L e e e e e e Mk e et it e T D R

- 'Y 4
RFOFIVFN RY TIC FFR 9 n1979 ANL-AMD-TM-286

r\/‘

ARGONNE NATIONAL LABORATORY

MASTER Argonne, Illinois 60439

Applied Mathematics Division

NUMERICAL COMPARISON OF THREE
*
NONLINEAR EQUATION SOLVERS

by
-
NOTICE Jorge J. More
This report was prepared as an account of work r
sponsored by the United States Government. Neither the Mj Chel Y y COsna rd

United States nor the United States Department of
Energy, nor any of their employees, nor any of their

or their employ makes
any warranty, express or implied, or assumes any legal
liability or resp ility for the ac s p
or useful of any i i pp product or |-

process disclosed, or represents that its use would not
infringe privately owned rights.

Technical Memorandum No. 286

February 1976

This report intended primarily for internal distribution.

*
Work performed under the auspices of the U.S. Energy Research and
Development Administration.

+ 7 .
Present address: GCrencile University, Grenoble, France.

DISTRIBUTION OF THIS DOCUMENT }S UNLIMIEED

4

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Department of En-
ergy, Argonne Universities Association and The University of Chicago, the University employs
the staff and operates the Laboratory in accordance with policies and programs formulated, ap-

proved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota The University of Texas at Austin
Indiana University University of Missouri Wasliington Univelsily

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored
by the United States Government. Neither the United States

not the United States Depaitinent of Bueirgy, nuor auy of their
employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the ac-
curacy, completeness or usefulness of any information, ap-
paratus, product or process disclosed, or represents that its
usc would not infringe privatcly-owned rights. Mecntion of
commercial products, their manufacturers, or their suppli-
ers inthis publication does notimply or connote approval or
disapproval of the product by Argonne National Laboratory
or the U. S. Department of Energy.

s .

TABLE OF

ABSTRACT. v v o o o o v v e o

1.

7.

INTRODUCTION. « & o & &+ o« o &
NEWTON'S METHOD « + .

BRENT'S METHOD. + & & & « .+ .

‘BROWN'S METHOD.

ALGORITHMIC CONSIDERATIONS. .
NUMERICAL RESULTS

CONCLUDING REMARKS.

ACKNOWLEDGEMENTS.

REFERENCES. . + « « « + + + « . .

APPENDIX: + v v v v v v o v o o W

CONTENTS

.
. . . .
. .) . .
.
.
. . a .
.
.
.
. . . .
.

10
16
22
25
31
31
31

33

s T e b

~ THIS PAGE
WAS INTENTIONALLY
- LEFT BLANK

(>

NUMERICAL COMPARISON OF THREE
NONLINEAR EQUATION SOLVERS

by

Jorge J. Moré and Michel Y. Cosnard

ABSTRACT

This paper is concerned with the numerical solution of n
nonlinear equations in n unknowns by the methods of Newton,
Brown, and Brent. The algorithms are described in detail and
their implementations are compared on a set of test problems.

It is found that a variation of Brent's method seems to perform
best in a large number of cases, and a listing of an implementa-
tion of this method appears in an appendix.

1. INTRODUCTION

v
This paper is concerned with the numerical solution of n nonlinear

. . n . . .
equations in n unknowns. If R denotes real n-dimensional Euclidean space

and F:R" + R" is a function with domain and range in R" then this problem

can be stated .in vector form as F(x) = 0 or in component form as

(1.1) £,(x),eesx) = 0, 1 <is<n.

‘We restrict ourselves to three algorithms which only require the evalua-

tion of F and which have second order convergence: Newton's method,

Brown's method,iand Brent's method.

The.best known method for the solution of (1.1) is Newton's method{
In 1966 Brown [2] proposed a new method which in a manner reminiscent of
Gaussian elimination, reduced an appropriate Jécobian to lower triangular
form. The method was somewhat surprising since it had second order con-
vergence [3] but only used (n2+3n)/2 component function evaluations per
iteratioﬁ. Although this was clearly an advantage over'Newton‘é method
and the numerical results weré promising, the method did not have a clear

algorithmic description and hence, was hard to implement.

T SR B R S SR SR S

o “B""J g e o v e e

In 1970 Brent [1] presented a similar method which reduced an approx-
imate Jacobian to lower triangular form by a sequence 6f orthogonal
transformations, again at a cost of only (n2+3n)/2 component function
evaluations per iteration and with second ordgr convergence. Brent did
give'a clear .algorithmic description of his method -and suggested that.

Brown's method could be described similarly, but he did not derive his

_ algorithﬁ.

Then, in his Ph.D. dissertation, David Gay [6] took up.ﬁrent's sugges-—
tion and gave a clear algorithmic description of Brown's method. Perhaps
more importantly, he showed that the original description 0of Brown's
method led to O(na) arithmetic operations per iteration and n2/2 + 0(n)
storage but that the revised version could be implemented in O(n3) arith-
metic operations and n2/4 + 0(n) storage. In addition Gay derived Brown's
and Brent's method from a unified point of view and thus showed that these
two methods were members .of a class of methods which had second order

~ . 2 . , . .
convergence and only required (n"+3n)/2 function evaluations per iteration.

In a receﬂt paper, Gay [7] discussed the implementation of several
variations of Brown's method and of one version of Brent's method. However,
he only tested his implementations with starting vectors which were fairly
close to the solution, and in this case the numerical performance of these
two methods does not usually differ too much. MofedVer; since the main
purpose of Gay's paper was to test different variations of Brown's method,

the resulting codes were mainly experimental.

The codeé that we have implemented can only be considered local
methods since they don't use any techniques which attempt to gdéraﬁtee
global convergence. It could be argued that our codes should have used
some such technique, but this would have brought a host of other problems.
For example, if we had insisted on a reduction of the sum of the squares
of the residuals at each iteration, then this technique is dependent on
the scaling of F, may slow down the iteration, and may cause convergence
to a point at which the equations are not satisfied. Moreover, we also
have to decide how to achieve the desired reduction. As. they stand, our
codes do not have any of the above proble%s, and the best of them seem to

have a large region of convergence. However, if the iteration is not

progressing at a satisfactory rate then we attemﬁf to diagnose the situa-
tion and terminate the iteration with an appropriate message. The
techniques that we use for this are based in part on the ideas discussed

by Shampine and Gordon ([8].

’

"In this papér we have also given a description of the algorithms of

Brown and Brent which leads naturally to their implementation. This is

done because it seems that the lack of popularity of these two algorithms

is due to the fact that they have not been properly described,

There is aiversion of Brown's method which is available in the IMSL
library, but this code is not suitable since it uses O(na)‘arithmetic
operations per iteration. The version of quwn's method which we have
used in this paper only needs 0(53) arithmetic operations per iteration,

and in the tests done by Cosnard [4], usually performs as well (and in

"some cases much better) as the IMSL version. There are other versions of

Brown's method, but our code seems to'perform just as well as the best of
them -- the best version we have seen was written by H. A. Watts of Sandia
Laboratories but this code also uses 0(h4)~arithmetic operations per

iteration.

The testing done by Cosnard [4] also convinced us that Brent's method
is more stable than Brown's method and therefore, that it would be profit-
able to write a code based on .Brent's method for possible use in a

subroutine library. This paper describes such a code, and the numerical

results presented here show that it performs amazingly well in a large

number of cases.

s

The outline of our paper is as follows.'FOn Séctioﬁ 2 we describe
Newton's method.and some of its variations. This secfién motivates the
introduction of Bféwn's and Brent's méthod and in it we point out that in
some situations.Newton—like methods are much more desirable than either
Brown's or Brent's method. On the other hand, our numerical results indi-
cate that.a simple minded implementafion of Newton's method is not nearly-’

as stable as a corresponding implementation of Brown's or Brent's method.

Section 3 contains a derivation and description of Brent's method.

The derivation presented here should make clear why Brent's method is able

et A R g 2 e SR ke S i X A s N B e BN PR el ol Y a3 S b ame] &L 4 - v i o - — e —

.

e MR e i s

e Y,

to retain second order convergence while using almost half the number of
function evaluations (per iteration) of Newton's method. Section 4 leans
heavily on the material of Section 3 to give a brief derivation and des-
cription of Brown's method. In this section we also emphasize the
differences between the algBrithms of Brown and Brent. Section 5 contains
a discussion of algorithmic details such as cdnvérgence criteria and
techniques for detecting the divergence of the iteration. Finally,

Section ¢ presents the numerical results.

2. NEWTON'S METHOD

The methods proposed by Brown and Brent were motivated by a desire to
improye Newton's method. Of course, there are many situations in which
Newtoﬁ's method is more desirable, and in this section we briefly describe
some of the variations of Newton's method and point out when one of these

variations is likely to be advantageous.

If F'(x) denotes the Jacobian matrix (evaluated at x) of the mapping
F:R" -+ R" then given an iterate x, Newton's method generates the next

iterate x+ by the following algorithm:

(2.1) (a) Solve the linear system F'(x)Ax = -F(x) for the

correction Ax.

. +
(b) Set x = x + Ax.

If the linear system in (2.1)(a) is solved by any of the standard direct
methods then the Eomputational reqdirement of one iteration of Newton's meth-

. . ; 2 . .
od is (assuming the evaluation of F'(x) costs n” component function evaluations)

2 o .
n +n component function evaluations

0(n3) arithmetic operations

ﬁz + O(n) storage

Since the evaluation of the Jacobian matrix ie usually quite expensive,

Newton's ‘method is sometimes modified so that the Jacobian is only

St e N

Tt et

evaluated at fixed iﬁtérvals; . This leads tq'tﬁe.foilowing algorithm: -

(2.2) (a) Set zy = x

(b) For 2 = l,...,m;

(bl) Solve the linear system F"(x)Aé2 =.—F(zz) for-
the correction Azé. v
(b2)‘ Set Zo1 = % +,A;£.

- " |
(c) Set x = z 1

" The motivation for this approa¢h~is based on the fact that if either the

iterates or the Jacobian matrices are not ghanging too rapidly, then

F'(x) is a good approximation to F’(zz) and therefore (2.2) is "almost"

Newton's method. These assumptions do not usually hdld far away from the -

solution and then (2.2) with m > 1 can cause divergence in cases where

the unmodified (m = 1) method was convergent.

Even thougﬁ the above modification may reduce the number of Jacobian
evaluations needed for convergence, the determination of the Jacobian
matrix can still be a costly‘and error-prone task. Thus, in the above two
algorithms F'(x) is sometimes replaced by an approximation A(x,h). If

this approximation is determined by forward differences, then

- < <
(2.3) o A(x)ei [F(x+hiei) 'F(x)]/hi, 'l-_ 1< n,
for some ﬁaramétér hi~= hi(x) and where e denotes the_ith-column of the
identity matrix. A good choice for this parameter seems to be

(2.4) l - Ahi-= € max{[xi|,l} ,;

where ¢ = (macheps)? and macheps is the smallest floating point number for

- which 1 +zmacheps > 1 1in the precision being used.

Since in this paper we are interested in algorithms that only require
the evaluation of F, we implemented a discretized Newton's method. 1In
view of the above, one iteration of this algorithm consists of the follow-

ing steps.

10

(2.5) ' (a) Construct A(x) as defined byA(Z.B) and (2.4).

() Solve the linear system A(x)Ax = -F(x) for the
correction Ax.

(c) Set X = x + Ax.

There are several poidfs in which Newton's method compares favorably
with either Brown's or Brent's method. One of the most important omes is
that Newton's method is able to take into account the structure of the
problem. Suppose, for example, that F'(x) is tridiagonal. In this case
the arithmetic overhead of Newton's method is 0(n) and it is possible to
estimate F'(x) with finite differences in four vector function evaluations
(see the technique in [5] for general banded systems). Of course, the
storage can also be reduced to O(n). In sharp contrast with the above
situation, if F'(x) is tridiagonal, there is no reduction in overhead for

either Brown's or Brent's method.

Another point which is sometimes important is that Brown's and Brent's
‘method require a subroutine which, given a subscript k, will compdte the
k-th component fk(x) of F(x). 1In some apﬁlications, computing fk(x) for
some k is almost as expensive as computing F(x) and in these cases Newton's

‘method is much more attractive.

3. BRENT'S METHOD

Newton's method can be derived by a linearization argﬁment: If

F:_Rn -+ R" is linear, then
F(x") = F(x) + F' (x) (x -x) , -

' + et o _
and since we want to choose x so that F(x) = 0, it is natural to require

that
G.1) 0 = F(x) + F'(x) (x -x)

Of course, F'(x) can be replaced by an approximation, and in this case

(3.1) can be written as

N
.
IA
=

where a, is an approximation to Vf, (x). Brent's method is very closely

3]

related to this approach to-Newton's method.

Given an iterate x, Brent's method generates the next iterate x by

the following algorithm:

(3.2) . (a) Set y, = %

(b) For k =1,...,n let Vsl be the solution of
F(y) +a(y-y) =0, 1<j=<k
J 3 J J .

which is closest to yk.

+
(c) Set‘x = Y41

. , + . .
Following Gay [6] we will refer to x and x as major iterates and. the
L + .) .
computation of x from x as a major iteration. Similarly, the computation

from Yo is a minor iteration and y,...,y are minor iterates.

°f Vi1 T n+l |
In the above algorithm aj is meant to be an approximation to ij(yj).

0f course, this description is not complete; to do this we must specify

how to compute Py where

(.3) kel T Yk T Py

and how to compute the approximations aj. For the moment we assume that

al;...;ak are given and show how to determine Py -

The definifiéh of Y1 and equation (3.3) imply that
T - T
- =a =f (y,) +a.(y -

and thus, by the definition of Yy

(3:.4) : a.p, = 0, 1<j <k, -ap = -fk(yk) .

11

£ g N tpme

.
A i e T g — B O T Pemem e Sa ey p

12

1f fk(yk) = 0, then clearly P = 0 and thus Yigyp = Yo SO we assume that
fk(yk) # 0. To find the vector of minimal length which satisfies (3.4)

suppose for the moment that we have an orthogonal matrix Qk+l such that

a1 ol 0 0
X . ¢
(3.5 . Qk+l = . .
R T .] . .
..ak.4 b_x X ok 0 0]

‘and that oy #0 for 1 < i < k. Later on we will show how to generate Qk+l

efficiently. Since

T _ , T T

it follows from (3.5) that to satisfy a';:pk =0 for 1 < j < k we must have

. .
3:©) UsaPic = Loy

where ej is the j-th column of the identity matrix. Also, agpk = -fk(yk)

implies that

T _ N
P = oMy = ~H)

Thus N = —fk(yk)/ok. Since Meaps® s sNy are othgrw1se unrestr;?ted, apd :
since ' : C ‘ : o
) no, j

e [0 = 1 ni, :

to minimize llpk||2 weset.nk_*‘l,...,nn to zero. Thus from (3.6),

;n.ﬂ p:_fl_c_(_y_kl'q e \ . . ’ N
P T Mkt 1%k . k+1°k ~ . i

It follows that

S A
Yl T Yk oy Ut Bk
We have now shown how to‘cagfy out the iteration provided we have an

orthogonal matrix Qk+1 which satisfies (3.5). To complete the.description

of the algorithm we indicate how Qk+l can be computed efficiently.

We can assume that at the beginning of the kth iteration we have an
orthogonal matrix Qk such that (3.5) holds with k replaced by (k-1). Of

course, Ql is any orthogonal matrix. To obtain Q which satisfies (3.5),

k+1

compute an orthogonal Uk of the form

(3.7) - U, = |eimemm U

(aQ)U (}: o0 3X,0 O"‘ O)
k k k ’ 3 ’]:’ 2 L

The matrix Uk-can be either a single Householder matrix or the product of
(n-k) Givens rotations. In either case it should be clear that Qk+l =

QkUk satisfies (3.5).

At the moment it seems that to carry out Brent's method it is necessary
' ’ - . : 2 .
to compute S RRETLN and that this requires n +n component function evalua-

tions. To reduce this requirement we make two observations:
1. The matrix U

k_only depends on the last (n-k+1) components of

_ T
A T Q- |
;) - T s . T
2. The.vgctpr ay _.Qk?k is‘an approximation to Qkak(yk)'
"In view of these two femarks, it follows that it is only necessary to
compute the last (n—k+l)‘componénts of an approximation Ek to Qin(yk).

- This can be done by setting

13 -

14

R
o o .
(3.8) == _ ¢

% Ty |G Qe) - £ ()

\if(yk+thken) B fk(ygz/

where the first (k-1) components of Ek have been arbitrarily set to zero.

In analogy with (2.4) the parameter h is given by R .

(3.9) h = ¢ max{llleﬁ 1)

where, as before ¢ is the square root of the machine precision.

The above discussion leads to the following description of a minor

iteration in algorithm (3,2).

(3.10) " (a) Compute 3 by (3.8) and (3.9).

(b) Determine an orthogonal U
Ty - g ol
k 'k k k*

i °of the form (3.7)

such that a
(c) Let Qk+l = QkUk and set

£.0,)

Vel T Vi T T O, Q18K

At the end of. a major iteration we have produced an orthogonal Q+ = Qn#l

+
and scalars ¢

1,...,0: such that if I]yk—xrl‘i 6'for kfl,..;,n theﬁ(

F'(x)Qt = L + E

. o+ + . ‘
where L is a lower triangular matrix with Op»e++»0, ON its diagonal .and

[{E]] = 0([[h|| + 6); if F is linear then E = 0.

In analogy with (2.2) it is possible to réuse the information in Q+

and the o+'s; the computation of z fromlzpv in (bl) and (b2) 6f (2.2)

2+l
would be replaced by the following algorithm.

S R

(3.11) (a) Set~y1.= ;2 |
(b) For'k =1,...,n let

B OWN &

R TS R S e
(¢
k
(c) Set Zoe1 = Yot

Thus, a combined algorithm in which information is being reused would con-=

‘sist of the following steps:

(3.12) (a) Set ¥y = X and Qi = 1.
(b) For k = 1,...,n use algorithm (3.10) to compute

Y1 from Vi

(e) Set 2, f Yol
(d) For & =1,...,m-1, use algorithm (3.11) to

compute Z041 from z,-

~ +
'(e) Set x = z_.

We again warn the reader that the reuse of information may cause divergence;

we will discuss this point further in Section 6.

- It should be clear.that one major'iteration (algorithm'(B.lO) for
Kk = 1,...,n) of Brent's method requires (n2+3n)/2’component function
evaluations. In our implementation of Brent's method‘Uk is determingd as
a Householder matrix. The computation of the Q's then fequires n~ + O(nz)
multiplicétions/divisions_and the same number of'additiqns/subfracfions -
plus n square roots. In the cOmputationAof the a's it is possible to
avoid the multiplication by h by letting Ql be h times an orthogonal
matrix; thus the h factor is absorbed in the’Q‘s. However, this leaves
n3/2 + O(nz) additions for the remaining of tﬁe computation; We summarize

this discussion as follows: The, implementation of Brent's method requires

2
n + 3n : o .
— component function evaluations
O(nJ) arithmetic operations

n2 + 0(n) storage.

15.

T n. e ey 30 % i e 43 = A = mress o e = ey ot «

S e . e -

16

Brent [1] has observed that if Q = I then the storage can be reduced
to n /2 + 0(n) by using Givens rotatlons instead of Householder rotations.
This follows from the fact that in this case QP is of the form

(3.13) Q=1 Q ;| Q!

where Qk 9 is an n by (n-k+l) lower Hessenberg matrix. If we use the three-
multlply, three-add Givens rotation then the computation of the Q s requires
‘the -same amount of arithmetic as with Householder matrices but n /2 + 0(n)
square roots. However, the computatlon of the a's now only requires

n /4 + O(n) additions/subtractions. It thus seems that the implementation

with the Givens rotations requires less overhead. We point out that Gay

- {6] has an alternate implementation of Brent's method with the same storage

and arithmetic requirements as the one based on Givens rotations but which
uses Powell's orthogonalization procedure. In our impléementation we opted

for Householder matrices because of their simplicity and elegance.

There is one last point in connection with Brent's method that deserves
attention. At the beginning of each major iteration there are at least two
clear choices for the matrix Ql; we can set Ql = 1 or let Q1 be the Q avail-
able from the end of the previous major iteration. The choice Ql = I is
necessary if we are to use Givens rotations, and has the advantage that it
minimizes the departure from orthogonality of the Q's. Brent [1] favors

the latter choice, but there does not seem to be any clear advantage to

" this choice .and our numerical experiments bear this out. Thus, as indi-

cated in (3.12), ourAimplementation sets Ql = TI.

4. BROWN'S METHOD

Brown's method is very similar to Brent's method, so in this section.
we essentially repeat the arguments of Section 3 but pointing out the

differences between the two methods.

A major iteration of Brown's method consists of the following sequence

of computations:

it Al L

LR A S R i A M

TR

(4.1) T (a) set y, = %

(b) For k = 1,...,n, let i1 be the solution of

e T ‘
f(y.) + a.(y-y.) =0, 1 <3<k
] yJ) J(y yJ) 0 <3<

which "naximizes" the number of zero elements in

Yo T e
+
(c) Set x _jyn+l'
In general(;t is very difficult to determine y, ., SO that Vil ~ yk.has
the maximum number of zero elements; however, we show that if we assume

that no unlikely cancellations occur, then this is very easy to do.

We first obtain an expression for Py = yk+l—yk; Just as in Brent's

method, Py satisfies
(4.2) | alp =0, 1<j<k, ap =-F@)
: j o - ’ kFk kk

Assume now that we have a nonsingular matrix Rk+1 such that

R _] .
al cl 0 o‘ - . .. - . 0
- . b4 . .
(4.3) . Rk+1 =
. T . . - . L]
l;ak_ me X .ok 0 . 0_

and that o # 0 for 1 < i < k. Since

T T -1
43Pk (aij+1)(Rk+1pk)

it foiiows,'as in Section 3, that to satisfy (4.2) we must have

(4.4) RaPk = L "% M T T

%k

Components "k+l""’“n are otherwise unrestricted, so we now show that

17

18

‘holds with k replaced by (k-1). Of course, R

if Rk+l is suitably chosen then setting these components to zero

"maximizes'" the number of zero elements in P

The construction of Rk+l assumes the existence of Ry such that (4.3)

1 is an arbitrary non-
singular matrix. Now determine an elementary permutation matrix Pk'

and an elementary upper triangular matrix Tk such that

T _) :
akPka = (Xy.v.3%,0,,0,...,0)

where Ok is the maximal element- (in absolute value) of ak. For future

reference recall that T, is of the form

k
(4.5)' | | Tk =1 - ekwi |
W = (0,{..,0,wiii,...,wék))
It follows that if Rk+1 = RkPkTk then Rk+l satisfies (4.3). We -now show

that if the rows of Rk+l are .suitably permuted then Rk+l is an upper

triangular matrix of special form.

Lemma. If Ri = I then
i i
E
. Ly 0 5

]

= fmm————— S
RN S 1
. 1
I

0 ' Tax
|
]

where Lk is a unit upper triangular matrix of order k and In—k is the

identity matrix of order n-k.

Proof. The result holds for k = 1 since, by assumption, Rl = 1. Assume

by induction that

——— e —

Pk—l""'Ple = |

-] e

e S G, T,)

19

Then P : ‘ . ' S R
|
i
. : A
] My ke
i
L e ? --------
I
iIn—k+l
' e
where Sk_l‘ié Sk—l with two columns interchanged. WNow (4.5) implies that
(4.7) P e .eP.R .. =P ...P.RP. - v
‘ PRI T 75 NS "Rl R 1l "
where

vk_f Pk...PlePkek .

The result now follows since v, has zeroes in the last (n-k) positions and

k
v has zerces in its first k positions.

With the Lemma it is easy to show that setting nk+l""’nn to zero in
(4.4) "maximizes" the number of zero elements in Py In fact, from (4.4)
and the Lemma, '

T

:(Pk"fPl)pk ='(x"'f’xfnk+l’7f'?nn)

Thus setting nk+l""’nn to zero "maximizes' the number of zero elements

in Py~
It should be. clear, inlanalogy with Brent's method, that we need not

compute a

e 7 . 0 \\\

0

K’ but instead we compute

4.8 E = | 5O Re) - £)

£ O Reen) - fk(ygi/

RTTEC L o = » PEENEL o T SN 7 1. T .. W S d et 2" 4 e e T A W bt e g

L AT, el

20

In our implementation of Brown's .method the parameter h in (4.8) is also

given by (3.9). An alternate strategy would first normalize the vectors

-Rkej; that 1s compute

ey
£y, + b)

TRye

where h is given by (3.9). This would require an additional‘O(h3) arith-

metic operations and would not improve the algorithm unless the norms. of
the Vectors'Rkej deviate drastically from unity.

The above discussion leads to the following summary of a minor itera-
tion of Brown's method:

. by (4.8) and (3.9).

(4.9) (a) Compute a
(b) Determine an elementary permutation Pk so that EEPk has

its maximal element in absolute value in the kth position.

(c) Determine an elementary uppér triangular matrix‘Tk of

. T T
the form'(4.5) such that akPka =08

(d) Let Rk+1 = RkPka and -set
Vil = Yk o %

Thus a major iteration of Brown's method consists of ‘the following steps.

(4.10) ‘(a) Set yi = x and Rl = I.
-'(b) For k= 1,...,n, use algorithm (4.9) to compute Vi1

. from Yy *

. +
t(c) Set x = Yo+l

At the end of a major iteration we have produced a matrix R = R_n+1 and

scalars OI,...,o: such that if ||yk—xl! <6 for k = 1,...,n then

F' ()R = L+E

U

Lt G e

VnEm et fenaen e s ni
“h . *

s S A 2R i T S A

rne ey

rtel

S O o A R S s e s T T e

21

; Lo + + . .
where L is a lower triangular matrix with Gysee-»0 0N its diagonal and
[e]]
Brent's method this information can be reused and the resulting algorithm

would just be (3.11) with Q+ replaced By‘R+.

O(||h|| + §); if F is linear then I % 0. Of course, just as in

It is more difficult to implement Brown's method than Brent's method
because of the particular structure of Rk+1’ The Lemma of this section

shows that it is only necessary to store the matrix S, which appears in

(4.%) and since this is ak by (n-k) matrix, the stonge will not exceed

n2/4. In our implementation of Brown'é method we have decided to store
_Sklby rows in a vector u(+). Thg information contained in Pk.';;.Pl is

stored in a vector mperm (*) by requiring that mperm (i) = j if and only

k°...-Pl is unity.

if the (i,j) element of P
‘With the above information it is not difficult to carry out Brown's
méthod. The reader should verify that the most expensive parts of a ‘
minor iteration are the calculation of Sk from Sk—l and the formation of
the vectors Yy + thej. The -first task requires k(n-k) multiplications/
_divisions and the same number of additions/subtractions; the second task
requires (since the multiplication by h can be avoided as in Brent's
method) k(n-k) additions/subtractions. Thus one major iteration of

Brown's method requires

n2+3n
2

component function evaluations

. 0(n3) arithmetic operations
n2
41Ij+ O0(n) storage
If we assume that multiplications and additions each costs one unit of
time, then a detailed count shows that the overhead of Brown's method
depends on 1/2 n3 while that of Brent's method depends on 5/2 n3. If
the functions are easy to evaluate then this overhead may dominate and
all other things being equal, Brown's method would be the most efficient
method. However, this is not the éase,in our numerical examples; on

problems which require the same number of function evaluations, the

computing times for both methods did not differ by more than ten percent.

TNl et LB L PR et A AN S e W e b v T JREY Ny S, \ SRR L T S S . kS e
- b Qe AP B e G 2 2 A R b T SR NSO By il

22

5. ALGORITHMIC CONSIDERATIONS

Before an algorithm for the solution of nonlinear equations is
completely defined, it must decide on a course of action when faced with

one or more of the followiﬁg_préblems:
(a) Convergence criteria.
(b) Laék of satisfdctory progress or divergence of the iteration.
(c) Requested accuracies unreasonably high.
(d) Singularity of the approximate Jacobian.
(e) Léck of a solution.

All of the above problem, and the algorithms of the three previous
sections are affected by thevscaling of F and/or x. A change of scale in
F corresponds to considering the scaled mapping F defined by ﬁ(x)= LeF(x)
where I is a diagonal matrix with positive diagonal entries. It should
be clear that such a change in scale leaves invariant the iterates. in
all of the three algorithms considered. 1If we consider a change of scale
in x so that ﬁ(x) = F(Zx) then the solﬁtion is changed from x* to E-lx*.
A highly desirable property for an iterative method would then be that

!

if Ixy = X, then Exk =% for k Z'lf However, no nonlinear equation sol-

ver seems to have tliis property.

We now turn to a discussion of problems (a) through (e) mentioned at

the beginning nf the section.

(a) The convergence criteria depends on a measure of the residuals
and a measure of the relative error between consecutive iterates. For

Brown's and Brent's method define
(5.1) . FNORM = max{|£, (y,)|: 1 < k < n}
while for Newton's method

.2 FNORM = max{|f, (x")[: 1 < k <n} .

T AWl T Lt

I TIRY FUR A Wi il

AENERACEE A A A

For either of the three methods we also define
(5.3) DIFIT = ||x"-x||_, xwomrM = ||x"|]_ .

If the user provides two pé}ameters, FIOL and XTOL then the subroutines

will stop if either

(5.4) FNORM "< FTOL
or
(5.5) " DIFIT < XTOL-XNORM .

The first criterion is dependent on the scaling of F and thus should be
used with care. Criterion (5.5) usualiy guarantees that the components

of X#Ahave —loglO(XTOL);significant digits as approximations to the corres-
ponding components of x . Of course, (5.5) cannot guarantee any agreement
for the components which are much smaller than XNORM, but the fast conver-
gence of the iteration does force quite close agreement. Note that there
are at least two cases in which (5.5) may fail. It will probably fail

if the solution is at the origin, but in this case 'the iteration will

stop because the requested accuracy is too high; see the discussion under
(c). Criteria (5.5) can be satisfied at a point far away from the solu-
tion if at that point the derivative is large relative to the residuals.
This problem can usually be avoided'by requiring that both FNORM and D1FIT
have decreased from the previous iteration, and this is done on the

implementations.

(b)' To measure the progress of the iteration we monitor FNORM and
DIFIT as éefinéd by (5.1), (5.2), and (5.3). If FMORM and DIFI!l increase
duriﬁg three consecutive iterations thén we terminate the iteration since
this indiéates that the iteration is diverging. However, the iteration
is-almoét ceftaiﬁly not making good progress if at least one of FNORM
and DIFIT'increases, 50 if'thié happgns during five‘consecutive iterations,

then we terminate the iteration for lack of good progress. The user

23

iy

24

Vil T Yk

'beéause of a diagnosed divergence'then this will probably lead to over-

flow prdbléms. If it was terminated for lack of good progress then
restarting the iteration may lead to convergence, but this has not

happened too often; a better strategy is to choose another starting point.

(c) We only attempt to detect unreasonably high requested accuracies

in the well-scaled case. 1In this situation we can expect that at best

: : : + . Co
l[F(x)]l ~ macheps or llx -x|| ~ macheps -][xll. Thus we test whether
(5.6) A FNORM < ¢ or DIFIT < cemax{XNORM,1} ,

1
where € = (macheps)é, and if either of these inequalities holds on four

consecutive iterations then we exit with an indication that the requested

accuracies are too stringent. Note that if the convergence is slow then

even reasonable values for FTOL and XTOL may be diagnosed as being too
stringent. Thus test (5.6) will also detect slow convergénce (which is
usually due to a Jacobian singular near the iterates or to bad scaling).

Also note that the iteration may stop with an indication of stringent

accuracies just because XNORM §_€/2 on five consecutive iterations. Thus

we have imposed an absolute convergence criteria on the user. However,

because the convergence is usually very fast, it is highly unlikely that

this will happen unless the solution is at .the origin.

(d) Consider first singularity of Llie approximaté Jacobian in
Newton's method. If we . are solving the linear system in (2.1) by Gaussian
elimination, -then singularity is detected by a zero pivot. Attempting
to detect sipg@iarity by a pivot pk which is small relative to the size
of the matrix and the precision of the computation leads to difficulties
when F:is badly scaled. 1If Py = 0 then we replace Py by macheps .
max{|[A]], 1}.

) In Brown's or Brent's method singularity of the approximate
Jacobian is detected when Oy = 0 for some k. 1If o, = 0 then we set
and continue the iteration. If oy = 0 for k =1,...,n, then

we exit with an indication that the approximate Jacobian is singular.

S R G A e

IR TR S I ISTY 14 @ ST Ve ey

(e) The lack of a solution in the‘problem will almost invafiabiy
lead to problem (b), but it is always possible for the iteration to
oscillate about a point at which the Jacobian is singular and the equa-
tions are not satisfied. However, this did not happen in our tests

even with a highly artificial example such as f(x) = x2+l.

6. NUMERICAL RESULTS
We now present numerical results for four subroutines., 'The first
three, NEWTON, BROWN, and BRENT are just implementations of algorithms

(2.5), (3.12) with m = 1, and (4.10), respectively. The fourth one,

BRENTM, is a modification of BRENT in which the Jacobian is reused on

_some'iterations; that 1is, algorithm (3.12) for some m > 1. Before BRENTM

is completely defined we have to decide when to reuse the Jacobian and

for how long.

The idea of reusing the Jacobian is only worthwhile in the latter
part of the iteration; if it is used in the early stages of the iteration
ﬁheiperformance of the original algorithm invariably deteriorates. Thus
the Jacobian is only reused to refine the solution in a manner very similar

to iterative refinement.

After some experimentation we decided to execute the iterative re-
finement (step (d) of algorithm (3.12)) if the following two conditions
hold. R

(6.1) Ay ==l <005 [ly_, |1

(6.2) V Both FNORM and DIFIT as defined in Section 5 have

decreased from the previous itération.

Condition (6.1) indicates that the iterates are beginning to converge

while (6.2) guarantees that (6.1) will not hold accidentally.

Next we had to decide on the choice of m that would be used in the
iterative refinement. Theoretical results show that the optimal choice

of m would maximize the efficiency, which in the case of (3.12) Brent [1]

25

26

showed that it was given by

2 2n (mt+l)

E(m) = (n+2m+1)

Numerically this turns out to be a good choice and thus we decided to set
* *
m=m where m maximizes E(m) for m = 1,2,...,n.

To present the numerical -results we have selected five test problems;
other test problems will be discussed in Section 7. These examples were

selected because they represent typical situations that we have encountered

- 1in our testing. The following specifications apply to these test results.

-(a) All problems were run on the IBM 370/195 of Argonne National Labora-

tory in double precision (14.hexadecimal digits) and under FORTRAN H'

(opt=2) compiler.

(b) The tolerances were set at FTOL = lO_yp and XTOL = 10710. Since,

with the eﬁception of the fifth problem, the convergence is of
second order, our results are only marginally affected by the choice

of FTOL and XTOL.

(c) Each problem was run with three starting vectors. We always give the

starting vector x, which is closest to the solution; the other two

0
points are le0 and lOOxO.

(d) For each run we report three numbers: the number of iterations and
vector function evaluations required to produce the final iterate,
and the maximum residual: at the final iterate. Thus the entry
5,33,0.8(~14) means that for this problem the subroutine required
5 iterations and 33 vector function evaluations, and that thé maxi-

mum residual at thé final iterate was O.SXlO—lA.

1. Two-point boundary value problem

If we apply the standard O(hz) discretization to the two-point

boundary value problem

W) = Flu(e)+e)’, 0 < £ <1, w(0) = u(l) =0,

27

" then the resulting éystem in the unknowns X = u(tk) is defined.by

] n? 3 o
(6.3) ' fk(x) = 2xk X4 X1 + 5 (xk+t +l) », 1 <k<n,
where Xg = X 4 = 0, ty ="kh, and h = l/(n+l)i The results of so}ving
this problem with n = 10 are listed in Table 1 where X, refers to the
© point
(6.4) Xy = (Ci) with €i = ti(ti—l), 1 <i<nmn.
TABLE 1
X ' 10 Xq ‘ 100 %0
NEWTON 3, 34, 0.3(-15) 4, 45, 0.1(-16) 9, 100, 0.5(-14)
BROWN 4, 26, 0.4(-16) 5, 33, 0.3(-16) 10, 65, 0.4(-16)
BRENT 4, 26, 0,1(-15) 6, 39, 0.6(-16) 11, 72, 0.5(-16)
BREN TM 2, 16, 0.1(-15) 4, 28, 0.6(-15) 9, 61, 0.1(-15)
A"'{'Remarks

. : % % 2
(a) Equations (6.3) have a unique solution x = (gi) with ~-0.5 5ﬂg; <0
for 1 < i < n. :

" (b) 1In each case NEWTON solved the problem in fewer iterations bq; with

more function evaluations than either BRENT or BROWN. To explain
this, note that FNORM as defined by (5.1) measures the size of the
residuals at the beginning of the iteration since usually |fl(y1)|
is the largest residual. Thus both BRENT and BROWN always stop one
iteration too late. There does not seem to be an elegant, scale-
independent method to avoid this although the itefative refinement

of BRENTM certainly helps.

28

(c)

(d)

2.

For this function BROWN converges in less function evaluations than

BRENT; this is not the case for the other four functions.

. The evaluation of ény fk only requires a fixed number of arithmetic’

operations (about a dozen) and thus the computing time of an itera-
tion of either BROWN, BRENT, or BRENTM ‘is dominated by the over-

head. To compare the actual overhead of BROWN and BRENT, we solved
the above problem for n = 25, 50, and 75 for the %, given by (6.4).

In each case BROWN and BRENT each required four iterations to reach

an acceptable solution while three and two iterations were required
by NEWTON and BRENTM, respectively. Table 2 presents the computing
times (in seconds), and shows that in.the case of BROWN and BRENT

they .never differ by more than 10%. The reason why the number of

‘arithmetic operations does not reflect the computing time can be

traced to the special‘architecture of the IBM 370/195; on other

machines the relationship between these times may vary.

TABLE 2

25 50 75

iifNEWTON 0.024 0.085 0.18
BROWN . 0.124 6.543 1.63
CBRENT | 0.104 0.574 1.79
BRENTM 0.057 0.302 | 0.889

Nonlinear integral equation

The nonlinear integral equation

1 , o
u(t) + f H(s,t) (u(s)+s+1)3ds = 0 ,
. .

s(l-t), s < t,

H(s,t) = -
t(l-s), s > t,

:mmmmmmxmm&mmmmaﬂmm

R

R

>

D T A G e TR P T B N e o e S T T 85 ey vem e s

IR Ap N USSR T

can be discretized by considering the equation at the points t = tk’

k = 1,...,n, and then replacing the integral by an n-point rectangular -

rule based on the points {t The resulting system of equations in the

Wl
unknowns xk"= u(tk) is defiqed by

B} lh I. § 113
_(6.5) £(x) = x + 5‘1(1~tk) jzl tj(xj+tj+1?.

A

n .
. . S 3

+t,) (A-t)) (x4t +1)
K k1 1] J

. = = = 4 = + . l i
where Xy = X g 0, tj jh, and h = 1/(n+l). The results of solving

this problem with n = 10 are listed in Table 3 where as the initial

guess %, we again took (6.4).
TABLE 3
X, 10 Xy , 100 X
NEWTON | 3, 34, 0.3(-14) | 4, 45, 0.4(-16) | 9, 100, 0.6(-;3)
BROWN 4, 26, 0.5(-16) | 5, 33, 0.4(-16) 4, 26, 0.1(33)
BRENT | 4,'26, 0.4(-16) 5,33, 0.6¢-16) | 4, 26, 0.5(17)
BRENTM | 2, 15, 0.2(-15) 3, 22, 0;8(416) 4, 26, 0.5(17)
Remarks

(a) The results under NEWTON in Tables 1 and 3 are identical. This is

D and F(z)

due to the fact that if F ‘denote the functions defined

by (6.3) and (6.5), respectively, then there is a nonsingular

(1) (2)

imatrix A such that F 7' (x) = A-F (x). 1In fact, if A is the tri-

diagonal matrix with 2's on the diagonal and -1's on the off-
diagonal then it can be shown that F(l)(x) = Ax+G(x) where gk(x) =
(n?/2) (e, 417 while FP () = x + A7M6(x). Tables 1 and 3
reflect the fact that algorithm (2.5) is invariant under this type
of transformation, but that this is not the case for neither (3:12)

nor (4.10).

30

(b) It seems that if BROWN and BRENT both diverge then BROWN divergeé
at a faster rate; a particular instance of this happens with the

third starting point.

(c) Functions (6.5) reduire n + 0(1) érithmetic operatioﬁs to evaluate
and thus the computing timé per iteration of all four subroutines
is almost equally dependent on the overhead and on the‘functionf
evaluations. Table 4 wasvﬁroduced in the same manner as Table 2
but for functions (6.5), and it turned out that-the number of itera-
fions required fo pfoduce an acceptable answer coincided with those
for Table 2. However, now the computing times of NEWTON, BROWN, and

- BRENT are almost identical.

TABLE 4

25 50 75 .
NEWTON 0.165_‘ 1.14 3;81
BROWN 0.194 1.29 ~3.97
BRENT 0.206 1.28 4.11
BRENTM 0.113‘ 0.656 2.11

3. Brown's almost linear function

To define this function let

. n .
fk(x) = x_ + Z xj - (p+l), l1<k<n-1,
(6.6}

£ ()

i
- =3

e

I

=

The results of solving this problem with.n = 10 are listed in Tablé 5

where the initial guess x, is given by

0

(6.7) xg = (£) with g =1/2, 1<i<n.

AP ISR T e e T et e T TR T T TN T AR TR e

TABLE 5

10 xO‘

100 XO

NEWION | 90, 991, 0.9(-11)

103, 1134, 0.1(-14)

91, 1002, 0.1(-13)

BROWN | 8, 52, 0.1(-14) 18, 117, 0.1(-14) 19, 124, 0.3(27)
BRENT 5, 33, 0.8(-14) 6, 39, 0.1(-14) 22, 143, 0.1(-13)
BRENTM 3, 25, 0.1(-14) 3, 26, 0.8(-15) 20, 135, 0.1(-13)

Remarks

(a) If_uan be shown that all zeroes of (6.6) are of.the form

. (b)

(c)

(d)

1-n
(0,00, 0,0

) where o satisfies no” - (n+1l)a + 1 = 0. If n is

even this equation has two real roots but if n is odd then it has

three real roots. If n

roots.

10 then ¢ = 1 and o

0.9794...

Since the first n-1 equations are linear the iterates produced by

the methods of Brown and Brent satisfy fj(xk)

0 for 1 < j < n and

2 all k > 1. This feature gives these two methods an advantage over

more conventional nonlinear equation solvers. This advantage is

wiped out if the nonlinear equation is placed first in the definition

qf (A.6). The effert nf this interchange on the numerical results

of Table 5 is given in.TableA6 and shows that in this case NEWTON,

BROWN and BRENT require almost the same number of iterations.

The solution of Brown's function with Newton's method presents an

interesting difficulty; it can be shown that x
(Bs.++,B8,y) for k > 1 regardless of the choice of Xg o and therefore,
unless B is close to unity, F'(xk) and the approximation A(xk) deter-—

mined by (2.3) and (2.4) are both ill-conditioned and badly scaled.

is of the form

This difficulty is worsened by the following observation.

Shampine and Gordon [B] have noted 'that if n is sufficiently large

then it is difficult to estimate an(xo) by differences. More

are the two

31

Y T Y e b T b K

32

generally, if ||x||°° <r _and'llvH°° < € (recall € is the square

" root of macheps), then
‘ n-1
Ifn(x+v) - fﬁ(x)l j_nellan(x+6v)|l < ne(r+e) .
n
lfn(x) + 1] < .
In particular, if r < 1/2 and n > 30, then fn(x+v) = fn(k) for the
IBM.360-370; for smaller values of n the approximation A(xk) 1s

again ill-conditioned and badly-scaled.

TABLE 6

X : 10 x e 100 x

0 ‘ 0 0

NEWTON | 90, 991, 0.9(-11) | 103, 1134, 0.1(~14) | 91, 1002, 0.1(-13)

"BROWN | 66, 429, 0.4(8) 104, 676, 0.0 92, 598, 0.2(-15)
BRENT | 66, 429, 0.5(8) 104, 676, 0.4(-14) | 92, 598, 0.4(-14)
BRENTM | 66, 429, 0.5(8) | 101, 662, 0.7(-14) | 89, 585, 0.7(~14)

4. Chebyquad

th

If.Ti is the i~ Chebyshev polynomial shifted to the interval [0,1]
then this function is defined by
o . 1 !
(6.8) B fk(x) = J Ti(s)ds Y Z Tk(xj), : 1l <k<n.,
, - 0 =1

The standard initial gucss for this problem is
(6.9) . Xy = (éi) where £y = i/ (n+l), l1<ic<n.,

The results of solving this problem for n = 5 and all three starting
points are given in Table 7; the results for n = 7, 8, and 9 but only

for %, are in Table 8.

TR T R T T Y T

TABLE 7

x5 10 X 100 XO
NEWTON 5, 31, 0.4(-11) 4, 25, 0.2(22). - 6, 37, 0.4(48)
BROWN 6, 24, 0.1(-15) 39, 156, 0.1(-16) 9, 36, 0.1(22)
BRENT 5, 20, 0.1(-15) 10, 40, 0.1(-15) 16, 64, 0.1(-15)
BRENTM | 3, 15, 0.1(-15) 9, 39, 0.1(-15) 14,-59, 0.2(-15)
TABLE 8
7 8 9

C NEWTON | 5, 31, 0.4(-11) 4, 37, 0.4(26). 6, 61, 0.2(38)
BROWN 5, 25, 0.1(-15) 7, 39, 0.6(27) 8, 48, 0.2(-~15)
BRENT 5, 25, 0.1(-15) 13, 72, 0.4(49) 6, 36, 0.3(-15)
BRENTM 3, 19, 0.1(-15) 13, 72, 0.4(49) 3, 24, 0.4(-14)

Remarks

» * *
(a) Forn.=1,...,7 and n = 9 this function has n! zeroes x = (Ei)
P : .
with 0 i_gi_iﬁl, but for given n any two of these zeroes have the

same components arranged in a different order,

(b) For the second starting. point of n = 5 BROWN and BRENT converged to
‘ different solutions, and for the third starting point BROWN diverged

. but” BRENT converged.

(c) Since (6.8) does not have a solution for n = 8, none of the itera-

tions converged and this was detected by the techniques of Section 5.

[PPSR

34

5. Powell's singular

function

To define this function let

fl(x) = Xy +‘10x2, fz(x) =5 (x3—x4)
(6.10)) , ,
;3(x) = (x,72%3)7, £, (x) = /Ta.(xl—xa)

The results of solving

ing point is

this functien are given in Table 9 where the start-

Xy = (3,-1,0,1)
- Xq iO Xy . 100 X,
NEWTON 18, 91, 0.1(-9) 22, 111, 0.1(-9) | 25, 126, 0.6(-10)|
BROWN ; 22, 77, 0.3(-10) | 26, 91, 0.2(-10) | 29, 102, 0.3(-10)
BRENT 21, 74; 0.5(-10) 25, 88, 0.2(-10) 28, 98, 0.5(-10)
BRENTM 17,71, 0.5(-10) 21, 85, 0.2(-10) 24, 95, 0.4(-10)

Remarks

(a) The Jacobian is singular at the unique zero (the ofigih) of this
function and therefore the usual local convergence theorems do not

apply. Nevertheless convergence took place in each case.

(b) All of the élgorithhs in thié'paper are invariant under translation;
- that is, given F and ﬁ defined by ﬁ(x) = F(x~-v) for some vec;orhv,
: apd initial vectors ;O‘= x0+v, then the iterates will satisfy
X = x v for k > 1. However, translation affects the convergence
cyiteria. For example, since for (6.10) the solutionlis at the
~origin, condition (6.15 was never satisfied and thus ERENTM and
BRENT give the same results for (6.10). The results of Table 9 were '’

obtained by working with F and x_ as.above and v = e .

0 . ey This only

affected the results of BRENTM.

35

7. CONCLUDING REMARKS

Our numerical results indicate that in general the implementation
BRENT of Brent's method is superior, in terms of robustness and effi-
-ciency, to the implementation BROWN of Brown's method. They also show
that the use of the iterati;é refinement is almost invariably desirable

and thus BRENTM should be preferred over BRENT.

The above conclusions are also supported by the numerical results
obtained by testing our algorithm on two other sets of test functions:
The testing program of Ken Hillstrom of Argonne National Laboratory con-
. sists of 10 functions and 20 starting values per function while
H. A. Watts of Sandia Laboratories has a collection of 27 functions and

for each function several starting values are given.

ACKNOWLEDGEMENTS

We would like to thank Ken Hillstrom and H. A. Watts for the use of
their testing programs, and Larry Nazareth for his comments on a draft

of this paperﬁ

REFERENCES

{1] Brent, R. P., "Some efficient algorithms for solving systems of non-

linear equations," SIAM J. Numer. Anal. 10 (1973), 327-344.

2] Brown, K. M., "A quadratically convergent method for-.solving simul-
"taneous nonlinear equations,'" Purdue University Ph.D. Dissertation,

Lafayette, Indiana, 1966.

{3] Brown, K. M. and Dennis, J. E., "On the sécond order convergence of
Brown's derivative-free method for solving simultaneous nonlinear
equations,' Department of Computer Science Technical Report 71-/,

Yale University, New Haven, Conn., 1971.

[4] Cosnard, M. Y., "A comparison of four methods for solving systems of
nonlinear equations,' Dept. of Computer Science Technical Report

75-248, Cornell UniverSity, Ithaca, New York, 1975.

U T

]

36

e

[5]

(6]

71

(8l

Curtis, A. R., Powell, M.J.D., and Reid, J. K., "On the estimation of

sparse Jacobian matrices," J. Inst. Maths. Applics. 13 (1974), 117-119.

Gay, D. M., "Brown's method and some generalizations, with applica-

tions to minimization ﬁroblems,"ACornell University Ph.D. Disgerta-
tion, Ithaca, New York, 1975.

Gay, D. M., "Implementing Brown's method," Center for Numerical

Analysis Report CNA-109{ The University of Texas at Austin, 1975.

Shampine, L. F. and Gordon, M. K., "Solving systems of nonlinear
equations,'" Sandia Laboratories Technical Report SAND-75-0450,
Albuquerque, New Mexico, 1975. '

i e e

A S AT SRR

AT P A 0 Lo e

5y

e e
e BRI, L

e v

LN

T
KT S An0

amy noees s

E TS

.

S iy iy,
ATz v

ol

: Sym e,
i S A

AN s

ey
¥

R AN A

S ST TR P A H AR

en g ‘T"!."""gﬂm”"' g

N Y, S)
SO]

N

S5t 3 AL G A

37

APPENDIX

ARt st et ee o et et i et

L Vi

CBRENT e e e vt e e easeeeeeenaneenoneessenneasesesesseeenseseassnansannanes 00000010

C
c THIS SUBROUTINS CALCOLATES AN OPTIMAL VALUE OF MOPT AND CALLS 00000020
(o] BRENTH. THE PARAMETERS ARE A SUBSET OF THOSE OF BRENTM WITH THF 00000030
c EXCEPTION OF LWA AND WA : 00000040
C ’ 00000050
C LWA IS AN INTEGER GREATER THAN OR EQUAL TO N*N+3%N 00000060
o] : 00000070
c WA IS A LINEAR ARRAY OF. LENGTH LWA. 00000080
c - : 00000090
Ceeeosonscoceaasoescoecatoconancsoncsesosessee c e e e enecetecesesoees sene ceecesess 00000100
SUBROUTINE BRFNT(HN, FCN X,FTO ,XTOL,MAXFEV,IER,LWR, WA) i 00000110
INTEGER ¥,MAXFEV,IER,LWRA,K, MOPT : 00000120
REAL *8 FTOL, XTOL,DKP1,EHAX,ONE,ZERO . 00000130
REAL #*8 X (N),9A(LWR) _ 00000140
RERL *8 DABS,DLOG 00000150
EXTERNAL FCN - 00000160
DATE ZERO,ONE /0.D0,1.D0/ 00000170
IR = 0 : N0000180
IF (N .LE. 0 .OR. LWA .LT. N%N+3%N) RETURN 00000190
po 10 X = 1, 00000200
DKP1 = ON D*(K+1) ' 00000210
. WA (K} = DLOG (DKP1) / (N+2%K+1) . 00000220
10 CONTINUE 00000230
EMAX = ZERO . 00000240
DO 20 K = 1,¥ . 00000250
IF (DABS (WA (K)) .LT. EMAX) GO TO 20 00000260
MOPT = X) 00000270
EMAX = DABS(WA(K)) . 00000280
20 CONTINUE : 00000290
CALL BRENTM(N, FCN, x FPTOL,XTOL, MAXFEV, IER, HOPT WA(3*N+1), 00000300
+ WA (2%N+1), VA(N+1),WA(1)) 00000310
RETURN 00000320
END 00000330
C.BRENTH....c... e e teeenanans Cetesececeanctenreeserne oo teeesss 00000340
c -) ‘ - 00000350
C THIS SUBROUTINE TRIES TO FIND A ZERO TO A SYSTEM OF N SYMULTANEOUS 00000360
c BQUETICNS IN N UNKNOWNS BY BRENT'S METHOD.. ., 00000370
C A 06000380
c ON INFUT: 00000390
o] _ 00000100
C N IS THE NUMBER OF EQUATION AND THKNOWNS, ’ 00000410
c) ; 00000420
C FCN IS THE. HAME OF THE SUBROUTINE WHICH DEFINES THE SYSTEM 00000430
C OF FQURTIONS. THE USER SPECIFIES FCN BY WRITING A SUBROUTINE 00000440
c FCN(N,K,X,FCNK, IER) WHICH COMPUTES THE K-TH COMPONENT OF FCN 00000450
C ‘EVALUATED AT X AND RETURNS THE VALUE IN FCNK. IFR SHOULD 00000460
C NOT BE CHANGED UNLESS THZ TSER FANTS TO TERMINATE THE 00000470
C ITERATION. TN THIS CASE SET IER TO A NEGATIVE INTEGER. 00000480
c : ' : 00000490
c X IS AN ARAY OF LENGTH N WHICH MUST CONTAIN THE IWITIAL 00000500
C ESTIMATE TO THE 2FERO OF THE SYSTEM OF EQUATIONS. 00000510
C , A 00000520
C FTOL SPECIFIES THE FIRST STOPPING CRITERION. TERMINATION OCCURS 00000530
c IF ALL THE RESIDUALS ARE. LESS THAN PTOL IN MAGNITODE. 00000540
C A " 00000550
c " XTOL SPECYFIES THE SECOND STOPPI NG CRITERION. TERMINATIOQN . 00000560
c OCCURS TP THE RELATIVE ERROR BvarEN THO SUCCESSIVE ITERATES .00000570
C IS LESS THAN XTOL. 00000530
C ' . 00000590

nnnnonnnnnnndnnnnnnnnnnnnnnnnnn‘nnnnqnnnnnnnnn

aaaQ

MAXPEV SPECIFIES THYE THIRD STOPPING CRITERION. TERMINATION
OCCURS IF THE NUMBER OF CALLS TO PCN EXCEEDS MAXFEV.

MOPT IS THE NUMBER OF CONSECUTIVE TIHES THAT THE APPROXIMATE
JACOBIAN IS REUSED DURING EACH ITERATION OF ITERATIVE
REFINEHENT. MAXIMUM EFPICIENCY.IS USUALLY OBTAINED IF
HOPT MAXIHMIZES LOG (K+1)/(N+2*K+1) FOR K = 1,...,N.

ON OUTPUT:

X CONTATNS THE FINAL ESTIMATE FOR THE ZERO OF THE qYSTEM
OF EQUATIONS.

MRXPEV CONTAINS THE NUMBER QF CALLS USED IN PRODUCING X.
IER IS SET AS POLLOWS:

IMPROPER TNPUT PARAME TERS.

IER=0
IER=1 "RBSOLUTE VALUE OF EACH RESIDURL £S LESS THAN FTOL.
IER=2 RELATIVE ERROR BETWEEN TWO SUCCESSIVE ITERBTES
IS LESS THAN XTOL.
IER=3 CONDITIONS.FOR IER51 AND IER=2 HOLD.
IER=4 NOMBER OF CALLS TO F EXCEEDS MAXFEV.
IER=5 APPROXIMATE JACOBIAN MATRIX IS SINGULAR.
IER=6' ITERATTON IS NWOT MAKL NG GOOD PROGRESS.
IER=7 ITERATION IS DIVERGING.
IER=8 ITERATION SEE¥S TO BE CONVERGING BUT THE REQUESTED

ARCCURACY IS TOO STRINGENT, OR THE CONVERGENCE
IS VERY SLOY DUE TO A JACOBIAN SINGULAR NEAR
THE ITERRTES OR DUE TO BADLY SCALED VARIABLES.

WORKING ARRAYS:

Q IS BN N BY N RARRAY.
Y,Z,A ARE LINFAR ARAYS OF LENGTH N.

SUBROUTINE BRENTH (N,FCN,X,FTOI,XTOL,MAXFEV,IER,HOPT,Q,Y,2,A)
INTEGER I,IER,J,K,4,MRXPEV MOPT,N, NFEVAL,NIER6,NIER7,NIERS
REAL *8 DIFIT,DIFIT1,EPS,EPSMCH,ETA,ETA1,FKZ,FHORM, FNORNI,
+ FONCT,FTOL,H,0NE,PO05,RC, STGMA, XNORM, XTOL,ZERO

REAL *8 A(N),Q(N, N),X(h) LY (NY, Z(N) ‘

RFAL *8 DMAX1 DABS,DSQRT

LOGICAL CONV,STING

DATA ZER0,0NE,POS /0.00,1.00,5.D-2/

IER = 0
IF (N .LE. 0) RETDRN
EPSHNCH IS THE HMACBINE PRECISION,

EPSMCH = 16.D0%** (-13)
i

00000600

00000610
00000620

00000630

39

00000640

00000650

00000670
00000680

00000690

. 00000660 -

00000700 .

00000710
00000720

00000730

00000740
00000750

00000760 -
00000770 °

00000780
00000790
0000080¢C
00000810
00000820
00000830
00000840
00000850

00000860

00000870
00000880
00000890

00000900 .

06000910

- 00000920

00000930
00000940
00000950
00000960
00000970

00000980

00000990
00001000
00001010
00001020
00001030
00001040

00001050

00001060
00001070
00001080
00001090
00001100
00001110
00001120
00001130
00001140
00001150
00001160
00001170
00001180

ST

40

AN NAanNnann

NOYON

naao

~ 30

ann s

Q00

50

" 'APPROXIMATES THT ¥-TH ROV

EPS = DSQRT (EPSHCH)

NFEVAL COUNTS THE NYMBER OF COMPONENT FUNCTION

EVALUATIONS.

00001190
00001200
00001210

. 00001220

XNORM IS TH® NORM OF X. . _
FNORM IS THE COMPUTED RESIDUAL WITH MAXIMUM ABSOLUTE VALUE.
DIFIT IS THE NORM OF THE DIFFERENCE BETWEEN THE LAST TWO ITERATES.
NIER6 IS USED TO DETERMINE WHEN TO SET IFR=6. :
NIER7 IS USED TO DETERMINE WHEN TO SET IER=7,
NIER8 IS USED TO DETERMINE WHEN TO SET IER=8.
NFEVRL = 0
XNORM = ZERO
FNORM = ZERO
DIFIT = ZERO
NIERE = -1
NIER7 = ~1
NIER8 = O -
pc 10 1 = 1,N :
XNORM = DMAX1(XNORM,DABS (X (T}))
CONTINUE
ENTER THE PRINCIPAL ITERATION.
CONTINUE
SING = ,TRUE.
FNORM1 = FNORH
FNORI = ZFRO
DIFIT1 = DIFIT o~
COMPUTE THE STEP H FOR THE DIVIDED DIFFERENCE WHICH

H = EPS*DMAX1 (X HORM, ONE)
DO 40 J = 1,¥
DO 30 T = 1,N
0(I,J) = ZFRO
CONTINUE
Q(J,Jy = H
Y(J) = X(J
CONTINUE .

ENTER A SUBITERATION.

DO 130 K = 1,M
CALL FCN(N,K,Y,FONCT, IER)
IF (I®R .LT. 0) GO TO 210
NFEVAL = NFEVAL+1
FNORM = DMAX1 (FNORM,DABS (FONCD 3

COMPUTE THE K-TH ROY OF THE JACOBIAN MATRIX.

DO 60 J =-K,N
po 50 I = 1,N
Z{I) = Y(I)+Q(I,J)
CONTINUE
CALL FCN (N,X,7,FK7,IER)
IF (IFR .LT. 0) GO TO 210
NFEVAL = NFEVAL+1
A (J) = FKz-FONCT

OF THE JRCOBIAN HATRIX.

00001230
00001240
00001250
00001260
00001270 -
00001280
00001290
00001300
00001310
00001320
00001330
00001340
00001350
00001360
00001370
00001380
00001390
00001400
00001410
00001420
00001430
00001420
00001450
00001460
00001470
00001480
00001490
00001500
00001510
00001520
00001530
00001540
00001550
00001560
00001570
00001580
00001590
00001600
VUVUI6 Y
00001620
00001630
00001640

- 00001650

00001660
00001670
00001680
00001690
00001700
00001710
00001720
00001730
00001740
00001750
00001760
00001770

s N Ee e K-

70

80

aaaon

90

100
110

120
130

aaoan

140

CONTINUE

COHPUTE THE HOUYSEHOLDER TRANSF) RMATION TO REDUCE THE K-TH RO7
OF THE JACOBIAN MAYRIX TO A MULTIPLE OF THE K-TH UNIT VECTOR.

ETA = ZERO
DO 70 I = K,N
ETA = DMAX1(ETA, DABS (A (I)))
CONTINUE
IF (ETA .EQ. ZERO) GO TO 130
SING = .FALSE.
SIGHA = ZERO
ETA1. = ONE/ETA
DO 80 T = K,N
A(I) = A(T)*ETA1
SIGHA = SIGHMA+A (I) *A(I)
CONTINUE
SIGMA = DSQRT(SIGMA)
IF (A(K) .LT. ZERO) SIGHA = -SIGHA
R(K) = A(K)+SIGNRA

o

APPLY THE TRANSFORMATION AND COMPUTE THE ORTHOGONAL MATRIX Q.

DO 110 I = 1,N

RO = ZERO

DO 90 J = K,N
RO = RO+A(J)*Q(X,J)
CONTINUE

RO = RGC/(SIGHA*M (K))

DO 100 J = K, N
0(I,J) = Q(I,J)-RO*A(D)
CONTINUE

CONTINUE

COMPUTE THE NEW SUBITERATE.

“A(K) = STGMA*ETA

SIGHMA = FONCT/A (K)

DO 120 I = 1,N
Y(I) = Y(I)+SIGMA*Q(T,K)
CONTINYE

CONTINTE

COMPUTE THE NORY OF THE ITERATE AND THE NORHM OF THE DIFFERENCE

BETWEEN THE LAST TWO TTERATES.

XNORHM = ZERO
DIFIT = ZERO
DO 140 T = 1,¥
XNORM = DMAX1(XNORM,DABS (Y (I)))
DIFIT = DMAX1(DIFIT,DABS (X (I)-Y(I)))
X(I) = .Y (I)
CONTINUE

DETERMINE THE PROGRESS OF THE iTERATION.

CONV = .FALSE. o
IF (FNORM .LT. FNORM1 .AND. DIFIT .LT.
NIER6 = NIERG+1 . :

DIFIT1)

CONV =

.TRUE.

00001780
00001790
00001800
00001810
00001820
00001830
00001840
00001850
00001860

00001870

00001880
00001890
00001900

00001910

00001920
00001930
00001940
00001950
00001960
00001970
00001980
00001990
00002000
00002010
00002020

00002030

00002040
00002050
00002060
00002070
00002080
00002090
00002100
00002110
00002120
00502130
00002140
00002150
00002160
00002170
00002180

00002190

00002200
00002210

00002220

00002230
00002240
00002250
00002260
00002270
00002280
00002290
00002300
00002310
00002320
00002330
00002340
00002350
00002360

; SR A A B el 2 o
“

42

‘aan

[eNeNe]

[eNeNe!

anaan

150

160.
170

aNoOn

180

NIER?
NIERS

IF
IF
IF

NTER7+1
NIERB+1
(CONV) NIFER6=0 g

(FNORM .LT. FNORM1 .OR. DIFIT .LT. DIFIT1) NIER7=0

(FNORY .GT. EPS .AND. DIFTT .GT. EPS*DMAX1(XNORM,ONE)) NIER8=0

non

STOPPING CRITERIA.

"IF

IF
IF
IF
IF
IF
IF
IF
Ir

(FNORM .LT. FTOL) IER=1 :
(DIFIT .LT. XTOL*XNORM ..AND. CONV) IER=2
(FNORY .LT. FTOL .AND. IFR .EQ. 2) IER=3
(NFEVAL .GT. MAYFEV) TER=U

(SINS) TER=5
(NIER6 .GE. 5)
(NIER7 .GE. 3) IER=7
(NIER8 .GE. 4) TER=8
(IER .NE. 0) GO TO 210

IER=6

ITERATIVE REFINEMENT IS ONLY USED IF THE ITERATION IS CONVERGING.

Ir

(.NOT. CONV .OR. DIFIT .GE. P05 *XNORM) GO TC 200

START ITERATIVE REFINEMENT.

IF
DO

(¥OPT .EQ. 1) GO TO 200

190 1 = 2,MOPT

FNCRN1 = FNORM

FNORM = ZERO

Do 170 ¥ = 1,N
‘CALL FCN(N,X,Y,FONCT,ISR)
IF (IER .LT. 0) GO TO 210
NFEVAL = NFEVAL+1 :
FNORM = DMAX1(FNORW,DABS(FONCT))

ITERATIVE REFINEMENT TS TERMINATED IF IT DOES NOT
GIVE R PEDUCTION OF THE RESIDUALS OR IF A(K) IS ZERO.
IF (FNORM..LT. FNORM1 .AND. .NE. ZERO) GO TO 150
FNORM = FNORM1
GO TO 200 .
CONTINUE
STGMA = FONCL/A(K)
PO 160 T = 1,V ,
" OY(I) = Y(I)+SIGMA%Q (I,K)
CONTINNE
CONTINUE

A (K)

COMPUTE
BETWEEN

NORM OF THE ITERRTE AND THE NORM OF THE DTFFERENCE
LAST TWO ITERATES OF THE ITERATIVE REFINEMENT.

THE
THE

XNORHY
DIFIT
DO 180 I

XNORH

ZERO

ZERO

1,N

D¥AX1 (XNO®M,DABS (¥ (I))) .
DIFIT = DFAYA(DIFIT,DABS (X (I)-Y(I)))
X(I) = Y(I)~ :

CONTINUE

N

non u

STOPPING CRITERIA2 FOP ITERATIVE REPINFEMENT.

00002370
00002380
00002390
00002400
00002410
00002420
00002430
00002440

- 00002450

00002460
00002470
00002480
00002490

00002500
00002510 -

00002520
00002530
00002540
00002550
00002560
00002570

00002580 -

00002590
00002600
00002610
00002620
00002630
00002640
00062650
00002660
00002670
00002680
00002690
00002700
00002710
00002720
00002730
00002740
00002750
00002760
00002770
00002780
00002790
00002800
006002810
00002820
00002830
00002840
00002850
00002860
00002870
00002880
00002890
00002900
00002910
00002920
00002930
00002940
00002950

" 190

200

210

IF (FNORM .LT. FTOL) IER=1
XTOL*YNORM
FTOL .AND.
MAXFEV) IE

IF (DIFIT .LT.
I¥ (FNORM .LT.
IF (NFEVAL .GT.
IF (IER .NE. 0)
CONTINUE
CONTINUE

‘GO TO 210

.AND. CONV) IER=2

IER
R=4

END OF THE TTERATIVE REFfﬁEMENT.

GO TO 20
CONTINUF
MAXFEV =
RETURN
END

NFEVAL

.EQ. 2) IER=3

00002960

00002970
00002980
00002990
00003000
00003010
00003020
00003030
00003040
00003050

00003060

00003070
00003080

00003090.

00003100
00003110

43

P ue

43.

Sy TRSARIIR N TS e e

C . 00002960
IF (FNORM .LT. FTOL) IER=1 . 00002970
IF (DIFIT .LT. XTOL*XNORM .AND. CONV) IER=2 00002980
I¥ (FNORM .LT. FTOL .AND. IER .EQ. 2) IER=3 00002990
IF (NFEVAL .GT. MAXFEV) IER=U 00003000
IF (IER .NE. 0) GO TO 210 00003010
190 CONTINDE 00003020 .
200 CONTINUE 00003030
C . 00003040
C END OF THE TTERATIVE REFINEMENT. 00003050
C 00003060
GO TO 20 60003070
210 CONTINUW 00003080
MAXFEV = NFEVAL 00003090.
RETURN 00003100
END 00003110
’i‘

