itundecided terms" 
would y i e l d  more.axiom ins tances  t o  check and more 
complicated ground e q u a l i t i e s .  

2) A par t ia l -model  run with too many un- 
decided terms may y i e l d  an unmanageable q u a n t i t y  
of  complex ground e q u a l i t i e s .  In  t h i s  case  para-  
modulation runs might be used t o  f i n d  t h e  conse- 
quences of proposed funct ion-def ining e q u a l i t i e s .  

3 - Steve Winker 
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/When more . funct ion-def ining e q u a l i t i e s  have been ' ' 

t e s t e d ,  found seemingly acceptable ,  and added t o  . . : 
t h e  p a r t i a l  model, par t ia l -model  runs  may again  be, 
at tempted. i i 

1 ;  ' 3) a  par t ia l -model  run may be ' cons ide red  i 
"promising" i f  no e q u a l i t y  between d i s t i n c t  model 
elements i,s der ived.  Each !'promisingt' p a r t i a l -  
model run i n  t h e  a u t h o r ' s  b r i e f  exper ience has  l e d  
t o  a  v a l i d  model. However t h e  au thor  doubts t h a t  
a "promising" par t ia l -model  run guarantees  t h a t  
t h e r e  i s  a  v a l i d  model: it might no t  be p o s s i b l e  
t o  complete t h e  func t ion  t a b l e s  c o n s i s t e n t l y  wi th  
t h e  axioms being modeled. 

.. . . I 
4)  I t  i s  p o s s i b l e  i n  modeling c e r t a i n  axiom. 

systems (e.g. semigroups, having a s s o c i a t i v i t y  a s  
t h e  only  axiom) t o  inc lude  a l l  t h e  axioms, p l u s  
t h e  func t ion  d e f i n i n g  e q u a l i t i e s ,  i n  a  complete 

! s e t  o f  reduct ions .  In  t h i s  case  none o f  t h e  
laxioms need t o  be t e s t e d  f o r  s a t i s f a c t i o n  i n  each 
' i n s t a n c e  (see  t h e  no te  a t  t h e  end o f  Sec t ion  2) 
and n e i t h e r  par t ia l -model  nor model-ver i f ica t ion 

, r u n s  a r e  r equ i red ;  t h e  model search may b'e con- 
ducted us ing paramodulation runs only .  

Some of t h e  automated theorem prover  runs made i n  
searching f o r  t h e  model of Appendix I B  a r e  l i s t e d  

I below t o  i n d i c a t e  t h e  degree of our r e l i a n c e  on 
i , t h e  co111pu:er. A s  mi.ght be expected,  t h e  sea rch  

i . i nc ludes  t e s t s  which appear inconclus ive  o r  
I unnecessary i n  r e t r o s p e c t .  ~ 

! j 
-!: .-. .. -- .- ..- . . - -. - 

were added i n  an a t tempt  t o  add enough s t r u c -  
t u r e  t o  he lp  g e t  a  model, bu t  without s a t i s -  

' fy ing  axiom 2. E q u a l i t i e s  known t o  be  t r u e  i n  
! t e r n a r y  Boolean a lgebras  were added so  t h a t  

t h e  known s t r u c t u r e  would be approached; f o r  
example, G(G(G(X)))=G(X) i s  a  weakening of 
G(G(X))=X.) 

4) A paramodulation run d e r i v i n g  consequences 
o f  axioms 1, 3, 4,  and 5,  i n  conjunct ion with 
G(F(X,Y,Z))=F(G(X),G(Y),G(Z)) and F(A,X,G(G(A)))=A, 
der ived.no undes i rab le  consequences. The l a t t e r  
e q u a l i t y ,  when X=A, i s  an i n s t a n c e  o f  axiom 4; 
when X=G(A) it i s  an  i n s t a n c e  of axiom 3; t h e  
author  hoped t h e  g e n e r a l i z a t i o n  t o  X=G(G(A)) a s  
we l l ,  v i o l a t i n g  axiom 2 ,  would l ead  t o  a  model 
v i o l a t i n g  axiom 2. 

5) Partial-model run,  us ing t h e  f i r s t  seven 
func t ion  de f in ing  e q u a l i t i e s  of Appendix IB. The 
next  two e q u a l i t i e s  were de r ived ,  ( i n  checking 
s a t i s f a c t i o n  o f  axiom 1 ) .  

6) Partial-model run,  using a l l  but  t h e  
e igh th  e q u a l i t y  of Appendix IB. The e igh th  
e q u a l i t y  was der ived.  

The n in th  e q u a l i t y  was suggested,  be fo re  run.s 
5 and 6  were made, by an examination of t h e  
pi-oof of G(G(A)) =A from axioms 1 ,  2, and 3. 
This  proof used t h e  i n s t a n c e  
F(A,G(G(A)) ,G(G(A)))=G(G(A)) o f  axiom 2; i f  
t h i s  term had t h e  va lue  A i n s t e a d ,  G(G(A))=A 
would not  be proven. 

' 1) Paramodulation runs  proved Grau axioms 4  7) Model-ver i f ica t ion run v e r i f y i n g  t h e  model 
and 5  ( see  Appendix I)  from axioms 1, 2, and 3, o f  Appendix. IB. 
'and i n c i d e n t a l l y  der ived G (G (X)) = X  from axioms 1, 
12, and 3. 
! .  

One goal  o f  f u t u r e  work i s  t o  automate more of 
, t h e  i n t e r a c t i v e  process  i l l u s t r a t e d  he re ,  conceiv- 
i 2) A paramodulation run a t tempt ing t o  prove a b l y  following t h e  genera l  p lan  of Fig. 1. 
!axiom 2  from axioms 1. 3.  4. and 5.  moved n e i t h e r  
:axiom 2  nor  G ( G ( x ) )  =x: Incidenta l iy ' ;  F(X,Y,X)=X 
:was der ived.  
I 

1 The f a i l u r e  Lo prove axiom 2 motivated t h e  
/ sea rch  f o r  a  counterexample. The f a c t  t h a t  
I G(G(X))=X was not  der ived suggested t h a t  a  

model v i o l a t i n g  G(G(X)) =X be attempted. Such i a  model would n e c e s s a r i l y  v i o l a t e  axiom 2. I t  
could be based on one genera to r  (an A f o r  
which G(G(A),=A) r a t h e r  than two (as  A and B 
f o r  which F(B,A,A),=A), p o s s i b l y  r e q u i r i n g  
fewer elements,  fewer de f in ing  r e l a t i o n s ,  and 
l e s s  computer time f o r  v e r i f i c a t i o n .  

( 3) Paramodulation run seeking consequences of 
]axioms 1, 3, 4, and 5, i n  conjunct ion with 
F(G(G(X)))=G(X), G(F(X,Y,Z))=F(G(X) jG(Y) jG(Z)), 
and F(X,Y,Z)=F(X,Z,Y). Axiom 2  was not 
but  t h e  l a s t  of these  e q u a l i t i e s  toge the r  with , . 
I 
axioms 3  and 5  yie lded G(G(X))=X. 
I 

: * 

' :  i Complete Model 

I Because a  model wi th  G(G(A)),=A was being 

I sought,  t h e  l a s t  e q u a l i t y  was not  used f o r  
subsequent models. The p o s s i b i l i t y  t h a t  . . 

I- G (G (G (XI) ) =GO) might imply G (G (X)) =X was no t  . Fig.  1. Flowchart f o r  Model Search 
t e s t e d  a t  t h i s  time. (The e x t r a  e q u a l i t i e s  - , ,  . -. .-- -. 

-- ----- ---- .- . .  . 
I 
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c. 

. - .  . _1 J - L .  . __ _ _  . i 7 .   THE AUTO~~ATED THEOREM PROVER : .  t h i s  paper.  appear i n  [6]. 
" I ! 
I : ,  

 he theorem prover served a s  a  " log ica l  ca lcu la -  \ , 

t o r H ,  r a p i d l y  performing c a l c u l a t i o n s  which would 
have been labor ious  i f  done by hand. The ca lcu la -  
t i o n s  were of  two types:  f i r s t ,  given a  s e t  of  
e q u a l i t i e s ,  ob ta in  a  l i s t  of  consequences; second, 
t e s t  t h e  v a l i d i t y  o f  a  model o r  p a r t i a l  model. . 

, , 

The program helped t h e  author  t o  opera te  e f fec -  
t i v e l y  wi th  an unfamil iar  axiom system. 

These b e n e f i t s  were obt.ained without recourse  t o  . - .  ; 
new programming, a t t e s t i n g  t o  t h e  g e n e r a l i t y  and 

. . 
f l e x i b i l i t y  of the  e x i s t i n g  theorem proving pro- 
gram and techniques,. 

l ~ h e  program d i d  not  decide what s o r t  of  model t o  
!seek; t h i s  was up t o  the  use r ,  who made t h e  
: i n t e l l i g e n t  dec i s ions .  Symmetry and o t h e r  argu- 
ments had t o  be made by t h e  u s e r  (see  Appendix. 
'111).  

The automated theorem prover i s  l imi ted  i n  the  
number of ins tances  of an axiom which can be v e r i -  
f i e d .  An axiom containing m v a r i a b l e s ,  w i l l  when 
t h e r e  a r e  n  d i s t i n c t  elements have n  t o  the  m-th 
power ins tances  t o  be checked; when n  t o  t h e  m-th 
power exceeds 500 t o  5000 t h e  cos t  of  computer 
time becomes high. Presumably var ious  methods o f  
checking many ins tances  a t  once can be developed 
t o  dea l  wi th  l a r g e r  models (see  Appendix 111); one 
would hope t h a t  some of these  w i l l  be general-  
purpose r a t h e r  than problem-dependent. 
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GRAU TERNARY BOOLEAN ALGEBRAS AND 
MODELS 

'A. AXIOMS FOR A GRAU TERNARY BOOLEAN ALGEBRA 
I 
:The t e r n a r y  boolean a lgebra  discussed he re in  was 
: f i r s t  presented i n  [2]. The axioms are:  
I 

/ Axiom 1: F(V,W,F(X,Y,Z) )=F(F(V, \Y ,X) ,Y ,F(V,W,Z) )  / Axiom 2: F(Y,X,X)=X 
Axiom 3: F  (X, Y ,  G (Y) ) =X j !  

, . Axiom 4  : F(X,X,Y)=X 
Axiom 5: F(G(Y) ,Y,X)=X 1 

Axioms 1, 2, and 3  imply 4  and 5 [1,6]. The tech- 
niques  of  t h i s  paper were used t o  e s t a b l i s h  t h a t  
+xiom 2  i s  independent of axioms 1, 3, 4, and 5  
and t h a t  Axiom 3 i s  independent of  Axioms 1, 2, 4, 
and 5 [6]. Other r e s u l t s ,  concerning t h e  above 
axioms, and discovered using t h e  techniques of 
i 

B . ,  A MODEL FOR AXIOMS 1, 3, 4, AND 5  VIOLATING 
AXIOM 2 

The fol lowing form a  complete s e t  of  r educ t ions ,  
de f in ing  c losed func t ions  F  and G on t h r e e  e le -  
ments A ,  G(A), and G(G(A)) . A l l  v a r i a b l e s  a r e  
' u n i v e r s a l l y  quan t i f i ed .  

(Axiom 3) 
(Axiom 4) 
(Axiom 5) 
(Consequence o f  Axioms 

1 and 4) 
Spec ia l  hypothesis  
Implied e q u a l i t y  
Implied e q u a l i t y  
Implied e q u a l i t y  
Implied e q u a l i t y  
Spec ia l  hypothesis  

The func t ions  thus  def ined s a t i s f y  axiom 1 i n  a l l  
ins tances ,  a s  was demonstrated using our automated 
theorem-proving program. The l a s t  t h r e e  equa l i -  
t i e s  v i o l a t e  axiom 2; t h e  model thus  shows axiom 2  
t o  be independent of axioms 1, 3, 4 ,  and 5. 

C .  A MODEL FOR AXIOMS 1, 3, 4,  AND 5 ,  VIOLATING 
AXIOM 2, BUT SATISFYING G(G(X)) = X 

Elements: A ,  G(A), C ,  G(C) 

Function de f in ing  e q u a l i t i e s :  

Unit c l auses  F(X,Y,G(Y)) = X; F(X,X,Y) = X;  
F(G(Y),Y,X) = X;  F(X,Y,X) = X;  G(G(X)) = X ;  
F(X,G(Z),Z) = X;  F(Z,G(Z),X) = X ;  
F(A,C,C) = A and seven v a r i a n t s ;  
F(A,C,G(A)) = A and seven v a r i a n t s .  

The model has 8 - fo ld ,  symmetry given by t h e  permu- 
t a t i o n s  (A G(A)), .(C G(C)), and (A C)(G(A) G(C)). 
The v a r i a n t s  of  t h e  l a s t  two e q u a l i t i e s  a r e  ob- 
t.ained by applying these  symmetries; thus  
F(G(A),C,C) = G(A). The e q u a l i t y  F(A,C,C) = A and 
i t s  v a r i a n t s  v i o l a t e  axiom 2. 

APPENDIX 11. CLAUSES USED FOR MODEL CHECKING RUNS 

A. GENERATION OF AXIOM INSTANCES 

A l l  i n s tances  o f  axiom 1 ( d i s t r i b u t i v e  axiom) 
which may be formed by s u b s t i t u t i n g  t h e  elements 
A, G(A), and G(G(A)) f o r  t h e  v a r i a b l e s ,  may be  
generated by forming a l l  hyperresolvents  of  t h e  
follor\.ing c lauses:  

f Uni ts  Q(A); Q(G(A)); Q(G(G(A))); nucleus  
-tQ(v) ?Q(W -.Q(x) TQ(Y) ?Q(Z) o r  

' EQUAL (F(V,W,F(X,Y,Z)), F(F(V,IV,X) ,Y,F(V,lV,Z))) 

The general  p r i n c i p l e s  a re :  Write a  c lause  Q(e) 
f o r  each element e  i n  the  proposed model. These 
c lauses  se rve  a s  hyperresolut ion e l e c t r o n s .  Write 
t h e  hyperresolut ion nucleus a s  t h e  d i s j u n c t i o n  of  
t h e  e q u a l i t y  t o  be i n s t a n t i a t e d  and, f o r  each 

i - - - -  - - - 
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i n  t h e  e q u a l i t y ,  t h e  l i t e r a l  
' 

EQUAL (F(VaVaX)aYaF(VaVsZ))a F(V>VaF(XaYaZ))) 
w i l l  generate  n t o  t h e  : , , 

m-th, power ins tances ,  where n is '  the  number of  reduces td  EQUAL(F(V,Y ,V) ,V) by Axiom 4,  and 
model elements and m is the. number of  v a r i a b l e s  , I thence t o  EQUAL(V,V) by F(X,Y,X)=X. Thus (assum- 
appearing i n  t h e  e q u a l i t y  being checked. ! , i n g  t h e  def ining e q u a l i t i e s  form a complete s e t  . . of reduct ions)  ins tances  where V and W a r e  given 

i .  

Note: I t  would appear t h a t  generat ion of  i n -  . t h e  same va lue  need n o t  be checked. S i m i l a r l y  
s t ances  could be done almost equa l ly  wel l  by.P1 when V=G(W) , 

chaining using an appro- 
j . : EQUAL (F(F(G(W) , W a x )  ,Y,F(G(W) ,W,Z)), 
i t  i 
, .  F(G(W aWaF(XaY>Z) 1) . Q(X) ->  (Q(Y) -> ... -> EQUAL( ...,... )...)) . 
: ' reduces t o  EQUAL (F(X,Y, Z) , F (X,Y, Z) ) by Axiom 5; 

The demodulation ( s impl i f i ca t ion ,  reduct ion)  of  
. . again ins tances  s a t i s f y i n g  V=G(W) (e.g. G (A)/V, 

i t h e  ins tances  could then be achieved by any 
' 

A/W; A/V,  G(A)/IV i f  G(G(A))=A) need n o t . b e  checked 
general  system of  a lgebra ic  s impl i f i ca t ion .    he . ind iv idua l ly .  Thus i n  checking t h e  four  element 

' author  would apprec ia te  hear ing from o ther  workers model, only  A/V with C/W o r  G(C)/IV need be checked 
who r e p e a t  t h e s e  experiments wi th  t h e i r  programs. . i n  f u l l ;  t h i s  may-be done by generat ing a l l  hyper- 

r eso lven t s  o f  the  following c lauses :  
TESTING OF CLOSURE 

Q(A) ; Q(G(A)); Q(C); Q(G(C)); 
:To  t e s t  c losure  of a t e r n a r y  funct ion F, on e l e -  Q2 (A) ; 
ments A ,  G(A), and G(G(A)), form a l l  hyperresol-  Q3(C) ; Q3(G(C)) ;' and nucleus 
ven t s  of t h e  following c lauses:  ,Q2(V) 7Q3(W) -,Q(X) :Q(Y) TQ(Z) O r  

EQUAL (F(V,I!J,F(S,Y,Z)), F(F(V,lV,X),Y,F(\ l , i \ ' ,Z)))  
Q(A) ; Q(G (A) ; Q(G (G(A)) 1 ; and nucleus 
,Q(x) ;Q(Y) TQ(Z) o r  Q(f (X,Y,Z)) . I t  i s  hoped t h a t  such t r i c k s  can be incorporated 

i n  a general-purpose,  f u l l y  automated package, but 
Demodulate each derived c lause  us ing the  equa l i -  a t  p resen t  t h e  des i red  t r i c k s  a r e  discovered and 
t i e s  de f in ing  F. I f  each r e s u l t i n g  c lause  i s  s e t  up by the  user .  Tr icks  of  var ious  kinds  will 

, i d e n t i c a l  t o  Q(e)  f o r  some element e i n  t h e  model, ,presumably become very important i n  ve r i fy ing  
, t h e n  F is  c losed.  Otherwise F i s  not  closed: f o r  l a r g e  models, a s  the  numbers of ins tances  of  ce r -  
example i f  Q(F(A,G(A),G(A)) i s  derived and does t a i n  axioms become enormous:- ' 

. n o t  s impl i fy ,  F (A,G(A) ,G(A)) has not  been def ined.  
;The general  p r i n c i p l e s  a r e :  Write a c lause  Q(e) 
f o r  each element e of the  proposed model. IVrite 

APPENDIX IV.  CLAUSES FOR GENERATING A LIST OF 

; t h e  nucleus ( f o r  an n-ary funct ion F) as:. ELEhlENTS AND A FUNCTION TABLE 

To generate  a l i s t  of  elements of a model, gener- 
7Q(Vl).... , Q ( v ~ )  o r  Q(F(V1, ..., Vn)) . a t e  a l l  hyperresolvents  of  t h e  following c lauses  

and t h e i r  hyperresolvent  consequences (demodulat- 
iAPPENDIX 111. METHODS FOR REDUCING RUN TIME OF ing  each using the  funct ion de f in ing  e q u a l i t i e s ) :  
! . PARTIAL-MODEL AND bIODEL- 

i VERIFICATION RUNS lQ(x) o r  Q(G(X)) 

I . ,Q(X) .Q(Y) :Q(Z) o r  Q(F(X,YaZ)) 
! I f  a f a i r l y  l a r g e  model i s  bei.ng v e r i f i e d ,  t h e  ...( o ne such c lausc  f o r  each funct ion,  a s  i n  
number of ins tances  of .axioms t o  be v e r i f i e d  may c losure  t e s t )  ~ jbe reduced by symmetry and o t h e r  considerat ions .  and u n i t s  Q(A); Q(B); ... 

(one such c lause  f o r  each genera to r  of the  
1 ~ o r  example, t h e  four  element model of ~ r a u  axioms model). 

I il, 3,  4,  and 5 ,  descr ibed i n  Appendix IC, has a 
:set  of symmetries mapping any element i n t o  any This  i s  useful  when a model has  been found us ing  
'other.  Thus i n  checking t h e  ins tances  of  axiom 1, paramodulation runs only (Section 3,  Note 4). . I  only  ins tances  i n  which A is  s u b s t i t u t e d  f o r  V 
need be checked; ins tances  i n  which G(A), C ,  o r  . TO genera te  a funct ion t a b l e ,  generate  a l l  hyper- 
G ~ C )  is  subst i tu t 'ed  f o r  V will behave analogously. r e so lven t s  of the,..fqllowing c lauses  (demodulating 

c lauses  used t o  generate  t h e  r e s t r i c t e d  s e t  of each using the  f z c t i o n  de f in ing  e q u a l i t i e s ) :  
5nstances  were: 

I I 

. -Q(x) * (Y)  ,Q(z) o r  P F ( x . Y , z , F ( x , Y , ~ ) )  . . Q(A); Q(G(A)); Q(C); Q(G(C)); ( f o r  a t e r n a r y  funct ion F) 
, Q2(A) ; and nucleus . : and u n i t s  Q(A); Q(G(A)); ... 

1 - 1 2  .Q(lv) .Q(X) :Q(Y) ,Q(Z) o r  (one such c lause  f o r  each element of t h e  model). 

I EQUAL (F(V,W,F(X,Y,Z)), F(F(V,W,X),Y,F(V,W,Z))). 
The deriired "PFI1 c lauses  give  t h e  func t ion  t a b l e  

The use  of 142 (V) and Q2 (A) ' causes only A t o  be e n t r i e s  f o r  "F". 
s u b s t i t u t e d  f o r  V. The s e t  of ins tances  t o  be 
checked may be f u r t h e r  reduced by examining ,.,hat 

. happens when V=W .or V=G (I\') . When v=lv, I 1 j _ _  _ _ _  _ _  _I______._ - I 

I i 
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AN ALTERNATIVE METHOD OF CHECKING . ' 5. R. A. Overbeek, "An implementation o f  hyper- . 
: ! I  reso lu t ion t t ,  Comput. Math. Appl., Vol. 1, WELL-DEFINEDNESS IN A MODEL- 

1 
VERIFICATION RUN 

i pp. 201-214, 1975. j /  j 
I f  t h e  func t ion  de f in ing  e q u a l i t i e s  f o r  a proposed 

.model do n o t  form a complete s e t  o f  reduct ions ,  ' 

t h e  following t e s t  f o r  well-definedness may be 
used ins tead .  (The reader  i s  urged t o  contact  t h e  
au thor  f o r  d e t a i l s  o f  t h i s  method i f  desired;, 
space cons ide ra t ions  do no t  permit a f u l l  presen- 
t a t i o n  he re . )  F i r s t ,  design t h e  demodulation 
a lgor i thm t o  s a t i s f y  two c r i t e r i a :  

1) In  demodulating a given term, f u l l y  

i demodulate each subterm before  applying demodula- 
t o r s  t o  t h e  f u l l  term. For example, i n  
demodulating F(G(G(G(A))) ,A ,A), demodulate 

IG(G(G(A))) t o  G(A) before  applying a demodulator 
t o  t h e  term whose major symbol i s  F. 

' 2) Demodulate a given ground term i n  t h e  same 1 
,way each time it appears.  I f  two demodulators 
,apply,  choose the  same one each time. These 
c r i t e r i a  i n s u r e  t h a t  demodulation w i l l  a c t  a s  a 
well-defined func t ion .  

Then check the  funct ion de f in ing  e q u a l i t i e s  f o r  
s a t i s f a c t i o n  i n  each ins tance ,  using the  method 
appl ied t o  Grau axiom 1 i n  Appendix IIA with t h e  
above demodulation algorithm. 

!APPENDIX VI. APPLICATION TO MODELS OF FIRST ORDER 
I NON-EQUATIONAL SYSTEMS 

' .,The techniques of t h i s  paper might be applie'd t o  
,non-equational systems by (1) r ewr i t ing  each pred- 
i c a t e ,  "OR", and "NOTt1 a s  funct ions;  (2) ,supplying 
' funct ion de f in ing  e q u a l i t i e s  f o r  the  above which 
'y ie ld  ItTtt and l tFtt  a s  values ,  e.g. LT(1,2)=T, 
:OK(T,F) =T, NOT'(T)=F; c3) seeking and v e r i f y i n g  
models a s  i n  t h e  preceding p a r t  of the  paper ,  
omit t ing T and F from t h e  l i s t  of  elements. The 
.author has  no t  ' t r i e d  t h i s  technique and makes no 
,claim f o r  i t s  p r a c t i c a l  u t i l i t y .  
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