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NUMERICAL COHPARISON OF THREE 
NONLINEAR EQUATION SOLVERS 

by 

Jorge J. More and Michel Y. Cosnard 

ABSTRACT 

This paper is concerned with the numerical solution of n 
nonlinear equations in n unknowns by the methods of Newton, 
Brown, and Brent. The algorithms are described-in detail and 
their implementations are compared on a set of test problems. 
It is found that a variation of Brent's me.thod seems to perform 
best in a ~arge number of cases, and a listing of an implementa­
tion of this method appears in an appendix. 

1. INTRODUCTION 

" This paper is concerned with the numerical solution of n nonlinear 

equations in n unknowns. If Rn denotes real n-dimensional Euclidean space 

and F:Rn + Rn is a function with domain and range in Rn then this problem 

can be stated .in vector form as F(x) = 0 or in component form as 

(1.1) f. (x
1

, ... , x ) = 0 , 
1 n 

·we restrict ourselves to three algorithms which only require the evalua­

tion of F and which have second order·convergence: Newton's method, 

Brown '·s method, ·and Brent's method. 

The best knmvn method for the solution of (1.1) is Newton's method. 

In 1966 Brown [ 2] proposed a new method ~<1hich in a manner reminiscent of 

Gaussian elimination, reduced an appropriate Jacobian to lo,.,er triangular 

form. The method was somewhat surprising since it had second order con­

vergence [3] hut only used (n
2
+3n)/2 component function evaluations per 

iteration. Although this was clearly an advantage over Newton's method 

and the numerical results were promising, the method did not have a clear 

Alenrithmir description and hencej was hard to implement. 
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In 1970 Brent [1] presented a similar method which reduced an approx­

imate Jacobian to lower triangular form by a sequence of orthogonal 
2 

transformations, again at a cost of only (n +3n)/2 component function 

evaluations per iteration a~d with second order convergence. Brent did 

give a clear algorithmic description of his method and suggested that. 

Brown's method could be described similarly, but he did not derive his 

algorithm. 

Then, in his Ph.P. dissertation, David Gay [6] took up Brent's sugges­

tion and gave a clear algorithmic de~cription of Brown's method. Perhaps 

more importantly, he showed that the original description of Brown's 

method led to O(n4) arithmetic operations per iteration and n2/2 + O(n) 

storage but that the revised version could be implemented in O(n3) arith-
2 inetic operations and n /4 + O(n) storage. In addition Gay derived Brown's 

and Brent's method from a unified point of view and thus shm.;red that these 

two methods were members.of a class of methods which had second order 

convergence and only required (n
2
+3n)/2 function evaluations per iteration. 

In a recent paper, Gay [7) discussed the implen1entation of several 

variations of Brm,rn's method and of one version of Brent's method. However, 

he only tested· his implementations \V"ith starting vectors which Here fairly 

close to the solution, and in this case the numerical performance of these 

two methods does not usually differ too much. Moreo\rer, since the main 

purpose of Gay's paper was to test different variations of Brown's method, 

the resulting codes were mainly experimental. 

The codes that we have implemented can only be considered local 

methods since they don't use any techniques ,.;rhich attempt to guarantee 

global convergence. It could be argued that our codes should have used 

some such technique, but this would have brought a host of other problems. 

For example, if we had insisted on a reduction of the sum of the squares 

of the residtials at each iteration, then this technique is dependent on 

the scaling of F, may slow down the iteration, and may cause convergence 

to a point at which the equations are not satisfied. Moreover, ~e also 

have to decide how to achieve the desited reduction. As. they stand, our 

codes do not have any of the above problems, and the best of them seem to 

have a large region of convergence. However,· if the iteration is not 
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progressing at a satisfactory rate.then we attempt to diagnose the situa­

tion and terminate the iteration with an appropriate message. The 

techniques that we use for this_are based in par~ on the ideas discussed 

by Shampine and Gordon [8]. 

. In this paper we have also given a description of the algorithms of 

Brown and Brent which leads naturally to their implementation~· This is 

done because it seems that the lack of popularity of these two algorithms 

is due to the fact that they have not been properly describerl. 

There is a version of Brown's method which is available in the IMSL 

library, but this code is not suitable since :i,t uses O(n
4

) arithmetic 

operations per iteration. The version of Brown's method which we have 
. 3 . . 

used in this paper only needs O(n ) arithmetic operations per iteration, 

and in the tests done by Cosnard [4], usually performs as well (and in 

some cases much better) as the IMSL version. There are other versions of 

Bro~vn's method, but ·our code seems to perform just as well as the best of 

them -- the best version we have seen was written by H. A. Watts of Sandia 

Laboratories but this code also uses O(ri4).arithmetic operations per 

iteration. 

The testing done by Cosnard [4] also convinced us that Brent's method 

is more stable than Brmvn's method and there.fore, that it would be profit­

able to write a code based on Brent's method for possible use in a 

subroutine library. This paper describes such a code, an~ the numerical 

results presented here show that it performs amazingly well in a large 

number of cases . 

The outline of our paper is as follows. 
. I 

On Sectioq 2 we describe 

Newton's method .and some of its variations. This section motivates the 

introduction of Hro>vn's and Hrent's method and in it we point out that in 

some situations Newton-like methods are much more desirable than either 

Brown's or· Brent's method. On the other hand, our numerical results indi­

cate that,a simple minded implementation of Newton's method is not nearly 

as stable as a, corresponding implem~ntation of Brown's or Brent's method. 

Section 3 contains a deriva'tion and des_cription of Brent's method. 

· The derivation presented here should make clear why Brent's method is able 
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to retain second order convergence while using almost half the number ·of 

function evaluations (per iteration) of Newton's method. Section 4 leans 

heavily on the material of Section 3 t6 give a brief derivation and des­

cription of Brown's method. In this section we also emphasize the 

differences between the algorithms of Brown and Brent. Section 5 contains 

a discussion of algorithmic details such as convergence crite~ia and 

t~chniques for det~cting the divergerice 6f the iteration. Finally, 

Section 6 presents the numerical results. 

-~- 2. NE\.JTON '.S METHOD 

The methods proposed by Brown and Brent were motivated by a desire to 

improve Newton's method. Of course, there are many situations in which 

Newton's method is more desirable, and in this section we briefly describe 

some of the variations of Newton's method and point out when one of these 

variations is likely to be advantageous. 

If F'(x) denotes the Jacobian matrix (evaluated at x) of the mapping 

F:Rn 4 Rn then given an iterate x, Newton's method generates the next 

iterate x+ by_ the following algorithm: 

. (2 .1) (a) Solve the linear system F'(x)6x 

correction 6x. 

(b) + Set x = x + b.x. 

-F(x) for the 

If the linear system in (2.l)(a) is solved by any of the standard direct 

methods then the computational requirement of one iteration of Newton's meth~ 
2 od is (assuming the evaluation of F'(x) costs n component function evaluations) 

2 
n + n component function evaluations 

arithmetic operations 

storage 

Since the evaluation of the Jacobian matrix i8 usually quite expensive) 

Newton's ·method is sometimes modified so that the Jacobian is only 
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evaluated at fixed int:e.rvals. This leads to the. following algorithm: 

(2. 2) (a) Set z = x 
1 

(b) For 1 = l, ... ,m 

(bl) Solve the linear system 

the correction t.zR.. 

(b2) Set z9.+1 = z 9, + t.z9: 

(c) 
. + 
Set x = zm+l' 

F' (x)t.zR. -F(z ) R. for 

The motivation for this approach is based on the fact that 'if either the 

iterates or the Jacobian matrices are ·not changing too rapidly, then 

F'(x) is a good approxiination to F'(zR.) and therefore (2.2) is "almost" 

Newton's method. These assumptions do not usually hold far away from the 

solution and then (2.2) with m > 1 can cause divergence in cases where 

the unmodified (m = 1) method was convergent .. 

Even though the above modification may reduce the number of Ja.cobian 

evaluations needed for convergence, the determination of the Jacobian 

matrix can still be a costly and error-prone task. Thus, in the above two 

algorithms F'(x) is sometimes replaced by an approximation A(x,h). · If 

this approximation is determined by forward differences, then 

(2.3) 1 ~ i :5 n 

for some parameter hi·= hi(x) and where ei denotes the ith column of the 

identity· matrix. A good choice for this parameter seems to be · 

(2.4) h = E max{ I x. I , 1} . , · 
i 1 

. . . ~ 

where E = (macheps) and macheps is the smallest floating point number for 

which 1 ~ macheps >.1 in the precision being used. 

Since in this paper we are intereited in algorithms that only require 

the evaluation of F ,. we implemented a discre·tized Newton's method. In 

vie\11 of the above, one iteration of this algorithm consists of Lhe follow­

ing steps.· 
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(2. 5) (a) Construct A(x) as defined by (2.3) and (2.4). 

(b) Solve the linear system A(x)~x = -F(x) for the 
correction ~x. 

(c) Set 
+ + ~x. X = X 

There are several points in which Newton's method compares favorably 

with either Brown's or Brent's method. One of the mtist important ones is 

that Newton's meth6d is able to take into account the structure of the 

problem. Suppose, for example, that F'(x) is tridiagonal. In this case 

the arithmetic overhead of Newton's method is O(n) and it is possible to 

estimate F'(x) with finite differences in four vector function evaluations 

(see the technique in [5] for general banded systems). Of course, the 

storage.can also be reduced to O(n). In sharp contrast with the above 

situation, if F'(x) is tridiagonal, there is no reduction in overhead for 

either Brown's or Brent's method. 

Another point which is sometimes important is that Brown's and Brent's 

method require a subroutine Hhich, given a subscript k, Hill compute the 

k-th component fk(x) of F(x). In some applications, computing fk(x) for 

some k is almost as expensive as computing F(x) and in .these cases Newton's 

method is much more attractive. 

3. BRENT'S METHOD 

Newto·n' s method can be derived by a linearization argument: If 

F:Rn ~ Rn is linear, then 

and since we want to choose X+ so that F(x+) 

that 

(3.1) 0 = F(x) + F' (x)(x+-x) . 

0, it is natural to require 

Of course, F'(x) can be replaced by an approximation, and in this case 

(3.1) can be written as 

--.---.... 
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where aj is an approximation to Vfj(x). Brent's method is very ciosely· 

related to this approach to=· Newton's method. 

+ Given an i-terate x, Brent's method generates the next iterate x by 

the following algorithm: 

(3.2) (a) Set yl = x. 

(b) For k=l, •.• ,n let yk+l be the solutio.n of 

f. (y.) 
T 

0 k + a. (y-y.) 1 < . ~ 
J J J J 

, - J 

which is closest to yk. 

(c) 
+ 

Set x =_yn+l' 

+ Following Gay [6] we will refer to x and x as major iterates and the 
. f + f . i . computat~on o x rom x as a maJor terat~on. Similarly, the computation 

of yk+l from yk is a minor iteration and Yr····Yn+l are minor iterates. 

In the above algorithm a. is meant to be an approximation to Vf.(y.). 
J . . J J 

Of course, this description is not complete; to do this we must specify 

how to compute pk \vhere 

(3.3) 

and how to compute the approximations a .. For the moment we assume that 
J 

a1 , ••• ,ak are given and show how to determine pk. 

The definition of yk+l and equation (3. 3) imply that 

T = f. (y.) T . ,..a P + aj (yk-y j) j k J J 

and thus, by the definition of yk, 

(3;4) 

11 

i 
i 
I 
[ 
i 

I 
~· 
f 
f 

I 
I 

! 
I 
I 

f 

r 
I. 

I 

r 
i 
l 

l 



12 

If fk(yk) = O, then clearly pk = 0 and thus yk+l = yk, so we assume that 

fk(yk) f. 0. To find the vector of mini.mal length which satisfies (3.4) 

suppose for the moment that we have an orthogonal matrix Qk+l such that 

0 • • • • • • • • • • • 0 

X 

(3.5) Qk+l = 
.. 

X • X 0 • • • • 0 

·and that oi f. 0 for 1 ~ i ~ k. Later on we will show how to generate Qk+l 

efficiently. Since 

T 
it follows from (3.5) that to satisfy ajpk 

(3.6) 
n 

I nJ. eJ. 
j=k 

0 for 1 ~ j < k we must have 

\-lhere e. is the j -th column of the. identity matrix. 
J 

implies that 

Thus nk = -fk(yk)/ok. Since nk+1 , ... ,nn are otherwise unrestricted, and 

since 

2 
n. ' 

.1 

to minimize 11Pkll 2 we set nk+l' ... ,nn to zero. Thus from (3.6), 

1· ., . 

,. 
I ;· 

,"-,. 



It follows that 

yk+l = 

We have now shown how to ·carry out ·the iteration prov.ided we have an 

orthogonal matrix Qk+l which satisfies (3.5). To complete the-description 

of the algorithm we indicate how Qk+l can be computed efficiently. 

We can assume that at the beginning of the kth iteration we have art 

orthogonal tilatrix Qk such that (3. 5) holds \vi th k replaced by (k-1). Of 

course, Q1 is any orthogonal matrix. To obtain Qk+l which satisfies (3.5), 

compute an orthogonal Uk of the form 

(3.7) 

such that 

I 
I 

Ik-1 I 
. I 

------~------
1 

I uk 
I 

The matrix Uk can be either a single Householder matrix or the product of 

(n-k) Givens rotations. In either case it should be clear that Qk+l = 
QkUk satisfies (3.5). 

At the moment it seems that to carry out Brent's method it "is necessary 

to compute a
1

, ••. ,an and that this requires n
2
+n component function evalua­

tions. To reduce this requirement we make two observations: 

1: The matrix.Uk only depends on the last (n-k+l) components of 
- . T 
ak = Qkak. 

2. The vector ak 

· In view of· these t\vo remarks, it follows that it is only necessary to 

compute the last (n-k+l) components of an approximation ~ to Q~'Vf(yk). 
This can be done by setting 
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(3.8) 1 
~ = hk 

0 

fk(yk+hkQkek) - fk(yk) 

where the first (k-1) components of ak have been arbitrarily set to zero. 

·rn analogy with (2.4) the parameter h is given by 

(3.9) E max{ II xI lex? 1} 

where, as before E is the square root of the machine precision. 

The above discussion leads to the following description of a minor 

iteration in algorithm (3.2). 

(3.10) (a) Compute~ by (3.8) and (3.9). 

(b) Determine an orthogonal uk of the form (1.7) 
-T T such that akuk = crkek. 

(c) Let Qk+l QkUk and set 

+ At the end of. a major iteration we have produced an orthogonal Q = ·q · n+l 
d 1 + + h h 1.'f 11 11 ~ f k 1 h an sea ars cr

1
, ... ,crn sue tat yk-x ~ u or = , •.• ,n ten 

F' (x)Q+ ... L + E 

' 

where L is a lower triangular matrix with + + on its diagonal .and crl, ... ,crn 

liE II = 0( llhll + o); if F is linear then E = 0. 

In analogy with (2.2) it is possible to reuse the information in Q+ 

+ and the cr 's; the computation of zi+l from .z.Q, in (bl) and (b2) of (2.2) 

would be replaced by the following algorithm. 
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(3.11) (a} 

(b) 

(c) 

Set-y1 =zt 

For-k= 1, .• _.,~ 

y k+l 

Set zt+l = yn+l. 

', 

- ,_ 

let 

Thus, a combined algorithm in which information is being reused would con-" 

sist of the following steps: 

(3 .12) (a) Set y = 1 x and Q1 = I. 

(b) For k = 1, ... ,n use algorithm (3.10) to compute 

_Yk+l from yk. 

-(c) set zl = yn+l. 

(d) For R, = 1, ... ,m-1, use algorithm (3.11) to 

compute 2 t+l from z£.. 

(e) Set 
+ 

X z . m .. 

We again \-larn the reader ·that the reuse of information may cause divergence; 

we will discuss this point further in Section 6. 

-It should be clear that one major iteration (algorithm (3.10) for 
2 - -

k = l, ... ,n) of Brent's method requires (n +3~)/2 component function 

evaluations. In our-implementation of Brent's method Uk is determined as_ 
. 3 - 2 

a Householder matrix. The computation of the Q's then requires n + O(n ) 

multiplications/divisions _and the same number of. additions/subtractions 

plu~ n square roots. In the computation of the ~'s it is po~sible to 

avoid the multiplication by h by l~tting Q1 be h times an orthogonal · 

matrix; thus the h factor is absorbed in the Q's. However, this leaves 

n
3
/2 + O(n

2
) additions for the remaining of the computation. We summarize 

this discussion as follows: The. implementation of- Brent's method requires 

component function evaluations 

arithmetic operations 

n
2 

+ O(n) storage. 
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Brent [1] has observed that if Q
1 

= I then the storage can be reduced 

to n
2

/2 + O(n) by using Givens rotations instead of Ho~seholder rotations. 

This follows from the fact that in this case Qk is of the form 

(3.13) 

where Qk 
2 

is an n by (n-k+l) lower Hessenberg matrix. If \ve use the three-, 
multiply, three-add Givens rotation then the computation of the Q's requires 

the ·same amount of arithmetic as with Householder matrices but n 2/2 + O(n) 

square roots. However, the computation of the a's now only requires 

n3/4 + O(n2) additions/subtracti~ns. It thus seems that the implementation 

with the Givens rotations requires less overhead. We point out that Gay 

[6] has an alternate implementation of Brent's method with the same storage 

and arithmetic requirements as the one based on Givens rotations but which 

u~ Powell's orthogonalization procedure. In our implementation we opted 

for Householder matrices because of their simplicity and elegance. 

There i~ one last point in connection with Brent's method that deserves 

attention. At the beginning of each major iteration there are at least two 

clear choices for the matrix Q
1

; we can set Q
1 

= I or let Q
1 

be the Q avail­

able from the end of the previous major iteration. The choice Q
1 

= I is 

necessary if we are to use Givens rotations, and·has the advantage that it 

minimizes the departure from orthogonality of the Q's. Brent [1] favors 

the latter choice, but there does not seem to be any clear advantage to 

t.his choice .and our numerical experiments bear this out. Thus, as indi­

cated in (3.12), our implementation sets Q
1 

= I. 

4 • BRmm' S HETHOD 

Brown's method is very similar to Brent's method, so in this section. 

we essentially repeat the arguments of Section 3 but pointing out the 

differences between the two methods. 

A major iteration of Brown's me·thod consists ·of the following sequence 

of computations: 
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(4 .1) (a) Set y1 = x. 

(b) For .k = 1, •.• ,n, ·let yk+l be the solution of 

(c) 

which "maximizes" the number of zero elements in 

yk+l - yk. 

+ 
Set x =.Yn+l' 

In general it is very difficult to determine yk+l so that yk+l - Yk. has 

the maximum number of zero elements; however, He show that if we assume 

that no unlikely cancellations occur, then this is very easy to do. 

We first obtain an expression for pk = yk+l-yk. Just as in Brent's 

method, pk satisfies 

(4. 2) 0, 12-_j<k, 

Assume now that we have a nonsingular matrix ~+l such that 

0 • • • • • • • • 0 

X 

(4. 3) ~+1 = 

. ·. 
X X 0 • • • . 0 

and that o. 1·0 for 1 < i < k. Since 
1 

•· it follows, as in Section 3, that to satisfy (4.2) we must have 

(4. 4) n. e., 
J J 

Components nk+l, .. ,, nn are otherwise unrestricted, so we now shmv that 

I 
I 

I 

.I 
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if Rk+l is suitably chosen then setting these components to zero 

"maximizes" the number of zero elements in pk. 

The construction of ~+1 assumes the existence of ~ such that (4.3) 

holds with k replaced by (k-1). ~f course, R
1 

is an arbitrary non­

singular matrix. Now determine an elementary permutation matrix Pk · 

and an .elementary upper triangular matrix Tk such that 

where ak is the maximal element· (in absolute value) of ak. For future 

reference recall that T~ is of the form 

(4.5) 

(k) (k) = ( 0 , .... , 0 , wk+ 1 , .... , w n ) 

It follows that if Rk+l = RkPkTk then ~+l satisfies (4.3).. We ·now show 

that if the rows of Rk+l are suitably permuted then Rk+l is an upper 

triangular matrix of special form. 

Lemma. If R
1 

I then 
I 
I 
I 

Lk ! sk 
I 
I (4. 6) P • .P R_ k . . . ll<+l -------,-------
1 
I 

where Lk is a unit upper 

identity matrix of order 

Proof. The result holds ----
by induction that 

0 t In-k 
I 
I 

triangular matrix of 

n-k. 

for k 1 since, 

I 
I 
I 

by 

1 1 
• S k-1 : k-1 

I 
I 

-----·---,----~--

1 
I 

o 1I 
: n-k+l 
I 

order k and I n-k 
is the 

assumption, Rl I. Assume 



Then 

I 
I 
I 
I 

Lk-1 : sk-1 
I 
I -------+-------1 . 
I 
I 

1In-k+l 
I 
I 

where Sk-l. is Sk-l '"ith two columns interchanged.· Now (4.5) implies that 

(4. 7) p k •'.' • p 1 Rk+l 

where 

The result now follows since vk has zeroes in the last (n-k) positions and 

wk has zeroes in its first k positions. 

With the Lemma it is easy to show that setting nk+l'''' ,nn to zero in 

(4.4) "maximizes'' the number of zero elements in pk. In fact, from (4.4) 

and the Lemma, 

Thus setting nk+
1

, ... ,nn to zero "maximizes" the number of zero elements 

in Pk· 

It should be clear, in analogy with Brent's method, that we need not 

compute ak, but instead we compute 

19 
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In our implementation of Brown's .method the parameter h in (4.8) is also 

given by (3.9). An alternate strategy w·ould fi-rst normalize the .vectors 

-~ej; that is compute 

where his given by (3.9). This would require an additional_O(n 3) arith­

metic operations and would not improve the algorithm unless the norms. of 

the vectors· Rkej deviate drastically from unity. 

The above discussion leads to the following summary of a minor itera­

tion of Brown's method: 

(4.9) (a) Compute ak by (4.8) and (3.9). 

(b) -T Determine an elementary permutation Pk so that akPk has 

its maximal element in absolute value in the kth position. 

(c) Determine an elementary upper triangular matrix Tk of 
· T T 

the form (4.5) such that akPkTk = okek. 

(d) Let ~+l ~PkTk and set 

fk (yk) . 
yk - ( o )~+lek. 

k 

Thus a major iteration of B.rown' s. method consists of the following steps. 

(4.10) (a) Set y
1 

= x and R1 = I. 

'(b) Fork= l, ••. ,n, use algorithm (4.9) to compute yk+l 

.from yk. 

: (c) + Set x = y n+l. 

. + 
At the end of a maJ· or iteration ~v-e have produced a matrix R = R and n+l + . + 
scalars o1 , ... ,on such that if I lyk-xl I < 6 fork= l, .•. ,n then 

+ F' (x)R. L+E 

\ 



l 
! 
\ 
I 
I 

\ 
[ 

I 
I 
f, 

I 
t; 

I 
& 

t 
!. 

t 

\ 

I 
I 
! 

h L i 1 . 1 . . I + + . d" 1 d were sa ower tr1angu ar matr1x w1t1 a 1 , ... ,an on 1ts 1agona. an 

I lEI I a<llhll + cS); ifF is linear then E =:: 0. Of course, juut aH in 

Brent's method this information can be reused and the resulting algorithm 

would just be (3.11) with Q+ replaced by R+ 

It is more difficult to implement Brown's method than Brent's method 

because of the particular structure of ~+l. The Lemma of this section 

shows th~t it is only necessary to store the matrix Sk which appears in 

(4.S) and since this is a k by (n-k) matrix, the storage will not exceed 
2 

n /4. In our implementation of Brown's method we have decided to store 

Sk by rows in a vector u(·). The information contained in Pk• ... ·P
1 

is 

stored in a vector mperm (•) by requiring that mperm (i). = j if and only 

if the (i,j) element of Pk· ... ·P1 is unity. 

With the above information it is not difficult to carry out Brown's 

method. The reader should verify that the most expensive parts of a 

minor iteration are the calculation of sk from sk-1 and the formation of 

the vectors yk + h~ej. The -first task requires k(n-k) multiplications/ 

divisions and the same number of additions/subtractions; the. second task 

requires (since the multiplication by h can be avoided as in Brent's 

method) k(n-k) additions/subtractions. Thus one major iteration of 

Brown's method requires 

component function evaluations 

arithmetic operations 

2 
g_ + O(n) storage 
4 

If we assume that· multiplications and additions each costs one unit of 

time, then a detailed count shows that the overhead of Brown's method 

depends on 1/2 n3 while that of Brent's method depends on 5/2 n3 . If 

the functions are easy to evaluate then this overhead may dominate and 

all other things.being equal, Brown's method \..rould be the most efficient 

method. However, this is not the cas~ in our numerical examp~es; on 

problems which require .the same number of function evaluations, the 

computing times for both methods did not differ by more than ten percent. 

21 
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5. ALGORITHMIC CONSIDERATIONS 

Before an algorithm for the solution of nonlinear equations is 

completely defined, it must decide on a course of action when faced with 

one or more of the following problems: 

(a) Convergence criteria. 

(b) Lack of satisfactory progress or divergence of the iteration. 

(c) Requested accuracies unreasonably high. 

(d) Singularity of the approximate Jacobian. 

(e) Lack of a solution. 

All of the above problem, and the algorithms of the three previous 

sections are affected by the scaling of F and/or x. · A change of scale in 
~ 

F corresponds to considering the scaled mapping F defined by F(x) = L:•F(x) 

where L: is a diagonal matrix ~vith positive diagonal entries. It should 

be clear that such a change in scale leaves invariant the iterates in 

all of the three algorithms considered. If we ~onsider a chang~ of scale 
* -1 * in x so that F(x) = F(L:x) then the solution is changed from x to E x 

A highly desirable property for an iterative method would then be that 
~ I 

if L:x0 = x0 then L:'l< = '1<_ for k > 1. However, no nonlinear equation sol-

ver seems to have this property. 

We now turn to a discussion of problems (a) through (e) mentioned at 

the beginning of th~ se~tion. 

(a) The convergence criteria depends on a measure of the residuals 

and a measure 6£ the relative error between consecutive iterates. For 

Brown ,.s and Brent 1 s method define 

(5.1) FNORM m8x{lfk(yk)l: 1 < k .::_ n} 

... 

while 'for Newton's method 

(5. 2) FNORM = max{lfk(x+) I: 1 < k < n} . 

i 
I 
I 
I 

l 
I 
I 



For either of the three methods we also de fine 

(5. 3) DIFIT 

If the user provides·two parameters, FTOL and XTOL then the subroutines 

will stop if either 

.(5 .f1) FNORM ·< FTOL 

or 

(5. 5) DIFIT < XTOL•XNORM 

The first criterion is dependent ofi the scaling of F_and thus should ·be 

used Hith care. Criterion (5.5) usually guarantees that the components 

* of x .have -log10 (.~TOL) significant digits as approximations to the corres-
. * 

ponding components of x . Of course, (5.5) cannot guarantee any agreement 

for the components which are much smaller than XNORM, but the fast conver­

gence of the iteration does force quite close agreement. Note that tl1ere 

are at least t\vo cases in which (5.5) may fail. It \.;rill probably fail 

if the solution is at the origin, but in this case the iteration will 

stop because the requested accuracy is too high.; .see the discussion under 

(c). Criteria (5.5) can be satisfied at a point far away from the solu­

tion if at that point the derivative is large relative to the residuals. 

This problem can usually be avoided by requiring that both FNORM and DlFIT 

have decreased from the previous iteration, and this is done on the 

implementat.ions. 

(b)· To measure the progress of the iteration we monitor FNORM and 

DIFIT as defin.ed by (5.1), (5.2), and (5·.3). If FNORH andiJIFI'l' increase 

during tl1ree consecutive iterations then we terminate the iteration since 

this indicates that the iterat;i.on is diverging. Hm.;rever, the iteration 

is·almost certainly not making good progress if at least one of FNORH 

and DIFIT increases, so if this happens during five consecutive iterations, 

then we terminate the iteration for lack of good progress. The user 
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because of a diagnosed divergence·then this will probably lead to over­

flow problems. If it was terminated for lack of· good progress then 

restarting the i~eration may lead to convergence, but this has not 

happened too often; a bett.er strategy is to choose another starting point. 

(c) We only· attempt to detect unreasonably high requested accuracies 

in the we'll-scaled case. In this situation we can expect that at best 
. . + 

IIF(x) II --:- macheps or llx -xll ~ macheps • llxll. ·Thus we test whether 

(5.6) FNORM < E or DIFIT < E•max{XNORM,l} , 

~ 
where E = (macheps) 2

, and if either of these inequalities holds on four 

consecutive iterations then we exit with an indication that the requested 

accuracies are too stringent. Note that if the convergence is slow then 

even reasonable values for FTOL and XTOL may be diagnosed as being too 

stringent. Thus test (5. 6) will also de.teci: slm·i convergence (which is 

usually due to a Jacobian singular near the iterates or to bad scaling). 

Also note that th_e iteration may stop with an indication of stringent 

accuracies just because XNORM ~ (/2 on five consecutive iterations. Thus 

we have imposed an absolute convergence criteria on the user. However, 

because the convergence is usually very fast, it is highly unlikely that 

this will happen unless the solution is at the origin. 

(d) Consider first singularity of Ute approximate Jacobian in 

Newton's method. If we are solving the linear system in (2.1) by Gaussian 

elirnirtation, .then singularity is detected by a zero pivot. Attempting 

to detect singularity by a pivot pk which is small relative to the size 

of the matrix and the precision of the computation leads to difficulties 

\-.Then F ·is badly scaled. If pk = 0 then \-.Te replace pk by macheps • 

max{ II A II , 1} . 

In Brown's or Brent's method singularity of the approximate 

Jacobian is detected when ok = 0 for some k. If ok = 0 then we set 

. yk+l = yk and continue the iteration. If ok = 0 for k = 1, .•. ,n, then 

we exit with an indication that the approximate Jacobian is singular. 



(e) The lack of a solution in the problem will almo~t invariably 

l~ad to problem (b), but it is always possible for the iteration to 

oscillate about a point at which the Jacobian is singular and the equa­

tions are not satisfied. However, this did not happen in our tests 
2 even with a highly artificial example such as f(x) = x +1. 

·, 

6. NUHERICAL RESULTS 

We now present numerical results for four subroutines. ·The first 

three, NEWTON, BROWN, and BRENT are just implementations of algorithms 

(2.5), (3.12) with m = 1, and (4.10), respectively. The fourth one, 

BRENTM, is a modification of BRENT in Hhich the Jacobian is reused on 

. some iterations; that is, algorithm (3.12) for some m > 1. Before BRENTM 

is completely defined \ve have to decide \vhen t.o reuse the Jacobian and 

for hm·7 long. 

The idea of reusing the Jacobian is only Horthwhile in the latter 

part of the iteration; if it is used in the early stages of the iteration 

the performance of the original algorithm invariably deteriorates. Thus 

the Jacobian is only reused to refine the solution in a manner very similar 

to iterative refinement. 

After some experimentation we decided to execute the iterative re-

finement (step (d) of algorithm (3.12)) if the following two conditions 

hold. 

(6.1) 

(6.2) Both FNORN and DIFIT as defined in Section 5 have 

decreased from the previous iteration. 

Condition (G.l) indicates that the iterates are beginning to converge 

while (6.2) guarantees that (6.1) Hill not hold accidentally. 

Next we had to decide on· the choice of m that would be used in the 

iterative refinement. Theoretical results shaH that the optimal choice 

of m would maximize the efficiency, Hhich in the case of (3.12) Brent [1] 
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showed that it was given by 

E(m) 
2 !l.n (m+l) 

(n+2m+l) 

Numerically this turns out to be a good choice and thus we decided to set 

* * m = m where m maximizes E(m) form= 1,2, ... ,n. 

To present ·the numerical-results we have selected five test problems; 

other test problems .will be discussed in Section 7. These examples were 

selected because they represent typical situations that we have encountered 

in our testing. The following specifications apply to these test results. 

.(a) ~11 problems were run on the IBM 370/195 of Argonne National Labora­

tory in double precision (14. hexadecimal digits) and under FORTRAN .. H 

(opt=2) compiler. 

(b) -10 -10 The tolerances \vere set at FTOL = 10 . and XTOL = 10 . . Since, 

with the exception of the fifth problem, the convergerlce is of 

second order, our results are only marginally affected by the choice 

of FTOL and XTOL. 

(c) Each problem was run with three starting vectors. We always give the 

starting vector x
0 

which is closest to the solution; the other two 

points are 10x
0 

and 100x
0

. 

(d) For each run we report three numbers: the number of iterations and 

vector function evaluations required to produce the final iterate, 

and the maximum residual•at the final iterate. Thus the entry 

5,33,0.8(-14) means that for this problem the subroutine required 

5 iterations and 33 vector function evaluations, and that the maxi­
-14 . 

mum residual at the final iterate was 0.8xlO . 

1. T\vo-point b_oundary value problem 

If we apply the standard O(h
2

) discretization to the two-point 

boundary value problem 

n 11 (t) 
1 . 3 
-zC\,l(t)+t+l) , 0 < t < 1, u(O) u(l) 

I 
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J 

I 
I 
i 
j 

I 
i 
I 
I 



I 
i 
' i 
I 
I 

I 
~ 

I 
t' 
! 

I 
I 
I 

i 
f 
I. 

t 
t 

then the resulting system in the unknowns xk = u(tk) is defined by 

. 2 
(6.3) fk(x)- 2~- xk+l- xk-l + h2 (xk+tk+l)

3
,· 1 <.k < n 

where x
0 

= xn+ 
1 

= 0, tk =··· kh, and h = 1/ (n+ 1). The results of solving 

this problem with n = 10 are listed in Table 1 where x
0 

refers to the 

point 

(6. 4) . t.(t.-1), 1 < i < n 
l. l. 

TABLE 1 

xo 10 xo 100 xo 

' 

NE\.JTON 3. 34, 0~3(-15) 4, 45, 0.1(-16) 9, 100, 0.5(·-14) 

BROWN 4, 26, 0.4(-16) 5, 33, 0.3(-16) 10, 65, 0.4(-16) 

BRENT 4, 26, 0.1(-15) 6, 39, 0.6(-16) 11, 72, 0.5(-16) 

BRENTI1 2, 16, 0.1(-15) 4, 28, 0.6(-15) 9, 61, 0.1(-15) 

' 

.·''Remarks 

*. * "' (a) Equations (6.3) have a uriique solqtion x = (~i) with -0.5 ~-~i < 0 

for 1 < i < n. 

(b) In each case NEHTON solved the problem in fe,ver ;iterations bu.t \vith •.·.· 

more function evaluations than either BRENT or BRO\.JN. To explain 

this,.note that FNORM as defined by (5.1) measures the size of the 

residuals at the beginning of the iteration since usually if1 Cy1)1 
is the largest residual. Thus both BRENT and BROh'N ahvays stop one 

iteration too late. There does _not seem to be an elegant, scale-­

independent methqd·to avoid this a1though the iterative refinement 

of BRENTM certainly helps. 
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(c) For this function BROWN converges in less function evaluations than 

BRENT; this is not the cnse for the other four functions. 

(d) . The evaluation of any fk only requires a fixed number of arithmetic · 

operations (about a dozen) and thus the computing time of an itera­

tion of either BROWN, BRENT, or BRENTM ·is dominated by the over­

head. To compare the actual overhead of BRO\.JN and BRENT, we solved 

the above problem for n = 25, 50, and 75 for the x0 given by (6.4). 

In each case BROWN and BRENT each required four iterations to reach 

an acceptable solution while three and two iterations were required 

by NEWTON and BRENTM, respectively. Table 2 presents the computing 

times (in seconds), and shows that in.the case of BROWN and BRENT 

they. never differ by more than 10%. The reason ~vhy .the number of 

arithmetic operations does not reflect the computing time can be 

traced to the special architecture of the IBM 370/195; on other 

machines the relationship between these times may vary. , 

2 •. 

TABLE 2 

25 50 

.. ;·· 
. . ~· .·NEWTON 0.024 0.085 

BRO\M 0.124 0.543 

BRENT 0.104 0.574 

BRENTM 0.057 0.302 

Norilinear integral equation 

The nonlinear integral ~quation. 

J
l . . 3 

u(t) + H(s,t)(u(s)+s+l) ds = 

H(s,t) 

0. . 

{

s(l-t), 

t (1-s), 

s < t, 

s > t, 

75 

0.18 

1. 63 

1. 79 

0.889 

0 ' 
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can be discr.etized by considering the equation at the points t = tk, 

k = l, ... ,n, and then replacing the integral by ann-point rectangular· 

rule based on the points {tk}. The resulting system of eq~ations in the 

unknowns ~ = u(tk) is defined by 

(6.5) 3 t.(x.+t.+l) 
J J J .. 

. , 
n . 3; 

+ tk L .(1-t.)(x.+t.+l) J~ 
j=k+l J J J 

where x = x = 0, t. ~ jh, and h 
0 n+l J 

1/(n+l) .. The results of solving 

this problem with n = 10 are listed in Table 3 where as the initial 

guess x
0 

we again took (6.4). 

TABLE 3 

xo 10 xo 100 xo 

}II EWTON . 3' 34, 0.3(-14) 4, 45, 0.4(-16) 9' 100, 0.6(-13) 

·-
BROWN 4, 26, 0.5(-16) 5, 33, 0.4(-16) 4, 26, 0.1(33) 

_. 

BRENT 4' 26, 0.4(-16) 5, 33, 0.6(-16) 4, 26, 0.5(17) 
., 

BRENTM 2' 15, 0.2(-15) 3, 22, 0.8(-16) 4, 26, 0.5(17) 

Remarks 

(a) The results under NEWTON in Tables 1 and 3 are identical. This is 

due to the fact that if F(l) and F( 2) denote the functions defined 

by (6.3) and (6.5) 1 respectively, then there is a nonsingular 

mat~i~ A such that F(l)(x) ~ A•F(Z)(x). In fact, if A is the tri­

diagonal matrix \vi th 2 1 s on the diagonal and -1' s on the off­

diagonal then it can be shown that F(l) (x) == Ax+G(x) \vhere gk (x) 

(h 2/2)(xk+tk+l) 3 \vhile F(
2)(x) = x + A- 1G(x). Tables 1 and 3 

reflel:l t:he fact thaL algorithm (2.5) is invariant under this type 

of transformation, but that this· is not the case for neither (3~12). 

no~ (l1 .10). 
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(b) If seems that if BROWN and BRENJ: both diverge then BROWN diverges 

at a faster rate; a particular instance of this happens with the 

third starting point. 

(c) Functions (6.5) require n + 0(1) arithmetic operations to evaluate 

and thus the computing time per iteration of all four subroutines 

is almost equally dependent on the overhead and on the function· 

evaluations. Table 4 w.as produced in the same manner as Table 2 

but for functions (6.5)~ and it turned out that the number of itera­

tions required to produce an acceptable ansHer coincided with those 

for Table 2. However, now the computing times of NEWTON, BROWN, and 

BRENT are almost identical. 

TABLE 4 

25 50 75 

NEWTON 0.165 1.14 3·.81 

BROWN 0.194 1. 29 3.97 

BRENT 0.206 1. 28 4.11 

BRENTM 0.113 0.656 2.11 

3. Brown's almost linear function 

(6. 6) 

To define this function let 

~ X. + 
k 

n 

2 
j=l 

x. - (n+l), 
J 

- 1 . 

The results of solving this problem with ri 

where the ipitial guess x
0 

is given by 

(6.?) E;.. :;;: 1/2, 
l. 

1 < k < n-1 ) 

= 10 are listed in Table 5 

1 < i < n 
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TABLE 5 

xo 10 xo. 100 xo 

NEWTON 90, 991, 0. 9 ( -11) 103, 1134, 0.1(-14) 91, 1002, 0.1(-13) 

BROWN 8, 52, 0.1(-14) 18, 117' 0.1(-14) 19' 124' 0.3(27) 

BRENT 5, 33, 0.8(-14) 6' 39' 0.1(-14) 22, 143, 0.1(-13) 

BRENTM 3, 25,, 0 .. 1(-14) 3, 26, 0.8(-15) 20' 135, 0.1(-13) 

Remarks 

(a) It L.::n be shm..m that all zeroes of (6. 6) are of, the form 

(a, ... ,a,al-n) where a satisfies nan- (n+l)a + 1 0. If n is 

even this equation has twb real roots but if n is odd then it has 

three real roots. If n = 10 then a= 1 and a= 0.9794 ... are the two 

roots . 

. (b) Since the first n-1 equations are linear the iterates produced by 

the methods of Brown and Brent satisfy fj(~) =·o for 1 2 j <nand 

·~ all k > 1. This feature gives these two methods an advantage over 

more conventional nonlinear equation solvers. This advantage is 

wiped out if the nonlinear equation is placed first in the definition 

of (6.6). ThP pffprt nf this interchange on the numerical results 

of Table 5 is given in Table 6 and shows that in this case NEWTON, 

BROWN and BRENT require almost the same number of iterations. 

(c) The solution of Brown 1 s .function ~vith Ne,vton 1 s method presents an 

interesting difficulty; it can be shovm that xk is of the form 

(B,. ·~,B,y) fork~ 1 regardless of the choice of x0 , and therefore, 

unlel;i$ 6 is close to unity, F 1 (xk) and the approximation A(xk) deter­

mined by (2.3) and (2.4) are both ill-conditioned and badly scaled. 

This difficulty is '"orsened by the follm-.~ing observation. 

(d) Shampine and Gordon [8) have noted 'that if n is sufficiently large 

then it is difficult to estimate 'il.fn (x0) by differences. Hare 
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generally, if llxii(X) ..s_ r ;1nd· llvii(X) .::_ E (recall E i!; the square 

root of macheps), then 

In particular, if r < 1/2 and n > 30, then f (x+v) = f (x) for the - - · n n 
IBM. 360...:.370; for smaller values of n the approximation A(~). ·is 

again ill-conditioned and badly-scaled. 

TABLE 6 

xo 10 xo 100 xo 

NE\vTON 90, 991, 0.9(-11) 103, 1134. 0.1(-14) 91, 1002, 0.1(-13) 

. BROw'N 66, 429, 0.4(8) 104' 676, o .. o 92~ 598, 0.2(-15) 

BRENT 66, 429, 0.5(8) 104, 6 76, 0.4(-14) 92, 598, 0.4(-~4) 

BRENTif 66, 429, 0.5(8) 101, 662, 0.7(-14) 89, 585, 0.7(-14) 

4. Chebyquad 

If Ti is the i th Chebyshev po.lynomial shifted to the interval [0 ,1] 

then this function is defined by 

(6.8) fk(x) = J
1
Ti(s)ds 

0 

1 n 
L Tk(x.), 

n j=l J . 

The standard initial guess for this problem :i.s 

(6.9) 

1 < k < n 

1 < i < n • 

·The r.P.sults of solving this problem for n "" 5 and all three starting 

points are given in Table 7; the results f6r n = 7p 8, and 9 but only 

f6r x
0 

are in Table 8. 
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TABLE 7 

xo 10 xo 100 xo 

NEl.JTON 5, 31, 0.4(-11) 4' 25' 0.2(22) 6, 37' 0.4(48) 

BROWN 6, 24, 0.1 ( --15) 39, 156, 0.1(-16) 9, 36, 0.1(22) 

BRENT 5, 20, 0.1(-15) 10, 40, 0.1(-15) 16, 64, 0.1(-15) 

BRENTM 3, 15, 0.1(-15) 9, 39, 0.1(-15) 14,59, 0.2(-15) 

TABLE 8 

7 8 9 

NEWTON 5, 31, 0.4(-11) 4, 37, 0.4(26) 6, 61, 0.2(38) 

BROWN 5, 25, 0.1(-15) 7, 39' 0.6(27) 8, 48, 0.2(-15) 

BRENT 5, 25, 0.1(-15) 13, 72, 0.4(49) 6, 36, 0.3(-15) 

BRENTH 3, 19, 0.1(-15) 13, 72, 0.4(49) 3, 24, 0.4(-14) 

Remarks 

·(a) * For n = 1, ... ,7 and n = 9 this function has n! ~eroes x 

* with 0 < s. < 1, but for given n any two of these zeroes have the 
- :J_·-:-

same components a~ranged in a different order, 

(b) For the second starting point of n = 5 BROWN and BRENT converged to 

different solutions, and for the third starting point BROWN diverged 

but" BRENT converged. 

(c) Since (6.8) does not have a solution for n = 8, none of the itera­

tions converged and this was detected by the techniques of Section 5. 

----~~-~--
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5. Powell's singular function 

To define this function let 

x1 + 10x2 , 

(6.10) 

The results of solving this function are given in rable 9 where the start­

ing point is 

xo (3,-1,0,1). 

~ 

xo 10 xo 100 xo 

NEWTON 18, 91, 0.1(-9) 22, 111, 0.1(-9) 25, 126, 0.6(-10) 

BROHN 22, 77, 0.3(-10) 26, 91, 0.2(-10) 29, 102, 0.3(-10) 

BRENT 21, 74, 0.5(-10) 25, 88, 0. 2(-10) 28, 98, 0.5(-10) 

BRENTM 17, 71, 0.5(-10) 21, 85, 0.2(-10) 24, 95, 0.4(-10) 

Remarks 

(a) The Ja~obian is singular at the unique zero (the origiri) of this 

function and therefore the usual local convergence theorems do not 

apply. Nevertheless convergence took place in each case. 

(b) All of the ~lgorithms in thi~ paper are invariant under translation; 
~ 

·that is, ~iven F and F defined by F(x) = F(x-v) for some vector v, 
~ 

and initial vectors xo = xo+v, then the iterates will satisfy 
~-

xk = ~+v for k ~ 1. However, translation affects the convergence 

criteria. For example, since for (6.10) the solution is at the 

~oiigin, condition (6.1) was never satisfied and thus BRENTM and 

BRENT give the same results for (6.10). The results of Table 9 were 
~ 

obtained by working with F and x
0 

as .above and v = e
3

• This only 

affected the results of BRENTM. 

I 

I 
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7. CONCLUDING REMARKS 

Our numerical results indicate that in general the implementation 

BRENT of Brent's method is superior, in terms of robustness and effi­

·ciency, to the implementation BRO\.fN of Brown's method. They also show 

that the use of the iterative refinement is almost invariably desirable 

and thus BRENTM should be preferred over BRENT. 

The above conclusions are also supported by the numerical results 

obtained by testing our algorithm on two other sets of test functions: 

The testing program of Ken Hillstrom of Argonne National Laboratory con­

sis.ts of 10 functions and 20 starting values per function while 

H. A. Watts of Sandia Laboratories has a collection of 27 functions and 

for each function several starting values are given. 
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C. BRENT ••••••••••••••••.•••••••••••••••.•••••••••••••• · ••• · ••••.•••••• .- •• 
c 
c 
c 
c 
c 
c 
c 

THIS SOBROUTINE CALCULATES AN OPTIMAL VALUE OF MOPT AND CALLS 
BRENTM. THE PARA~BTERS ARE A SUBSET OF THOSE OF BRENTM WITH THF 
EXCEPTION OF LWA AND WA : 

LWA IS AN INTEGER GREATER THAN OR EQOAL TO N*N+3*N 

W& IS A LINEAR ARRAY OP· LE~GTH LYA. 
·C 
c ........................................................................ . 

SUBROUTINE BRRNT(N,FCN,X,FTOL,XTOL,MAXFEV,IER,LWA,WA) 
INTEGER N,MAXFEV,IER,LWA,K,MOPT . 
REAL *8 FTOL,XTOL,DKP1,E~AX,ONE,ZERO 
REAL *B X (N) , '·l A (L~~ A) 
REAL *8 DABS,DLOG 
EXTERNAL fCN 
DAT~ ZERO,ONE /O.D0,1.DO/ 
IER = 0 
IF (N .LE. 0 .OR. LWA .LT. N*N+3*N) RETTJRN 
D010K=1,~ 

DKP1 = ONE* (K+1) 
lH_(K) = DLOG(DKP1)/(N+2*K+1) 

1 0 CON TI!'Ill E 
EMAX = ZERO 
DO 20 K = 1, N 

IF (D.~BS (WA (K)) . LT. E!HX) GO TO 20 
MOPT = K . 
EMAX = DABS('~ A (K)) 

20 CONTINryE 
CALL BRENTM(N,FCN,~,FTOL,XTOL,MAXFEV,ItR,MOPT,WA(3*N+1), 

+ WA(2*N+1),~:A(N+1),'~A(1)) 

RETURN 
END 

C.BRENTM •.•••..••••••.••••••••••••••••••••••••••• o ••••••••••••••••••••• 

c 
C THIS SUBROUTINE TFIES TO FIN1) h ZERO TO A SYSTEM OF N SYMULTANEOlJS 
C EQtlATICNS IN N UNKNOlvNS BY BRE~T'S METHOD. 
c 
C ON INPUT: 
c 
C N IS THB NO~BER ·OF EQUATIO~ AND ONKNO~NS. 

c 
C FCN IS THE NA~E OF THE SUBROUTINE ~HICH DEFINES THE SYSTE~ 
C OF F.QU~TIO~S. TP.E USER SPECIFIES FCN BY WRITING h SUBROUTIN~ 
C FCN(N,K,X,FCNK,IER) WHICH COMPUTES THE K-TH COMPONENT OF FCN 
C .EVALUATED AT X AND RETURNS THE VALUE IN FCNK. IFR SHOULD 
C NOT BE CHANGED UNLESS THE 'lSEg_ 'f~.NTS TO TERMINATE '!'HE 
C ITE~ATION. IN THIS CASE SET IE9 TO A NEGATIVE INTEGER. 
c 
C X IS AN ARAY OF LENGTH N WHICH MUST CONTAIN THE INITIAL 
C . ESTIMATE TO THE ZERO OF THE SYSTE~ OF EQUATIONS. 
c 
C FTOL SPECIFIES THE FIRST STOPPING CRITERION. TERMtNATION OCCURS 
C IF ALL THE RESIDU~LS ARE LESS THAN ?TOL IN M~GNITODE. 
c 
C XTOL SPECIFIES T.HE SECOND STOPPr NG CRI'IERION. TERMINATION 
C OCCURS TP THE RELATIVE ERROR BETWEEN TWO SUCCESSIVE ITERATES 
C IS LESS THAN XTOL. 
c 

00000010 
·00000020 
00000030 
ooooooqo 
00000050 
00000060 
00000070 
0000008() 
00000090 
00000100 
00000110 
00000120 
.00 0 00130 
00000140 
00000150 
00000160 
00000170 
00000180 
00·0 00190 
00000200 
.00000210 
00000220 
00000230 
00000240 
00000250 
00000260 
00000270 
00000280 
00000290 
00000300 
00000310 
00000320 
00000330 
00000340 
00000350 
00000360 
00000370 
00000380 
00000390 
00 0 001100 
00000ij10 
000004 20 
00000430 
00000440 
00000450 
00000460 
00000470 
000001~80 
00000490 
00000500 
00000510 
00000520 
00000530 
00000540 
00000550 
00000560 
.00000570 
00000530 
00000590 
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.c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c· 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

·c 
c· 
c 
c 
c 
c 
c 
c . 
c 
c 
c 
c 

HAXFEV SPECIFIES THE THIRD STOPPING CRITERION. TERMINATION 
OCCURS IF THE NUMBER OF CALLS TO FCN .EXCEEDS MAXFEV. 

. 
MOPT IS THE NUMBER OF CONSECUTIVE TIMES THAT THE APPROXIMATE 

JACOBIAN IS REUSED DURING EACH ITERATION OF ITERATIVE 
REFINEMENT. MAXIMUM EFPICIENCY.IS USUALLY OBTAINED IF 
l'iOPT 11AXI!HZES LOG(K+1)/(N+2*K+1) FORK= 1, ••• ,N. 

ON OUTPUT: 

X CON1ATNS THE FINAL ESTIMATE FOR THE ZERO OF THE.SYSTEM 
OF EQtJATIONS. 

l1AXPEV CONTAINS THE NUMBER OF CALT,S USED IN PRODUCING X. 

IER IS SET AS FOLLOWS: 

IER=O IMPROPER INPUT PARAMeTERS. 

IER=1 "ABSOLUTE VALUE OF EACH RESIDUAL IS LESS THAN FTOL. 

IER=2 

IER=3 

IER=4 

IER=5 

IE"R=6 

IEF=7 

IER=8 

WORK! NG HRHS: 

RELATIVE ERROR BETWEEN TWO SUCCESSIVE ITERATES 
IS LESS THAN XTOL. 

CONDITIONS FOR IER=1 AND IER=2 HOLD. 

NUMBER OF CALLS TO F EXCEEDS MAXFEV. 

APPROXIMATE JACOBIAN ~ATgiX IS SINGULAR. 

ITERATION IS NOT MAK[ NG GOOD PROGRESS. 

ITERATION IS DIVERGING. 

ITERATION SEEMS TO BE CON~ERGING BUT THE REQUESTED 
ACCURACY IS TOO STRINGENT, OR THE CONVERGENCE 
IS VERY SLO~ DUE TO A JACOBIAN SINGULAR NEAR 
THE ITERATES OR DUE TO BADLY SCALED VARIABLES. 

· Q IS AN N BY N HR~Y. 
Y,Z,A ARE.LIN~AR ARAYS OF LENGTH N~ 

c ...... ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. . 

c· 

SUBROUTINE BRENTM(N,FCN,X,FTOI,XTOL,MAXFEV,IER,MOPT,Q,Y,Z,A) 
INTEGER I,IER,J,K,~,MAXFEV,MOPT,N,NFEVAL,NIER6,NIER7,NIER8 
REAL *8 DIFIT,DIFIT1,EPS,E?S~CH,ETA,ETA1,FKZ,FNORM,FNOPM1, 

+ FONCT,FTOL,H,ONE,P05,BC,SIGMA,XNORM,XTOL,ZERO 
REAL *8 A(N),Q(N,N),X(N),Y(N),Z(N) . 
RF.AL *8 DMAX1,DABS,DSQRT 
LOGICAL CONV,SING 
DATA ztRO,ONE,P05 /O.D0,1.DO,~.D-2/ 
IER = 0 
IF (N .LE. 0) RETPR~ 

C EPSMCH IS THE MACHINE PRECISION. 
c 

EPSMCH = 16.~0**(-13) 
I 

.00000600 
00000610 
00000620 

"00000630 
00000640 
00000650 

. 00000660 
00000670 
00000680 
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. 00000690 
00000700 
00000710 
00000720 
000007 30. 
00000740 
00000750 
00000760 
00000770 
00000780 
00000790 
00000800 
00000810 
00000820 
00000830 
00000840 
00000850 
00 0008GO· 
00000870 
00000880 
00000890 
00000900. 
00000910 
00000920 
00000930 
00000940 
00000950 
00000960 
00000970 
00000980 
00000990 
00001000 
00001010 
0000"1020 
00001030 
00001040 
00001050 
00001060 
00001070 
00001080 
00001090 
00001100 
00001110 
00001i20 
00001130 
00001140 
00001150 
00001160 
00001170 
00001180 
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EPS = DSQRT(EPS~1CH) 00001190 
c 00001200 
C NFEVAL COUNTS THE NryMRER OF COMPONENT FUNCTION EVALUATIONS. 00001210 
C· XNORM IS TH~ NORM OF X. 00001220 
C FNORM IS THE COMPUTED RESIDUAL WITH MAXIMUM ABSOLUT~ VALUE. 00001230 
C DIFIT IS THE NOR~ OF THE DIFFERENCE BETWEEN THE LAST T~O IT~~ATES.00001240 
C NIER6 IS USED TO DETERMINE WHEN TO SET IER=6. 00001250 
C NIER7 IS USED TO DETERMINE WHEN TO SET IER=7. 00001260 
C NIER8 IS USED TO DETERMI~E WHEN TO SET IER=8. 00001270 
c 00001280 

NFEVAL = 0 00001290 
X NORM = ZERO 00 0013 00 
FNORM = ZERO 00001310 
DIFIT = ZERO 00001320 
NIER6 = ·- 1 00001330 
NIER7 = -1 00001340 
NIER8 = 0 · 00001350 
DO 10 I = 1,N 00001360 

XNORM = DMAX1(XNORM,DABS(X(I))) 00001370 
10- CONTINUE. 00001380 
c 00001390 
C El-!TER THE PRINCIPAL I.TERATION. 00 001400 
c 000014~0 
20 CONTINUE 00001420 

SING = .TRUE. 00001430 
FNORM1 = FNOR!1 000014U0 
FNORM = ZRRO 00001450 
DIFIT1 = DIFIT ., 00001460 

c 00001470 
C COMPUTE THE STEP H FOR THE DIVIDED DIFFERENCE WHICH 00001480 
C APPROXIMATES TH~ K-TH ROW OF THE JACOBIAN MATRIX. 00001490 
c 00001500 

H = EPS*D"1AX1 (XNORM,ONE) 00001510 
DO 40 J = 1,N 00001520 

DO 30 I= 1,N 00001530 
Q(I,J) = Zf.RO 00001540 

30 CONTINUE 00001550 
Q(J,J) = H 00001560 
Y(J) = X(J\ 00001570 

4 0 C 0 N TIN 0 E . 0 0 0 0 1 58 0 
c 00001590 
C. ENTER A SOBIT13::RA'!'ION. 00001600 
c • 00001610 

c 
c 
c 

50 

DO 130 !<" = 1,~! 
CALL .FCN (N, K, Y, FONCT, IER) 
IF (I'SR . LT. 0) GO TO 210 
NFEVAL = NFEVAL+1 
FNORM = D~AX1 (FNORM,DABS (~ONC'l\ ~ 

COMPUTE THE K-TH ROq OF THE JACOBIAN MATRIX. 

DO 60 J .,;,. K,N 
DO 50 I = 1, N 

'l(I) = Y(I)+Q(I,J) 
CONTINUE 

CAI.L FCN (N, K,Z, FKZ, IER) 
IF (IFR .J,T. 0) GO TO 210 
NFEVAL = NFEVAL+1 
!(J) = FKZ-FONC'!' 

00001620 
00001630 
00001640 
00001650 
00001660 
00001670 
000.01680 
0000 1.6go 
00001700 
000017iO 
00001720 
00001730 
00001740 
00001750 
00001760 
00001770 
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60 
c 
c 
c 
c 

70 

80 

c 
c 
c 

90 

100 
110 
c 
c 
c 

120 
130 
c 
c 
c 
c 

140 
c 
c 
c 

CONTINUE 

COMPOTE THE HOUSEHOLDER TRANSFlRMATION TO REDUCE THE K-TH RO~ 
OF THE JACOBIAN MArRIX TO A MULTIPLE OF THE ~-TH UNIT VECTOR. 

ETA = ZERO 
DO 70 I= K,N 

ETA= DMAX1(ETA,DABS(A(I))) 
CONTINUE 

IF (ETA .EQ. ZERO) GO TO 130 
SING = • PALS E. 
SIGMA = ZERO 
ETA 1. = ONE/ETA 
DO 80 :r = r<:,N 

A (I) = II. (J) *ETA 1 
SIGMA = SIGMA+A (I) *A (I) 
CONTINUE 

SIGMA = DSQRT (SIG1H) 
I F (A ( K) . • L T • Z E R 0) S I G M A = - S I G M A 
A (K) = A (K) +SIGMA 

APPLY THE TRANS FORM AT ION AND C) r1PUTE THE ORTHOGON.AL MATRIX Q. 

DO 110 I = 1 , N 
RO = ZERO 
DO 90 J = K, N 

RO = RO+A(.J)*Q(I,J) 
CONTI~IJ'E . 

RO = RO/(SIGMA*ll (K)) 
DO 100 J = K,N 

Q (I;J) = Q (!, J) -RO*A (.J) 
CONTINUF. 

CONTINUE 

COMPUTE ~HE NE~ SIJBITERATE. 

A(K) = SIG~A*STA 
SIGt-IA = FONCT/A (K) 
DO 120 I = 1,N 

Y(I) = Y(I)+SIGMA*Q(T,K) 
CONTINUE 

CON Titl"JE 

COMPUTE ~HE NORM OF THE ITERATE AND THE NORM OF THE DIFFERENCE 
BETWEEN THE LAST TWO ITERATES. 

XNORM = ZERO 
DIFIT = ZBRO 
DO 140 I = 1,N 

XNORM = DMAX1(X90RM,DABS(Y(n)) 
DIFIT = DMAX 1 (DIFIT, DABS (X (I) -Y (I))) 
X(I) = Y(I) 
CONTINUE 

DETERMINE THE PROGRESS OF TilE ITERATION. 

CONV = .FALSE. 
IF (FNOR"' .LT. FlWRM1 .AND. l)IFIT ·.LT. DIFIT1) CONV =.TRUE. 
UIER6 = NIER6+1 
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0000·1780 
00001790 
00001800 
00001810 
00001820 
00 001830 
00001840 
00001850 
00001860 
000 0 1'87 0. 
00001880 
00001890 
00001900 
00001910 
00001920 
00001930 
00001940 
00001950 
00001960 
00001970 
00001980 
00001990 
00002000 
00002010 
00002020 

. 00002030 
000020110 
00002050 
00002060 
00002070 
00002080 
00002090 
00002100 
00002110 
00002120 
00002130 
00002140 
00002150 
00002160 
00002170 
00002180 
00002190 
00002200 
00002210 
00002220 
00002230 
00002240 
00002250 
00002260 
00002270 
00002280 
00002290 
00002300 
00002310 
00002320 
00002330 
00002340 
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c 
c 
c 

c 
c 
c 

c 
c 
c 

c 
c 
c' 
c 

150 

160. 
170 
c 
c 
c 
c 

180 
c 
c 

NIER7 = NIER7+1 
NIER8 = NIER8+1 
IF (CONV) NIER6=0 
IF (FNOR!'l . LT. FNORM1 .OR. DIFIT • LT. DIFIT1) NIER7=0 
IF (FNOR~ .GT. EPS .AND. DIFIT .GT. EPS*DMAX1 (XNOR!'!,ONE)) NIER8=0 

STOPPING CRITERIA. 

. IF (FNORM • LT .. FTOL) IER=1 
IF (DIFIT .LT. XTOL*XNORM .AND. CONV) IE~=2 
IF (FNOR(1 • LT. FTOL • AND. IFR • EQ. 2) IER=3 
IF (NFEVAL • r;T, MAXPEV) IER=4 
IF (SING) IER=5 
IF (NIER6 . GE. 5·) IER= 6 
IF (NIEB.7 . GE. 3) IER=7 
IF (NIEF8 • GE. 4) IER=8 
IF (IER • NE. 0) GO TO 210 

ITERATIVE REFINEMENT IS ONLY USED IF THE ITERATION IS CONVERGING. 

IF (.NOT. CONV .OR. DIFIT .GE. PO) *XNORM) GO TO 200 

START ITERATIVE REFINEMENT. 

IF (MOP'!' .EQ. 1) GO TO 200 
DO 190 H = 2,MOPT 

F'NCP.M1 = FNOR!1 
FNORM = ZERO 
DO 170 K = 1, N 

'CALL FCN(N,K,Y,FONCT,I'SF) 
If (IE R • LT. 0) GO '!'0 2 1 0 
NFEV A L = NFEV AL+ 1 
FNORM = D~AX1 (FNORM,DABS(FONCT)) 

ITERATIVE REFINEMENT IS TERMINATED IF IT DOES NOT . 
GIVE A PEDUCTION OF THE RESIDUALS OR IF A(K) IS ZERO. 

IF (FNORM .. LT. FNOR~11 • AND. A (K) • NE. ZERO) GO TO 150 
FNORM = FNORM 1 
GO '!'0 200 
CON't'INUE 
StG MA = F'ONC'r/ A ( K) 
no 160 r = l,N 

Y(I) = Y(I)+SIGMJI.*Q(I,K) 
CONTIN11E 

CONTINUE 

COMPUTE THE NORM OF T~E ITERJI.TE AND THE NORM OF THE DtFFERENCE 
BETWEEN TH~ LAST T~O ITERAlES OF THE ITERATIVE REFINEMENT. 

XNORM = ZERO 
DIFIT = ZERO 
DO 180 I = 1, N 

XNOR11 = DMAX1(XNO?l'l,DABS(Y(I))) 
DIFIT = Dr.AY.1(DIFIT,DP..BS(X(I)-Y(I))) 
X(I) = Y(Il. 
CONTINUE 

STOPPING CRITERIA FOP ITERATIVE REFINRMENT. 

.... ... 
·. ·.~·· 

00002370 
00002380 
00002390 
00002400 
o·ooo·2410 
00002420 
00002430 
00002440 
000021.150 
00002460 
00002470 
00002480 
00002490 
00002500 
00002510 
00002520 
00002530 
00002540 
00002550 
000 0 2560 
00002570 
00002580 
00002590 
00002600 
00002610 
00002620 
00002630 
00002640 
00002650 
00002660 
00002670 
00002680 
oooo26go 
00002700 
0000 2710 
00002720 
00002730 
00002740 
00002750 
00002760 
00002770 
00002780 
00002790 
00002800 
00002810 
00002820 
00002830 
00002840 
00002850 
00002860 
00002870 
000 0 2880 
00002890 
00002900 
00002910 
00002920 
00002930 
00002940 
00002950 



~ .... ... ~ 

r . 

r 
c 

1: 

~· 
1: ,. 

190 
I 
' 200 I 
I c I 
i. c 

I 
c 

-21 0 
f 

IF (FNORM • LT. FTOL) IER= 1 
IF (DIFIT .LT. XTOL*XNORM .AND. CONV) IER=2 
IF (FNORM • LT. FTOL • JI.ND. IER • EQ. 2) IER=3 
IF (NFEVAL • GT. MAXFEV) IER=4 
IF (IER • NE. 0) ·Go TO 210 
CONTINIJE 

CONTINUE 

END OF THE ITERATIVE REFINEMENT. 

GO TO 20 
CONTI NUB 
MAXFEV = NFEVAL 
BETURN 
END 
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IF (FNORM .LT. FTOL) IER=1 
IF (DIFIT • LT. XTOL*XNORM • AND. CONV) IER=2 
IF (FNORM • LT. FTOL .,AND. IER • EQ. 2) IER=3 
IF (NFEVAL .GT. MAXFEV) IER=q 
IF (IER . NE. 0) GO TO 210 
CONTINTJE 

CONTINUE 

END OF THE ITERATIVE REFINEMENT. 

GO TO 20 
CONTINUF: 
MAXFEV = NFEVAL 
RETURN 
END 
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