

DE83 009462

ANL-HEP-CP-81-48

For the Proceedings of the
1981 International Symposium
on Polarization Phenomena
at High Energies
Dubna, USSR 11/81

STRUCTURE IN NUCLEON-NUCLEON SYSTEM AND DINUCLEON RESONANCES[†]

A. Yokosawa

High Energy Physics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439 USA

18 December 1981

Abstract

An extensive amount of data were obtained from measurements of proton-proton elastic scattering up to 5 GeV/c. We summarize physics learned from these data as well as other related experimental results.

MASTER

[†] Work supported by the U.S. Department of Energy.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

zhp

The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. W-31-109-ENG-38. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

I. $I \neq 1$ System

A striking energy dependence has been observed in the difference between the nucleon-nucleon total cross sections for pure spin states:

$$\Delta\sigma_L = (4\pi/k) \operatorname{Im}\{\phi_1(0) - \phi_3(0)\} = \sigma^{\text{Tot}}(\uparrow) - \sigma^{\text{Tot}}(\downarrow),$$

where arrows refer to initial proton spins along the beam direction and, for instance, $\sigma(\uparrow)$ corresponds to σ_{++} referring to initial proton helicities.

Figures 1 and 2 show $\Delta\sigma_L$ data.^{1,2} The large energy dependence are seen not only in $\Delta\sigma_L$, but in $\Delta\sigma_T$, polarization, $C_{NN} = (N,N;0,0)$, and $C_{LL} = (L,L;0,0)$. A remarkable energy dependence has also been observed in the results of $\Delta\sigma_T$ measurements up to 6.0 GeV/c.³ To study the behavior in terms of the partial scattering amplitudes, the data on $(k^2/4\pi) \Delta\sigma_T$ are plotted as shown in Fig. 3 as a function of p_{lab} .

A summary of structure in nucleon-nucleon system is given in Reference 4, and here we update the current understanding.

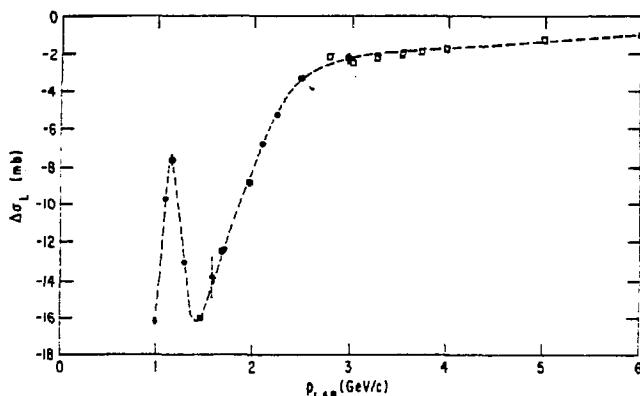


Fig. 1 Total Cross-Section Difference $\Delta\sigma_L = \sigma^{\text{Tot}}(\uparrow) - \sigma^{\text{Tot}}(\downarrow)$. The white squares are preliminary data.

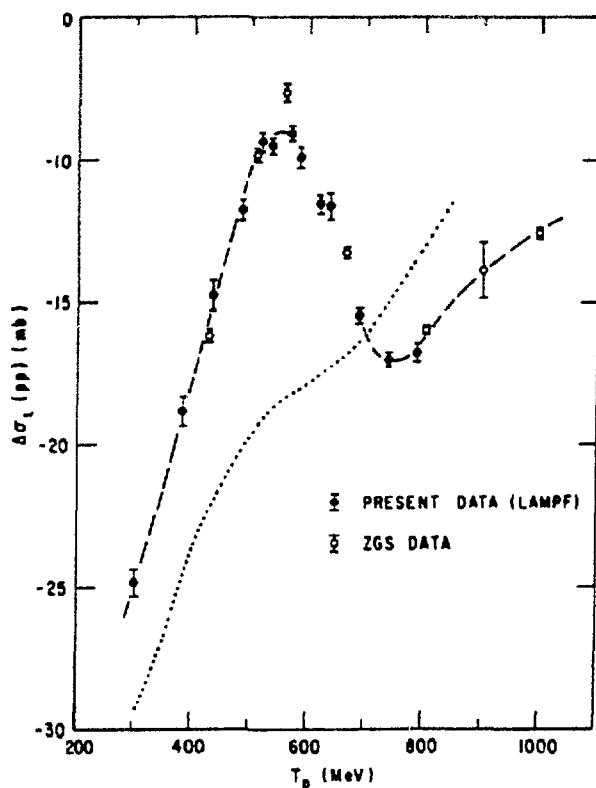


Fig. 2 Energy dependence of $\Delta\sigma_1(pp)$. The dashed line is only to guide the eye. The dotted line is obtained when resonant amplitudes 1D_2 and 3F_3 are subtracted from the original $\Delta\sigma_1$ data.

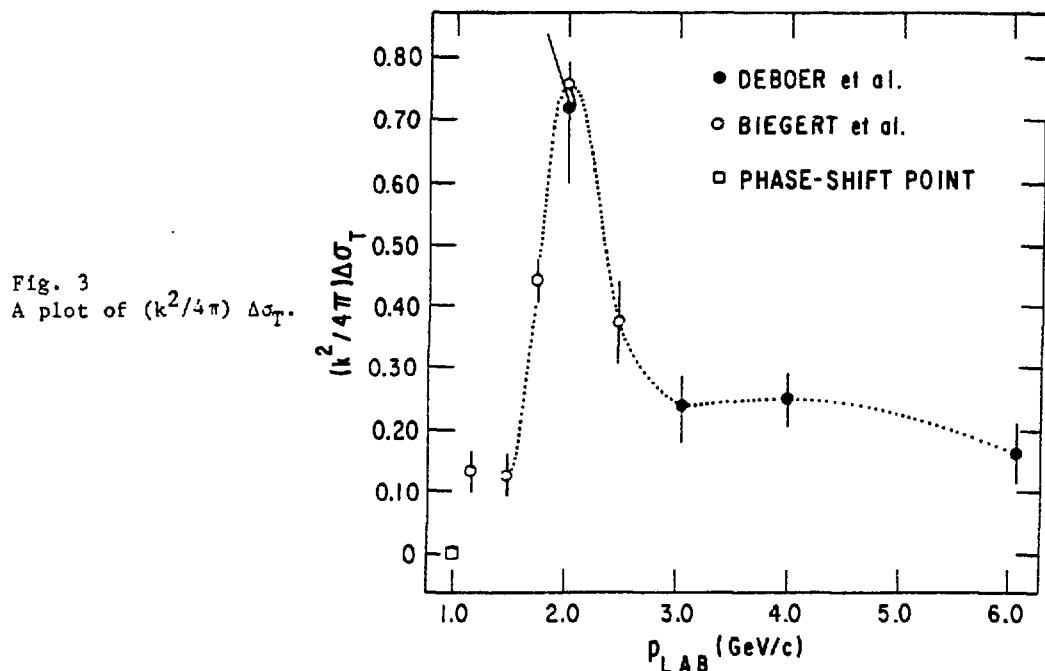


Fig. 3
A plot of $(k^2/4\pi)\Delta\sigma_T$.

Various analyses have been carried out using presently available data, and most analyses are consistent with the existence of dinucleon resonances. Particularly strong indication of resonances in the 1D_2 and 3F_3 states are established^{5,6} as shown in Figs. 4 and 5.

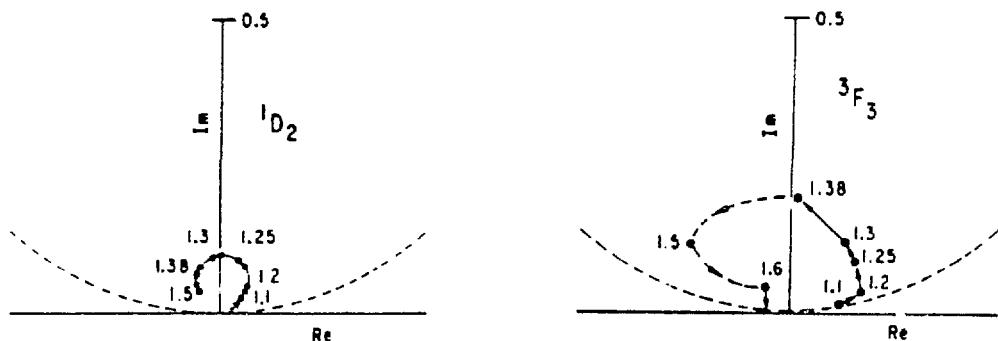


Fig. 4 Argand diagrams of the 1D_2 (a) and 3F_3 (b) partial waves (points are in GeV/c); the background contributions have been subtracted.

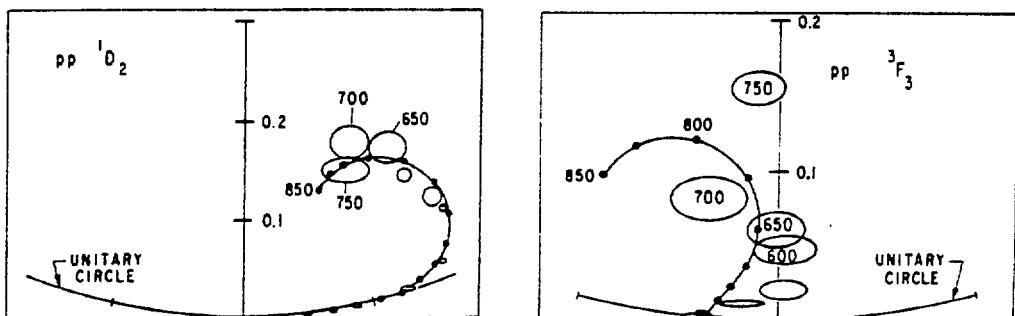


Fig. 5 Argand diagrams of the 1D_2 (a) and 3F_3 (b) partial waves based on Arndt's phase shifts (points are in kinetic energy, MeV). The ellipses represent the errors in the real and imaginary parts of the amplitudes for energy-independent solutions. The continuous curves represent the energy-dependent solutions.

Other possible resonances in the pp system include a singlet resonance in $\Delta\sigma_T$ at 2 GeV/c , and a triplet resonance appearing in $(k^2/4\pi) (\Delta\sigma_T - \Delta\sigma_L)$ plot

against \sqrt{s} as shown in Fig. 6. We expect that the triplet peak at 2.0 GeV/c is due to a resonating partial wave R_{JJ} , since only R_{JJ} term has positive sign in $\Delta\sigma_T - \Delta\sigma_L = (2J+1)I_m R_{JJ} - (J+2)I_m R_{J+1,J} - (J-1)I_m R_{J-1,J}$. This possible resonance may explain the skewed bump in $\sigma^{\text{Tot}}(\pm)$ curve shown in Fig. 7.

Fig 6 New triplet structure at 2.0 GeV/c; the dotted curve is deduced from $\Delta\sigma_L$ data.

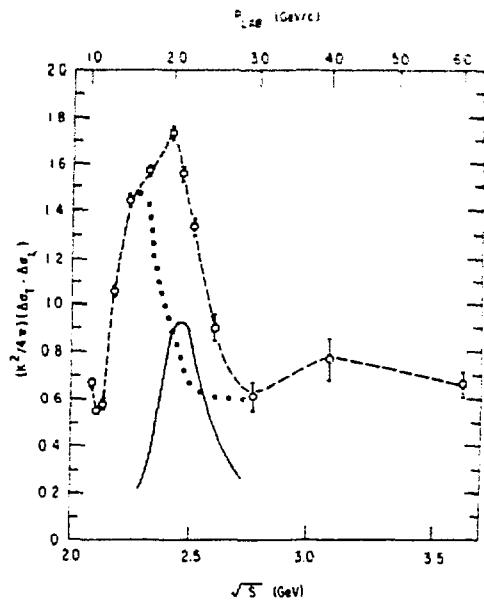
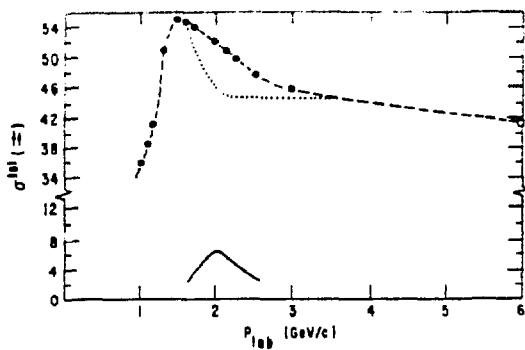



Fig. 7 Decomposition of $\sigma^{\text{Tot}}(\pm)$; assume 1.5-GeV/c peak as shown on the dotted curve and subtract that from $\sigma^{\text{Tot}}(\pm)$ yielding a 2.0-GeV/c peak.

It has been pointed out that ambiguities exist in the pp phase-shift analyses above 500 MeV particularly in p partial waves, although other partial waves were relatively well settled.⁷ We note that there is no 3F_3 partial-wave contribution to the polarization data at $\theta_{\text{c.m.}} = 63^\circ$. We see an interesting structure in a plot of $k^2 P(d\sigma/d\Omega)/\sin 2\theta_{\text{c.m.}}$ vs. p_{lab} as shown in Fig. 8. This quantity is proportional to

$$(2 \text{ Im } {}^3P_0 + 3 \text{ Im } {}^3P_1)(\text{Re } {}^3P_2) - (2 \text{ Re } {}^3P_0 + 3 \text{ Re } {}^3P_1)(\text{Im } {}^3P_2)$$

if higher waves are neglected.

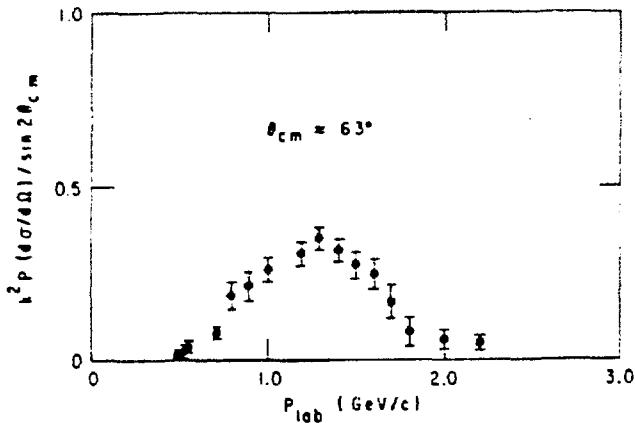
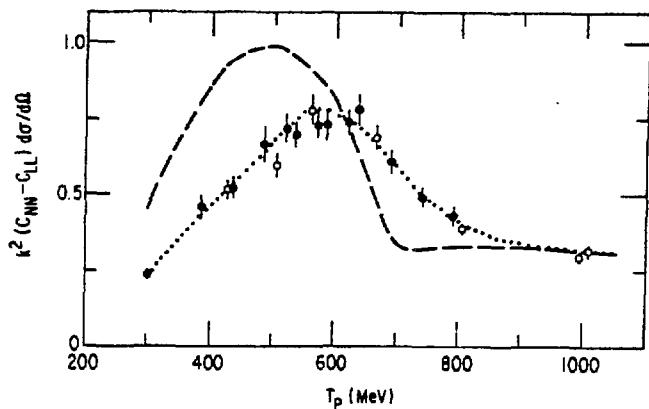



Fig. 8 Energy dependence of $P(d\sigma/d\Omega)$ at $\theta_{c.m.} = 63^\circ$.

Recently we have investigated this energy region by measuring $C_{LL} = (L, L; 0, 0)$ around $\theta_{c.m.} = 90^\circ$.⁸ Figure 9 shows a plot of $k^2(C_{NN} - C_{LL}) d\sigma/d\Omega$, which contains only coupled spin triplet partial waves with $J = L+l$ (such as 1P_0 , 1P_3 , 3F_2 , 3F_4 ...) at $\theta_{c.m.} = 90^\circ$, against the incident momenta. The dashed curve shows a rapid energy dependence in $(1 - C_{NN})$, and the peak position roughly coincides with the 1D_2 resonance. This leads us to note that the structure in the $(C_{NN} - C_{LL})$ curve is therefore also resonant-like. Probably 3P_0 or 3P_2 partial waves is responsible for the structure.

Fig. 9 Experimental value of $k^2(C_{NN} - C_{LL}) d\sigma/d\Omega$ against the incident kinetic energy; the dotted curve is drawn to guide the eye. The dashed curve represents a fit by eye to the experimental values of $k^2(1 - C_{NN}) d\sigma/d\Omega$.

It is our hope that ambiguities in the phase-shift analyses will be soon resolved when the results of C_{LL} and C_{SL} measurements covering forward angles at 1.18, 1.32, 1.47, 1.71, 2.00, 2.22, and 2.47 GeV/c performed at the ZGS, and C_{SS} measurements at LAMPF are analyzed.

Do we observe any structure above a mass of 2500 MeV? Measurements of $\Delta\sigma_L$ and $\Delta\sigma_T$ are yet to be made at small-momentum intervals. However, we have measured the parameter $C_{LL} = (L,L;0,0)$ in the region $p_{lab} = 2.5$ to 5.0 GeV/c as shown in

Fig. 10. We observe a remarkable energy dependence in $C_{NN} = (N,N;0,0)$ data at all angles⁹ and also at $\theta_{c.m.} = 90^\circ$.¹⁰ Our recent data on $C_{LL} = (L,L;0,0)$ reveals an interesting structure.¹¹ Figure 11 shows the energy dependence of C_{LL} at $\theta_{c.m.} = 90^\circ$. We attempt to interpret these structures assuming them as resonances in the term of the quantum number. We note that $k^2 C_{LL}(d\sigma/d\Omega) \approx -|\text{spin-singlet terms}|^2 - |\text{coupled triplet}|^2 + |\text{uncoupled and couplet triplet}|^2$. We observe no structure in the behavior of $k^2(C_{NN} - C_{LL}) d\sigma/d\Omega$,¹² which contains only couplet triplet terms, against the incident momentum in the region of 3.0 to 4.0 GeV/c as shown in Fig. 12. Therefore the second dip seems due to a spin-singlet term: in a similar way, the first dip is considered as a spin-singlet, namely 1G_4 .¹³ The contribution of spin-singlet partial waves to $k^2 C_{LL} d\sigma/d\Omega$ is written as follows:

$$k^2 C_{LL}(d\sigma/d\Omega)_{\text{spin-singlet}} = -|{}^1S_0 + 5P_2(\cos\theta){}^1D_2 + 9P_4(\cos\theta){}^1G_4 + 13P_6(\cos\theta){}^1I_6 + \dots|^2,$$

where $P_n(\cos\theta)$ is the Legendre polynomial of degree n .

It is possible to consider the second dip (mass $\approx 2900 \pm 100$ MeV) as 1I_6 state because the dip around $\theta_{c.m.} = 90^\circ$ disappears at $\theta_{c.m.} \approx 75^\circ$ where $p_6(\cos \theta) = 0$.

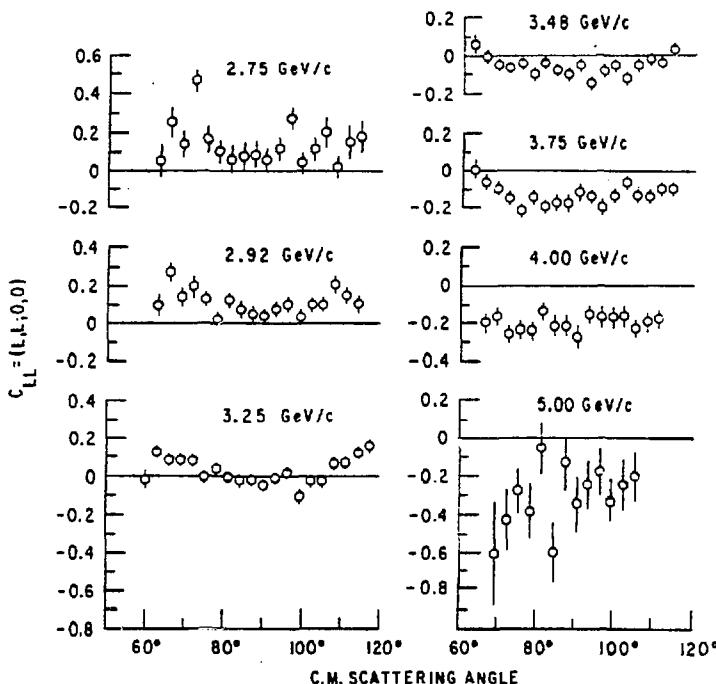


Fig. 10 $C_{LL} = (L,L;0,0)$ data up to 5.00 GeV/c.

The rapid energy dependence around 2.75 GeV/c as shown in Fig. 11 coincides with a similar behavior observed earlier in C_{NN} data,^{10,14} and also coincides with a hint of a bump around 2.75 GeV/c in $\Delta\sigma_L$ preliminary data.¹⁵ The structure also occurs in $k^2(1 + C_{LL}) d\sigma/d\Omega$ vs. the incident momenta, which contains only the triplet waves, but is absent on the curve of $k^2(C_{NN} - C_{LL}) d\sigma/d\Omega$ vs. the incident momenta, which contains only the coupled triplet. If the

above structure is due to a resonance, the mass would be $\sim 2700 \pm 100$ MeV and due to an $R_{J,J}$ state.

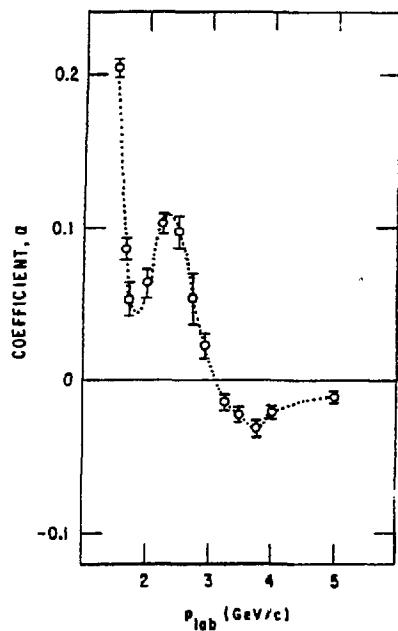
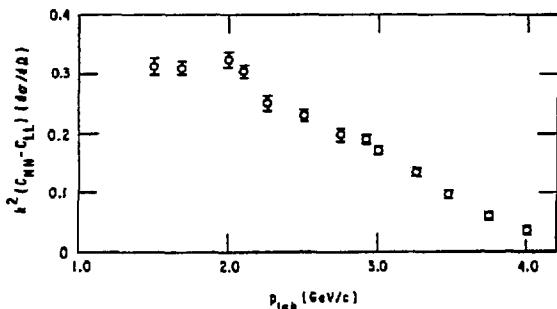
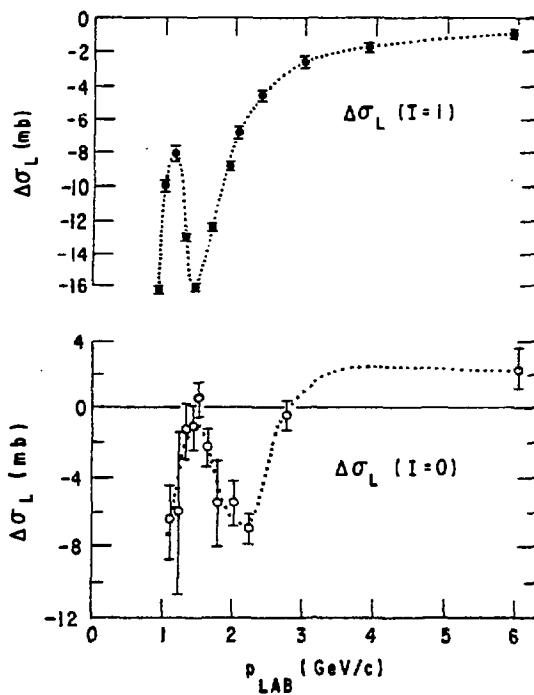



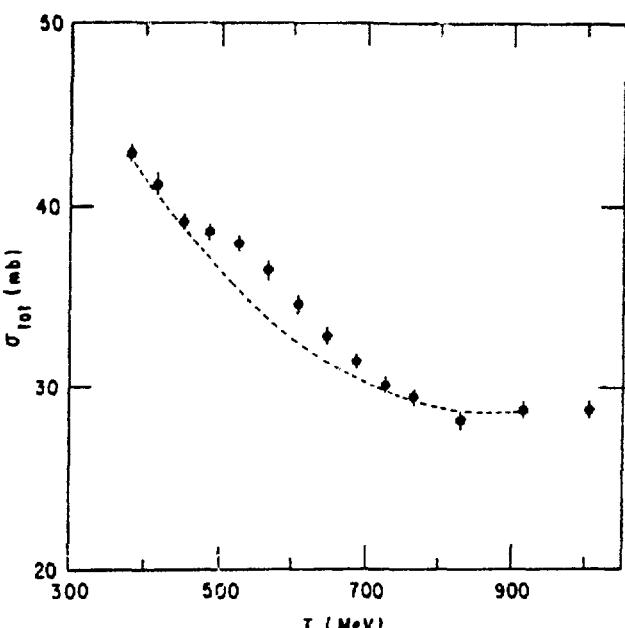
Fig. 11 $k^2 C_{LL}$ ($d\sigma/d\Omega$)
at $\theta_{c.m.} = 90^\circ$
against p_{lab} .

Fig. 12 Energy dependence of $k^2 (C_{NN} - C_{LL}) d\sigma/d\Omega$ up to 4 GeV/c.

III. $I = 0$ State

Measurements were performed at the Argonne ZGS of the difference between isoscalar nucleon-nucleon total cross sections for pure longitudinal initial spin states, $\Delta\sigma_L(pd)$, using a polarized proton beam and a polarized deuteron target.¹⁶ One can extract $\Delta\sigma_L (I = 0)$ data using both $\Delta\sigma_L(pd)$ and $\Delta\sigma_L(pp)$ as shown in Fig. 13. A significant structure is observed around 1.5 GeV/c.




Fig. 13 $\Delta\sigma_L (I = 0)$ together with $\Delta\sigma_L (I = 1)$.

A recent phase-shift analysis using these data by a Kyoto group¹⁷ suggests that there exists a partial wave whose behavior is consistent with the Breit-Wigner resonance formula, namely, the spin singlet 1F_3 wave. From the dispersion analysis of a forward $I = 0$ scattering amplitude using the data on $\Delta\sigma_L (I = 0)$, Grein and Kroll¹⁸ showed that the Argand plot of the amplitude has a resonance-like behavior around 1.5 GeV/c, and that suggests the existence of a spin-singlet dibaryon resonance.

The $\Delta\sigma_L (I = 0)$ data around 1.2 GeV/c have only a few points with large errors. There is a hint of structure around 1.2 GeV/c revealed in the $I = 0$ total cross section data^{19,20} as shown in Fig. 14.²¹

Fig. 14

$I = 0$ total cross section.
The dotted line is to guide
the eye for an assumed
background.

III. Conclusion on $I = 0$ and $I = 1$ Resonances

Candidates for dibaryon resonances that can couple to nucleon-nucleon systems are summarized in Table I.

IV. Structure Appearing in Other Channels

Many authors have attempted to interpret the results using not only elastic-scattering results, but other channels such as πD elastic scattering, $p p + \pi D$, γD reactions etc.

1) Possible Nucleon Resonance in γD Scattering Experiment

Kamae et al.²² suggested the possible existence of a dinucleon resonance by measuring the proton polarization in the reaction $\gamma D + p \uparrow n$. They observed

Table I

Candidates of the Dinucleon Resonances(i) $I = 1$ Isospin State

	$B_1^2(2.14)$	$B_1^2(2.18)$	$B_1^2(2.22)$	$B_1^2(2.43)$	$B_1^2(2.43)$	$B_1^2(2.70)$	$B_1^2(2.90)$
<hr/>							
Mass, GeV	2.14 - 2.17	2.18 - 2.20	2.20 - 2.25	2.43 - 2.50	2.43 - 2.50	2.70 \pm 0.10	2.90 \pm 0.10
Width, MeV	50-100	100-200	100-200	\sim 150	\sim 150		
Quantum State	1D_2	Triplet P	3F_3	Probably 1G_4	Triplet $R_{J,J}$	Triplet $R_{J,J}$	Probably 1I_6

(ii) $I = 0$ Isospin State

	$B_0^2(2.22)$	$B_0^2(2.43)$
Mass, GeV	2.20 - 2.26	2.40 - 2.50
Width, MeV	100-200	
Quantum State	1F_3	Triplet

Note: Fewer candidates in $I = 0$ compared to $I = 1$ are merely due to the lack of experimental data; much experimental attempts will be made to explore $I = 0$ state.

an energy dependence in the polarization. They interpreted some of the data as an indication of the existence of the deeply bound Δ - Δ state. Their estimates of mass and width of the possible resonance was 2380 and 200 MeV respectively. From the angular dependence of their polarization data, they estimated spin parity and isospin as $(J^P, I) = (3^+, 0)$. They obtained reasonable fits to the polarization data by introducing their dibaryon resonance with mass around 2380 MeV in addition to the 3F_3 dinucleon resonance with mass around 2260 MeV described in the body of this paper. Without the 3F_3 resonance, they could not obtain good fits by using only the resonance of 2380 MeV. This fact also supports the 3F_3 diproton-resonance picture.

A similar attempt was made at Kharkov and the results were discussed by P. V. Sorokin in this symposium.

ii) Other References on Dibaryons or Nucleon-Nucleon Scattering

Other authors have suggested the possibility of the existence of diproton resonances. R. Kammerud et al. analyzed the data of large-angle proton-proton elastic scattering at intermediate momenta, and they speculated the existence of dibaryon masses at about 2.2, 2.6, 3.4 and 3.9 GeV by observing slope changes in $d\sigma/dt$.²³ A similar conclusion was also drawn earlier by L. M. Libby and E. Predazzi.²⁴

K. Kanai et al.²⁵ and K. Kubodera et al.²⁶ show that there are effects of dinucleon resonances in πd elastic scattering. The effects are clearly seen in the angular region of $\theta_{c.m.} > 100^\circ$. H. Kamo and W. Watari found effects of dinucleon resonances in the polarization data in $pp \rightarrow \pi d$ reaction.²⁷ R. Frascaria et al. observed dinucleon-resonance signals in the $\pi^+ d$ excitation function of 180° .²⁸

T. Ueda et al. discussed the existence of dinucleon resonances in πNN and $\pi\pi NN$ dynamics.²⁹ S. Furuichi et al. investigated channel coupling effects in relation to the exotic resonances.³⁰

Many attempts have been made to explain the nucleon-nucleon structure as threshold effects or something equivalent, using exchange models such as the Deck model,³¹ the OPE three-body theory,³² the OBE inelastic-threshold model,³³ and recently coupled channels method.³⁴ However, most of these attempts do not seem successful. We remark that there is a report³⁵ that the 1D_2 diproton amplitude satisfies all standard resonance criteria, and has no pole corresponding to a diproton resonance.

V. Quark Models and Dinucleons

The dinucleon resonance opens a new era in the nucleon-nucleon system and is crucially important for further development of the quark models that require six quarks in a bag³⁶⁻³⁹, depicted in Fig. 15; e.g. Mulders et al³⁷ predicted rich resonance structure in NN channel above mass of 2180 MeV.

The string model and the spring model⁴⁰ suggest dibaryon resonances, which are made of six quarks combined together with strings or springs, such as shown in Fig. 16.

Apart from the bag model and the string model, a SO_4 symmetry has been proposed for the classification of dinucleons and baryoniums.⁴¹

Recently a way of implementing the dual-topological unitarization program has been found in which baryons and other multiquark hadrons are put on the sphere and appear at the same topological-complexity level as ordinary $qq\bar{q}$

seons.^{42,43} This permits one to have a lowest-order "spherical bootstrap", within which unitarity, duality and crossing can be consistently satisfied. With this framework, masses of the baryonium as well as the $qqqqq$ dibaryon are predicted.⁴² In general, the predictions are not inconsistent with the dinucleon resonances listed above.

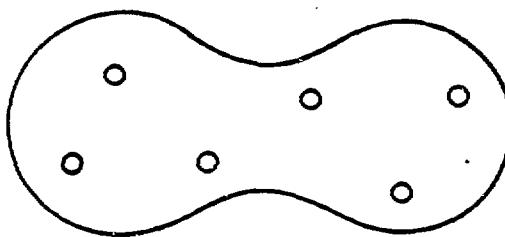


Fig. 15 Dinucleon resonance in bag model. Solid line and circles represent cavity and quarks respectively.



Fig. 16 Dinucleon resonance in string model.

References

1. I. P. Auer et al., Phys. Lett. 67A, 113 (1977); I. P. Auer et al., Phys. Lett. 70B, 475 (1977); I. P. Auer et al., Phys. Rev. Lett. 41, 154 (1978).
2. I. P. Auer et al., to be published in Phys. Rev. D24, (1981).
3. W. deBoer et al., Phys. Rev. Lett. 34, 558 (1978); E. K. Blagert et al., Phys. Lett. 73B, 235 (1978); data points at 1.2 and 1.5 GeV/c are being revised (J. B. Roberts, private communication).
4. A. Yokosawa, Physics Reports 64, (1980); and references therein.
5. N. Hoshizaki, Prog. Theor. Phys. 60, 1796 (1978); 61, 129 (1979).
6. R. A. Arndt, Talk given during LAMPF Nucleon-Nucleon Workshop, July, 1978; R. Bhandari, R. Arndt et al., Phys. Rev. Lett. 46, 1111 (1981); Resonance poles found by K-matrix analysis are also discussed by B. J. Edwards and G. H. Thomas, Phys. Rev. D22, 2772 (1980), and B. J. Edwards, Phys. Rev. D23, 1978 (1981).
7. Private communication, R. Arndt, N. Hoshizaki, and H. Kanada.
8. G. R. Burleson et al., ANL-HEP-PR-81-43 (1981).
9. D. Miller et al., Phys. Rev. Lett. 36, 763 (1976); Phys. Rev. D16, 2016 (1977).
10. A. Lin et al., Phys. Lett. 74B, 273 (1978).
11. I. P. Auer et al., ANL-HEP-PR-81-42 (1981).
12. $C_{NN} = (N, N; 0, 0)$ data: D. Miller et al., Phys. Rev. D 16, 2016 (1977); A. Lin et al., Phys. Lett. 74B, 273 (1978); D. A. Bell et al., Phys. Lett. 94B, 310 (1980); D. Basset et al., Nucl. Phys. A345, 435 (1980); M. McNaughton et al., Phys. Rev. C13, 838 (1981); M. McNaughton et al., to be published; V. A. Efimovych et al., Phys. Lett. 99B, 28, (1981).
13. I. P. Auer et al., Phys. Rev. Lett. 41, 1436 (1978); Reference 4, p. 63.
14. Reference 4, p. 64.
15. Reference 4, p. 57.
16. I. P. Auer et al., Phys. Rev. Lett. 46, 1177 (1981).

17. K. Hashimoto et al., *Prog. Theor. Phys.* 62, 1674 (1979); K. Hashimoto et al., preprint (February 1981).
18. Private communication.
19. T. J. Devlin et al., *Phys. Rev. D8*, 136 (1973).
20. P. Schwaller et al. *Nucl. Phys.* A316, 317 (1979).
21. The structure was pointed out by K. Imai.
22. T. Kamae et al., *Phys. Rev. Lett.* 38, 471 (1977); T. Ikeda et al., *Phys. Rev. Lett.* 42, 1321 (1979); K. Nakamura, Proc. 1979 INS Symp., Tokyo, Japan, p. 425 (November 1979).
23. R. C. Kammerud et al., *Phys. Rev. D4*, 1309 (1971).
24. L. M. Libby and E. Predazzi, *Lettore Al Nuovo Cimento*, Vol. II, N. 18, 881 (1969).
25. K. Kanai et al., *Prog. Theor. Phys.* 62, 153 (1979); K. Kanai and A. Minaka, *Prog. Theor. Phys.* 65, 266 (1981).
26. K. Kubodera et al., *Phys. Lett.* 87B, 169 (1979); K. Kubodera et al., *J. Phys.* G6, L1 (1980).
27. H. Kamo and W. Watari, *Prog. Theor. Phys.* 62, 843 (1979); H. Kamo and W. Watari, and M. Yonezawa, p. 31, Proceedings of the 2nd Meeting on Exotic Resonances, HUPD-8010, Hiroshima, Japan (1980).
28. R. Frascaria et al., to be published.
29. T. Ueda, *Phys. Lett.* 74B, 123 (1978); *Phys. Lett.* 79B, 487 (1978); M. Araki et al., *Prog. Theor. Phys.* 63, 335 (1980); M. Araki et al., OUAM 81-8-7 (1981).
30. S. Furuichi et al., *Prog. Theor. Phys.* 61, 1127 (1979); S. Furuichi et al., p. 60, Proceedings of the 2nd Meeting on Exotic Resonances, HUPD-8010, Hiroshima, Japan (1980).
31. E. L. Berger, P. Pirila and G. H. Thomas, ANL-HEP-PR-75-72 (unpublished).
32. W. M. Kloet et al., *Phys. Rev. Lett.* 39, 1643 (1977); W. M. Kloet and R. R. Silbar, 45, 970 (1980).
33. M. Arik and P. G. Williams, *Nucl. Phys.* B136, 425 (1978).

34. M. Netter et al., Workshop on Pion Production and Absorption in Nuclei, Bloomington, Indiana (October, 1971), TXI-PR-8-19, and references therein; H. J. Ver West, Texas A&M preprint (1971).
35. D. D. Breschow, Phys. Rev. Lett. 32, 1129 (1974).
36. R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977); and (errata) 38, 617 (1977).
37. P. J. G. Mulders, A. Th. M. Aerts and J. J. DeSwart, Phys. Rev. Lett. 40, 1543 (1978); A. Th. M. Aerts et al., Phys. Rev. D17, 260 (1978).
38. C. W. Wong and K. F. Liu, Phys. Rev. 41, 82 (1978); P. Mührer, to be published.
39. D. B. Lichtenberg et al., Phys. Rev. D18, 2569 (1978).
40. M. Imaichi et al., Prog. Theor. Phys. 55, 551 (1976); 57, 517 (1977); S. Ishida and M. Oda, Prog. Theor. Phys. 60, 828 (1974); 61, 1401 (1979).
41. M. Koca and A. B. Balantekin, Nuovo Cimento 52A, 500 (1979).
42. G. F. Chew and C. Rosenzweig, Phys. Reports 41, 263 (1978).
43. L. A. P. Balazs and B. Nicolescu, Proc. Workshop on Barionium and Other Unusual Hadron States, Orsay, France, June 1979, eds. B. Nicolescu, J. M. Richard and R. Vanh Mau.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.