CoF — TAe4DR-- Y

FORTRAN - PAST, PRESENT, AND FUTURE

N. H. Marshall
EG&G Idaho Inc.
Idaho Falls, Idaho

Fortran has been widely used both here and abroad for many years,
but it has its shortcomings and has fallen under severe criticism. By
modern day criteria, Fortran is archaic. It does not lend itself well
to modern structured programming philosophies. But Fortran is changing,
and it is becoming better. The newly standardized Fortran 77 is a giant
step forward. It has improved Fortran's usefulness and will make it
easier to write "'structured" programs. X3J3, the committee which produced
Fortran 77, is already working on future' Fortran standards. These promise
to be even more modern and more powerful. The future of Fortran looks -
good and it looks exciting. It is anticipated that Fortran will continue
to be widely used for many years to come.

NOTICE

This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or
process disclosed, or represents that its use would not
infringe privately owned rights

PISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

W\

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

FORTRAN - PAST, PRESENT, AND FUTURE

| | | | E
" Fortran has been the workhorse of the scientific programming community o
for many years. Introduced by IBM well over 20 years ago, Fortran became the |
. first programming language to be standardized in March, 1966. Since that
time Fortran usage has grown as the usage of computer has grown. It has
.retained popularity because it is easy to use, it compiles rapidly, and it
produces efficient code.. The amount of code written in Fortran and the '
dollar and time investment in Fortran programs is mind boggling. However
Fortran's .road to success has not been smooth and there have been many rocky
times.

FORTRAN AND "'STRUCTURED" PROGRAMS

Ten or more years ago people began to realize that computer programming
should not be a hapazard process but instead it should be. a carefully designed
.and organized one. Theories -of "structured" programming emerged and people
began to think in terms of IF-THEN-ELSE and DO-WHILE like constructs. These
constructs could be realized in Fortran only with the use of GO TO statements,
and the elimination of GO TO statements was the heart of a controversy among
computer scientists in the late 1960's. Some felt GO TO's should be eliminated
altogether from computer languages, others felt they were necessary, buf‘all
agreed that their use should be minimized. Because it is difficult to write
"structured" Fortran without propagating GO TO statements, many, especially in
the. academic world, felt that Fortran should be replaced with a more "struc-
tured" language. For a short time the cry was heard that "Fortran is dead".
But due to the enormous industrial investment in Fortran and because it com-
piled quickly producing efficient code, it did not die. Today, very much
~alive, Fortran is changing to meet the needs of users and is expected to con-
tinue to be the industrial workhorse throughout the world. The new Fortran
- standard contains an IF-THEN-ELSE construct and future Fortrans will contain
new looplng constructs, so that future Fortran proorammers will find it easy
to write structured" programs.

FIRST‘COMPUTER LANGUAGE TO BE STANDARDIZED

Fortran was first standardized in March 1966 by the then American Stan-
dards Association (ASA), by the X3.4.3 subcommittee. In 1969, the name of the
American Standards Association was .changed to American National Standards
Institute (ANSI) and the X3.4.3 subcommittee has subsequently become known as
the X3J3 technical committee.

As early as 1967, questions arose about'the 1966 Fortran standard and
the X3.4.3 committee went to work to clarify for it. Two such reports were
published in the Communications of the ACM, one in 1969! and one in 19712.

In view of the many extensions to the 1966 standard, the X3J3 committee de-
cided in 1970 that it would be more productive to abandon the clarification
work and devote their time to a revision. Since that time, this committee
has met about. six times a year with many members devoting almost full time to
the work. Hundreds of proposals have been considered. Correspondence from
all over the nation and the world was reviewed at each meeting. X3J3 has
tried to be responsive to the needs of the computing industry. Because of
this and because of the magnitude of the work, the revision effort was. frus-
tratingly slow. With decisions as to what features should be included, what
was the best syntax, and with many hours of editing, the proposed new stan-

" dard consumed much time and money. Their effort produced Fortran 77, which'

became a new Fortran standard on April 3, 1978. It is estimated that this
effort cost over two million dollars. The 1966 Fortran standard contained

26 pages plus appendicies, the 1978 standard contains approximately 165 pages
plus appendicies. The increase in bulk was due not only to the expansion of
Fortran features but also because X3J3 'made an effort to produce a document .
which was more readable and usable than the 1966 standard.

"FORTRAN 77

The new Fortran standard is entitled "American National Standard Pro-
gramming Language Fortran, ANSI X3.9-1978" and is published. by the American
National Standards Institute. There is an excellent article entitled
"Fortran 77" in the communications of the ACM3 which discusses the new stan-
dard and its features. The following quote regarding the criteria which '
guided -the X3J3 committee is-taken from that article. '

- "The main criteria followed by the committee while developing the
new standard were:

1. Inclusion of new features whose utility has been proven by
~actual usage. :

2. Inclusion of new features that make programs easier to transport
from one processor to another.

‘3. Minimal increase in the complexity of the language or of processors
for the language.

4. Avoidance of features that conflict with X3.9-1966.

5. Elimination of feétures in the 1966Astandard only if there is
a clearly demonstrated reason for. doing so.

6. Production of a more precise description of the language."

Features of Fortran 77 which are extensions from the 1966 standard have been
widely publicized and will not be recounted in detail here; however, comments
on some of them which augment the 1966 Fortran do seem appropriate.

One of the big additions to Fortran is that of character data type.
Character manipulation in Fortran has always been difficult, and since there
has been no character type, it has been done "under the guise of'" another
data type, usually real or integer. Included also in Fortran 77 is a '

concatenation operator and substring operations so that character. and text
manipulation may be done easily. Fortran 77 also offers some other powerful
features related to character data type which may not be so obvious to the
.casual reader. Some of these are: ' -

a) The use of character constants and character variables in decisions.
" 'Not only can two character strings be tested for equality, but
Fortran 77 defines a partial collating sequence so that it is
‘meaningful to ask .if one character strlng is greater than. or less
" than another.

b) It will be possible to use character constants or character vari-
ables as format identifiers in input/output statements. This
feature will make it easy to select from one or more I/O format
definitions at execution tlme.

¢) It will be easy to modify I/0 format definitions at execution time.
By using the substring operations with character variables used as
format identifiers, they may be easily modified during execution.

.d) Expressions will be permitted in output statements. Since this
includes character. expressions, text to be printed may be included
in the output statement output list if desired. In the 1966 Fortran
it was restricted to the Format statement. o

e) The ability to do internal I/0, i.e., the ability.to read from

memory or write to memory, is provided in an easy and.natural way

~ in Fortran .77. (This is the same capability provided by the ENCODE
and DECODE statement in some Fortran extensions.) This is done by
‘using an appropriate character variable as the unit identifier in an
input or output.statement. The I/0 operation causes data to be

- moved between that character variable and the variables in the input/
output list with any data conversions controlled by the FORMAT
identifier..

Another new feature in Fortran 77 which will do much to-enhance it to
programmers is the addition of an IF-THEN-ELSE construct. This will permit
programmers to write "structured" Fortran without the use of excessive GO TO
statements. This feature will change the style of Fortran programmers.

Fortran 77 also includes extensions to the DO loop mechanism, new format
descriptors, direct access I1I/0, the PARAMETER statement, generic functions,
and many more. These make the prospect of using Fortran 77 exciting.

Fortran 77 is here. While Fortran 77”compilers.are still not generally
available, they undoubtedly will be announced over the next year or two. It

‘will be an interesting transitiom.

FUTURE FORTRANS -~ WHAT WILL THEY BE LIKE?

But what of the future? Where is Fortran going? When will the next
Fortran standard be issued? These questions obviously cannot be answered
exactly, but it is interesting to speculate. The ANSI X3J3 technical committee

certainly does not regard Fortran 77 as the ultimate language. It is more of
an intermediate standard to replace the 1966 standard which was so out- of date.
As Fortran 77 was completed, X3J3 did not even break its. stride. Not a meet-
ing was missed. Groups had already been organized to investigate the need of
future standards before Fortran 77 was finalized. The X3J3 is currently look-
ing to .1983-84 for the next Fortran standard. Whether or not this is realis-
~tic remains to be seen, certainly the amount of work they have outlined for

themselves is overwhelmlng

The X3J3 is currently 1ook1ng to a "core plus modules" approach for
'future Fortrans. The core Fortran would be a complete language with essen-
tially all the functionality of Fortran 77. Modules could then be defined
which would interface with the core and provide desirable extensions to the
core Fortran. This may be kind of a radical approach, but currently it seems
to have merit. There are three motivations for this approach.

1) This would permit collateral standards areas such as data base
management, real time process control, and graphics to be developed.
Such standards would form modules which would . 1nterface with the
core Fortran.

2) This would permit a special features module which could contain
features not in the core Fortran, but which should be. included in
a Fortran standard. One.such special feature could be array pro-
cessing. '

3) This would permit an "old features" module. There are archaic

‘ features in current Fortran which both the public and the X3J3
committee feels should be deleted, but which cannot be because
of the enormous number of working programs which contain them.
By placing these features in a separate module, they will be -
preserved for those who need them, and they will not inhibit the
development of better techniques which provide the same function-
ality.

If the "core plus module" approach is adopted, it is the intent of the
X3J3 committee that the number of modules remain small. The key to this
approach is the interface between the core and the modules. For this reason,
the committee is 1nvest1gat1ng ways of enhanc1ng the procedure calling mech-
anisms in Fortran. . : .

- Future Fortrans will undoubtedly include some new looping constructs.
It appears likely that these will include both a form of an unconditional-
looping construct as well as a conditional one. The unconditional looping
construct will cause the body of the loop to be executed repeatedly until
. some kind of an exit statement is executed. The conditional looping construct
will permit the body of the loop to be executed until some looping condition
is satisfied. ©Note that conditional looping construct will include the func-
tionality of the DO WHILE construct. :

Another candidate for inclusion in future Fortrans is some form of a
CASE construct. This will permit design of blocks of Fortran statements
which may be selected and executed independently depending upon some initial
condition.

. Future Fortrans may also contain internal procedures. One of the prin-.
ciple issues here is the scope of names in internal procedures.

Some find of array-processingvinstructions will proabably appear in
future Fortrans. This seems particularly desirable since future hardware
"will ‘undoubtedly support some form of vector manipulations.

Another data type which may appear in future Fortrans is BIT data type.
People still have a need for "bit-twiddling" and the omission of some kind of
‘bit operations in Fortran 77 was felt by some to- be a serious oversight.

Future Fortrans may also have a ''mew look'". The X3J3 committee is
investigating such features as: '

1) Free-form of Fortran statements. ~This would delete old Fortran con-
‘ventions such as a "C" in position one-for comments, a nhonzero,
nonblank character in position six for continuation lines, and the
. requirement that statementststart in position seven or after.

2) Longer variable names. Many people feel that six characters are
inadequate for writing meaningful mnemonic names. :

3 : } 3) 1In-line comments. Many people feel the need to write comments on
| . I the same line as the Fortran statements.

1 o ' "'A.4) Multiple statements per 1ine.' Many other languages support this
| , : ' : feature and some people feel that it is a desirable feature.

| The computer science field is rapidly changing and computer languages
must change too, -or they soon become obsolete. Fortran is not .dead; it is
very mich alive and viable. . It is growing and maturing to stay current with
the programming needs. Fortran expects to maintain its position of workhorse
of the scientific programming community. : '

REFERENCES

1 Clarification of Fortran Standards -~ initial progress
Comm ACM 12, 5 (May 1969), p. 289-294.

2 ANSI Subcommlttee X333, Clarlflcatlon of Fortran Standards - second
report Comm ACM 14, 10 (Oct 1971), p. 628-642

Fortran 77, Comm ACM 21, 10 (Oct 1978), p- 806—820.

" FORTRAN .- PAST, PRESENT, AND FUTURE

Fortran has been the workhorse of the scientific programming community
for many years. Introduced by IBM well over 20 years ago, Fortran became the
" first programming language to be standardized in March, 1966. Since that
time Fortran usage ‘has grown. as the .usage of computer has grown. It has
retained popularity because it is easy to use, it compiles rapidly, and it
produces efficient code. The amount of code written in Fortran and the
dollar and time investment in Fortran programs is mind boggling. However:
Fortran's road to success has not been smooth and there have been many rocky

times.

FORTRAN AND "STRUCTURED" PROGRAMS

Ten or more years ago people began to realize that computer programming
should not be a hapazard process but instead it should be a carefully designed
and organized one. Theories of "structured" programming emerged and people
began to think in terms of IF-THEN-ELSE and DO-WHILE like constructs.. These
constructs could be realized in Fortran only with the use of GO TO statements,
and the elimination of GO TO statements was the heart of a controversy among
computer scientists in the late 1960's. Some.felt GO TO's should be eliminated
altogether from computer languages, others felt they were necessary, but all
agreed that their use should be minimized. Because it is difficult to write
"structured" Fortran without propagating GO TO statements, many, especially in
the academic world, felt that Fortran should be replaced with a more ''struc-
tured" language. For a short time the cry was heard that "Fortran is dead".
But due to the enormous industrial investment in Fortran and because it com-
piled ‘quickly producing efficient code, it did mnot die. Today, very much
alive, Fortran is changing to meet the needs of users and is expected to con-
tinue to be the industrial workhorse throughout the world. The new Fortran
standard contains an IF-THEN-ELSE construct and future Fortrans will contain
- new looplng constructs, so that future Fortran programmers w1ll f1nd it easy
to write "structured" programs.

FIRST COMPUTER LANGUAGE TO BE STANDARDIZED

Fortran was first standardized in March 1966 by the then American Stan-
dards Association (ASA), by the X3.4.3 subcommittee. In 1969, the name of the
American Standards Association was changed to American National Standards
Institute (ANSI) and the X3.4.3 subcommittee has subsequently become known as
the X3J3 technlcal committee.

' As early as 1967, questions arose about the 1966 Fortran standard and
the X3.4.3 committee went to work to clarify for it. Two such reports were
publlshed in the Communications of the ACM, one in 1969! and one in 19712

'In view of the many extensions to the 1966 standard, the h3J3 committee de- .

cided in. 1970 that it would be -more productive to abandon the clarification

work and devote their time to a revision. Since that time, this commlttee

has met about six times a year with many members devoting almost full time to

' the work. Hundreds of proposals have been considered. Correspondence from

all over the nation and the world was reviewed at each meeting. X3J3 has
tried to be responsive to the needs of the computing industry. Because of
this and because of the magnitude of the work, the revision effort was frus-
tratingly slow. With decisions as to what features should be included, what
was the best syntax, and with many hours of editing, the proposed new stan-
dard consumed much time and wmoney. Their effort produced Fortran 77, which
became a new Fortran standard on April 3, 1978. It is estimated that this
effort cost over two million dollars. The 1966 Fortran standard contained
26 pages plus appendicies, the 1978 standard contains approximately 165 pages
plus appendicies. The increase in bulk was due not only to the expansion of
Fortran features but also because X3J3 made an effort to produce a document
which was more readable and usable than the 1966 standard.

FORTRAN 77

The new Fortran standard is entitled "American National Standard Pro-
gramming Language Fortran, ANSI X3.9-1978" and is published by .the American -

" National Standards Institute. There is an excellent article entitled

"Fortran 77" in the . communications of the ACM3 which discusses the new stan-
dard and its features. The following quoté regarding. the criteria which
guided the X3J3 committee is taken from that article.

- "The main criteria followed by the committee while developing the
- new standard were:

1. Inclusion of new features whose utility has been proven by
actual usage. ' .

2. Inclusion of new features that make programs easier to transport
from one processor to another.

3. Minimal increase in the complexity of the language or of processors
for the language.

4. Avoidance of features that conflict with X3.9—l966.

5. gElimination of features in the 1966 standard only if there is
a clearly demonstrated reason for doing so.

6. Production of a more precise description of the language."

i Features of Fortran 77 which are extensions from the 1966 standard have been

widely publicized and will not be recounted in detail here; however, comments~
on some of them which augment the 1966 Fortran do seem appropriate.

One of the big additions to Fortran is that of character data type.

- Character manipulation in Fortran has always been difficult, and since there

has been no character type, it has been done "under the guise of" another
data type, usually real or integer. Included also in Fortran 77 is a

.concatenation operator and substring operations so that character and text

manipulation may be done easily. Fortran 77 also offers some other powerful
features related to character data type which may not be so obvious to the
casual reader. Some of these are:

a) The use of character constants and character variables in decisions.
Not only can. two character strings be tested for equality, but
‘Fortran 77 defines a partial collating sequence so that it is
meaningful to ask if one character string is greater than or less
than another.

b) It will be possible to use character constants or character vari-

‘ ables as format identifiers in input/output statements. This
feature will make it easy to select from one or more /0 format
definitions at executlon time.

c) It will be easy to modify I/0 format definitions at execution time..
By using the substring operations with character variables used as
format identifiers, they may be easily modified during execution.

~d) Expressions will be permitted in output statements. Since this
includes character expressions, text to be printed may be included
in the output statement output list if desired. In the 1966 Fortran
it was restricted to the Format statement. '

e) The ability to do intermal I/O, i.e., the ability to read from .
memory or write to memory, is provided in an éasy and natural way
in Fortran 77. (This is the same capability provided by the ENCODE
and DECODE statement in some Fortran extensions.) This is dome by
using an appropriate character variable as the unit identifier in an
input or output statement. The I/0 operation causes data to be
moved between that character variable and the variables in the input/
output list with any data conversions controlled by the FORMAT
identifier. .

Another new feature in Fortran 77 which will do much to enhance it to
programmers is the addition of ‘an IF-THEN-ELSE construct. ' This will permit
programmers to write "structured" Fortran without the use of excessive GO TO
statements. This feature will change the style of Fortran programmers.

Fortran 77 also includes extensions to the DO loop mechanism, new format
descriptors, direct access I/0, the PARAMETER statement, generic functions,
and many more. These make the prospect of using Fortran 77 exciting.

Fortran 77 is here. While Fortran 77 compilers are still not generally

available, they undoubtedly will be announced over the next year or two. It
will be an interesting transitionm.

FUTURE FORTRANS -- WHAT WILL THEY BE LIKE?

But what of the future? Where is Fortran going? When will the next

_Fortran-standard be issued? These questions obviously cannot be answered

exactly, but it is interesting to speculate. The ANSI X3J3 technical committee

certainly does not regard Fortran 77 as the ultimate language. It is more of
an intermediate standard to replace the 1966 standard which was so out of date.
As Fortran 77 was completed, X3J3 did not even break its stride. 'Not a meet-
ing was missed. Groups had already been organized to investigate the need of
future standards before Fortran 77 was finalized. The X3J3 is currently look-
ing to 1983-84 for the next Fortran standard.: Whether or not this is realis-
tic remains to be seen, certainly the amount of work they have outlined. for
themselves is overwhelming. '

The X3J3 is currently looking to a "core plus modules" approach for
future Fortrans. The core Fortran would be a complete language with essen-
tially all the functionality of Fortran 77. Modules could then be defined
which would interface with the core and provide desirable extensions to the
core Fortran. ' This may be kind of a radical approach, but currently it seems
to have merit. There are three motivations for this approach

1) This would permit collateral.standardé areas such as data base
 management, real time process control, and graphics to be developed.
Such standards would form modules which would interface with the
core Fortran. '

2) This would permit a special features module which could contain
. features not in the core Fortran, but which should be included in
a Fortran standard. One such special feature could be array pro-
cessing. - .

~ 3) This would permit an "old features" module. There are archaic
features in current Fortran which both the public and the X3J3
committee feels should be deleted, but which cannot be because
of the enormous number of working programs which contain them.
By placing these features in a separate module, they will be
preserved for those who need them, and they will not inhibit the
development of better techniques which provide the same function- -
ality.

If the "core plus module" approach is adopted, it is the intent of the"
X3J3 committee that the number of modules remain small. The key to this
approach is the interface between the core and the modules. For this reason,
the committee is investigating ways of enhanc1ng the procedure calling mech-
anlsms in Fortran. . . -

Future Fortrans will undoubtedly include some new looping constructs.
It appears likely that these will include both a form of an unconditional
looping construct as well as a conditional one. The unconditional looping
‘construct will cause the body of the loop to be executed repeatedly until
some kind of an exit statement .is executed. The conditional looping construct
"will permit the body of the loop to be executed until some looping condition
"is satisfied. Note that conditional looping construct will include the func-
" tionality of the DO WHILE.construct.

Another candidate for inclusion in future Fortrans is some form of a
CASE construct. - This will permit design of blocks of Fortran statements
_ which may be selected and executed 1ndependently depending upon some initial
condition.

Future Fortrans may also contain internal procedures. One of the prin-
ciple issues here is the scope of names in internal procedures. .

Some find of array processing instructions will proabably appear in
future Fortrans. This seems particularly desirable since future hardware
will undoubtedly support some form of vector manipulations.

Another data type which may appear in future Fortrans is BIT data type.
People still have a need for "bit-twiddling" and the omission of some kind of
bit operations in Fortran 77 was felt by some to be a serious oversight.

Future Fortrans may also have a '"'mew look'". The X3J3 committee is
investigating such features as:

1) Free-form of Fortran statements. This would delete old Fortran con-
ventions such as a '"C" in position one for comments, a nonzero,
nonblank character in position six for continuation lines, and the
requirement that statements start in position seven or after.

2) Longer variable names. Many people feel that six characters are
inadequate for writing meaningful mnemonic names.

3) 1In-line comments. Many people feel the need to write comments on
the same line as the Fortran statements.

4) Multiple statements per line. Many other languages support this
feature and some people feel that it is a desirable feature.

The computer science field is rapidly changing and computer languages
must change too, or they soon become obsolete. Fortran is not dead, it is
very much alive and viable. It is growing and maturing to stay current with
the programming needs. Fortran expects to maintain its position of workhorse
of the scientific programming community.

REFERENCES

1 Clarification of Fortran Standards -- initial pfogress
Comm ACM 12, 5 (May 1969), p. 289-294.

2 ANSI Subcommittee X3J3, Clarification of Fortran Standards -- second
report. Comm ACM 14, 10 (Oct 1971), p. 628-642

3 Fortran 77, Comm ACM 21, 10 (Oct 1978), p. 806-820.

