
MASTER

r------NOTICE-------,

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or .
process disclosed , or represents that its usc would not
infringe privately owned rights.

-... ~--- __ ,. ___ .,._........__ ·-*--~- . .,.. ..

ARGONNE NATIONAL LABORATORY

Argonne, Illinois 60439

Applied Mathema tics Division

NUMERICAL COMPARISON OF THREE

* NONLINEAR EQUATION SOLVERS

by

Jorge J. More
-r Michel Y. Cosnard

Technical Memorandum No. 286

February 1976

This report intended primarily for internal distribution.

* Hark performed under the auspices of the U.S. Energy Research and
Development Administration.

t Present addres s : c~pn~Lle University, Grenoble, France .

ANL-AMD-TU-286

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Govern­
ment. Under the terms of a contract (W- 31-109-Eng- 38) between the U. S. Department of En­
ergy, Argonne Universities Association and The University of Chicago, the University employs
the staff and operates the Laboratory in accordance with policies and programs formulated, ap­
proved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University

Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
,University of Minnesota
Uni cr sity of 1v1is sour l
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University

Case Western Reserve University
The University of Chicago
University of Cincinnati

The Pennsylvania State University
Purdue University
Saint Louis University

Illinois Institute of Technology
University of Illinois

Southern Illinois University
The University of Texas at Austin
Washl1i~tou Ul,lvt:l :oily India.na. Univcr3ity

Iowa State University Wayne State University
The University of Iowa The University of Wisconsin

r---------NOTICE----------.

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States
u01 l],o:: Uullt::J Gtalo:::, Do::pa, tu,o::ut oi Euo::1 gy, w.:.., ""Y of their
employees, nor any of their contractors, subcontractors , or
their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the ac­
curacy, completeness or usefulness of any information, ap­
paratus, product or process disclosed, or represents that its
usc would not infringe privately-owned rights. Mention of
commercial products, their manufacturers, or their suppli­
ers in this publication does not imply or connote approval or
disapproval of the product by Argonne National Laboratory
or the U . S. Department of Energy.

.....

·3

TABLE OF CONTENTS

ABSTRACT. 5

•'
' ~ 1. INTRODUCTION. 5 I
~ '
l' I

l;
t

2. NEHTON'S METHOD 8 ! t .
!. I

f I I 3. BRENT'S METHOD. 10 t ;

l
I

4. · BROHN 1 S METHOD. 16

5. ALGORITHMIC CONSIDERATIONS. 22
1

' 1.

6. NUMERICAL RESULTS 25 1
I

I
I .

7. CONCLUDING REMARKS. 31
' t
I

ACKNOHLEDGEMENTS. 31 I·
I
' l·
!
I

REFERENCES. 31 j'

I APPENDIX; 33 [
i•
• ;

I
I
t·
t

I
I

I
!

THIS PAGE

WAS INT.ENTIONALLY

LEFT BLANK

' ""-'.

NUMERICAL COHPARISON OF THREE
NONLINEAR EQUATION SOLVERS

by

Jorge J. More and Michel Y. Cosnard

ABSTRACT

This paper is concerned with the numerical solution of n
nonlinear equations in n unknowns by the methods of Newton,
Brown, and Brent. The algorithms are described-in detail and
their implementations are compared on a set of test problems.
It is found that a variation of Brent's me.thod seems to perform
best in a ~arge number of cases, and a listing of an implementa­
tion of this method appears in an appendix.

1. INTRODUCTION

" This paper is concerned with the numerical solution of n nonlinear

equations in n unknowns. If Rn denotes real n-dimensional Euclidean space

and F:Rn + Rn is a function with domain and range in Rn then this problem

can be stated .in vector form as F(x) = 0 or in component form as

(1.1) f. (x
1

, ... , x) = 0 ,
1 n

·we restrict ourselves to three algorithms which only require the evalua­

tion of F and which have second order·convergence: Newton's method,

Brown '·s method, ·and Brent's method.

The best knmvn method for the solution of (1.1) is Newton's method.

In 1966 Brown [2] proposed a new method ~<1hich in a manner reminiscent of

Gaussian elimination, reduced an appropriate Jacobian to lo,.,er triangular

form. The method was somewhat surprising since it had second order con­

vergence [3] hut only used (n
2
+3n)/2 component function evaluations per

iteration. Although this was clearly an advantage over Newton's method

and the numerical results were promising, the method did not have a clear

Alenrithmir description and hencej was hard to implement.

5

I
I
[
I
I
I
1-
i
I

I
I
I
I

I

I
l

I
i
'

6

I

I

In 1970 Brent [1] presented a similar method which reduced an approx­

imate Jacobian to lower triangular form by a sequence of orthogonal
2

transformations, again at a cost of only (n +3n)/2 component function

evaluations per iteration a~d with second order convergence. Brent did

give a clear algorithmic description of his method and suggested that.

Brown's method could be described similarly, but he did not derive his

algorithm.

Then, in his Ph.P. dissertation, David Gay [6] took up Brent's sugges­

tion and gave a clear algorithmic de~cription of Brown's method. Perhaps

more importantly, he showed that the original description of Brown's

method led to O(n4) arithmetic operations per iteration and n2/2 + O(n)

storage but that the revised version could be implemented in O(n3) arith-
2 inetic operations and n /4 + O(n) storage. In addition Gay derived Brown's

and Brent's method from a unified point of view and thus shm.;red that these

two methods were members.of a class of methods which had second order

convergence and only required (n
2
+3n)/2 function evaluations per iteration.

In a recent paper, Gay [7) discussed the implen1entation of several

variations of Brm,rn's method and of one version of Brent's method. However,

he only tested· his implementations \V"ith starting vectors which Here fairly

close to the solution, and in this case the numerical performance of these

two methods does not usually differ too much. Moreo\rer, since the main

purpose of Gay's paper was to test different variations of Brown's method,

the resulting codes were mainly experimental.

The codes that we have implemented can only be considered local

methods since they don't use any techniques ,.;rhich attempt to guarantee

global convergence. It could be argued that our codes should have used

some such technique, but this would have brought a host of other problems.

For example, if we had insisted on a reduction of the sum of the squares

of the residtials at each iteration, then this technique is dependent on

the scaling of F, may slow down the iteration, and may cause convergence

to a point at which the equations are not satisfied. Moreover, ~e also

have to decide how to achieve the desited reduction. As. they stand, our

codes do not have any of the above problems, and the best of them seem to

have a large region of convergence. However,· if the iteration is not

I
I
~

I
... I

I
i
i
!
I

• . l
1
J
l

I
l
!
l

l
i

;

t

I
I
I

I.

!
l

I
I

i
~
r

i
t •

I
[
I

I
r
i
l
t
I

l

progressing at a satisfactory rate.then we attempt to diagnose the situa­

tion and terminate the iteration with an appropriate message. The

techniques that we use for this_are based in par~ on the ideas discussed

by Shampine and Gordon [8].

. In this paper we have also given a description of the algorithms of

Brown and Brent which leads naturally to their implementation~· This is

done because it seems that the lack of popularity of these two algorithms

is due to the fact that they have not been properly describerl.

There is a version of Brown's method which is available in the IMSL

library, but this code is not suitable since :i,t uses O(n
4

) arithmetic

operations per iteration. The version of Brown's method which we have
. 3 . .

used in this paper only needs O(n) arithmetic operations per iteration,

and in the tests done by Cosnard [4], usually performs as well (and in

some cases much better) as the IMSL version. There are other versions of

Bro~vn's method, but ·our code seems to perform just as well as the best of

them -- the best version we have seen was written by H. A. Watts of Sandia

Laboratories but this code also uses O(ri4).arithmetic operations per

iteration.

The testing done by Cosnard [4] also convinced us that Brent's method

is more stable than Brmvn's method and there.fore, that it would be profit­

able to write a code based on Brent's method for possible use in a

subroutine library. This paper describes such a code, an~ the numerical

results presented here show that it performs amazingly well in a large

number of cases .

The outline of our paper is as follows.
. I

On Sectioq 2 we describe

Newton's method .and some of its variations. This section motivates the

introduction of Hro>vn's and Hrent's method and in it we point out that in

some situations Newton-like methods are much more desirable than either

Brown's or· Brent's method. On the other hand, our numerical results indi­

cate that,a simple minded implementation of Newton's method is not nearly

as stable as a, corresponding implem~ntation of Brown's or Brent's method.

Section 3 contains a deriva'tion and des_cription of Brent's method.

· The derivation presented here should make clear why Brent's method is able

7

r
I

f
t

t
r
!·
~-

1
I

t
I
I

t
f·
i.
I.

I .
!

I
I
I

t
I

I •

I

I

I
f.

f
I

I.

8

·~·
·'

:(

. ·~

"•
.,.

·':·

to retain second order convergence while using almost half the number ·of

function evaluations (per iteration) of Newton's method. Section 4 leans

heavily on the material of Section 3 t6 give a brief derivation and des­

cription of Brown's method. In this section we also emphasize the

differences between the algorithms of Brown and Brent. Section 5 contains

a discussion of algorithmic details such as convergence crite~ia and

t~chniques for det~cting the divergerice 6f the iteration. Finally,

Section 6 presents the numerical results.

-~- 2. NE\.JTON '.S METHOD

The methods proposed by Brown and Brent were motivated by a desire to

improve Newton's method. Of course, there are many situations in which

Newton's method is more desirable, and in this section we briefly describe

some of the variations of Newton's method and point out when one of these

variations is likely to be advantageous.

If F'(x) denotes the Jacobian matrix (evaluated at x) of the mapping

F:Rn 4 Rn then given an iterate x, Newton's method generates the next

iterate x+ by_ the following algorithm:

. (2 .1) (a) Solve the linear system F'(x)6x

correction 6x.

(b) + Set x = x + b.x.

-F(x) for the

If the linear system in (2.l)(a) is solved by any of the standard direct

methods then the computational requirement of one iteration of Newton's meth~
2 od is (assuming the evaluation of F'(x) costs n component function evaluations)

2
n + n component function evaluations

arithmetic operations

storage

Since the evaluation of the Jacobian matrix i8 usually quite expensive)

Newton's ·method is sometimes modified so that the Jacobian is only

i
;
I
' t-
1'
I

' i
i

-· •
t
I
!
!
R

I
I
~-
t
i
~·
I

l
t
t
I
t

r

I
I
t
t
t
f

I
f

.. ~---

.. ·.

evaluated at fixed int:e.rvals. This leads to the. following algorithm:

(2. 2) (a) Set z = x
1

(b) For 1 = l, ... ,m

(bl) Solve the linear system

the correction t.zR..

(b2) Set z9.+1 = z 9, + t.z9:

(c)
. +
Set x = zm+l'

F' (x)t.zR. -F(z) R. for

The motivation for this approach is based on the fact that 'if either the

iterates or the Jacobian matrices are ·not changing too rapidly, then

F'(x) is a good approxiination to F'(zR.) and therefore (2.2) is "almost"

Newton's method. These assumptions do not usually hold far away from the

solution and then (2.2) with m > 1 can cause divergence in cases where

the unmodified (m = 1) method was convergent ..

Even though the above modification may reduce the number of Ja.cobian

evaluations needed for convergence, the determination of the Jacobian

matrix can still be a costly and error-prone task. Thus, in the above two

algorithms F'(x) is sometimes replaced by an approximation A(x,h). · If

this approximation is determined by forward differences, then

(2.3) 1 ~ i :5 n

for some parameter hi·= hi(x) and where ei denotes the ith column of the

identity· matrix. A good choice for this parameter seems to be ·

(2.4) h = E max{ I x. I , 1} . , ·
i 1

. . . ~

where E = (macheps) and macheps is the smallest floating point number for

which 1 ~ macheps >.1 in the precision being used.

Since in this paper we are intereited in algorithms that only require

the evaluation of F ,. we implemented a discre·tized Newton's method. In

vie\11 of the above, one iteration of this algorithm consists of Lhe follow­

ing steps.·

9

I
!

1-,
r •
t
I

I
I
f

I
l
l

I
j

I
.=.I.

1
t1l> •

I
~
I
I
i
~-
1

I
I
I

!
! .

~~----·------------- --·-------·-·-~------·----~---~------~- - -~·--- ----·--·-

10 .·

(2. 5) (a) Construct A(x) as defined by (2.3) and (2.4).

(b) Solve the linear system A(x)~x = -F(x) for the
correction ~x.

(c) Set
+ + ~x. X = X

There are several points in which Newton's method compares favorably

with either Brown's or Brent's method. One of the mtist important ones is

that Newton's meth6d is able to take into account the structure of the

problem. Suppose, for example, that F'(x) is tridiagonal. In this case

the arithmetic overhead of Newton's method is O(n) and it is possible to

estimate F'(x) with finite differences in four vector function evaluations

(see the technique in [5] for general banded systems). Of course, the

storage.can also be reduced to O(n). In sharp contrast with the above

situation, if F'(x) is tridiagonal, there is no reduction in overhead for

either Brown's or Brent's method.

Another point which is sometimes important is that Brown's and Brent's

method require a subroutine Hhich, given a subscript k, Hill compute the

k-th component fk(x) of F(x). In some applications, computing fk(x) for

some k is almost as expensive as computing F(x) and in .these cases Newton's

method is much more attractive.

3. BRENT'S METHOD

Newto·n' s method can be derived by a linearization argument: If

F:Rn ~ Rn is linear, then

and since we want to choose X+ so that F(x+)

that

(3.1) 0 = F(x) + F' (x)(x+-x) .

0, it is natural to require

Of course, F'(x) can be replaced by an approximation, and in this case

(3.1) can be written as

--.---....

!
I
I
II
I
t
I
i
[

l
t
I'

t
I·

where aj is an approximation to Vfj(x). Brent's method is very ciosely·

related to this approach to=· Newton's method.

+ Given an i-terate x, Brent's method generates the next iterate x by

the following algorithm:

(3.2) (a) Set yl = x.

(b) For k=l, •.• ,n let yk+l be the solutio.n of

f. (y.)
T

0 k + a. (y-y.) 1 < . ~
J J J J

, - J

which is closest to yk.

(c)
+

Set x =_yn+l'

+ Following Gay [6] we will refer to x and x as major iterates and the
. f + f . i . computat~on o x rom x as a maJor terat~on. Similarly, the computation

of yk+l from yk is a minor iteration and Yr····Yn+l are minor iterates.

In the above algorithm a. is meant to be an approximation to Vf.(y.).
J . . J J

Of course, this description is not complete; to do this we must specify

how to compute pk \vhere

(3.3)

and how to compute the approximations a .. For the moment we assume that
J

a1 , ••• ,ak are given and show how to determine pk.

The definition of yk+l and equation (3. 3) imply that

T = f. (y.) T . ,..a P + aj (yk-y j) j k J J

and thus, by the definition of yk,

(3;4)

11

i
i
I
[
i

I
~·
f
f

I
I

!
I
I

f

r
I.

I

r
i
l

l

12

If fk(yk) = O, then clearly pk = 0 and thus yk+l = yk, so we assume that

fk(yk) f. 0. To find the vector of mini.mal length which satisfies (3.4)

suppose for the moment that we have an orthogonal matrix Qk+l such that

0 • • • • • • • • • • • 0

X

(3.5) Qk+l =
..

X • X 0 • • • • 0

·and that oi f. 0 for 1 ~ i ~ k. Later on we will show how to generate Qk+l

efficiently. Since

T
it follows from (3.5) that to satisfy ajpk

(3.6)
n

I nJ. eJ.
j=k

0 for 1 ~ j < k we must have

\-lhere e. is the j -th column of the. identity matrix.
J

implies that

Thus nk = -fk(yk)/ok. Since nk+1 , ... ,nn are otherwise unrestricted, and

since

2
n. '

.1

to minimize 11Pkll 2 we set nk+l' ... ,nn to zero. Thus from (3.6),

1· ., .

,.
I ;·

,"-,.

It follows that

yk+l =

We have now shown how to ·carry out ·the iteration prov.ided we have an

orthogonal matrix Qk+l which satisfies (3.5). To complete the-description

of the algorithm we indicate how Qk+l can be computed efficiently.

We can assume that at the beginning of the kth iteration we have art

orthogonal tilatrix Qk such that (3. 5) holds \vi th k replaced by (k-1). Of

course, Q1 is any orthogonal matrix. To obtain Qk+l which satisfies (3.5),

compute an orthogonal Uk of the form

(3.7)

such that

I
I

Ik-1 I
. I

------~------
1

I uk
I

The matrix Uk can be either a single Householder matrix or the product of

(n-k) Givens rotations. In either case it should be clear that Qk+l =
QkUk satisfies (3.5).

At the moment it seems that to carry out Brent's method it "is necessary

to compute a
1

, ••. ,an and that this requires n
2
+n component function evalua­

tions. To reduce this requirement we make two observations:

1: The matrix.Uk only depends on the last (n-k+l) components of
- . T
ak = Qkak.

2. The vector ak

· In view of· these t\vo remarks, it follows that it is only necessary to

compute the last (n-k+l) components of an approximation ~ to Q~'Vf(yk).
This can be done by setting

13

I

l
t

I
I

I
f
I
I

I
i.

i
i
I

I
I
I
t
~

I
I
i
i

t
I
I

I
I·
1:

I

. !
[
I

(3.8) 1
~ = hk

0

fk(yk+hkQkek) - fk(yk)

where the first (k-1) components of ak have been arbitrarily set to zero.

·rn analogy with (2.4) the parameter h is given by

(3.9) E max{ II xI lex? 1}

where, as before E is the square root of the machine precision.

The above discussion leads to the following description of a minor

iteration in algorithm (3.2).

(3.10) (a) Compute~ by (3.8) and (3.9).

(b) Determine an orthogonal uk of the form (1.7)
-T T such that akuk = crkek.

(c) Let Qk+l QkUk and set

+ At the end of. a major iteration we have produced an orthogonal Q = ·q · n+l
d 1 + + h h 1.'f 11 11 ~ f k 1 h an sea ars cr

1
, ... ,crn sue tat yk-x ~ u or = , •.• ,n ten

F' (x)Q+ ... L + E

'

where L is a lower triangular matrix with + + on its diagonal .and crl, ... ,crn

liE II = 0(llhll + o); if F is linear then E = 0.

In analogy with (2.2) it is possible to reuse the information in Q+

+ and the cr 's; the computation of zi+l from .z.Q, in (bl) and (b2) of (2.2)

would be replaced by the following algorithm.

~unm•c•--

!
l

;-

t
~
~

I
t:-:

t
~

I
~-

~

~

(3.11) (a}

(b)

(c)

Set-y1 =zt

For-k= 1, .• _.,~

y k+l

Set zt+l = yn+l.

',

- ,_

let

Thus, a combined algorithm in which information is being reused would con-"

sist of the following steps:

(3 .12) (a) Set y = 1 x and Q1 = I.

(b) For k = 1, ... ,n use algorithm (3.10) to compute

_Yk+l from yk.

-(c) set zl = yn+l.

(d) For R, = 1, ... ,m-1, use algorithm (3.11) to

compute 2 t+l from z£..

(e) Set
+

X z . m ..

We again \-larn the reader ·that the reuse of information may cause divergence;

we will discuss this point further in Section 6.

-It should be clear that one major iteration (algorithm (3.10) for
2 - -

k = l, ... ,n) of Brent's method requires (n +3~)/2 component function

evaluations. In our-implementation of Brent's method Uk is determined as_
. 3 - 2

a Householder matrix. The computation of the Q's then requires n + O(n)

multiplications/divisions _and the same number of. additions/subtractions

plu~ n square roots. In the computation of the ~'s it is po~sible to

avoid the multiplication by h by l~tting Q1 be h times an orthogonal ·

matrix; thus the h factor is absorbed in the Q's. However, this leaves

n
3
/2 + O(n

2
) additions for the remaining of the computation. We summarize

this discussion as follows: The. implementation of- Brent's method requires

component function evaluations

arithmetic operations

n
2

+ O(n) storage.

15.

' ' i
!
I
I

!
I
I

!
I

I
!
~
i
!

I
I
~
I
I
I
j
t
'

r

i
' I

I .
!
i
'
' .
i

I
t

l
i

I
[

I
:

I'
i

.16

j

'·

Brent [1] has observed that if Q
1

= I then the storage can be reduced

to n
2

/2 + O(n) by using Givens rotations instead of Ho~seholder rotations.

This follows from the fact that in this case Qk is of the form

(3.13)

where Qk
2

is an n by (n-k+l) lower Hessenberg matrix. If \ve use the three-,
multiply, three-add Givens rotation then the computation of the Q's requires

the ·same amount of arithmetic as with Householder matrices but n 2/2 + O(n)

square roots. However, the computation of the a's now only requires

n3/4 + O(n2) additions/subtracti~ns. It thus seems that the implementation

with the Givens rotations requires less overhead. We point out that Gay

[6] has an alternate implementation of Brent's method with the same storage

and arithmetic requirements as the one based on Givens rotations but which

u~ Powell's orthogonalization procedure. In our implementation we opted

for Householder matrices because of their simplicity and elegance.

There i~ one last point in connection with Brent's method that deserves

attention. At the beginning of each major iteration there are at least two

clear choices for the matrix Q
1

; we can set Q
1

= I or let Q
1

be the Q avail­

able from the end of the previous major iteration. The choice Q
1

= I is

necessary if we are to use Givens rotations, and·has the advantage that it

minimizes the departure from orthogonality of the Q's. Brent [1] favors

the latter choice, but there does not seem to be any clear advantage to

t.his choice .and our numerical experiments bear this out. Thus, as indi­

cated in (3.12), our implementation sets Q
1

= I.

4 • BRmm' S HETHOD

Brown's method is very similar to Brent's method, so in this section.

we essentially repeat the arguments of Section 3 but pointing out the

differences between the two methods.

A major iteration of Brown's me·thod consists ·of the following sequence

of computations:

/

t

I·
I
I
!
:
!
i

I

I.

(4 .1) (a) Set y1 = x.

(b) For .k = 1, •.• ,n, ·let yk+l be the solution of

(c)

which "maximizes" the number of zero elements in

yk+l - yk.

+
Set x =.Yn+l'

In general it is very difficult to determine yk+l so that yk+l - Yk. has

the maximum number of zero elements; however, He show that if we assume

that no unlikely cancellations occur, then this is very easy to do.

We first obtain an expression for pk = yk+l-yk. Just as in Brent's

method, pk satisfies

(4. 2) 0, 12-_j<k,

Assume now that we have a nonsingular matrix ~+l such that

0 • • • • • • • • 0

X

(4. 3) ~+1 =

. ·.
X X 0 • • • . 0

and that o. 1·0 for 1 < i < k. Since
1

•· it follows, as in Section 3, that to satisfy (4.2) we must have

(4. 4) n. e.,
J J

Components nk+l, .. ,, nn are otherwise unrestricted, so we now shmv that

I
I

I

.I

18

if Rk+l is suitably chosen then setting these components to zero

"maximizes" the number of zero elements in pk.

The construction of ~+1 assumes the existence of ~ such that (4.3)

holds with k replaced by (k-1). ~f course, R
1

is an arbitrary non­

singular matrix. Now determine an elementary permutation matrix Pk ·

and an .elementary upper triangular matrix Tk such that

where ak is the maximal element· (in absolute value) of ak. For future

reference recall that T~ is of the form

(4.5)

(k) (k) = (0 , , 0 , wk+ 1 , , w n)

It follows that if Rk+l = RkPkTk then ~+l satisfies (4.3).. We ·now show

that if the rows of Rk+l are suitably permuted then Rk+l is an upper

triangular matrix of special form.

Lemma. If R
1

I then
I
I
I

Lk ! sk
I
I (4. 6) P • .P R_ k . . . ll<+l -------,-------
1
I

where Lk is a unit upper

identity matrix of order

Proof. The result holds ----
by induction that

0 t In-k
I
I

triangular matrix of

n-k.

for k 1 since,

I
I
I

by

1 1
• S k-1 : k-1

I
I

-----·---,----~--

1
I

o 1I
: n-k+l
I

order k and I n-k
is the

assumption, Rl I. Assume

Then

I
I
I
I

Lk-1 : sk-1
I
I -------+-------1 .
I
I

1In-k+l
I
I

where Sk-l. is Sk-l '"ith two columns interchanged.· Now (4.5) implies that

(4. 7) p k •'.' • p 1 Rk+l

where

The result now follows since vk has zeroes in the last (n-k) positions and

wk has zeroes in its first k positions.

With the Lemma it is easy to show that setting nk+l'''' ,nn to zero in

(4.4) "maximizes'' the number of zero elements in pk. In fact, from (4.4)

and the Lemma,

Thus setting nk+
1

, ... ,nn to zero "maximizes" the number of zero elements

in Pk·

It should be clear, in analogy with Brent's method, that we need not

compute ak, but instead we compute

19

20 ·----

In our implementation of Brown's .method the parameter h in (4.8) is also

given by (3.9). An alternate strategy w·ould fi-rst normalize the .vectors

-~ej; that is compute

where his given by (3.9). This would require an additional_O(n 3) arith­

metic operations and would not improve the algorithm unless the norms. of

the vectors· Rkej deviate drastically from unity.

The above discussion leads to the following summary of a minor itera­

tion of Brown's method:

(4.9) (a) Compute ak by (4.8) and (3.9).

(b) -T Determine an elementary permutation Pk so that akPk has

its maximal element in absolute value in the kth position.

(c) Determine an elementary upper triangular matrix Tk of
· T T

the form (4.5) such that akPkTk = okek.

(d) Let ~+l ~PkTk and set

fk (yk) .
yk - (o)~+lek.

k

Thus a major iteration of B.rown' s. method consists of the following steps.

(4.10) (a) Set y
1

= x and R1 = I.

'(b) Fork= l, ••. ,n, use algorithm (4.9) to compute yk+l

.from yk.

: (c) + Set x = y n+l.

. +
At the end of a maJ· or iteration ~v-e have produced a matrix R = R and n+l + . +
scalars o1 , ... ,on such that if I lyk-xl I < 6 fork= l, .•. ,n then

+ F' (x)R. L+E

\

l
!
\
I
I

\
[

I
I
f,

I
t;

I
&

t
!.

t

\

I
I
!

h L i 1 . 1 . . I + + . d" 1 d were sa ower tr1angu ar matr1x w1t1 a 1 , ... ,an on 1ts 1agona. an

I lEI I a<llhll + cS); ifF is linear then E =:: 0. Of course, juut aH in

Brent's method this information can be reused and the resulting algorithm

would just be (3.11) with Q+ replaced by R+

It is more difficult to implement Brown's method than Brent's method

because of the particular structure of ~+l. The Lemma of this section

shows th~t it is only necessary to store the matrix Sk which appears in

(4.S) and since this is a k by (n-k) matrix, the storage will not exceed
2

n /4. In our implementation of Brown's method we have decided to store

Sk by rows in a vector u(·). The information contained in Pk• ... ·P
1

is

stored in a vector mperm (•) by requiring that mperm (i). = j if and only

if the (i,j) element of Pk· ... ·P1 is unity.

With the above information it is not difficult to carry out Brown's

method. The reader should verify that the most expensive parts of a

minor iteration are the calculation of sk from sk-1 and the formation of

the vectors yk + h~ej. The -first task requires k(n-k) multiplications/

divisions and the same number of additions/subtractions; the. second task

requires (since the multiplication by h can be avoided as in Brent's

method) k(n-k) additions/subtractions. Thus one major iteration of

Brown's method requires

component function evaluations

arithmetic operations

2
g_ + O(n) storage
4

If we assume that· multiplications and additions each costs one unit of

time, then a detailed count shows that the overhead of Brown's method

depends on 1/2 n3 while that of Brent's method depends on 5/2 n3 . If

the functions are easy to evaluate then this overhead may dominate and

all other things.being equal, Brown's method \..rould be the most efficient

method. However, this is not the cas~ in our numerical examp~es; on

problems which require .the same number of function evaluations, the

computing times for both methods did not differ by more than ten percent.

21

' ...

22

5. ALGORITHMIC CONSIDERATIONS

Before an algorithm for the solution of nonlinear equations is

completely defined, it must decide on a course of action when faced with

one or more of the following problems:

(a) Convergence criteria.

(b) Lack of satisfactory progress or divergence of the iteration.

(c) Requested accuracies unreasonably high.

(d) Singularity of the approximate Jacobian.

(e) Lack of a solution.

All of the above problem, and the algorithms of the three previous

sections are affected by the scaling of F and/or x. · A change of scale in
~

F corresponds to considering the scaled mapping F defined by F(x) = L:•F(x)

where L: is a diagonal matrix ~vith positive diagonal entries. It should

be clear that such a change in scale leaves invariant the iterates in

all of the three algorithms considered. If we ~onsider a chang~ of scale
* -1 * in x so that F(x) = F(L:x) then the solution is changed from x to E x

A highly desirable property for an iterative method would then be that
~ I

if L:x0 = x0 then L:'l< = '1<_ for k > 1. However, no nonlinear equation sol-

ver seems to have this property.

We now turn to a discussion of problems (a) through (e) mentioned at

the beginning of th~ se~tion.

(a) The convergence criteria depends on a measure of the residuals

and a measure 6£ the relative error between consecutive iterates. For

Brown ,.s and Brent 1 s method define

(5.1) FNORM m8x{lfk(yk)l: 1 < k .::_ n}

...

while 'for Newton's method

(5. 2) FNORM = max{lfk(x+) I: 1 < k < n} .

i
I
I
I

l
I
I

For either of the three methods we also de fine

(5. 3) DIFIT

If the user provides·two parameters, FTOL and XTOL then the subroutines

will stop if either

.(5 .f1) FNORM ·< FTOL

or

(5. 5) DIFIT < XTOL•XNORM

The first criterion is dependent ofi the scaling of F_and thus should ·be

used Hith care. Criterion (5.5) usually guarantees that the components

* of x .have -log10 (.~TOL) significant digits as approximations to the corres-
. *

ponding components of x . Of course, (5.5) cannot guarantee any agreement

for the components which are much smaller than XNORM, but the fast conver­

gence of the iteration does force quite close agreement. Note that tl1ere

are at least t\vo cases in which (5.5) may fail. It \.;rill probably fail

if the solution is at the origin, but in this case the iteration will

stop because the requested accuracy is too high.; .see the discussion under

(c). Criteria (5.5) can be satisfied at a point far away from the solu­

tion if at that point the derivative is large relative to the residuals.

This problem can usually be avoided by requiring that both FNORM and DlFIT

have decreased from the previous iteration, and this is done on the

implementat.ions.

(b)· To measure the progress of the iteration we monitor FNORM and

DIFIT as defin.ed by (5.1), (5.2), and (5·.3). If FNORH andiJIFI'l' increase

during tl1ree consecutive iterations then we terminate the iteration since

this indicates that the iterat;i.on is diverging. Hm.;rever, the iteration

is·almost certainly not making good progress if at least one of FNORH

and DIFIT increases, so if this happens during five consecutive iterations,

then we terminate the iteration for lack of good progress. The user

23

;.

24

because of a diagnosed divergence·then this will probably lead to over­

flow problems. If it was terminated for lack of· good progress then

restarting the i~eration may lead to convergence, but this has not

happened too often; a bett.er strategy is to choose another starting point.

(c) We only· attempt to detect unreasonably high requested accuracies

in the we'll-scaled case. In this situation we can expect that at best
. . +

IIF(x) II --:- macheps or llx -xll ~ macheps • llxll. ·Thus we test whether

(5.6) FNORM < E or DIFIT < E•max{XNORM,l} ,

~
where E = (macheps) 2

, and if either of these inequalities holds on four

consecutive iterations then we exit with an indication that the requested

accuracies are too stringent. Note that if the convergence is slow then

even reasonable values for FTOL and XTOL may be diagnosed as being too

stringent. Thus test (5. 6) will also de.teci: slm·i convergence (which is

usually due to a Jacobian singular near the iterates or to bad scaling).

Also note that th_e iteration may stop with an indication of stringent

accuracies just because XNORM ~ (/2 on five consecutive iterations. Thus

we have imposed an absolute convergence criteria on the user. However,

because the convergence is usually very fast, it is highly unlikely that

this will happen unless the solution is at the origin.

(d) Consider first singularity of Ute approximate Jacobian in

Newton's method. If we are solving the linear system in (2.1) by Gaussian

elirnirtation, .then singularity is detected by a zero pivot. Attempting

to detect singularity by a pivot pk which is small relative to the size

of the matrix and the precision of the computation leads to difficulties

\-.Then F ·is badly scaled. If pk = 0 then \-.Te replace pk by macheps •

max{ II A II , 1} .

In Brown's or Brent's method singularity of the approximate

Jacobian is detected when ok = 0 for some k. If ok = 0 then we set

. yk+l = yk and continue the iteration. If ok = 0 for k = 1, .•. ,n, then

we exit with an indication that the approximate Jacobian is singular.

(e) The lack of a solution in the problem will almo~t invariably

l~ad to problem (b), but it is always possible for the iteration to

oscillate about a point at which the Jacobian is singular and the equa­

tions are not satisfied. However, this did not happen in our tests
2 even with a highly artificial example such as f(x) = x +1.

·,

6. NUHERICAL RESULTS

We now present numerical results for four subroutines. ·The first

three, NEWTON, BROWN, and BRENT are just implementations of algorithms

(2.5), (3.12) with m = 1, and (4.10), respectively. The fourth one,

BRENTM, is a modification of BRENT in Hhich the Jacobian is reused on

. some iterations; that is, algorithm (3.12) for some m > 1. Before BRENTM

is completely defined \ve have to decide \vhen t.o reuse the Jacobian and

for hm·7 long.

The idea of reusing the Jacobian is only Horthwhile in the latter

part of the iteration; if it is used in the early stages of the iteration

the performance of the original algorithm invariably deteriorates. Thus

the Jacobian is only reused to refine the solution in a manner very similar

to iterative refinement.

After some experimentation we decided to execute the iterative re-

finement (step (d) of algorithm (3.12)) if the following two conditions

hold.

(6.1)

(6.2) Both FNORN and DIFIT as defined in Section 5 have

decreased from the previous iteration.

Condition (G.l) indicates that the iterates are beginning to converge

while (6.2) guarantees that (6.1) Hill not hold accidentally.

Next we had to decide on· the choice of m that would be used in the

iterative refinement. Theoretical results shaH that the optimal choice

of m would maximize the efficiency, Hhich in the case of (3.12) Brent [1]

25

!

l
t
I

i
I
I

:"""=-'::;.-·"'-~~~~"'w",-""1

26

showed that it was given by

E(m)
2 !l.n (m+l)

(n+2m+l)

Numerically this turns out to be a good choice and thus we decided to set

* * m = m where m maximizes E(m) form= 1,2, ... ,n.

To present ·the numerical-results we have selected five test problems;

other test problems .will be discussed in Section 7. These examples were

selected because they represent typical situations that we have encountered

in our testing. The following specifications apply to these test results.

.(a) ~11 problems were run on the IBM 370/195 of Argonne National Labora­

tory in double precision (14. hexadecimal digits) and under FORTRAN .. H

(opt=2) compiler.

(b) -10 -10 The tolerances \vere set at FTOL = 10 . and XTOL = 10 . . Since,

with the exception of the fifth problem, the convergerlce is of

second order, our results are only marginally affected by the choice

of FTOL and XTOL.

(c) Each problem was run with three starting vectors. We always give the

starting vector x
0

which is closest to the solution; the other two

points are 10x
0

and 100x
0

.

(d) For each run we report three numbers: the number of iterations and

vector function evaluations required to produce the final iterate,

and the maximum residual•at the final iterate. Thus the entry

5,33,0.8(-14) means that for this problem the subroutine required

5 iterations and 33 vector function evaluations, and that the maxi­
-14 .

mum residual at the final iterate was 0.8xlO .

1. T\vo-point b_oundary value problem

If we apply the standard O(h
2

) discretization to the two-point

boundary value problem

n 11 (t)
1 . 3
-zC\,l(t)+t+l) , 0 < t < 1, u(O) u(l)

I
0 ,

I
J

I
I
i
j

I
i
I
I

I
i
' i
I
I

I
~

I
t'
!

I
I
I

i
f
I.

t
t

then the resulting system in the unknowns xk = u(tk) is defined by

. 2
(6.3) fk(x)- 2~- xk+l- xk-l + h2 (xk+tk+l)

3
,· 1 <.k < n

where x
0

= xn+
1

= 0, tk =··· kh, and h = 1/ (n+ 1). The results of solving

this problem with n = 10 are listed in Table 1 where x
0

refers to the

point

(6. 4) . t.(t.-1), 1 < i < n
l. l.

TABLE 1

xo 10 xo 100 xo

'

NE\.JTON 3. 34, 0~3(-15) 4, 45, 0.1(-16) 9, 100, 0.5(·-14)

BROWN 4, 26, 0.4(-16) 5, 33, 0.3(-16) 10, 65, 0.4(-16)

BRENT 4, 26, 0.1(-15) 6, 39, 0.6(-16) 11, 72, 0.5(-16)

BRENTI1 2, 16, 0.1(-15) 4, 28, 0.6(-15) 9, 61, 0.1(-15)

'

.·''Remarks

*. * "' (a) Equations (6.3) have a uriique solqtion x = (~i) with -0.5 ~-~i < 0

for 1 < i < n.

(b) In each case NEHTON solved the problem in fe,ver ;iterations bu.t \vith •.·.·

more function evaluations than either BRENT or BRO\.JN. To explain

this,.note that FNORM as defined by (5.1) measures the size of the

residuals at the beginning of the iteration since usually if1 Cy1)1
is the largest residual. Thus both BRENT and BROh'N ahvays stop one

iteration too late. There does _not seem to be an elegant, scale-­

independent methqd·to avoid this a1though the iterative refinement

of BRENTM certainly helps.

27

28

(c) For this function BROWN converges in less function evaluations than

BRENT; this is not the cnse for the other four functions.

(d) . The evaluation of any fk only requires a fixed number of arithmetic ·

operations (about a dozen) and thus the computing time of an itera­

tion of either BROWN, BRENT, or BRENTM ·is dominated by the over­

head. To compare the actual overhead of BRO\.JN and BRENT, we solved

the above problem for n = 25, 50, and 75 for the x0 given by (6.4).

In each case BROWN and BRENT each required four iterations to reach

an acceptable solution while three and two iterations were required

by NEWTON and BRENTM, respectively. Table 2 presents the computing

times (in seconds), and shows that in.the case of BROWN and BRENT

they. never differ by more than 10%. The reason ~vhy .the number of

arithmetic operations does not reflect the computing time can be

traced to the special architecture of the IBM 370/195; on other

machines the relationship between these times may vary. ,

2 •.

TABLE 2

25 50

.. ;··
. . ~· .·NEWTON 0.024 0.085

BRO\M 0.124 0.543

BRENT 0.104 0.574

BRENTM 0.057 0.302

Norilinear integral equation

The nonlinear integral ~quation.

J
l . . 3

u(t) + H(s,t)(u(s)+s+l) ds =

H(s,t)

0. .

{

s(l-t),

t (1-s),

s < t,

s > t,

75

0.18

1. 63

1. 79

0.889

0 '

i
f.
t
t
r
f
t
[

I
f
t

I
I
i

I
~

t
i r
i

i
r ,.

t
~-
!
I

. ~

f

can be discr.etized by considering the equation at the points t = tk,

k = l, ... ,n, and then replacing the integral by ann-point rectangular·

rule based on the points {tk}. The resulting system of eq~ations in the

unknowns ~ = u(tk) is defined by

(6.5) 3 t.(x.+t.+l)
J J J ..

. ,
n . 3;

+ tk L .(1-t.)(x.+t.+l) J~
j=k+l J J J

where x = x = 0, t. ~ jh, and h
0 n+l J

1/(n+l) .. The results of solving

this problem with n = 10 are listed in Table 3 where as the initial

guess x
0

we again took (6.4).

TABLE 3

xo 10 xo 100 xo

}II EWTON . 3' 34, 0.3(-14) 4, 45, 0.4(-16) 9' 100, 0.6(-13)

·-
BROWN 4, 26, 0.5(-16) 5, 33, 0.4(-16) 4, 26, 0.1(33)

_.

BRENT 4' 26, 0.4(-16) 5, 33, 0.6(-16) 4, 26, 0.5(17)
.,

BRENTM 2' 15, 0.2(-15) 3, 22, 0.8(-16) 4, 26, 0.5(17)

Remarks

(a) The results under NEWTON in Tables 1 and 3 are identical. This is

due to the fact that if F(l) and F(2) denote the functions defined

by (6.3) and (6.5) 1 respectively, then there is a nonsingular

mat~i~ A such that F(l)(x) ~ A•F(Z)(x). In fact, if A is the tri­

diagonal matrix \vi th 2 1 s on the diagonal and -1' s on the off­

diagonal then it can be shown that F(l) (x) == Ax+G(x) \vhere gk (x)

(h 2/2)(xk+tk+l) 3 \vhile F(
2)(x) = x + A- 1G(x). Tables 1 and 3

reflel:l t:he fact thaL algorithm (2.5) is invariant under this type

of transformation, but that this· is not the case for neither (3~12).

no~ (l1 .10).

29

r

I
r

I
I
I
I
I

I
I
i

I
I

30

I

(b) If seems that if BROWN and BRENJ: both diverge then BROWN diverges

at a faster rate; a particular instance of this happens with the

third starting point.

(c) Functions (6.5) require n + 0(1) arithmetic operations to evaluate

and thus the computing time per iteration of all four subroutines

is almost equally dependent on the overhead and on the function·

evaluations. Table 4 w.as produced in the same manner as Table 2

but for functions (6.5)~ and it turned out that the number of itera­

tions required to produce an acceptable ansHer coincided with those

for Table 2. However, now the computing times of NEWTON, BROWN, and

BRENT are almost identical.

TABLE 4

25 50 75

NEWTON 0.165 1.14 3·.81

BROWN 0.194 1. 29 3.97

BRENT 0.206 1. 28 4.11

BRENTM 0.113 0.656 2.11

3. Brown's almost linear function

(6. 6)

To define this function let

~ X. +
k

n

2
j=l

x. - (n+l),
J

- 1 .

The results of solving this problem with ri

where the ipitial guess x
0

is given by

(6.?) E;.. :;;: 1/2,
l.

1 < k < n-1)

= 10 are listed in Table 5

1 < i < n

I
1
I

I
r

I
I

-

TABLE 5

xo 10 xo. 100 xo

NEWTON 90, 991, 0. 9 (-11) 103, 1134, 0.1(-14) 91, 1002, 0.1(-13)

BROWN 8, 52, 0.1(-14) 18, 117' 0.1(-14) 19' 124' 0.3(27)

BRENT 5, 33, 0.8(-14) 6' 39' 0.1(-14) 22, 143, 0.1(-13)

BRENTM 3, 25,, 0 .. 1(-14) 3, 26, 0.8(-15) 20' 135, 0.1(-13)

Remarks

(a) It L.::n be shm..m that all zeroes of (6. 6) are of, the form

(a, ... ,a,al-n) where a satisfies nan- (n+l)a + 1 0. If n is

even this equation has twb real roots but if n is odd then it has

three real roots. If n = 10 then a= 1 and a= 0.9794 ... are the two

roots .

. (b) Since the first n-1 equations are linear the iterates produced by

the methods of Brown and Brent satisfy fj(~) =·o for 1 2 j <nand

·~ all k > 1. This feature gives these two methods an advantage over

more conventional nonlinear equation solvers. This advantage is

wiped out if the nonlinear equation is placed first in the definition

of (6.6). ThP pffprt nf this interchange on the numerical results

of Table 5 is given in Table 6 and shows that in this case NEWTON,

BROWN and BRENT require almost the same number of iterations.

(c) The solution of Brown 1 s .function ~vith Ne,vton 1 s method presents an

interesting difficulty; it can be shovm that xk is of the form

(B,. ·~,B,y) fork~ 1 regardless of the choice of x0 , and therefore,

unlel;i$ 6 is close to unity, F 1 (xk) and the approximation A(xk) deter­

mined by (2.3) and (2.4) are both ill-conditioned and badly scaled.

This difficulty is '"orsened by the follm-.~ing observation.

(d) Shampine and Gordon [8) have noted 'that if n is sufficiently large

then it is difficult to estimate 'il.fn (x0) by differences. Hare

31

···.'~

I
i

I
I
I
I
l

f
i

32

generally, if llxii(X) ..s_ r ;1nd· llvii(X) .::_ E (recall E i!; the square

root of macheps), then

In particular, if r < 1/2 and n > 30, then f (x+v) = f (x) for the - - · n n
IBM. 360...:.370; for smaller values of n the approximation A(~). ·is

again ill-conditioned and badly-scaled.

TABLE 6

xo 10 xo 100 xo

NE\vTON 90, 991, 0.9(-11) 103, 1134. 0.1(-14) 91, 1002, 0.1(-13)

. BROw'N 66, 429, 0.4(8) 104' 676, o .. o 92~ 598, 0.2(-15)

BRENT 66, 429, 0.5(8) 104, 6 76, 0.4(-14) 92, 598, 0.4(-~4)

BRENTif 66, 429, 0.5(8) 101, 662, 0.7(-14) 89, 585, 0.7(-14)

4. Chebyquad

If Ti is the i th Chebyshev po.lynomial shifted to the interval [0 ,1]

then this function is defined by

(6.8) fk(x) = J
1
Ti(s)ds

0

1 n
L Tk(x.),

n j=l J .

The standard initial guess for this problem :i.s

(6.9)

1 < k < n

1 < i < n •

·The r.P.sults of solving this problem for n "" 5 and all three starting

points are given in Table 7; the results f6r n = 7p 8, and 9 but only

f6r x
0

are in Table 8.

I

I
I
I

I -

I

f

I
t
1-
!
~
1
f • •
t
I

r-

!
r:

TABLE 7

xo 10 xo 100 xo

NEl.JTON 5, 31, 0.4(-11) 4' 25' 0.2(22) 6, 37' 0.4(48)

BROWN 6, 24, 0.1 (--15) 39, 156, 0.1(-16) 9, 36, 0.1(22)

BRENT 5, 20, 0.1(-15) 10, 40, 0.1(-15) 16, 64, 0.1(-15)

BRENTM 3, 15, 0.1(-15) 9, 39, 0.1(-15) 14,59, 0.2(-15)

TABLE 8

7 8 9

NEWTON 5, 31, 0.4(-11) 4, 37, 0.4(26) 6, 61, 0.2(38)

BROWN 5, 25, 0.1(-15) 7, 39' 0.6(27) 8, 48, 0.2(-15)

BRENT 5, 25, 0.1(-15) 13, 72, 0.4(49) 6, 36, 0.3(-15)

BRENTH 3, 19, 0.1(-15) 13, 72, 0.4(49) 3, 24, 0.4(-14)

Remarks

·(a) * For n = 1, ... ,7 and n = 9 this function has n! ~eroes x

* with 0 < s. < 1, but for given n any two of these zeroes have the
- :J_·-:-

same components a~ranged in a different order,

(b) For the second starting point of n = 5 BROWN and BRENT converged to

different solutions, and for the third starting point BROWN diverged

but" BRENT converged.

(c) Since (6.8) does not have a solution for n = 8, none of the itera­

tions converged and this was detected by the techniques of Section 5.

----~~-~--

33

34

5. Powell's singular function

To define this function let

x1 + 10x2 ,

(6.10)

The results of solving this function are given in rable 9 where the start­

ing point is

xo (3,-1,0,1).

~

xo 10 xo 100 xo

NEWTON 18, 91, 0.1(-9) 22, 111, 0.1(-9) 25, 126, 0.6(-10)

BROHN 22, 77, 0.3(-10) 26, 91, 0.2(-10) 29, 102, 0.3(-10)

BRENT 21, 74, 0.5(-10) 25, 88, 0. 2(-10) 28, 98, 0.5(-10)

BRENTM 17, 71, 0.5(-10) 21, 85, 0.2(-10) 24, 95, 0.4(-10)

Remarks

(a) The Ja~obian is singular at the unique zero (the origiri) of this

function and therefore the usual local convergence theorems do not

apply. Nevertheless convergence took place in each case.

(b) All of the ~lgorithms in thi~ paper are invariant under translation;
~

·that is, ~iven F and F defined by F(x) = F(x-v) for some vector v,
~

and initial vectors xo = xo+v, then the iterates will satisfy
~-

xk = ~+v for k ~ 1. However, translation affects the convergence

criteria. For example, since for (6.10) the solution is at the

~oiigin, condition (6.1) was never satisfied and thus BRENTM and

BRENT give the same results for (6.10). The results of Table 9 were
~

obtained by working with F and x
0

as .above and v = e
3

• This only

affected the results of BRENTM.

I

I

I.

7. CONCLUDING REMARKS

Our numerical results indicate that in general the implementation

BRENT of Brent's method is superior, in terms of robustness and effi­

·ciency, to the implementation BRO\.fN of Brown's method. They also show

that the use of the iterative refinement is almost invariably desirable

and thus BRENTM should be preferred over BRENT.

The above conclusions are also supported by the numerical results

obtained by testing our algorithm on two other sets of test functions:

The testing program of Ken Hillstrom of Argonne National Laboratory con­

sis.ts of 10 functions and 20 starting values per function while

H. A. Watts of Sandia Laboratories has a collection of 27 functions and

for each function several starting values are given.

ACKNOWLEDGEMENTS

We would like to thank Ken Hillstrom and H. A. Watts for the use of

their testing programs, and Larry Nazareth for his comments on a draft

of this paper.

REFERENCES

[1] Brent, R. P., "Some efficient algorithms for solving systems of non­

linear equations," SIAM J. Nwner. Anal. 10 (1973), 327-344.

[2] Brown, K. M., "A quadratically convergent method for.solving simul­

·taneous nonlinear equations," Purdue University Ph.D. Dissertation,

Lafayette, Indiana, 1966.

[3] Brmm, K. M. and Dennis, J. E., "On the second order convergence of

Brown's derivative-free method for solving simultaneous nonlinear

equations," Department of Computer Science Technical Keport /1-/,

Yale University, New Haven, Conn., 1971.

[4] Cosnard, M. Y., "A comparison of four methods for solving systems of

nonlinear equations," Dept. of Computer Science Technical Report

75-248, Cornell University, Ithaca, New York, 1975.

35

t
I;

1:
!.
t
~

t
I
t
t
I

!
1

i
I

36

[5] Curtis, A. R., Powell, M.J.D., and Reid, J. K., "On the estimation of

sparse Jaco~ian matrices," J. Inst. Maths. Applies. 13 (1974), 117-119.

[6] .Gay, D. M., "Brown's method and some.generalizations, with applica­

tions to minimization ·problems," Cornell University Ph.D. Disserta­

tion, Ithaca, Nel.;r York, 1975.

[7] · Gay~ D. M., "Implementing Brown's method," Center for Numerical

Analysis Report CNA-109, The University of Texas at AusHn, 1975.

[8] Shampine, L. F. and Gordon, M. K., "Solving systems of nonlinear

equations," Sandia Laboratories Technical Report SAND-75-0450,

Albuquerque, New Mexico, 1975.

><

~ -
-
-
-
-
-
-
-
-
"
"
'
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 ~

-
o
.
.
-
-
.
-
.
.
.
.
.
-
-
-
-
~
-
"
-
-
'
-
·
-
~
 . .<

-
'
~
-
-

38

C. BRENT ••••••••••••••••.•••••••••••••••.•••••••••••••• · ••• · ••••.•••••• .- ••
c
c
c
c
c
c
c

THIS SOBROUTINE CALCULATES AN OPTIMAL VALUE OF MOPT AND CALLS
BRENTM. THE PARA~BTERS ARE A SUBSET OF THOSE OF BRENTM WITH THF
EXCEPTION OF LWA AND WA :

LWA IS AN INTEGER GREATER THAN OR EQOAL TO N*N+3*N

W& IS A LINEAR ARRAY OP· LE~GTH LYA.
·C
c .. .

SUBROUTINE BRRNT(N,FCN,X,FTOL,XTOL,MAXFEV,IER,LWA,WA)
INTEGER N,MAXFEV,IER,LWA,K,MOPT .
REAL *8 FTOL,XTOL,DKP1,E~AX,ONE,ZERO
REAL *B X (N) , '·l A (L~~ A)
REAL *8 DABS,DLOG
EXTERNAL fCN
DAT~ ZERO,ONE /O.D0,1.DO/
IER = 0
IF (N .LE. 0 .OR. LWA .LT. N*N+3*N) RETTJRN
D010K=1,~

DKP1 = ONE* (K+1)
lH_(K) = DLOG(DKP1)/(N+2*K+1)

1 0 CON TI!'Ill E
EMAX = ZERO
DO 20 K = 1, N

IF (D.~BS (WA (K)) . LT. E!HX) GO TO 20
MOPT = K .
EMAX = DABS('~ A (K))

20 CONTINryE
CALL BRENTM(N,FCN,~,FTOL,XTOL,MAXFEV,ItR,MOPT,WA(3*N+1),

+ WA(2*N+1),~:A(N+1),'~A(1))

RETURN
END

C.BRENTM •.•••..••••••.••••••••••••••••••••••••••• o •••••••••••••••••••••

c
C THIS SUBROUTINE TFIES TO FIN1) h ZERO TO A SYSTEM OF N SYMULTANEOlJS
C EQtlATICNS IN N UNKNOlvNS BY BRE~T'S METHOD.
c
C ON INPUT:
c
C N IS THB NO~BER ·OF EQUATIO~ AND ONKNO~NS.

c
C FCN IS THE NA~E OF THE SUBROUTINE ~HICH DEFINES THE SYSTE~
C OF F.QU~TIO~S. TP.E USER SPECIFIES FCN BY WRITING h SUBROUTIN~
C FCN(N,K,X,FCNK,IER) WHICH COMPUTES THE K-TH COMPONENT OF FCN
C .EVALUATED AT X AND RETURNS THE VALUE IN FCNK. IFR SHOULD
C NOT BE CHANGED UNLESS THE 'lSEg_ 'f~.NTS TO TERMINATE '!'HE
C ITE~ATION. IN THIS CASE SET IE9 TO A NEGATIVE INTEGER.
c
C X IS AN ARAY OF LENGTH N WHICH MUST CONTAIN THE INITIAL
C . ESTIMATE TO THE ZERO OF THE SYSTE~ OF EQUATIONS.
c
C FTOL SPECIFIES THE FIRST STOPPING CRITERION. TERMtNATION OCCURS
C IF ALL THE RESIDU~LS ARE LESS THAN ?TOL IN M~GNITODE.
c
C XTOL SPECIFIES T.HE SECOND STOPPr NG CRI'IERION. TERMINATION
C OCCURS TP THE RELATIVE ERROR BETWEEN TWO SUCCESSIVE ITERATES
C IS LESS THAN XTOL.
c

00000010
·00000020
00000030
ooooooqo
00000050
00000060
00000070
0000008()
00000090
00000100
00000110
00000120
.00 0 00130
00000140
00000150
00000160
00000170
00000180
00·0 00190
00000200
.00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300
00000310
00000320
00000330
00000340
00000350
00000360
00000370
00000380
00000390
00 0 001100
00000ij10
000004 20
00000430
00000440
00000450
00000460
00000470
000001~80
00000490
00000500
00000510
00000520
00000530
00000540
00000550
00000560
.00000570
00000530
00000590

i

I
'
I
i

I
I
!
i
r
I

.c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c·
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

·c
c·
c
c
c
c
c
c .
c
c
c
c

HAXFEV SPECIFIES THE THIRD STOPPING CRITERION. TERMINATION
OCCURS IF THE NUMBER OF CALLS TO FCN .EXCEEDS MAXFEV.

.
MOPT IS THE NUMBER OF CONSECUTIVE TIMES THAT THE APPROXIMATE

JACOBIAN IS REUSED DURING EACH ITERATION OF ITERATIVE
REFINEMENT. MAXIMUM EFPICIENCY.IS USUALLY OBTAINED IF
l'iOPT 11AXI!HZES LOG(K+1)/(N+2*K+1) FORK= 1, ••• ,N.

ON OUTPUT:

X CON1ATNS THE FINAL ESTIMATE FOR THE ZERO OF THE.SYSTEM
OF EQtJATIONS.

l1AXPEV CONTAINS THE NUMBER OF CALT,S USED IN PRODUCING X.

IER IS SET AS FOLLOWS:

IER=O IMPROPER INPUT PARAMeTERS.

IER=1 "ABSOLUTE VALUE OF EACH RESIDUAL IS LESS THAN FTOL.

IER=2

IER=3

IER=4

IER=5

IE"R=6

IEF=7

IER=8

WORK! NG HRHS:

RELATIVE ERROR BETWEEN TWO SUCCESSIVE ITERATES
IS LESS THAN XTOL.

CONDITIONS FOR IER=1 AND IER=2 HOLD.

NUMBER OF CALLS TO F EXCEEDS MAXFEV.

APPROXIMATE JACOBIAN ~ATgiX IS SINGULAR.

ITERATION IS NOT MAK[NG GOOD PROGRESS.

ITERATION IS DIVERGING.

ITERATION SEEMS TO BE CON~ERGING BUT THE REQUESTED
ACCURACY IS TOO STRINGENT, OR THE CONVERGENCE
IS VERY SLO~ DUE TO A JACOBIAN SINGULAR NEAR
THE ITERATES OR DUE TO BADLY SCALED VARIABLES.

· Q IS AN N BY N HR~Y.
Y,Z,A ARE.LIN~AR ARAYS OF LENGTH N~

c ·.

c·

SUBROUTINE BRENTM(N,FCN,X,FTOI,XTOL,MAXFEV,IER,MOPT,Q,Y,Z,A)
INTEGER I,IER,J,K,~,MAXFEV,MOPT,N,NFEVAL,NIER6,NIER7,NIER8
REAL *8 DIFIT,DIFIT1,EPS,E?S~CH,ETA,ETA1,FKZ,FNORM,FNOPM1,

+ FONCT,FTOL,H,ONE,P05,BC,SIGMA,XNORM,XTOL,ZERO
REAL *8 A(N),Q(N,N),X(N),Y(N),Z(N) .
RF.AL *8 DMAX1,DABS,DSQRT
LOGICAL CONV,SING
DATA ztRO,ONE,P05 /O.D0,1.DO,~.D-2/
IER = 0
IF (N .LE. 0) RETPR~

C EPSMCH IS THE MACHINE PRECISION.
c

EPSMCH = 16.~0**(-13)
I

.00000600
00000610
00000620

"00000630
00000640
00000650

. 00000660
00000670
00000680

39

. 00000690
00000700
00000710
00000720
000007 30.
00000740
00000750
00000760
00000770
00000780
00000790
00000800
00000810
00000820
00000830
00000840
00000850
00 0008GO·
00000870
00000880
00000890
00000900.
00000910
00000920
00000930
00000940
00000950
00000960
00000970
00000980
00000990
00001000
00001010
0000"1020
00001030
00001040
00001050
00001060
00001070
00001080
00001090
00001100
00001110
00001i20
00001130
00001140
00001150
00001160
00001170
00001180

f , .
. '

~
!
i·
f
I ,.

t
I
t
" (.

1:
i
f,
I.
i

40

EPS = DSQRT(EPS~1CH) 00001190
c 00001200
C NFEVAL COUNTS THE NryMRER OF COMPONENT FUNCTION EVALUATIONS. 00001210
C· XNORM IS TH~ NORM OF X. 00001220
C FNORM IS THE COMPUTED RESIDUAL WITH MAXIMUM ABSOLUT~ VALUE. 00001230
C DIFIT IS THE NOR~ OF THE DIFFERENCE BETWEEN THE LAST T~O IT~~ATES.00001240
C NIER6 IS USED TO DETERMINE WHEN TO SET IER=6. 00001250
C NIER7 IS USED TO DETERMINE WHEN TO SET IER=7. 00001260
C NIER8 IS USED TO DETERMI~E WHEN TO SET IER=8. 00001270
c 00001280

NFEVAL = 0 00001290
X NORM = ZERO 00 0013 00
FNORM = ZERO 00001310
DIFIT = ZERO 00001320
NIER6 = ·- 1 00001330
NIER7 = -1 00001340
NIER8 = 0 · 00001350
DO 10 I = 1,N 00001360

XNORM = DMAX1(XNORM,DABS(X(I))) 00001370
10- CONTINUE. 00001380
c 00001390
C El-!TER THE PRINCIPAL I.TERATION. 00 001400
c 000014~0
20 CONTINUE 00001420

SING = .TRUE. 00001430
FNORM1 = FNOR!1 000014U0
FNORM = ZRRO 00001450
DIFIT1 = DIFIT ., 00001460

c 00001470
C COMPUTE THE STEP H FOR THE DIVIDED DIFFERENCE WHICH 00001480
C APPROXIMATES TH~ K-TH ROW OF THE JACOBIAN MATRIX. 00001490
c 00001500

H = EPS*D"1AX1 (XNORM,ONE) 00001510
DO 40 J = 1,N 00001520

DO 30 I= 1,N 00001530
Q(I,J) = Zf.RO 00001540

30 CONTINUE 00001550
Q(J,J) = H 00001560
Y(J) = X(J\ 00001570

4 0 C 0 N TIN 0 E . 0 0 0 0 1 58 0
c 00001590
C. ENTER A SOBIT13::RA'!'ION. 00001600
c • 00001610

c
c
c

50

DO 130 !<" = 1,~!
CALL .FCN (N, K, Y, FONCT, IER)
IF (I'SR . LT. 0) GO TO 210
NFEVAL = NFEVAL+1
FNORM = D~AX1 (FNORM,DABS (~ONC'l\ ~

COMPUTE THE K-TH ROq OF THE JACOBIAN MATRIX.

DO 60 J .,;,. K,N
DO 50 I = 1, N

'l(I) = Y(I)+Q(I,J)
CONTINUE

CAI.L FCN (N, K,Z, FKZ, IER)
IF (IFR .J,T. 0) GO TO 210
NFEVAL = NFEVAL+1
!(J) = FKZ-FONC'!'

00001620
00001630
00001640
00001650
00001660
00001670
000.01680
0000 1.6go
00001700
000017iO
00001720
00001730
00001740
00001750
00001760
00001770

·;-~·-.--

60
c
c
c
c

70

80

c
c
c

90

100
110
c
c
c

120
130
c
c
c
c

140
c
c
c

CONTINUE

COMPOTE THE HOUSEHOLDER TRANSFlRMATION TO REDUCE THE K-TH RO~
OF THE JACOBIAN MArRIX TO A MULTIPLE OF THE ~-TH UNIT VECTOR.

ETA = ZERO
DO 70 I= K,N

ETA= DMAX1(ETA,DABS(A(I)))
CONTINUE

IF (ETA .EQ. ZERO) GO TO 130
SING = • PALS E.
SIGMA = ZERO
ETA 1. = ONE/ETA
DO 80 :r = r<:,N

A (I) = II. (J) *ETA 1
SIGMA = SIGMA+A (I) *A (I)
CONTINUE

SIGMA = DSQRT (SIG1H)
I F (A (K) . • L T • Z E R 0) S I G M A = - S I G M A
A (K) = A (K) +SIGMA

APPLY THE TRANS FORM AT ION AND C) r1PUTE THE ORTHOGON.AL MATRIX Q.

DO 110 I = 1 , N
RO = ZERO
DO 90 J = K, N

RO = RO+A(.J)*Q(I,J)
CONTI~IJ'E .

RO = RO/(SIGMA*ll (K))
DO 100 J = K,N

Q (I;J) = Q (!, J) -RO*A (.J)
CONTINUF.

CONTINUE

COMPUTE ~HE NE~ SIJBITERATE.

A(K) = SIG~A*STA
SIGt-IA = FONCT/A (K)
DO 120 I = 1,N

Y(I) = Y(I)+SIGMA*Q(T,K)
CONTINUE

CON Titl"JE

COMPUTE ~HE NORM OF THE ITERATE AND THE NORM OF THE DIFFERENCE
BETWEEN THE LAST TWO ITERATES.

XNORM = ZERO
DIFIT = ZBRO
DO 140 I = 1,N

XNORM = DMAX1(X90RM,DABS(Y(n))
DIFIT = DMAX 1 (DIFIT, DABS (X (I) -Y (I)))
X(I) = Y(I)
CONTINUE

DETERMINE THE PROGRESS OF TilE ITERATION.

CONV = .FALSE.
IF (FNOR"' .LT. FlWRM1 .AND. l)IFIT ·.LT. DIFIT1) CONV =.TRUE.
UIER6 = NIER6+1

41

0000·1780
00001790
00001800
00001810
00001820
00 001830
00001840
00001850
00001860
000 0 1'87 0.
00001880
00001890
00001900
00001910
00001920
00001930
00001940
00001950
00001960
00001970
00001980
00001990
00002000
00002010
00002020

. 00002030
000020110
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00002130
00002140
00002150
00002160
00002170
00002180
00002190
00002200
00002210
00002220
00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360

42

c
c
c

c
c
c

c
c
c

c
c
c'
c

150

160.
170
c
c
c
c

180
c
c

NIER7 = NIER7+1
NIER8 = NIER8+1
IF (CONV) NIER6=0
IF (FNOR!'l . LT. FNORM1 .OR. DIFIT • LT. DIFIT1) NIER7=0
IF (FNOR~ .GT. EPS .AND. DIFIT .GT. EPS*DMAX1 (XNOR!'!,ONE)) NIER8=0

STOPPING CRITERIA.

. IF (FNORM • LT .. FTOL) IER=1
IF (DIFIT .LT. XTOL*XNORM .AND. CONV) IE~=2
IF (FNOR(1 • LT. FTOL • AND. IFR • EQ. 2) IER=3
IF (NFEVAL • r;T, MAXPEV) IER=4
IF (SING) IER=5
IF (NIER6 . GE. 5·) IER= 6
IF (NIEB.7 . GE. 3) IER=7
IF (NIEF8 • GE. 4) IER=8
IF (IER • NE. 0) GO TO 210

ITERATIVE REFINEMENT IS ONLY USED IF THE ITERATION IS CONVERGING.

IF (.NOT. CONV .OR. DIFIT .GE. PO) *XNORM) GO TO 200

START ITERATIVE REFINEMENT.

IF (MOP'!' .EQ. 1) GO TO 200
DO 190 H = 2,MOPT

F'NCP.M1 = FNOR!1
FNORM = ZERO
DO 170 K = 1, N

'CALL FCN(N,K,Y,FONCT,I'SF)
If (IE R • LT. 0) GO '!'0 2 1 0
NFEV A L = NFEV AL+ 1
FNORM = D~AX1 (FNORM,DABS(FONCT))

ITERATIVE REFINEMENT IS TERMINATED IF IT DOES NOT .
GIVE A PEDUCTION OF THE RESIDUALS OR IF A(K) IS ZERO.

IF (FNORM .. LT. FNOR~11 • AND. A (K) • NE. ZERO) GO TO 150
FNORM = FNORM 1
GO '!'0 200
CON't'INUE
StG MA = F'ONC'r/ A (K)
no 160 r = l,N

Y(I) = Y(I)+SIGMJI.*Q(I,K)
CONTIN11E

CONTINUE

COMPUTE THE NORM OF T~E ITERJI.TE AND THE NORM OF THE DtFFERENCE
BETWEEN TH~ LAST T~O ITERAlES OF THE ITERATIVE REFINEMENT.

XNORM = ZERO
DIFIT = ZERO
DO 180 I = 1, N

XNOR11 = DMAX1(XNO?l'l,DABS(Y(I)))
DIFIT = Dr.AY.1(DIFIT,DP..BS(X(I)-Y(I)))
X(I) = Y(Il.
CONTINUE

STOPPING CRITERIA FOP ITERATIVE REFINRMENT.

.... ...
·. ·.~··

00002370
00002380
00002390
00002400
o·ooo·2410
00002420
00002430
00002440
000021.150
00002460
00002470
00002480
00002490
00002500
00002510
00002520
00002530
00002540
00002550
000 0 2560
00002570
00002580
00002590
00002600
00002610
00002620
00002630
00002640
00002650
00002660
00002670
00002680
oooo26go
00002700
0000 2710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
00002810
00002820
00002830
00002840
00002850
00002860
00002870
000 0 2880
00002890
00002900
00002910
00002920
00002930
00002940
00002950

~ ~

r .

r
c

1:

~·
1: ,.

190
I
' 200 I
I c I
i. c

I
c

-21 0
f

IF (FNORM • LT. FTOL) IER= 1
IF (DIFIT .LT. XTOL*XNORM .AND. CONV) IER=2
IF (FNORM • LT. FTOL • JI.ND. IER • EQ. 2) IER=3
IF (NFEVAL • GT. MAXFEV) IER=4
IF (IER • NE. 0) ·Go TO 210
CONTINIJE

CONTINUE

END OF THE ITERATIVE REFINEMENT.

GO TO 20
CONTI NUB
MAXFEV = NFEVAL
BETURN
END

00002960
00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050

·oooo3o6o
00003070
00003080
00003090.
00003100
00003110

43

r
I

I
I
f

f
i
I

I
I
I
l
!

t

I
!
I·
t
f

' f
,.,

I
l ,,
I

l c
·;
f:

f
I'

I
190 I

r 200
I c
l c
I

l c
I 210 I
I
I
I.
!

\
'

IF (FNORM .LT. FTOL) IER=1
IF (DIFIT • LT. XTOL*XNORM • AND. CONV) IER=2
IF (FNORM • LT. FTOL .,AND. IER • EQ. 2) IER=3
IF (NFEVAL .GT. MAXFEV) IER=q
IF (IER . NE. 0) GO TO 210
CONTINTJE

CONTINUE

END OF THE ITERATIVE REFINEMENT.

GO TO 20
CONTINUF:
MAXFEV = NFEVAL
RETURN
END

00002960
00002970
00002980
00002990
00003000
00003010
00003020.
00003030
000030qO·
00003050

'00003060
00003070
00003080
00003090,
00003100
00003110

1~3

