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MONTE CARLO METHODS and APPLICATIONS IN NUCLEAR
PHYSICS i

J. Carlson
T5 Mail Stop B283
Los Alamos National Lab
Los Alamos, NM 87545

Abstract

Monte Carlo methods for studying few- and many-body quantum systems
are introduced, with special emphasis given to their applications in nuclear
physics. Variational and Green's function Monte Carlo methods are presented
in some detail. The status of calculations of light nuclei is reviewed, including
discussions of the three-nucleon-interaction, charge and magnetic form factors,
the coulomb sum rule, and studies of low-energy radiative transitions.

1. Introduction

In these lectures I will introduce Monte Carlo methods as applied to few- and
many-body quantum systems, and in particular to few-body problems in nuclear
physics. While I will not be able to go into some of the technical details, I hope
to provide you with a basic understanding of the principles {uvolved. I also hope
to convince you that there are many intriguing questions that can be addressed
by studying light nuclei, and that Monte Carlo methods provide a useful way of
attacking these few-body problems.

[ will discuss Variational!™ (VMC) and Green's function Monte Carlo®” (GFMC).
VMC and GFMC are fairly general; they are often used in condensed matter®'! and
atomic physics!?!3 in addition to their applications in nuclear physics. These meth-
ods are also closely related to the finite temperature methods used in both condensed
matter and lattice QCD. Nuclear physics applications include hypernuclei and var-
ious constituent quark models in addition to light nuclei. Attempts are also being
made to apply generalizations of these methods to heavier nuclei, but I will restrict
myself to few-body problems in these lectures.

[ will also cover the structure of the ground states of light nuclei, including two-
body correlations, the importance of the tensor force, and the effect of three-nucleon
interactions. I will present calculations of the Coulomb sum, one of the best experi-
mental'*"'® indications of strong correlations within the nucleus. In additior, [ will
touch upon models of the currents, including two body charge and current operators,
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and their importance in describing electromagnetic form factors. Finally, I will look
at Monte Carlo methods for calculating low-energy scattering; and in particular at
recent calculations of neutron radiative capture on He.

First, however, [ will present the basic Monte Carlo algorithms. The most im-
portant principles will be described along with the simplest practical algorithms.
These tools should allow you to explore at least simple systems on your own. One
should always keep in mind, though, that for more complicated problems, better
Monte Carlc methods (improved sampling techniques, etc.) can be vital, making the
difference + etween a robust solution with good statistical accuracy and a result with
statistical errors so large as to render the calculation virtually meaningless. I hope
that the references will be sufficient in number and detail to allow anyone interested
to easily go beyond the relatively crude algorithms given here.

2. Nuclear Hamiltonian

Before studying the Monte Carlo algorithms, I would like to spend a little time
discussing the nuclear Hamiltonian and the difficulties involved in determining its
eigenstates. We will employ the traditional description of the nucleus as a system
of non-relativistic nucleons interacting through strong :rin- and isospin-dependent
nuclear interactions. The solutions of the Schroedinger equation

H|Y) = Z + Y Vit 3 Vi + | ¥ = EY) (1)

t 1<) i<j<k

can then be used, along with an appropriate current operator, to determine many
properties of the nucleus. The potential is determined by fitting two- (and possi-
bly three-) body experimental data. [t includes the one-pion-exchange term at long
distances, and in some cases is modeled as a set of one-boson exchanges at . horter
distances. Clearly this model leaves out some interesting physics; internal degrees of
freedom (such as the delta resonance) have been suppressed and the effects of meson
exchange have been absorbed into the potential. Each of these simplifications pro-
duces important effects even in ground-state properties, as we shall see. Nevertheless,
even this simple non-relativistic treatment contains a great deal of physics.

The two-body interaction can be written as a sum of spin-isospin dependent
operator Of; multiplied by functions of the pair separation ri;:

= Z V"(r,v,-)OU. (2)
1<)
where the operators Of; are
= {1,0;0;,S;,L " Si;, L -S4, L%, LEa; - o;} Q1,7 75} (3)

where the symbol ® indicates all products of one term in the first bracket and one
term in the second. In this expression, o; and o; are Pauli matrices representing the
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spins of the nucleons, and 7; and 7; are similar matrices for the isospins. The tensor
operator S,; is 30y - #i;0; - fi; — 0y - 05 and L - S;; is the spin-orbit interaction, where
L represents the relative angular momentum of the pair, and S the total spin. The
operators L S?j and L, determine the spin-orbit squared and angular momentum
squared dependence of the interaction, respectively.

All modern interactions ( Argonne,!” Bonn,'® Nijmegen'? ...) may be written in
a similar manner. Terms up to first order in the momentum (L - S;;) are uniquely
indicated by the data, but the choice of the more non-local operators varies in dif-
ferent interaction models. We will concentrate primarily upon the Argonne V14
~ interaction which employs the particular choice given above. It has been constructed
to minimize the importance of the non-local terms in the interaction, and includes
a one-pion interaction at long distances, an intermediate range attraction with the
range of a two-pion-exchange, and a short-range phenomenological repulsion.

Sorne terms in the Argonne V14 interaction are shown in figure 1, for simplicity
I only present the central (momentum-independent) and tensor terms in the inter-
action. Two primary features that are common to all NN interaction models should
be stressed. The most striking feature is the strong repulsive core at short distances.
This presents some difficulties to mean-field or perturbative calculations, but it is
possible to treat the strong correlations induced by these interactions with Monte
Carlo. In fact, I will show results from condensed matter physics for systems of fifty
to several hundred very strongly-interacting particles. The repulsive core in these
systems is even stronger, in relative terms, than that in the NN interaction.
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Figure la) Central terms in the Argonne V14 interaction.
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Figure 1b) Tensor terms in the Argonne V14 interaction,

The second feature, also crucial to nuclear physics, is the strong spin- and isospin-
dependence of the interaction. The potential can be quite different for different
combinations of total spin and isospin (note that the S,T = 0,0 and 1,1 central terms
occur in negative parity states, and consequently always appear in combination with
L? terms). Results are also very sensitive to the tensor force, in fact we find that
the tensor force provides about 2/3 of the total potential energy in light nuclei.
Consequently, any wave function which ignores the strong tensor correlations will not
reproduce .any of the bound states. The strong state-dependence of ti.e interaction
is also what limits our calculations to light nuclei, at least for the present. To
understand why, we will need to look at the structure of the wave function.

Before proceeding to the wave function, though, I should mention the three-
nucleon interaction (TNI). The TNI will be discussed in more detail in a later section,
at this point I would simply point out that the presence of a three nucleon interaction
is essentially required by the fact that we are suppressing the internal structure of
the nucleons. The importance of the three-nucleon interaction (TNI) can be taken
as a measure of the importance of ignoring the internal degrees of freedom in the
nucleon, the quarks. At long distances the form of the TNI is assumed to arise from
pion exchanges and excitations to virtual deltas, its precise strength is fit to the
three-body binding energy.? We will find that the TNI is much less important than
the two-nucleon interaction, typically (Vi;c)/(Vi;) < 5%. However, it does provide a
significant fraction of the binding energy in light nuclei, as the binding energy results
from a sensitive cancellation of large kinetic and potential energy terms.



3. Variational Wave Functions

Given the Hamiltonian of Egs. | - 3, any wave function can be decomposed into
a sum over spin-isospin states times functions of the coordinates of all particles:

W) = EW(R)X:-‘ | (4)
i

The sum over states | runs from 1 to 24A!/N!Z! for a system of N neutrons and Z
protons (A=N+Z). The factor 24 comes from the spins (each of A spins up or down)
and a factor of A!/N!Z! from the isospin. The isospin factor is smaller because of
charge conservation, the total number of protons or neutrons remains constant. Note
that we are not exploiting good overall isospin, which could reduce the number of
components further at the cost of 4 more complicated basis. Calculations employ
a basis of definite third components of spin and isospin for each particle. This is
discussed in more detail in the Appendix.

Solving the Schroedinger equation now entails solving many coupled differential
equations for the complex amplitudes y;(R). For A=3, Faddeev methods*>?? can
be used to solve for these amplitudes explicitly, although they of course employ a
different basis of states. As the number of nucleons increases, however, it becomes less
and less feasible to solve directly for the amplitudes ;. One possibility for going to
larger systems is to develop approximate variational solutions for the wave function,
this is the alternative we will discuss first. Note that the three-body nuclei provide
a very important test for any variational calculation since they can be calculated
‘exactly’ with Faddeev methods.

Any variational calculations proceeds by first making an ansatz for the form of
the wave function and then minimizing the expectation value of the Hamiltonian

_(¥r{a}| H |¥r{a})
H) = r{al¥r(a))

with respect to changes in the variational parameters {a} embedded in the form of
variational (trial) wave function ¥r{a}. The important physics required in this case
includes (1) an accurate form for the wave function as two nucleons are brought close
together, (2) a reasonable treatment of the spin-isospin correlations induced by the
interaction, and (3) the correct asymptotic wave function as one nucleon is pulled
away from the remaining nucleons.

A generalized Jastrow form for the wave function can be used which incorporates
all of this physics:

()

¥r) =S (H F.',-) |®). (6)

i<
In this equation, ® is an anti-symmetrized Slater determinant, the Fj; are state-
dependent two-body correlation operators, and S is a symmetrization operator. The
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symmetrization operator indicates a sum over all orders of terms in the product, and
is required since the correlation operators between different pairs do not commute,

For light nuclei, it suffices to choose ® as a spin-isospin vector independent of all
spatial coordinates:

o(*H) = A{(n Thip 1), ‘ (M
O(°H) = Al(n |)i(n 1alp M, (8)
®(‘He) = Al(n i(n Talp la(p Dd]. (9)

In this notation, A is an anti-symmetrization operator indicating a sum over all
possible interchanges of particles with appropriate signs. For larger nuclei ( A > ¢ ),
spatial degrees of freedom must be incorporated into the ®. Here, however, we can
choose the pair correlation operators F;; to give the correct asymptotic conditions
on the wave function.

We choose the pair correlations to have the following form:

lJ = fc ro; l:l + (2“3 rua ru)ok)] 1 (10)

where the sum over operators k runs over all momentum-independent operators in
the interaction (Eq. 3). The pair correlations f° and u* are obtained by solving
two-body differential equations of the general form:34

R .
==V lG) + A(rij)]F(rij) = 0, (11)

where A(r) contains several variational parameters. In the spin singlet channels, two
uncoupled equations are solved, one for T=0 and one for T=1. In the spin triplet
channels, coupled equations are solved for the central and tensor correlations. Once
the equations are solved in the various channels, linear combinations are obtained
which can be cast in the operator form of Eq. 10.

The function A(r) ir a woods-saxon at short distances. The width and range of
the woods-saxon are variational parameters. At long distances its form is determined
by requiring that the wave function have the correct asymptotic properties as one
nucleon is removed from the rest. The separation energy which determines the
exponential decay is an additional variational parameter, as is the ratio of the tensor
and central correlations at long distance.

The us correlation in Eq. 10 is a three-body term which reduces the strength of
the operator-dependent two-body correlations for some configurations of .42 nucle-
ons.! It depends not only on the pair distance r;; but also on the positions of all the
other particles. Empirically, it has proven useful to parametrize uz as

us(ripy R) =TT |1 = ti(2)" exp(=tsRiz)| (12)

k#ij 1k



with

Rijk = 1i; + rig + k. - (13)
The values of ¢y, t3, and t; are determined variationally. In principle they could be
adjusted independently for each pair correlation operator (each k), but in practice
they are usually chosen to be the same in all channels. ‘

The exact deuteron wave function can be cast in the form of Eq. 6. In this case the
three-body correlation uj is replaced by the identity, and the function A(r) is simply
a constant, the deuteron binding energy. The functions f°(r) is u(r), the s-wave part
of the deuteron wave function. The tensor term f°(r)u5(r) is, within a normalization
constant, w(r), the d-state component of the wave function. The deuteron’s wave
function is worked out in the 3rd component of spin and isospin basis in the Appendix.
For the deuteron, of course, the components of the wave function are only functions
of one variable, so that calculating expectation values of any operator is relatively
easy. For larger systems, though, this becomes progressively more difficult. Hence,
we rely upon Metropolis Monte Carlo to calculate the necessary integrals.

4. Variational Monte Carlo

Given a parametrized wave function in the form of Eq. 6, (H) must be minimized
as a function of the variational parameters. Evaluating (H) involves computing
many 3A dimensional integrals, so we turn to Monte Carlo methods, in particular to
Metropolis Monte Carlo. Mente Carlo methods in general become more valuable as
the dimension of the space increases, and their efficiency depends to a great extent
on the quantity to be measured and also upon the care with which they are applied.

Monte Carlo methods as applied here are described in some detail in a book by
Whitlock and Kalos.?® I can only provide some of the basics were. Those interested
can consult this book and other standard references to determine optimum methods
for sampling various distribution functions, and also for more detailed discussions
of the Metropolis and Green's Function Monte Carlo methods. Also, R. B. Wiringa
and I* have written a book chapter which contains quite specific discussions of the
Variational Monte Carlo methods as applied to light nuclei and also includes a sample
program.

A.  VMC - General Method

Metropolis Monte Carlo* is designed to evaluate ratios of integrals such as:

_ JW(R)O(R)dR

where W(R) is a positive definite function. While such a form may seem rather lim-
ited, in fact many interesting physics problems can be written in this way. Classical
statistical mechanics is a primary example. If we take W(R) to be exp(—GH) and O
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to be an observable, we can use the Metropolis method to compute the expectation

value of O at an inverse temperature £.
Quantum variational calculations can also be performed using the Metropolis
method. The standard choice 1s

W(R) = ¥}(R)¥r(R) (15)
and O(R) to be the operator acting on Ur(R) at that point:

o(R) = Y2(®) O Ur(R)
- W(R)Ur(R)

(16)

The wave functions are necessary for the case when O depends upon momentum,
and therefore includes derivative operators. For purely static scalar quantities, the
wave functions will divide out in this expression. Note that I have suppressed the
dependence of the trial wave function on the variational parameters {a}. With
this choice of W, the denominator in Eq. 14 is simply the normalization of the wave
function, while the numerator gives the expectation value of the operator O. Initially
we are trying to minimize the energy in a variational calculation, so we consider the
case where O is the Hamiltonian. In nuclear physics, the Hamiltonian (and also
the wave function) will depend upon the spin and isospin of the nucleons and the
functions W and O involve sums over all possible spin-isospin states. For simplicity,
however, we first consider the case of a spin-isospin independent interaction where
the wave function only depends upon the spatial coordinates of the particles.

The Metropolis algorithm is based upon the fact that the ratio in Eq. 14 can be
evaluated as an average over a set of points R, distributed with probability distribu-
tion W(R):

. ’ 1 N .

(©) = jim 5 LOR) (17)
[n the limit of an infinite sample of points this relation is exact, but in actual cal-
culations there is a statistical error associated with finite sample sizes. Under very
general conditions, the central limit theorem states that the statistical error will go
like 1/V/N for large N,

The Metropolis algorithm allows us to obtain a set of points R; for an almost
arbitrarily complicated function W(R). This is important because our trial wave
functions contain strong correlations, and it is difficult to perform the integrals in
any other way. In essence, the Metropolis method sets up an artificial dynamics such
that the equilibrium distribution of points is proportional to W(R). The primary
ingredient in the Metropolis algorithm is detailed balance, which simply requires that
the net flux from any point R to any point R’ must be balanced by the flux in the
reverse direction when equilibrium has been reached. Clearly this is more restrictive
than is absolutely necessary, nevertheless it is a very valuable technique.
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A random walk algorithm can then be developed which satisfies detailed balance
and gives an equilibrium distribution proportional to an arbitrary W(R). Suppose we
start at R, and construct a random walk in which each step contains two elements,
a proposed (trial) move and an acceptance/rejection step. First, a point R is chosen
for the trial move with a transition probability T(R; — Ry), and second, this trial
move is accepted with probability A(R; — R.). If the move is accepted R, is set
to Ry, otherwise R, is set to Ry. The whole process is then repeated (the next step
beginning from R;) until the walk has reached equilibrium and a sufficient number
of points have been generated to obtain accurate results.

A little thought will convince you that detailed balance imposes the following
condition on the random walk if it is to generate an equilibrium distribution propor-
tional to W(R).

The left hand side of this equation is the flux from Ry to Rg, it is given by the product.
of the probability of being at R,.(which we require to be W(R,)), the probability T
of proposing a move from R to R;, and the probability A of accepting that proposed
move. The right hand side of the equation is the total flux in the opposite direction.

A very simple choice for T(R; — R;) is a constant (1/L%) within a 3A dimen-
sional cube with side L. This transition probability is trivial to implement. For each
component i of the 3A dimensional vector, simply take:

Ry = Ry + 2L(¢ = 0.5), (19)

where the (; are random numbers evenly distributed between 0 and 1. With this
choice of T, it is obvious that T(R; — R;) is identical to T(R; — R;y). If Ry is
within the box centered at R;, R; is also within the box centered upon R, and
both transition probabilities are equal, but if R; is outside the box both transition
probabilities are zero.

With this choice for T detailed balance becomes particularly simple. We can
satisfy Eq. 18 by taking

A(Rl fand Rg) = min [1, %VVE%:’;‘] . (20)

Note that the acceptance probability must always be between zero and one. If the
function W is greater at the new point than at the old, the move will always be
accepted. Otherwise, it will be accepted with a probability equal to the ratio of the
functions. Note that a total of 3A + 1 random numbers are needed at each step in
the walk, 3A to choose a trial step and one to accept or reject it.

The resulting algorithm, employing a general transition probability T, can be
written down very simply:
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1. Given a 3A dimensinnal coordinates R;, generate a trial coordinate point R,
with probability T(R; — R.).

(8]

Calculate the quantities W(Ry), W(R,), T(R; — R;), and T(R¢ — R,), the
transition probab)lxty for the reverse step. The acceptance probability is given
by the expression:

W(R)T(R, — Ry) |

A(Rl—'Rt)=min{1’W(R|)T(Rl—* Re)} (21)

3. Accept or reject the move with probability A. If the move is accepted, set R,
equal to R;, otherwise set it to R,;.

4. Calculate all quantities of interest (the Hamiltonian, etc.) at Riy1, adding the
contributions to the average over all points (Eq. 17).

The random walk will only generate points distributed with probability W(R)
after it has reached equilibrium. Convergence to equilibrium is an important con-
sideration that must be tested in each calculation. All results obtained prior to
equilibrium should be disregarded in the averages above. This is usually not a prob-
lem in light nuclei as several hundred steps normally suffice unless one starts from a
pathological initial point (one nucleon 20 fm from the others, for example). A good
‘way to test for equilibrium is to compute the average over ‘blocks’ of consecutive
points in the random wall consisting of several hundred points to several thousand
points each. |

Eventually, the averages within each block should settle down to a constant plus
a (hopefully small) fluctuating term. If the blocks are large enough, the averages
should have a normal distribution centered on the true mean, and the error can be
estimated from them using the central limit theorem:

0) = \/[TOF - TOT /M. 2)

where A(O) is an estimate of the error in determining (O) and M is the total number
of blocks. The expression involves the average of the square of the estimated operator
expectation value minus the square of the average, and the bars indicate averages
over blocks rather than individual points. The results in each block are themselves
averages over a few hundred to a few thousand points in the walk. This error estimate
is only valid when the blocks are ‘large enough’ so that the central limit applies. The
size of blocks required must be tested in each calculation, but this test involves only
a re-analysis of the run. Smaller blocks can be grouped into larger ones in order to
insure that the statistical error is independent of the block size.

[ have not yet specified how to choose the step size L in the random walk. The
choice of L strongly affects the efficiency of the calculation but should not affect
the final average. For example, if L is very small then nearly all moves will be
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accepted but many steps will required per block to eliminate the correlations between
neighboring blocks. Similarly, if L is too large all moves are likely to be rejected,
and again many steps will be required to gain independent samples. The general
lore holds that adjusting L so that approximately half the moves are accepted is a

‘reasonable choice. Numerical experiments testing the correlations between nearby

points in the walk can be valuable in optimizing L.

One can also improve the efficiency by making better choices for the transition and
acceptance probabilities. One popular alternative is to include information about the
first derivative of W evaluated at R, in the transition probability T(R, — R.).?® In
this case the acceptance A must involve the transition probability for the reverse step,
which in turn depends upon the derivative of W at R,. The transition probability
T must be positive definite and normalized such that [ T(Ry — R()dR, = 1 for any
R;. ;
Variational Monte Carlo calculations are constructed so that they will be more
efficient for better trial wave functions. In fact, if the trial wave function is an
exact eigenstate of the Hamiltonian the energy’s statistical error will be zero. In this
ideal case every sample of H(R) (Eq. 16) will produce the same result, the ground
state energy. This is not true for expectation values of other quantities. Rapidly
varying functions, for example charge form factors at high momentum transfer, will
have much larger statistical errors. In many cases it is possible to reduce the error
by using different weight functions W, or perhaps by doing the integrals over some
coordinates with traditional numerical methods rather than by Monte Carlo.

Another very useful technique is called ‘reweighting’.?® Since we are initially con-

cerned with calculating the difference in energy between two wave functions, it is.

more efficient to calculate this difference directly. For example, suppose we con-
struct an initial random walk using the square of the wave function Wy for the
weight function W(R). The energy of this wave function can be calculated easily
from this walk, but we can also use it to evaluate the energy difference between two
wave functions. The energy difference can be written in the form of Eq. 1T:

[dR¥ZEERW(R)  [dRIZEEW(R)
[ dREE W (R) ~ JdRIHEW(R)

and computed using any weight function W, in particular the square of the original
wave function Wp;. Of course, we will now have to compute both the numerator and
denominator separately (the denominator in the second term is no longer exactly one
at each point), but the correlations between the two calculations can be exploiced to
greatly reduce the statistical errors. This method is most useful when the differences
be oen the two wave functions are not too large.

(U |H| Y1) = (Yo H|¥T2) = (23)

11



et e s ettt | 4 0

A

B. VMC - Applications to Light Nuclei

Variational Monte Carlo calculations of light nuclei'™ are somewhat more compli-
cated than described above because of the spin-isospin dependence of the interaction
and wave function. In this case, the expeciation value of the Hamiltonian can be
written: |

t |
faRr 5, LeBEHY (R) g
(H) = S - (24)
j ar 3, LR Bl

where the sums over % and [ run over all spin-isospin states. In orinciple, we could
use a weight function W which depends upon k and I, and perform the sums as well
as the integrals by Monte Carlo. In general, though, this will produce large statistical
errors since the low-variance property for the encrgy described above only applies to
the full Hamiltonian acting on the full wave function. Therefore, we simply sum over
all k and { at each point in the walk, although this places severe practical limits on
the size of nucleus that can be studied.
One can choose W to be:

W(R)= ¥ ¥/ (R)% (R). (25)

In fact we use something slightly more complicated, and include a Monte Carl,
sampling of the orders of pair correlation operators implied by the symmetrization
operator S in the trial wave function (Eq. 6). This entails choosing a weight fup _tion
which depends upon the order of operators in the left and right hand wave fuuction,

and requires a calculation of the normalization of the wave function as well as (H).!
For example, in a three-body nucleus:
1
S(Fi2FiaFy) = %[FmFsza + FiaFiaFy + FaFipFia + ). (26)

Labeling the order of operators by p and ¢ (and suppressing the spin-isospin indices):
R = TulR),
p

¥(R) = Y ¥ (R), (

(g
-1
~

we choose

W,o(R) = [Re(¥] (R) |¥, (R))]. (28)

In this expression I have indicated the sum over all spin-isospin states by angled
hrackets. Note that since the left and right hand terms are no longer simply Her-
‘nitian conjugates, the absolute magnitude is required in order to ensure that W is
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positive definite. This also implies that one must calculate the denominator explic-
itly. For light nuclei, though, we have observed that the real part of the product

(\Il,t\llq) is positive for reasonable correlation functions.

Another complication arises when trying to compute the kinetic energy and the
momentum-dependent terms in the interaction. Because of the complicated matrix
structure of the wave function, it is very difficult to compute directly the momentum
operators acting on the wave function. Consequently, all derivatives are evaluated
simply by re-calculating the wave function at slightly displaced values of the particle
coordinates, and forming the numerical derivatives:

ViU (R} [¥{R + e#i} — U{R — e/'}]/[2¢]
VIW{R} = [W{R+ e} + ¥{R —cri}] - 2¢{R}]/[¢]. (29)

In these expressions i represents a direction (x, y or z), and j represents the particle.
The expectation value: ~f L? terms are treated similarly, although in some cases it is
more convenient to use integration by parts so that only first derivatives are required.

Typically, twenty to thirty runc are required to optimize the variational param-
eters. Most of the calculations are difference calculations designed to compute the
energy difference of various wave functions (Eq. 23). Each run will require several
thousand configurations in order to obtain a statistical accuracy of a few huncredths
of an MeV. Once the optimum wave function has been determined, a set of Monte
Carlo calculations should be undertaken to determine all of the expectation values.
For the three-body problem, ten to twenty thousand configurations seem to provide
reasonable statistical accuracy for the energy and one-body densities. Ten thousand
configurations takes roughly 30 minutes of cpu time on a one megaflop computer.

Typical results for the three-body problem are given in Table I, and ccntrasted
with the ‘exact’ Faddeev results. Variational results are always an upper bound
to the true ground-state energy, for the triton the variational energy is typically
about 0.3 - 0.6 MeV higher than the Faddeev. Wiringa? has recently improved the
variational wave function by adding L - S;; two-body correlations and including three-
bo v correlations. These improvements reduce the energy difference significantly.

No upper bound property exists for operators other than the Hamiltonian, how-
ever. In fact, while the error in energy is second order in the error in the trial wave
function, the error in other observables is generally first order. Consequently, two
variational wave functions may give very similar energies but different values of other
observables. For example, the point rms radius of the nucleons can change by 0.05 to
0.1 fm without significantly affecting the ground state energy. This uncertainty in the
wave function, rather than the statistical error associated with the Monte Carlo in-
tegrations, is often the most important difficulty with variational calculations. Com-
parisons with other quantities such as the magnetic form factors (discussed in section
6) indicate that the variational wave functions provide a good overall description of
the structure of light nuclei. Nevertheless, methods to systematically improve the
variational wave function are extremely valuable.

il
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Table 1: Triton Resules - Variational and Faddeev

Interaction | Method Energy (MeV) | (r2)17? (fm) | % (S=3/2) |
AV14 + TNI | Variational | -8.42 (04) 1.68 (02) | 9.9 (1)
AV14 + TNI | Faddeev -8.99 1.65 10.0
Nijmegen Variational | -7.25 (03) 1.86 (03) 7.7 (1)
Nijmegen Faddeev -7.63 1.77 7.9

Reid V8 Variational | -7.08 (05) 1.82 (02) | -

Reid V8 Faddeev -7.59 1.76 9.7

Summary of triton results from reference 26. Energies are given in MeV, distances in {m,
and statistical errors are indicated in parentheses. The rms radii given are point nucleon
radii. The last column gives the magnitude of the spin 3/2 wave function component;
except for very small P-state components this is equal to the D-state percentage.

5. Green's Function Monte Carlo

Green’s Function Monte Carlo (GFMC) calculations project an exact ground or
low-lying state wave function ¥ from an initial trial wave function ¥r. Monte
Carlo techniques are used to calculate the operator exp(—H) acting on W for large
imaginary times 7. Expanding a variational wave function ¥r{a} in eigenstates of

H
Yr{a} =) Bnial¥m (30)

we find
exp(—Hr)¥r{a} = ZEXP( —E, ~)Bm{a}¥m, (31)

where I have included {a} to label the implicit dependence of ¥t on its variational
parameters. For large 7, only the state with the lowest energy eigenvalue will survive.
You should be aware that many similar algorithms are available that go under dif-
ferent names, including Green's Function Monte Carlo (GFMC),>" Diffusion Monte
Carlo (DMC),*" etc. [ will not go into the distinctions here, but one should be aware
of their existence. Most of these algorithms are primarily designed to treat systems
without state-dependent interactions, limiting their applicability to nuclear physics.

A. GFMC - General Method

All of the methods are based upon high-temperature or short-time expansions of

the Green's Function:
exp(— = [[exp(-HAr) (32)

where the product runs over many short time steps Ar.
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Of course we do not know even the short-time propagator exactly; the exact
form would require imply a knowledge of all eigenstates. However, for short time
steps Ar we can construct accurate approximations to the propagator. The simplest
approximation is:

G(R'\R) = (R'|exr(—HAT)|R)
~ exp(—V(R)AT/2)(R'|exp(=TAr)|R)exp(-V(R')AT/2), (33)

where I have split the Hamiltonian into its kinetic (T) and potential (V) pieces and
assumed that the potential i local.

Green's Function Monte Carlo is similar in many respects to a transport Monte
Carlo simulation. The basic .dea is choose an initial set of configurations with density
proportional to a trial wave function, and to use Monte Carlo methods to iterate an
integral equatic 1:

V(R = [dRG(R, R)¥(R) | (34)

until convergence to the ground state wave function. Each configuration is an in-
dependent copy of the entire system, and their ‘trajectories’ are followed as Eq. 34
is iterated. The kinetic energy term allows the sampled points to move about in
configuration space while the potential energy duplicates or destroys walks.

The Monte Carlo simulation mimics a diffusion process in which the kinetic energy
term governs ...e rate of the diffusion, since:

2
(R'|exp(=TAr)|R) = Nexp {:—(%,—_—'—E)—} , (35)
4mAT

where N is a normalization constant that insures [ dR'(R'|exp(—=TAr)|R) = 1. The
potential, on the other hand, can be thought of as a source or sink of random walks.
When the potential is repulsive, the Green's function (Eq. 33 ) is small and walks
will be absorbed. In regions where the potential is attractive, though, new walks will
be created.

For state-independent interactions it is not necessary to use short-time approx-
imation (Eq. 33). Domain GFMC methods’ exploit an integral equation for the
inverse of the Hamiltonian, locally expanding this true Green’s function about a
constant-potential Green's func.ons within a domain. It is possible to use Monte
Carlo techniques to perform one random walk within another, sampling the exact
Green’s function and hence avoiding any short-time approximation. Generalizations
of the exact method to state-dependent potentials or momentum-dependent interac-
tions is an unsolved problem, however. Consequently, we will employ methods that,
although somewhat more sophisticated than Eq. 33, do include a time-step error.
This time step error can be made arbitrarily small by making At very small. The
errors per time step in this short-time approximation above are proportional to At

-
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as you can see by expanding the exponentials. However, the overall error is propor-
tional to Ar, as the total number of steps required to propagate a given imaginary
time is proportional to 1/A7.

GFMC methods are closely related to the finite-temperature simulations in con-
densed matter (Path Integral®® and Fermion Monte Carlo® ) and lattice QCD. These
methods retain the complete history of the system over time (its world-line or path),

and evaluate

_ YR (ROexp(-8H)R)
| S R(Rexp(-BHR)
to determine the expectation value of an operator O at an inverse temperature
3. Clearly, this expression is of the form of Eq. 14, and can be evaluated using
Metropelis Monte Carlo to sample over all paths. Note that the paths are closed
since they begin and end at the same point R. The fact that the complete ‘time’
history must be retained typically limits these methods to ~ 50 — 100 steps in inverse
temperature,

Here, however, we are particularly interested in projecting out specific quantum
states. We can use this to our advantage and build in our knowledge of the approx-
imate eigenstates. The basic technique is called ‘importance sampling.’ Multiplying
and dividing Eq. 34 by an importance function ¥, we obtain

¥ (R)¥HYR) = /dR [\III(R’)G(R’,R)TI‘-%-R—) ¥ (R)¥'(R), (37)

(O) (36)

where the quantity in brackets is designated the importance sampled Green’s func-
tion. For bosonic systems, ¥; is usually the optimum trial wave function W obtained
‘n a variational calculation. This construction has the advantage that the energy can
be obtained as an average of W5 HWr /W5 U7, and consequently there is no statisti-
cal error in the limit that the trial state is equal to the exact one. Also, using the
spectral representation of the Green’s function we can compute the total number of
samples I(R) generated by a point originally at R:

I(R) = /dR’ [w,(n') Y U (R) exp(— EmAT)Um(R) g ! (38)

1(R)
In the limit that ¥, is equal to the ground state (and Eo = 0), I(R) is precisely
one independent of the starting point R. Good choices for W; imply that each
configuration in the i'th generation will contribute almost exactly one configuration
to generation i+1. This limitation of fluctuations is very important in reducing the
statistical bias of the calculation.

At this stage, it is also useful to consider better approximations to the Green'’s
function than Eq. 33. For static (momentum- independent) potentials, it is useful
to construct

' R : 9ij(Fis» T'is)
G(R',R) = Go(R'.R) [ ZH—"—=%, (39)

1<) gi)(r‘jvr'ij)
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where G\ is the free-particle propagator for the A-body system, g;; is the two-body
propagator including the interaction, and g,J is the two-body free propagator. The
free particle propagators are just normalized gaussians:

_(Rl - R)2
4Arh2/(2m)]
- i)}
4Arﬁ /(24) |

GD(R’. R) = Nexp(

g%(rry) = N'exp[— (40)

The lowest order approximation to the ratio of two-body propagators recovers Eq.

33. The exact two-body Green’s function, though, can be evaluated as an average

over all gaussian paths linking r,; and r/;. In finite-temperature studies of bulk liquid

helium, Ceperley and Pollock?% have used this method to determine the Green's

function of Eq. 39. ‘
The simplest feasible GFMC algorithm can be described as follows:

1. Begin with a set of points in configuration space distributed with probability
density W;¥'. At the zeroth iteration, ¥° is the trial wave function Wr (here
assumed to be the same as ¥;), so the original set of points can be generated
with the Metropolis methods described previously.

2. For each point in the i'th generation R, generate a new point R’ in the 3A
dimensional space by sampling from a normalized approximate Green's function
G(R,R’). In the simplest case, G can be taken to be the free particle Green's
function. A better choice, though, is to include some information about the

importance function, for example by including the first derivative of ¥/(R) in

o

3. Assign each configuration a weight equal to the ratio of the true importance
sampled Green's function to the approximate Green's function G. This ratio
is given by ( Fq. 39):

_ ¥(R) Go(R',R) 7 gis(Fis ¥ij) 1
Y= Y(R) G(R,R) il;I,g?,(rm%) o

4. Compute all quantities of interest at the location R’. and include them in a
weighted average over all points. For example, the energy at generation i can
be evaluated as:

t ' '
~ Yr(R)¥r(RY)
for the case ¥ = ¥r. In the more general case, both the numerator
t ’ ¥-(R!
N=Su [%fm JHYr(R])] [ ¥r( 3\)] (43
- UL(R))¥r(R)) | LWi(RY
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and denominator Yr(R))
D=y w———L |
=g (RY) (44)

" must be evaluated, and the energy is N/D.

5. Each weighted configuration is replaced by n copies of the configuration with
unit weight, n being chosen to replicate on average the original weight w,. For
example, if w; is 0.5, choose n to be 1 half the time and 0 half the time; if
w; is 2.1, keep two copies with 90 % probability and three copies with 10 %
probability.

Steps 2 through 5 are then repeated until convergence, each repetition repre-
senting one iteration of Eq. 37. A constant can be added to the Hamiltonian to
control the growth or decrease of the population size, If this constant is such that
the ground state energy is precisely zero, the population will remain constant on
average. One almost never knows the exact energy initially, but the constant can
be adjusted as the calculation proceeds. The growth estimate of the energy can be
calculated as the logarithm of the ratio of population sizes divided by the time step
At since the ground state eventually dominates Eq. 31. In fact, this provides a very
important consistency check on the calculation. The energy as determined by the
growth of the population should be consistent with that determined by averaging
over the individual points, as in step 4 above.

It isn’t immediately obvious that the branching step above is necessary. Indeed,
the results obtained by merely retaining the weight factors would be identical, on
average, to those obtained with branching. However, the branching process greatly
reduces the statistical error. After many generations without branching the weights
of a few configurations will become much larger than the rest, and most of the
computer time will be spent calculating quantities that have very low weights. Con-
sequently, such a calculation will be very inefficient.

As [ have mentioned, Green’s Function Monte Carlo algorithms can be con-
structed which eliminate all short time approximations. Such algorithms are some-
what more complicated but have proven to be extremely valuable in condensed mat-
ter physics, where they have been used to determine the ground state energy of bulk
‘He as a function of the density.!° Some analogies can be inade which connect he-
lium atoms to nuclear physics, as the helium-helium potential is very repulsive at
short distances (due to the Pauli principle) and weakly attractive at large distances.
The GFMC and experimental zero-temperature equations of state agree within ap-
proximately 0.1 K over a wide range of densities encompassing both the liquid and
solid regiot:s. Helium is an extremely strongly interacting quantum system; and the
agreement of the many-body calculations with experimental results is very impres-
sive. Such calculations typically empley 50 to 150 atoms confined within a periodic
box. Other quantities, such as the structure function S(kj, have also been computed
and excellert agreement between theoretical and experimental results is achieved.
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We now turn to fermion problems, which are considerably more difficult. In the
preceding discussions, I have implicitly assumed that the wave function is positive
definite. The ground state wave function of a fermion system, however, necessarily
involves both positive and negative regions because it must be anti-symmetric. In
some lattice problems, notably lattice QCD at zero baryon density and electronic
lattice problems at half filling, the fermion problem can be overcome by introducing
auxiliary fields which transform the problem into a bosonic equivalent.*® Here I will
concern myself only with continuum problems, however. Naively, the anti-symmetry
can be treated by writing the wave function as the difference of two functions, each

of which is positive definite: . | |
P= gt - (45)

Equation 34 can then be used to iterate each of the two components separately,
and the results combined to determine the fermion ground state. When determining -
the expectation values, we will always take the overlap with an anti-symmetric trial
function, hence eliminating any bosonic components in the calculation. The lowest-
energy state obtained after many iterations will be the fermion ground state.

NAVA

Tine N\ /’\

Figure 2) Transient estimation GFMC for the lowest anti-symmetric state in a 1-dimensional
infinite square well. The anti-symmetric wave function is given by the difference between
@t (solid line) and ¥~ (dashed line).

The fallacy in this simple approach is illustrated in Figure 2. Although the
difference between the positive and negative distributions is, in fact, anti-symmetric,
this anti-symmetric signal is completely dominated by statistical noise in the limit
of many iterations (large 7). In the figure, we consider solving for the lowest-energy
excitation of a one-dimensional infinite square well. The two curves indicate the
density distribution of the positive and negative configurations. The top portion
of the figure presents the initial distribution. The two components Pt and ¥~ are
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well-separated since they are taken from the positive and negative regions of a trial
wave function. As the calculation proceeds (middle figure), the two distributions
begin to overlap as they diffuse throughout the box. The signal we are interested in
is the anti-symmetric wave function, here represented by the difference in the two
curves.

As the iterations proceed, the relative size of this signal (bottom figure) becomes
smaller and smaller, eventually being completely dominated by statistical noise. The
bosonic ground state is always lower than the fermion state for spin-independent
potentials, hence the growth in statistical error as the calculation proceeds. This
growth arises because any bosonic signal which is introduced through statistical
Auctuations increases at a faster rate than the fermion components of the wave
function.

For at least a few iterations, one can allow the population size in the GFMC
calculation to grow sufficiently to overcome this difficulty. This method is termed
‘transient estimation'! and is very successful for some quantum systems, for example
in studies of the electron gas® and liquid 3He.®*¥ [t is possible to prove that you can
obtain a series of decreasing upper bounds to the exact ground state energy, simply
by projecting out the anti-symmetric signa! for as long as possible. The value of this
method depends upon the accuracy of the initial trial wave function and upon the
difference in energy between the lowest symmetric and anti-symmetric solutions of
the Hamiltonian. The computer time required grows exponen.ially with the number
of iterations, however, so it is not always practical to obtain a converged result.

Another variational method is also commonly used for fermion systems, the so-
called ‘fixed-node’ method.!®!! In this case one defines two separate regions of config-
uration space, one for the positive configurations (those associated with ¥*), and one
for the negative. The positive configurations are not allowed to diffuse into the neg-
ative region and the negative configurations cannot diffuse into the positive region.
Separating the system this way is equivalent to solving for a modified Hamiltonian in
which an infinite barrier exists along the nodal surface. This modified Hamiltonian
essentially turns the system into an approximately equivalent bosonic problem which
may be solved without difficulty with GFMC.

The solution is only approximate because of the possible discontinuities in the
derivative of the wave function at the nodal surface. If the nodal surface is known
exactly, the fixed-node solution will yield the exact fermion ground state. However,
the exact nodal surface is usually only kncwn in one-dimensional problems like the
square-well example above. In one dimension, the wave function is zero whenever
two fermions are at the same point, but in many dimensions this condition is insuf-
ficient to completely determine the 3A-1 dimensional nodal surface. Nevertheless,
very accurate upper bounds to the ground state energy can often be obtained with
the fixed-node method. The nodal surface is usually taken from the most accurate
available variational wave function.

A system of strongly interacting >He atoms provides a good test case for Monte
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- Carlo algorithms. By‘employing periodic boundary conditions with different box

sizes, one can simulate an infinite system of atoms and determine the ground state
energy as a function of density. An atom-atom interaction model has been developed
by Aziz,* which consists of a strongly repulsive core region and a weakly attractive
tail. The repulsive core arises from th« fermi repulsion of the electrons in the atom,
and the attractive tail is a result of electron re-arrangements and is dominated at
long distance by the atom's induced dipole moments.

The figure below compares the results of Variational and Green’s Function Monte
Carlo calculations with the experimental equation of state.!!™® Ag can be seen in the
figure, the agreement between GFMC and experiment is excellent; the two curves
are within approximately 0.1 K at all densities. The variational results are higher
than the GFMC by ~ 0.3 K. It is difficult to go beyond an accuracy of ~ 0.1 K
in these calculations, because at this level finite-size effects and three-atom forces
become important.

N4
o = GFMC (FN)
o = Variational
'..54
£
[+ 3
3
;.
0! ‘
0,18 0.20 0.28 0.30 0.38 040
pat

Figure 3) Ground state energy per atom versus density for liquid 3He. The squares indicate
variational Monte Carlo calculations, the circles fixed-node GFMC, and the solid line the
experimental results. ‘

At the equilibrium density, a transient estimation calculation has also been per-
formed. [t yields an upper bound for the ground state energy of -2.44 + 0.04 K,
which is within statistical errors of the experimental -2.47 K. We can also compare
the two-body distribution function g(r) that is measured in neutron and X-ray scat-
tering experiments. The calculated curves are compared to experimental results in
Figure 4. Since this is an infinite liquid, g(r) goes to one at large distances. At
small distances there is a large hole in the distribution function due to the strong
core repulsion. The theory and experiment agree very well, although there are slight
differences at separations where finite size effects may be important.
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Figure 4) Two-body distrioution function g(r) for liquid ®He at experimental equilibrium
density. The statistical errors in .he Monte Carlo calculation are roughly indicated by the
size of the symbols.

The GFMC calculations for bulk *He employ 54 particles with periodic bound-

“ary conditions. This is exactly the type of thing we would like to do in nuclear

physics. The eauation of state of nuclear matter (even at zero temperature) is a very
important quantity, as are measurements of two-body distribution functions. Due
to the complexities of the nuclear interaction, though, we are currently limited to
studying very 'ight nuclei. GFMC calculations with state-dependent interactions are
described in the next section.

B. GFMC - Applications to Light Nuclei

The primary complication that arises in nuclear physics GFMC calculations is
the state-dependence of the interaction. The potential, and hence the pair Green's
functions (Eq. 39), are operators in spin-isospin space. Consequently, we must
employ generalizations of the previous schemes to perform a Green'’s function Monte
Carlo calculation. For examp’», importance sampling is more complicated since the
wave function is not a simple number. In addition, the weights in general will not be
a single number (or even necessarily real), so branching techniques must be modified.

Explicitly evaluating even the pair Green's function is a rather daunting task
given the fact that it depends upon so many variables. In addition, the potentials
between different pairs do not commute, so the pair approximation itself breaks
down much more rapidly in nuclear physics than in condensed-matter problems. For
these reasons, we construct approximate pair propagators by constructing ‘sub-paths’
between r;; and r{; to evaluate gi;(ri;,r;). These sub-paths are simply gaussian paths
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with fixed end-points, a particular path through points r,J, r%, ete, has a probability
proportional to:

P(rl,rd, . e H exp[ (46)

k=0

( ko rk+l)
_..J____...
4h2AT/(2uN) J

where 1, is the fxed initial point and r is the fixed endpoint. In the limit N=1
we get the original short-time approxuna.tlon (Eq. 33), and in the limit N — oo

we can reconstruct the complete pair approximation (Eq. 39). When N is a power
of two the path can be easily reconstructed by successive divisions, first sampling
r¥/* and then subdividing between r™/? and the endpoints, etc. We typically use

N = 8, which is a compromise between accuracy and efficiency in calculating the

pair propagator. We also sample several paths between r;; and r]
antithetic sampling techniques?® to reduce the variance.

At this stage there doesn’t appear to be much logic in using sub-paths since
we could obtain the same effect by simply using a smaller time step in the original
equations. The operator algebra enables much greater efficiency, however, when we
consider only one pair of particles at a time. If we fix the positions of the particles,
-the momentum-independent operators in the interaction form a closed set and we can
trivially exponentiate the potential.®® The ratio of true to free particle pair Green's
functions (Eq. 39) is approximated as:

9ii(rijiry;) -V(r) N ( ,)Ar ~V(rN)Ar o
—_—gg(l‘m ) ~ exp[--—-——-—-——- H exp N exp[————-————gN o (47)

{j» incorporating

The operator algebra given in reference 35 can then bz employed to approximate this
ratio in terms of the six operators

O,kj = {l,di‘UJ,T. T O OTy Tj,S,'j,S.'J‘T.' . T]} (48)

and associated coefficients. In forming the full A-body Green's function (Eq. 39), we
use a Monte Carlo sampling to symmetrize over the order of pair Green’s functions.

The nuclear interaction also contains three-nucleon and momentum-dependent
two nucleon interactions. These interactions are relatively weak, hence the following
generalization of Eq. 39 can be employed:

™ ‘ i (rij T,
GIRVR) = (1= 5 arVi [T - ArVESL- S,)Go(R, R) 7 e fy).
1<y<k i<y 1<) gi)(riﬂru)
(49)

The derivative operators in the L - S;; operator act only on the free-particle Green’s
function. More accurate expressions for G are possible but difficult to implement. For
example, exponentiating the two-pion-exchange three-nucleon interaction involves a
complicated spin-isospin structure.
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The remaining non-local terms are proportional to the square of the momentum
operator, and hence can be described in this method as a direction-dependent ‘ef-
fective mass'.® However, the fact that this effective mass depends upon spin and
isospin limits our ability to do GFMC calculations, since the basis of the method
is that the Green's function can be written as a free-particle Green's function times
small corrections (of the order of Ar). This is no longer true for terms such as L?
and L-S?, hence we solve for a simplified Argonne V8 model in which no such terms
are present. The Argonne V8 model is constructed to reproduce the deuteron ex-
actly, and to reproduce the full S- and P-wave interaction with the exception of the
coupling of P and F waves. The difference between the full interaction mode! and the
simplified V8 model can then be computed in perturbation theory. This perturbative
effect is fairly small, approximately 0.15 MeV in the triton and 0.9 MeV in the al-
pha particle. Improved methods for treating state-dependent non-local interactions
would be extremely valuable. ‘

The basic GFMC algorithm described previously now goes through with a few
fairly straightforward generalizations. Each configuration now consists not only of
the coordinates of the particles, but also a set of amplitudes in the various spin-isospin
channels. The amplitudes are products of the hermitian conjugate of the trial wave
function times the amplitude of the true wave function. At each iteration, we first
divide each amplitude by the hermitian conjugate of ¥, hence reconstructing the
wave function. Then we construct an approximate spin-independent Green’s function
G and sample a new point R’ from G(R',R). One alternative is to choose G to be
the the free A-body propagator times the ratio of central correlations in the trial
wave function at the points R’ and R. This choice incorporates an approximate
importance sampling.

Given the initial and final points in configuration space, we then construct the full
Green's function in operator form, and calculate its effect acting upon the wave func-
tion at the initial point. Finally, we multiply each component of the wave function
by the hermitian conjugate of the trial function’s component at the new point. This
completes one iteration of the Green's function equation. Branching is incorporated
by using the absolute value of the sum of all amplitudes in the various channels.

Within each run we iterate approximately 1000 configurations for several hundred
to a thousand generations. Approximately twenty runs are required to accurately
assess the statistical errors, so the calculations are quite computer intensive. The
alpha particle calculations typically require 50 - 100 hours of cpu time on a Cray-
XMP. It may be possible to speed them up by incorporating better approximations
to the A-particle Greens function, and hence allowing larger time steps and fewer
iterations. The results obtained to date with both Variational and Green’s function
Monte Carlo methods are presented in the next section.



6. Results

[ will first present results from a new set of GFMC calculations for the alpha
particle with a three-nucleon-interaction (TNI).3"® The convergence of the GFMC
calculation is demonstrated in figure 5, which shows the energy plotted as a function
of the total iteration time 7 (Eq. 31). At 7 = 0, the enetgy is equal to the variational
result, and it quickly drops to the exact ground state energy. In fact, the plot covers
only the initial part of the calculation, up to a total iteration time of 0.012 MeV-1,
The actual calculation includes 5 times as many iterations, the horizontal lines in the
figure are statistical error bounds obtained by averaging the results between 0.024
and 0.060 MeV~!, The convergence of the GFMC solution is determined by the
accuracy of the trial wave function as well as the excitation structure of the nucleus.
In this case the variational wave function seems to contain small components of high
energy (short-ranged) excitations, excitations which are rapidly projected out in the

GFMC method.
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Figure 5) Alpha Particle Ground State Energy vs. iteration time .

The variational wave function used in this calculation was taken from reference

926 and was optimized for the Argonne V14 plus Urbana model 7 TNI. Consequently,
it does not provide a very good estimate for the ground state energy with the model
3 TNI, which has a stronger repulsive component and a weaker two-pion-exchange
term. However, the rms radius of this trial wave function is very near the exact
result, hence it requires smaller extrapolations for the estimates of other properties.
GFMC produces a wave function only in a statistical sense, and therefore ground
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state energy expectation values other than the energy are extrapolated from ‘mixed’
and variational estimates via:

(Wo| H|Wo) ~ 2(¥7|H|Wo) — (¥1]O[¥r). | (50)

The extrapolations required with the present variational wave function are generally
quite small. ‘
The three-nucleon-interaction included in these calculations is the Argonne model
8.57 At long distances, the operator structure of this interaction ‘is assumed to be
that of the two-pion-exchange TNI (Fig. 6). In this diagram, one nucleon is excited
through pion exchange to a delta resonance, which then decays by exchanging a pion
with a third nucleon. Such a diagram is clearly not included in any iteration of
two-body terms, and corsequently must be represented, if we restrict ourselves to
nucleon degrees of freedom, as a three-body force. The Urbana TNI has the form:?

Visk = Ug O War(rij) War(rie) + Ao 3 Var(rij ria)- (51)

cyc cye

In addition to the two-pion-exchange TNI, the Urbana model contains a short-range
repulsive term proportional to Uy. This term has the range of a two pion exchange on
each leg, and can be motivated through dispersive corrections in the three-nucleon
system. The interaction model also gives reasonable predictions for nuclear matter
saturation properties in variational integral equation stuvdies.®®

Figure 6) Two-pion-exchange three nucleon interaction. The dashed lines represent ex-
changed pions, the heavy solid line a delta resonance, and the thin solid lines represent
nucleons.

There are, of course, many diagrams that can contribute to the TNI, making it
extremely difficult to derive the three-body force in any fundamental way. Conse-
quently, we adopt a phenomenological approach similar to that used to construct the
intermediate- and short-ranged part of the NN force, and adjust the TNI's strength
to fit the three-body binding energy. The parameters obtained are in rough agree-
ment with expectations obtained by estimating the strength of two-pion-exchange
diagrams such as Figure 6. I would remind you that the three-body force is quite
small compared to the two-nucleon interaction, but the full TNI provides 4-5 MeV
of the 28 MeV total binding in the alpha particle.
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We obtain a ground state energy of —29.20 £0.15 MeV for the Argonne V8
+ TNI model 8 interaction, approximately one MeV overbound compared to the
experimental —28.3 MeV. Employing perturbation theory to estimate the difference
between the Argonne V14 NN interaction and the V8 model yields 0.9 MeV repulsion,
yielding a total energy of -28.3 £ 0.2 MeV, in remarkably good agreement with
the experimental result. One should be somewhat cautious because of our use of
perturbation theory in the difference between the V14 and V8 models; but it appears
that the same three body force an be used to produce very accurate binding energies
for three and four body nuclei. The Urbana TNI mode! 8 has been chosen to provide
a good fit to the triton binding energy,*® Faddeev results give -8.45 compared to
the experimental -8.48 MeV. We have also attempted to check our perturbative
estimate using three-body nuclei, perturbation theory yields very good results but the
difference between V8 and V14 models is only 0.15 MeV for A=3. The expectation
value of the three nucleon interaction is a small fraction (< 5%) of the total potential
energy, so at this level there is no apparent reason to introduce four- or higher-body
interaction terms. Other models (Reid, Nijmegen, ...) of the NN potential give a
similar underbinding for the three- and four-body nuclei, hence it should be possible
to fit the binding energies of these nuclei as well with an appropriate TNI model.

The most accurate variational calculations to date®® underestimate the alpha
particle binding by approximately one MeV. As always, the total binding energy
results from a sensitive cancellation between kinetic and potential terms. Each of
these terms is on the order of 100 MeV (Table 2), hence the TNI represents ~
5% of the two-body potential energy, but a large fraction of the binding energy.
Consequently, accurate calculations are very important when studying the effects of
the three-nucleon interaction. We also present several other expectation values in
Table 2. Although these numbers are not directly accessible experimentally, they do
provide a useful guide to understanding light nuclei.

Table 2: Alpha Particle Expectation Values

Energy (MeV) | -283 (0.2)
(T) 109.3  (1.2)
(Van) -136.5  (1.5)
(Vi) -111.8  (1.0)
V1) -252.5  (2.5)
(Vi) 228.2  (2.1)
{Veout) 0.75 (0.01)
(Va-s) 50 (0.2)
(Vae2r) -10.8  (0.2)
(rH/?(fm) 145 (0.01) |
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Of particular interest is the strong effect of the tensor interaction in the alpha
particle. With the Argonne NN interaction, the tensor components contribute ap-
proximately 2/3 of the two-body potential energy in the alpha particle. Almost
exactly the same fraction is found in Faddeev calculations of three-body nuclei and
in cluster Monte Carlo calculations of '0.*! The entry V, in the table gives the
contribution of the full one-pion-exchange term in the AV14 interaction, it is almost
equal to the total Vyn expectation value. The Argonne NN interaction can be writ-
ten as a sum of one-pion exchange, short range, and intermediate (two-pion) range
terms. As shown in the table, there is a strong cancellation between the intermediate
range attraction V; and the short-range repulsion V, in the two-body interaction.

Anocther measure of the strength of the tensor interaction is the D state prob-
ability in the four-nucleen ground state. With the Argonne plus Urbana model 3
TNI interactica, the D-state probability is 16%, other models range from 12 to 17
%. These probabilities are nearly consistent with what one would expect based upon
the number of triplet pairs in the A=2, 3, and 4 body nuclei; a ratio of 1:1.5:3.
In addition, the asymptotic D to S state ratio of the alpha particle wave function
is in good agreement with experimental results.® The remainder of the wave func-

tion is dominated by the fully symmetric S-wave state, which has a probability of

82.8(0.2)%. In addition, there are small components of other symmetries, either S-
or P-wave.
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* Figure 7) VMC and GFMC results for the proton density in the alpha particle.

We have also computed the proton density for both the variational and GFMC
wave functions (Fig. 7). The two distributions give nearly the same rms radius and
are nearly equal overall. There is a small difference within 0.5 fm of the center-

of-mass, however. The GFMC result has a slight dip in the central region which
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does not appear in the variational results. This dip appears in only a very small
fraction of the total volume because of the r? phase space factor. Nevertheless, it
'does have some consequences when calculating the alpha particle charge form factor.
In the impulse approximation, the charge form factor can be obtained as the fourier
transform of the one-body charge distribution.

In reality, though, the effects of two-body charge and current operators can be
important even at relatively low momentum transfer. The effects of these two-body
terms must be included in order to obtain meaningful comparisons with experimental
results. Riska? has developed a method for constructing models of the exchange
currents which satisfy the continuity equation:

V. Jw+i[Vipl =0, | (52)

with an essentially arbitrary two nucleon interaction V;;. Terms in the interaction can
be identified which have the appropriate quantum numbers for pion or rho exchange.
The continuity equation can then be used to constrain the pi- and rho-exchange
terms in the current, which are called ‘model-independent’ because they are obtained
‘directly from the interaction. In addition, there are transverse pieces in the current
( eg. NA~,pry, and wry) which are not so constrained. The most important
two-body terms in the current are due to the pion: ‘

In(q) = =3i(7s % 7). [0n(k;)Fi(0; - ky) — Du(ki)F; (00 ki)
ki — k; ) ) )
a0 ko k(oK) — 5-(k:)))GE(9), (53)

i ]

where k; is the momentum transferred to nucleon i and ¥, is the fourier transform

of the terms in the interaction associated with the quantum numbers of exchanged

pions. In the limit of point pions and nucleons,

1 f2 1
¥ —_-——d 54

B (k) 3m? k2 4+ m? ‘ (54)
Riska's method determines 9,(k) and v,(k) directly from the interaction. In fact,

this method produces nearly point-like pi- and rho-propagators with the Argonne
interaction.
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Schiavilla and Riska have computed the magnetic form factors of *He and *H
(Fig. 8) with this method, as well as the backward cross-section for the electrodisin-
tegration of the deuteron. Several sets of curves are included in the figure, including
results with the impulse currents alone and impulse plus two-body currents. In addi-
tion, the form factors obtained with Variational Monte Carlo and Faddeev methods
are compared. The two sets of calculations give very similar results, although there
are some differences in the region of the diffraction minimum and beyond. Clearly,
the contributions of the exchange currents are crucial to reproducing the experimen-
tal results, particularly the contribution of the isovector exchange current operators.
Schiavilla and Riska have also calculated the backward electrodisintegration of the
deuteron near threshold. This reaction is also very sensitive to the isovector ex-
change currents, and is well reproduced in the calculations up to very high values of
the momenturn transfer. ‘

They have also computed the charge form factors of the three-body nuclei** and
obtain good agreement with experimental results. Exchange corrections to the charge
operator are more speculative since they contain relativistic corrections*® and are not
constrained by the continuity equation. Some of these ambiguities are eliminated in
the alpha particle however due to the fact that the alpha particle is an isoscalar
system. We have combined the following one-body charge operator:

2
plg) =1 - gz-n-;]%[sz(q) + Ggla)r

gx P1 }
T S {GHa) - 265%(0) + (GEla) ~ 26k(@In) . (39)

8m?

incorporating the Darwin-Foldy term and a small L - S correction, with a two-body
charge operator due to pions:

3 S ~
pel@) = = A[Fo@n 7 + BV (@7 (00 g0, ky)on () +
[FS (@) 7y + FY (@)mie] (0 - g+ ki) (K))} (56) °

to calculate the charge form factor of the alpha particle. This form of charge operator
was first considered by Kloet and Tjon in examining pion photoproduction.*® We
have also included the remaining terms of Schiavilla and Riska, but their effect is
an order of magnitude smaller than the terms above up to a momentum transfer of
~ 5.5 fm™". ‘

The contributions of the one-body and pion-exchange terms are shown in Fig. 9.
The Variational and GFMC results for the pion-exchange term are nearly identical.
There are some differences, though, in the calculated one body terms in the region of
the second maximum. The form factor here is down by two orders of magnitude here,
as there is a delicate cancellation in the fourier transform of the one-body density.
Consequently, even a small difference in the density can make significant changes in
the charge form factor.
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Figure 9) VMC and GFMC results for one-body and pion contributions to the alpha
particle charge form factor.

The full calculations are compared to experimental results in Fig. 10. The GFMC
calculation is in excellent agreement with experimental results up to a momentum
transfer of & 4.5 fm~!. Beyond that point, the calculated form factor is significantly
larger than experimental results. Nevertheless, the overall agreement is excellent,
particularly at lower momentum transfers where one would expect the theory to

work best.
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Figure 10) Alpha particle charge form factor, experimental and calculated.
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Another very important goal in nuclear physics has been to obtain an experimen-
tal determination of the correlations of nucleons within a nucleus. Inclusive electron
scattering experiments can measure the Coulomb sum, which provides a useful tool
for studying these correlations. The Coulomb sum is defined as:

RL(Q’ )
ot [Ga()
~ where Ry, is the longitudinal response of the nucleus and G'g is the proton form factor.

The integral extends from energies just above elastic scattering to infinity, and hence
we can use closure to calculate the Coulomb sum as a ground state expectation value.

S = S St (57)

A A ZFC 2112
[ )E_:p, );Pk(Q)lo)-'[‘[aﬁ)‘)]]T : (58)
where Lys
pe(q) = exp(iq  ri) (5] (59)

if we ignore small neutron contributions (which are included in the calculations) and
two-body terms. In this approximation, the Coulomb sum is simply:

S=1- Z[G ])]2 (Q)a (60)

where F, is the charge form factor of the nucleus and p,p(q) is the fourier transform
of the two-body distribution function integrated over the pair’s center-of-mass.
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Figure 11) Coulomb sum in the alpha particle.
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The calculations are compared to experimental results in Figure 11. Two caveats
should be noted concerning this comparison. First, the experimental results only
extend to a finite energy, and consequently must be extrapolated to determine the
full Coulomb sum. Schiavilla et «1.47® calculated the energy- and energy-squared
weighted sum rules with a variational wave function; assumed a functional form for
the response in the tail region, and fit this curve to the calculated moments. The
contributions of the tail region in the experiment are given by the difference between
* the points labeled ‘extr’ and ‘trunc’. The latter includes only the response up to the
experimental limit. As shown in the figure, the VMC and GFMC curves are nearly
identical, and both agree very well with the extrapolated results. ‘

Beck®® has extracted ppp(q) from the experimental results in the three-nucleon
system, and obtained the curve shown in Figure 12. He combined the experimental
Coulomb sum and charge form factor, the results of Schiavilla, et al. for the (small)
neutron contributions, and a slightly different extrapolation technique to produce the
results shown in the figure. Although the qualitative features of the experimental
and theoretical curves are similar, the experimental p,,(¢) is much higher beyond the
first minimum. This would indicate even a stronger correlation in the protons than
is present theoretically, but contributions of two-body operators to the Coulomb sum
should be included before strong conclusions are drawn.

d

1 1 111Z

Figure 12) ‘Experimental’ vs. calculated (solid line) ppp(g), q in MeV, from Beck.%®

Two important avenues are open for future research once a consistent picture
of light nuclei has been obtained. The first of these is calculations of the structure
and properties of heavier nuclei. The methods I have described in these lectures
can be directly extended only up to approximately A=8, and work in this area is



currently under way. Beyond A=8, beiter methods have to be developed to handle
the spin-isospin degrees of freedom in the nucleus. Important progress in this regard
has been made by Pieper et al.,’! who have employed a cluster summation technique
to study '°O. To date, variational calculations with the Argonne V14 plus TNI
model T interaction (which is more attractive than model 8) give approximately 7
MeV binding per nucleon out of the experimental 8 MeV. They are currently working
on improvements to both the variational wave function and the cluster summation
methods. Improvements to the variational wave function incorporate two-body LS
correlations as well as improved three-nucleon correlations.

The other outstanding problem in the application of Monte Carlo methods to
nuclear physics is the study of dynamic properties, a very ambitious goal. The
primary successes to date have been in the study of low-energy scattering and elec-
tromagnetic transitions, as well as in approximate treatments of dynamic response
in electron scattering.®%3 [ will concentrate on the former topic, and particularly
upon the n + *He — a + ¥ reaction.

Variational Monte Carlo methods can be employed to study low-energy scattering
in a regime where only two-body breakup is energetically allowed.** The basic idea is
similar to R-matrix approaches, one studies eigenstates of the Hamiltonian in which
there is no net flux in or out in any channel. In a one-channel problem this amounts
to specifying a boundary condition at a radius beyond the interaction region and then
performing a variational calculation to determine the energy eigenvalue associated
with that boundary condition. The boundary condition can take the form of either
requiring the relative wave function to be zero at a specific radius,** or more generally
requiring a specific logarithmic derivative.’® Determining the eigenvalue us a function
of the boundary condition is then equivalent to determining the phase shift as a
function of energy.

In principle GFMC methods can also be used to study these low-energy scattering
problems, and consequently to systematically improve any variational results. This
scheme can also be generalized to multi-channel scattering processes, but requires a
determination of the energies and relative amplitudes at the channel surfaces. The
method’s practicality depends uponthe ability to diagonalize in a small basis (10 - 20
states) using Monte Carlo methods. Preliminary results on small problems indicate
that this should be feasible, but multi-channel methods have not been tested on a
realistic problem.

We have used this method to study the n + 3He — a + 7 reaction.®® At thermal
energies this reaction is dominated the spin-1 s-wave scattering of neutrons on *He.
Recent interest in this reaction has centered on its possible relationship to the weak
capture process in the four-nucleon system, a reaction which produces the highest
end-point energy neutrinos frorn the sun. There have been speculations that these
neutrinos could be measured separately in a future solar neutrino observatory. In the
impulse approximation, the weak and electromagnetic capture are closely related.
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Our calculations indicate, though, that the radiative transition is dominated by
exchange currents. We obtain a strong-interaction scattering length of 3.5 £ 0.25 fm
for the spin one n-3He state, which agrees well with experimental estimates. Using
this scattering wave function and a variational ‘He wave function, we find that only
10 % of the experimental value (60 ubarns)® is obtained in the impulse approxima-
tion. The low value is to some extent understandable since the impulse cross section
is precisely zero in the limit where there is no tensor force, and consequently a purely
s-wave alpha particle.

Using the full exchange current models, we find a value of 110 ubarns for the
cross section. Including only the ‘inodel-independent’ terms in the exchange currents
gives 70 ubarns, in much better agreement with the experiment, A similar result is
obtained if we keep only the = exchange terms, as has been done in the n-d capture
calculations of Friar, Gibson, and Payne;’” and use a cut-off of 5.8 = masses in
the propagator. I.. :“is case we obtain a total cross section which agrees with the
experimental value. Qur results are quite sensitive to the scattering length, however,
a decrease of 0.25 fm in the scattering length would increase the calculated cross
sections considerably. We are currently investigating the application of these same
methods to the weak capture of protons on 3He. They have also recently been
applied to the d + d — a + ¥ reaction.®®

7. Conclusion

Monte Carlo methods provide a valuable tool for understanding the structure and
properties of quantum systems. [ have concentrated on applications to light nuclei
in these lectures, but these methods are equally applicable to other areas of nuclear
physics, including hypernuclei and quark-model physics. In recent years we have de-
veloped a remarkably consistent picture of light nuclei with the help of Monte Carlo
and Faddeev methods. Realistic nucleon-nucleon interactions combined with plausi-
ble three-nucleon-interaction models have been found to give a good description of
the binding energy of three- and four-body nuclei. The calculations to date empha-
size the important role of the tensor force, a primary component of this force being
due to one-pion-exchange. When coupled with reasonable models of two-body ex-
change current and charge operators, these ‘traditional’ models also give remarkably
good descriptions of three- and four-body electromagnetic form factors.

Light nuclei combine the advantages of relative computational simplicity (rany
realistic calculations are practical), with physical complexity. They offer an impor-
tant laboratory for studying a wide variety of nuclear properties, including nucleon-
nucleon correlations, weak and radiative transitions. These processes offer a wide
variety of tests for the nuclear Hamiltonian and exchange current models. Heavier
nuclei offer the opportunity for studying the nuclear interaction in negative parity
states and very neutron-rich nuclei, which are important astrophysically tarough
their connection with neutron stars.
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The foremost challenge in the future lies in developing new methods to treat
quantum dynamics and incorporating relativistic effects in few-body calculations.
Some valuable progress has been made in both of these areas, but much remains to
be done. Accurate microscopic calculations of the dynamic response of light nuclei
to electromagnetic probes is perhaps the most important goal of the next decade.

This work was supported by the U, S. Department of Energy.
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Appendix

Monte Carlo calculations of light nuclei are performed in a basis of definite third
components of spin and isospin for each particle. Thus, the wave function at a given
point in space can represented as a set of 24A!/(N!Z!) complex coefficients. The
simplest case is the deuteron, where:

Wy = f(ri)l + US(T‘lz)Sn]d’d, (61)

and ‘
,=(ntpt-pTnt). (62)
The uncorrelated state ¢4, then, has only two non-zerc coefficients and does not
depend upon the spatial coordinates of the particles.
This basis of states is convenient because the spin-isospin operators take a par-
ticularly simple form. For example,

gy 0y =2Ps —1,7‘,"7']‘ =2P‘;—1‘

where P,-‘;(T) is a permutation operator in spin (isospin) space. Therefore, the o, - o;
and 7; - 7; operators acting on a state can be evaluated by only two multiplications
of a scalar times the wave function rather than by full matrix multiplications. The
permutation operators above can easily be represented as bit manipulations on the

- array indices within the computer. For example, the indices corresponding to the

spin states of the deuteron can be taken as

lzlx -~
lle « 01=1
Tohi & 1 0=2
2T = 1 1=3, (63)

o
o
I

o

where the middle column is simply the binary representation of the spin state.
Clearly, P/ acting on state 01 (1) gives 10 (2), etc.
In a similar manner, the tensor operator S;; = 30,70, —0;-0; can be rewritten
using:
o T =04F_ + 0Ty + 070, (64)

where

oy = (0z+10,)/2

o = (0,—1i0,)/2

gy = 0o,

fe o= (z+iy)/r

r. = (z-1y)/r

fo = (z)/r. (65)



The operators o, and o- do nothing but raise and lower spins, respectively. Note
that they differ from the usual raising and lowering operators by a normalization;
these operators give unit coefficient when they flip a spin. Just as the o;:¢; and
7; - 7; can be represented through permutation operators, the tensor operator can be
represented as combinations of permutation and spin flip operators.

In this basis, we can explicitly construct the deuteron wave function. It is given

by:

Py = f(r1+u’(ER-Dlntpt-pTinl
+ ()W (r)Bfofy —DlIntpl+nlpt =ptnl—plnT
+f°(r)[us(r (32 = Dnlpl-plnl] (66)

Wave functions for larger nuclei are easily constructed through successive operations
of pair correlation operators. The effect of the potential terms acting on the wave
function can be calculated similarly.
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