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Abstract

Processing techniques utilizing low temperature
depositions and pulsed lasers allow the
fabrication of polysilicon thin film transistors
(TFT's) on plastic substrates. By limiting the
silicon, SiO,, and aluminum deposition
temperatures to 100°C, and by using pulsed
laser crystallization and doping of the silicon,
we have demonstrated functioning polysilicon
TFT’s fabricated on polyester substrates with
channel mobilities of up to 7.5 cm’/V-sec and
I /Ioes Current ratios of up to 1x10°.

I. Introduction

The low cost and excellent durability of plastic
displays will dramatically increase the range of
both military and consumer products into
which displays will be incorporated. The
weight and power requirements of portable
electronics such as communications and
computing equipment is significantly reduced
by using reflective plastic displays. However,
constructing an AMLCD on plastic has not
been feasible using standard processing
techniques, due to the temperature limitations
required for commonly available plastics. For
example, present day a-Si TFT processes call
for 300°C SiN and 225°C to 250°C a-Si
deposition steps, with poly-Si processes
requiring even higher temperatures (400°C to
600°C).

Plastic substrates are desirable for displays
because they are flexible, lighter, and less
expensive than glass substrates. Glass displays
of increasingly larger area have become
extremely difficult to manufacture due to
weight, breakage, and the stringent plate
separation tolerances required for conventional
AMLCD’s. Plastic sheets are ideal substrates
for low-cost, low-power reflective displays

based on polymer-dispersed (PDLC) liquid
crystal materials, which can be applied to large
areas using simple spray or roll-coating
processes.

We have developed a low-temperature low-
thermal budget Si thin film transistor
fabrication process that allows TFI’s to be
made on plastic substrates using processing
temperatures less than or equal to 100°C. The
fabrication process relies on excimer laser
crystallization and doping techniques pioneered
by our group at LLNL. The short laser pulse
(~35ns) melts, dopes and recrystallizes the Si
layer of the TFT in less than 100 ns, well
before the underlying substrate can be heated.
Thus the substrate remains at moderate
temperatures while an initially poor quality a-Si
film is crystallized and doped. We have
exploited this low thermal budget process to
produce poly-Si TFI’s on plastic substrates
that are wunable to withstand sustained
processing temperatures above 100°C.

Laser doping is clearly an enabling technology
for producing Si TFT’s on plastic due to its
extremely low thermal budget. This
technology may enable the manufacture of
paper thin AMLCD’s on low-cost, flexible
substrates for use in hand held electronic
applications.

II. Experimental

IIa. Device Fabrication

The substrate material is 175 pm thick
polyethyleneterephthalate (polyester), chosen
for its low cost, high optical transmission
(~80%), and widespread availability. This
substrate material poses severe temperature
constraints on the processing because it is
unable to withstand sustained temperatures
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various stages of fabrication are shown in Fig,
1 (a)-(c). ThlS simple Al top gate device is
ideally suited to laser crystallization and
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Py ey o RO PP LRI, P

slop o UCpUbll.. an oxiae d.[lu an d.lllU.lPIlOll'

atliran a2 Q0 layar Tha o1
SLULULL (d7ol) 1ayll. 10l slilUh

ennancea chemical vapor ueposmon (PECVD)
S

below. The bottom ox1de
barrier between the a-Si and the polyester
during laser processing. After this laser
crystallization step, the device stack 1is
completea by Pl:(,VD deposition ot a gate

followed by Al sputtering to form the

The gate stack is patterned using standard
silicon integrated circuit photolithographic and
etching techniques modified for compatibility

with plastic substrates. The TFT source and

drain reglons are doped using a second pulsed ‘

excimer I&SGI' pI'OCCSSlIlg step, Gas Immersion

o Tt FEITT TN o menmmney Aozl 1 s
Ldser UUPH]g AT/}, a4 Process d 10pEd al
Ctanfard TInivarcity and TTNT T11 Tha tan
WDLALEIVIAL LI VL Dll—y [«1VLE Ry V) B § V) l L J - p 3wy LUH
aluminum gate shields the TFT channel region

<
as shown in Fig. 1(b).

The TFT device islands are then defined by
plasma etching of the silicon, and an oxide

contact isolation layer is cleposncd usmg 100°C

PECVD. Source and drain COIlEaC[ holes are

ntnalaad fie dhhn Awrida neadd dla Aaxrians PR, . |
CLULICU 111 UK UAIUC, dllll LI aevice lb LU].I].PICLCU
hyv Adannciting natternine and stohino the Al
UJ uyyuallllls’ l}u‘, Ulllllls, [Z80LVY ‘db‘dll—l—ll& Lils &3k
interconnect metallization laver (see Fig. 1{c)

'’ A f=—1 NTLS
IIb. Laser Processing
Lo o TV TR 's THNIPL WU TSI PN LR |
LIIC 1d45€T ryﬁ[,d.ulﬁ 1 SICD Ilds DCCIL SLULIC
ey TYLORPATT CFRMIITOD arnd P nead [ 7o Y rraata
O nan EIOUps ana 18 uscd w dIicaic
nolverystalline  silicon at  low  substrate

P2 BB LVLT )81 s AR VY

temperatures from a-Si deposited either by
PECVD or low pressure chemical vapor
deposition (LPCVD) (see, for example
[2].[3]1.[4], or [5]). We use a XeCl pulsed
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energy fluences range | from 100 to 350 mJ/cm?
and Irom 310 15 pulses at each energy. At
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substrate during the excimer
crystallization process. This simulation uses a
relatively high energy fluence of 350 mJ/cm®
ancl connrms our experimental results that tne
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(1410°C) but the underlying barrier ox1de
protects the plastic and prevents it from seeing
the extreme surface temperature. The
cxtremeiy small thermal budgct of t'nis laser
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Fig. 2 - Simuiation of the TFT source/drain region
thermal history during the laser doping process. The

curves match the layers shown in the inset. The XeCl
excimer laser pulse intensity units are arbitrary.
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The TFTs fabricated using this process show
transistor behavior with Im,ﬂc,FF currcnt ratios
greater than 10° as shown in Fig 3. This
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Fig. 3 - Current-Voltage characteristics of a poly-Si
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Ion/Toge ratio is acceptable for pixel transistors
in small display applications.

A summary of the TFT electrical parameters is
given in TABLE 1. These parameters compare
favorably with the work presented in [7] where
higher performance TFI’s were made at
substrate temperatures of T=250°C on
polyimide and T=200°C on polyethersulfone
using pulsed excimer laser crystallization and
dopant activation.

TABLE I:A summary of the poly-Si TFT
(W/L=20/10 um) on plastic device

performance.
I Parameter Value
Lon/Tor >10°
Ion >100pnA
Torr <100pA
Vi ~8V
[T > 7.5 cm’/V-sec
Ryyger S/D < 1kQ/
Reontacr <1x10* Q-cm?

To date the device performance is adequate for
small display applications despite the lack of a
rehydrogenation step or higher temperature
anneal. Process limitations imposed by the
100°C maximum temperature do not appear to
significantly affect the source/drain sheet
resistance values because the doping is
accomplished by laser doping. Values below
1kQ/Q are achieved. However, the TFT’s and
aluminum to silicon contacts would most likely
improve with a higher temperature anneal.
Further improvement in the gate oxide dielectric
deposition at <100°C would also improve the
TFT performance.

IV. Summary

We report functioning polysilicon channel
TFT’s fabricated on polyester substrates at a
maximum temperature of 100°C. This process
features pulsed laser crystallization and doping
of the silicon layer and low temperature
deposition of the silicon, SiO,, and aluminum
layers. These TFT’s exhibit channel mobilities

up to 7.5 cm?/V-sec and I/, current ratios
up to 1x10°.
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