
FORTRAN PAST, PRESENT, AND. FUTURE 

N. H. Marshall 
EG&G Idaho Inc. 

Idaho Falls, Idaho 

Fortran has been widely used both here and abroad for many years, 
but it has its shortcomings and has fallen under severe criticism. By 
modern day criteria, Fortran is archaic. It does not lend itself well 
to modern structured programming philosophies. But Fortran is changing, 
and it is becoming better. The newly standardized Fortran 77 is a giant 
step for-Ward. It has improved Fortran's usefulness and will make· it 
easier to write "structured11 programs. X3J3, the committee which produced 
Fortran 77, is already working on future · Fortran standards. These promise 
to be even more modern and more powerful. The future of Fortran looks 
good and it looks exciting. It is anticipated that Fortran will continue 
to be widely used for many years to come. 

,..------NOTICE------, 

This report was prepared u an account of work 
sponsored by the United States Government. Neither the 
United States nor the United States Department of 
Energy, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness 
or usefulneu of any information, apparatus, product or 
process disclosed, or represenu that its ute would not 
infringe privately owned righlS. 

PISTRIBUTIO.N OF THIS DOCUMENT IS U.NLlMlTE.Q 

~ 



DISCLAIMER 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency Thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal 
liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any 
agency thereof. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible in 
electronic image products. Images are produced 
from the best available original document. 



I 
I 
I 
i 
! 

·, 

----------

FORTRAN - PAST, PRESENT, AND FUTURE 

Fortran has been the workhorse of the scientific programming community 
for many years. Introduced by IBM well over 20 years ago, Fortran became the 
first programming language to be· standardized -in March, 1966. Since that 
time Fortran usage has grown as the usage of computer has grown. It has 
retained popularity because it is easy to use, it compiles rapidly, and it 
produces efficient code .. The amount of code written in Fortran and the 
dollar and time investment in Fortran programs is mind boggling. However 
Fortran's .road to success·has not been smooth and there have been many rocky 
times. 

FORTRAN AND "STRUCTURED" PROGRAMS 

Ten or more years ago people began to realize that computer programming 
should not be a h~pazard ~rocess but instead it should be. a carefully designed 
and organized one. Theories ·of. "structured". programming emerged and people . 
began to think in terms of IF-THEN-ELSE and DO-WHILE like constructs. These 
constructs could be realized in Fortran only with the use of GO TO statements, 
and the elimination of GO TO statements was the heart of a controversy among 
computer scientis~s in the late 1960's. Some felt GO TO's should be eliminated 
altogether from computer languages, others felt they were necessary, but all 
agreed that their use should be minimized. Because it is difficult to write 
"structured" Fortran without propagating GO TO statements, many, especially in 
the academic world, felt that Fortran should be replaced with a more "struc-. 
tured" language. For a short time the cry was heard that ,·Fortran is dead". 
But due to the enormous industrial·investment in Fortran and because it com­
piled quickly producing efficient code, it did not die. Today~ very much 
alive, Fortran is changing to meet the. needs of users and is expected to con­
tinue to be-the industrial workhorse throughout the world. The new Fortran 
standard contains an IF-THEN-ELSE construct and future Fortrans will contain 
new looping constructs, so that future Fortran programmers will find it easy 
to write "structured" programs. 

FIRST COMPUTER LANGUAGE TO BE ST&~ARDIZED · 

Fortran was first standardized in March 1966 by the then American Stan­
dards Association (ASA), by the X3·.4.3 subcommittee. In 1969, the name of the 
American Standards Association was changed to American National Standards 
Institute (ANSI) and the X3.4.3 subcommittee has subsequently become known as 
the X3J3 technical committee. 

As early as 1967, questi.ons arose about the 1966 Fortran standard and 
the X3.4.3 committee went to work to clarify for it. Two such reports were 
published in the Communications of the ACM, one in 1969 1 and one in 19712 • 



,, 
i' 

In view of the many extensions to the 1966 standard, the .X3J3 committee de­
cided in 1970 that it would be more productive to abandon the clarification 
work and devote their time to a revision. Since that time, this connnit-tee 
has met about six times a year with many members devoting almost full time to 
the work. Hundreds of proposals have been considered. Correspondence from 
all over the nation and the world was reviewed at each meeting. X3J3 has 
tried to be responsive to the needs of t~e computing industry. Because of 
this and because of the magnitude of the work, _the revision effort was frus­
tratingly slow. With decisions as to what features should be included, what 
wa~ the best syntax, and with many hours of editing, the proposed new stan­
dard consumed much time and money. Their effort produced Fortran 77, which­
became a new Fortran standard on April 3, 1978. It is estimated that this 
effort cost over t\,ro mi-llion -dollars. The 1966 Fortran standard contained 
26 pages plus appendicies, the 1978 standard contains approximately 165 pages 
plus appendicies. The increase in bulk was due not only to the expansion of 
Fortran features but also because X3J3 made an "effort to produce a document , 
which was more readable and usable than the 1966 standard. 

-FORTRAN 77 

The newFortran standard is entitled "American National Standard Pro­
grannning Language Fortran, ANSI X3.9-1978" and is published by the American 
N~tional Standards Institute. There is an excellent arti~le entitled 
"Fortran 77" in the communications of the ACl13 which discusses the new stan­
dard and its features. The following quote regarding the criteria which 
guided the X3J3 committee is-taken from that article. 

"The main criteria followed by the committee while developing the 
new standard were: 

1. Inclusion of new features whose utility has been proven by 
_actual usage. 

2. Inclusion of new features that make programs easier to transport 
from one processor to another. 

3. Minimal increase in the complexity of the language or of processors 
for the language. 

4. Avoidance of features that conflict with X3.9-,..1966. 

5. Elimination of features in the 1966 standard only if there is 
a clearly demonstrated reason for doing so. 

6. Production of a moreprecisedescription of the language." 

Features of Fortran 77 which are extensions from the 1966 standard have been. 
widely publicized and will not be recounted in detail here; however, comments 
on some of them which augment the 1966 Fortran do seem appropriate. 

One of the big additions to Fortran is "that of character data type. 
Character manipulation in Fortran has always been difficult, and since the.re 
has been no character type, it has been done "under the guise of" another 
data type, usually real or integer. Included al~o in Fortran 77 is a 



...-------------------~-------------

I :. 

concatenation· operator and substring operations so that character and text 
manipulation may be done easily. Fortran 77 also offers some other powerful 
features related to character data type which may not be so obvious to the 

.casual reader. Some of these are: 

a) The use of character constants and character variables in decisions. 
Not only can t\.;ro character strings be tested for equality, but 
Fortran 77 d~fines a partial collating sequence so that it is 
meaningful to ask if one character string is greater_ than.or less 
than another. 

b) It will be possible to use character constants or character vari­
ables as format ideritifiers in. input/output statements.· This 
feature will make it easy to select from one or more I/O format 
definitions at ex~cution time. 

c) It will be easy to modify I/O format definitions at execution time. 
By using the substring operations with character variables used as 
format identifiers, they may be easily modified during execution. 

d) Expressions will be permitted in output statements. Since this 
includes character e~pressions, text to be printed may be included 
in the output statement output list if desired. In the 1966 Fortran 
it was restricted to the Format statement. 

e) The ability to do internal I/0., i.e., the ability. to read from 
memory or write to memory, is provided in an easy and natural way 
in Fortran.77. (This is the same capability provided by the ENCODE 
and DECODE_statement in sorrie Fortran extensiops.) This is done by 
using an appropriate character variable as the unit identifier in an 
input or output. statement. The I/O operation cau~es data to be 
moved between that character variable arid the variables in the input/ 
output list with any data conversions controlled by the FORMAT 
identifier •. 

Another new feature in Fortran 77 which will do much to·enhance it to 
programmers is the addition of an 1~-THEN-ELSE construct. This will permit 
programmers to write "structured" Fortran without the use of excessive GO TO 
statements. This feature will change the style of Fortran programmers. 

Fortran 77 also includes extensions to the DO loop mechanism, new format 
descriptors, direct access I/0, the PARAJlliTER statement, generic functions, 
and many more. These make the prospect of using Fortran 77 exciting. 

Fortran 77 is here. While Fortran 77compilers.are still not generally 
available, they undoubtedly will be announced over the next year or two. It 
will be art interesting transition. 

FUTURE FORTRANS -- WHAT WILL THEY BE LIKE? 

But what of the future? ~~ere is Fortran going? When will the nex~ 
Fortran standard be issued? These questions obviously cannot be answered 
exactly, but it is interesting to speculate. The ANSI X3J3 technical committee 



certainly does not regard Fortran 77 as the ultimate language. It is more of 
an intermediate standard to replace the·l969 standard which was so out. of date. 
As Fortran 77 was completed, X3J3 did not even break its. stride. Not a meet­
ing was missed. Groups had already been organized to investigate the need of 
future standards before Fortran 77 was finalized .. The X3J3 i~ currently look­
ing to.l983-84 for the next Fortran standard. V.Thether or not this is realis­
tic remains to be seen, certainly the amount of work they have outlined for 
thems,el ves is overwhelming. 

. The X3J3 is currently looking to a "core plus modules" approach for 
future Fortrans. The core Fortran would be a complete language with eisen­
tially all the functionality of Fortran 77. Modules could then be defined 
which would interface with the core and provide desirable extensions to the 
core Fortran. This may be kind of a radical approach, but currentlyit seems 
to have merit. There are three motivations for this approach. 

1) This would permit collateral standards areas such as data base 
management, real time process control, and graphics to be developed. 
Such standards would form modules which would interface with the 
core Fortran. 

2) This would. permit a special features module which could contain 
features not in the.core Fortran, but which should be included in 
a Fortran standard. One such special feature could be array pro­
cessing. 

3) This would permit an "old features" module. There are archaic 
features in current Fortran which both the public and the X3J3 
committee feels ·should be deleted, but which cannot be because 
of the enormous number of working programs which contain them. 
By placing these features in a separate module, they will be · 
preserved for those who need them, and they will. not inhibit the 
development of better techniques which provide the same function­
ality. 

If the "core plus module" approach is adopted, it is the intent of the 
X3J3 committee that the number of modules remain small. The key to this 
approach is the interface between the core and the modules. For this reason, 
the committee is investigating ways of enhancing the procedure calling mech­
anisms in Fortran. 

Future Fortrans will undoubtedly include some new looping constructs. 
It appears likely that these will include both a form of an unconditional 
looping construct as well as a conditional one. The unconditional looping 
construct will cause the body of the loop to be executed re~~atedly until 
some kind of an exit statement is executed. The conditional looping construct 
will permit th~ body of the loop to be executed until some looping condition 
is satisfied. Note that conditional looping construct will include the func­
tionality of the DO \.ffiiLE construct. 

Another candidate for inclusion in future Fortrans is some form of a 
CASE construct. This will permit design of blocks of Fortran statements 
which may be selected and executed independently depending upon some initial 
condition. 

0 



. .., ' . . . 
;, .. · ~ . 

Future Fortrans may also contain internal procedures •. One of the ptin-. 
ciple issues here is the scope 6f names in internal procedures. 

Some find of array processing i~struction~ will proabably appear in 
fut~re Fortrans. This seems particularly desirable ~ince future hardware 

·will·undou(>tedly support some fonn of vector manipulations. 

Another data type which may appear in future Fortrans is BIT data type. 
People still have a need for "bit-twiddling" and the omission of some kind of 
bit operations in Fortran 77 was felt by some to be a serious oversight. 

Future Fortrans may·also have a "new look". The X3J3 committee is 
investigating such features as: 

1) 

2) 

3) 

4) 

Free-form of Fortran statements. This would delete old Fortran con­
. ventions such as a· "C" in position one·'for coinments, a nonzero, 

nonblank character in position six for continuation lines, and the 
requirement that statements start in position seven or after. 

Longer variable names. Many people feel that six characters are 
inadequate for writing meaningful mnemonic names. 

In-line comments. Many people feel the need to write comments on 
the same line as the Fortran statement's. 

Multiple statements per line. Many other lang~ages support this 
feature and some people feel that it is a desirable feature. 

The computer science field is rapidly changing arid comput~r languages 
must change too, or they s.oon become obsolete. Fortran is not .dead; it is 
very. much alive and viable •. It is growing and maturing to stay current .with 
the programming needs. Fortran·expects to maintain its position of workhorse 
of the scientific programming community. 

1 

2 

3 

REFERENCES 

Clarification of Fortran Standards -- initial progress 
Comm ACM 12, 5 (}~y 1969), p. 289-294. 

ANSI Subcommittee.X3J3, Clarification of Fortran Standards-- second 
report. Comm ACM 14, 10 (Oct 1971), p. 628-642 

Fortran 77, Comm ACM 21, 10 (Oct 1978), p. 806-820 • 

. ·· 
·'· ... · ... · 

L___·------------------------------------------------~----------~~--------------------------------------



i 
! 

6 

. FORTRAN - PAST, PRESENT, AND FUTURE 

Fortran has been the workhorse·of the scientific programming community 
for many years .. Introduced by IBM well over 20 years ago, Fortran became the 
first programming language to be standardized in March, 1966. Since. that 
time Fortran usage has grown ·as the .usa.ge of· computer has grown. It has 
retained popularity because it is easy to use, it. compiles rapidly, and it 
produces efficient code. The amount of code written in Fortran and the 
dollar and time investment in Fortran programs is mind boggling. However· 
Fortran's road to success has not been smooth and there have been many rocky 
times. 

FORTRAN AND."STRUCTURED" PROGRAMS 

Ten or more years ago people began to realize that computer programming 
should not be a hapazard process but instead it should be a carefully designed 
and organized one. Theories of "structured" programming emerged·and people 
began to think in terms of IF-THEN-ELSE and DO-WHILE like constructs. These 
constructs could be realized in Fortran only with the use of GO TO statements, 
and the elimination of GO TO statements was the heart of a·controversy among 
computer scientists in the late 1960's. Some.felt GO TO's should be eliminated 
altogether from computer languages, others felt they were necessary, but all 
agreed that their use should be minimized. Because it is difficult to write 
"structured" Fortran without propagating GO TO statements, many, especially in 
the academic world, felt that Fortran should be replaced with a more "struc­
tured" language. For a short time the cry was heard that· "Fortran is dead". 
But due to the enormous industrial investment in Fortran and because it com­
piled quickly producing efficient code, it did .not die. Today, very much 
alive, Fortran is changing to meet the needs of users and is expected to con­
tinue to be the industrial workhorse throughout the world. The new Fortran 
standard contains an IF-THEN-ELSE construct and future Fortrans will contain 
.new looping constructs, so that future Fortran programmers will find it easy 
to write "structured" programs. 

FIRST CO}WUTER LANGUAGE TO BE STANDARDIZED 

Fortran was first standardized in March 1966 by the then American Stan­
dards Association (ASA), by the X3.4.3 subcqnnnit-tee. In 1969, the name of the 
American Standards Association was changed to American National Standards 
Institut.e (ANSI) and the x3;4.3 subcommittee ·has subsequently become known as 
the X3J3 technical committee. 

As early as 1967, questions arose about the 1966 Fortran standard and 
the X3~4·. 3 committee went to work to clarify for it. Two such. reports were 
published in the Communications of the ACM, one in 1969 1 and one in 19712 • 



I 

I 

l 
r 

In view of the many extensions to the. 1966 standard,· the X3J3 committee de.:.. 
cided in. 1970 that it. would be more productive to abandon the.clarifica~ion 
work and devote· their time to a revision. Since that time, this committee 
has met about six times a year with many members devoting almost full time to 
the work. Hundreds of proposals have been .considered. Correspondence from 
all over the nation and the world was reviewed at each meeting. X3J3 has 
tried to be responsive to the needs of the computing industry. Because of· 
this and because of the magnitude of the work, the reviiion effort was frus~ 
tratingly slow. With decisions as to what features should be included, what 
was the best syntax, and with many hours of editing, the proposed new stan­
dard consumed much time and money. Their effort produced Fortran 77, which 
became a new Fortran st~ndard on April 3, 1978. It is estimated that this 
effort cost over two .million dollars. The 1966 .Fortran standard contained 
26 pages plus appendicies, the 1978 standard contains approximately 165 pages 
plus appendicies. The increase in bulk was du~ not only to the expansion of 
Fortran features but also because X3J3 made an effort to produce a document 
which was more readable and usable than the 1966 standard. 

FORTRAN 77 

The new Fortran standard is entitled "American National Standard Pro­
gramming Language Fortran, ANSI X3.9-1978" and is published by the American 

· National Standards Instittite. There is an excellent article entitled 
"Fortran 77" in the.communications of the ACH 3 which discusses the new stan­
dard and its features. The following quote regarding the criteria which 
guided the X3J3 committee is taken from that article. 

"The main criteria followed by the committee while developing the 
new standard were: 

1. Inclusion of new features whose utility has been proven by 
actual usage. 

2. Inclusion of new features that make programs easier to transport 
f·rom ·one processor to another. 

3. Minimal increase in the complexity of the language or of proc.essors 
for the language. 

4. Avoidance of features that conflict with X3.9-1966. 

5. ·Elimination of features in the 1966 standard only if there is 
a clearly demonstrated reason for doing so. 

6. Production of a more precise description of the language.'' 

Features of Fortran 77 which are extensions from the 1966 standard have been 
widely publicized and will not be recounted in detail here; however, comments 
on some of them which augment the 1966 Fortran do seem appropriate. 

One of the big additions to Fortran is that of character data type. 
· Chara~ter manipulation in Fortran has always been difficult, and since there 
has be,en no character type, it has been done "under the guise of" another 
dat·a type, usua·lly real or integer. Included also in ;Fortran 77 is a 



r----~-- --

,. 

concatenation operator and substring operations so that character and text 
manipulation may be ~one easily. Fortran 77 also offers some other powerful 
features related to character data type which may not be so obvious to the 
casual reader. Some of these are: 

a) The use of character constants and character variables in decisions. 
Not only can two char~cter strings be tested for equality, but 
Fortran 77-defines a partial collating sequence so that it is 
fueaningful t~ ask if one character string is greater than or less 
than another. 

b) It will be possible to use character constants or character_ vari­
ables as format identifiers in input/output statements. This 
feature will make it easy to select from one or more I/0 format 
definitions at execution time. 

c) It will be easy to modify I/O format definitions at execution time. 
By using the substring operations with character variables used as 
format identifiers, they may be easily modified during execution. 

d) Expressions will be permitted in output statements. Since this 
includes character expressions, text to be printed may be included 
in the output statement output list if desired. In the 1966 Fortran 
it was restricted to the Format statement. 

e) The ability to do internal I/0, i.e., the ability to read from 
memory o~ write to memory, is provided in an easy and natural way 
in Fortran 77. (This is the same capability provided by the ENCODE 
and DECODE statement in some Fortran- extensions.) This is done by 
using an appropriate character variable as the unit identifier in an 
input or output statement.· The I/O operation causes data to be 
moved between that character variable and the variables in the input/ 
output list with any data conversions controlled by the FORMAT 
identifier. 

Another new feature in Fortran 77 which will do much to enhance it to · 
programmers is the addition of an IF-THEN-ELSE construct. ·This will permit 
programmers to write "structured" Fortran without the use of excessive GO TO 
statements. This feature will change the style of Fortran programmers. 

Fortran 77 also includes extensions to the DO loop mechanism, new format 
descriptors, direct access I/O, the PARAMETER statement, generic .functions, 
and many more. These make the prospect of using Fortran 77 exciting. 

Fortran 77 is here. While Fortran 77 compilers are still not generally 
available, they undoubtedly will.be announced over the next year or two. It 
will be an interesting transition. 

FUTURE FORTRANS ,.-- WHAT WILL THEY BE LIKE? 

But what of the future? Where is Fortran going? l~en will the next 
·Fortran standard be issued? These questions obviously cannot be answered 
exactiy; but it is interesting to speculate. The ANSI X3J3 technical counnittee 



certainly does not regard Fortran 77 as theultimate language. It is more of 
an intermediate standard to replace the 1966 standard which was so out of date. 
As Foitran 77 was completed, X3J3 did not even break its stride. Not a ~~et­
ing was missed. Groups had already been organized to investigate the need of 
future standards before Fortran 77 was finalized. · The X3J3 is currently look­
ing to 1983-84 for the next Fortran standard.· Hhether or not this is realis­
tic .remains to be seen, certainly the amount of work they have outlined for 
themselves is overwhelming. 

The X3J3 is currently looking to a "core plus modules" approach for 
future Fortrans. The core Fortran would be a compiete language with essen­
tially all the functionality of Fortran 77.. Modul~s ~auld then be defined 
which would interface with the core and provide desirable extensions to the 
core Fortran. This may be kind of a radical approach,· but currently it seems 
to have ~erit. There are thr~e motivations for ihis approach. 

1) This would permit collateral standards areas such as database 
managem~nt, real time process control, and graphics to be developed. 
Such standards would form modules which would interface with the 
core Fortran. 

2) This would permit a special features module whtch could contain 
features not in the core Fortran, but which sho~ld be included in 
a Fortran standard. One such special feature could be array pro­
cessing. 

3) This.would permit an "old features" module. There.are archaic 
features in·current Fortran which both the public and the X3J3 
committee feels should be deleted, but which cannot be because 
of the enormous number of working programs which contain them. 
By placing these features in a separate module, they will be 
preserved for those who need them, and they will not inhibit the 
development of better techniques .which provide tqe same function­
ality. 

If the "core plus module" approach is.adopted, it is the intent of the 
X3J3 committee that the number of modules remain small. The key to this 
approach is the interface between the core and the modules. For this reason, 
the committee is investigating ways of enhancing t'he procedure calling mech­
anisms in Fortran. 

Future Fortrans will undoubtedly include some new looping constructs. 
It appears likely that these will include both a form of an unconditional 
looping construct as well as a conditional one. The unconditional looping 
construct will cause the body of the loop to be executed repeatedly until 
some kind of an exit statement .is executed. The conditional looping construct 

·will permit the body of the loop to be executed until some looping condition. 
is satisfied. Note that conditional looping construct will include the func­
tionality of the DO HIULE construct. 

Another candidate for inclusion in future Fortrans is some form of a 
CASE construct. This will permit design of blocks of Fortran statements 
whi~h may be selected and executed independently depending upon some initial 
condition. 



Future Fortrans may also contain internal procedures. One of the prin­
ciple issues here is the scope of names in internal procedures. 

Some find of array processing instructions will proabably appear in 
future Fortrans. This seems particularly desirable since future hardware 
will undoubtedly support some form of vector manipulations. 

Another data type which may appear in future Fortrans is BIT data type. 
People still have a need for "bit-twiddling" and the omission of some kind of 
bi t oper a tions in Fortran 77 was felt by some to be a serious oversight . 

Future Fol;"trans may also have a "new look". The X3J3 committee is 
investigating such features as: 

1) Free-form of Fortran statements. This would delete old Fortran con­
ventions such as a "C" in pos·ition one for comments, a nonzero, 
nonblank character in position six for continuation lines, and the 
requirement that statements start in position seven or after. 

2) Longer variable names. Many people feel that six characters are 
inadequate for writing meaningful mnemonic names. 

3) In-line comments. Many people feel the need to write comments on 
the same line as the Fortran statements. 

4) Multiple statements per line. Many other languages support this 
feature and some people feel that it is a desirable feature. 

The computer science field is rapidly changing and computer languages 
must change too, or they soon become obsolete. Fortran is not dead, it is 
very much alive and viable. It is growing and maturing to stay current with 
the programming needs. Fortran expects to maintain its position of workhorse 
of the scientific programming community. 

1 

2 

3 

REFERENCES 

Clarification of Fortran Standards -- initial progress 
Comm ACM 12, 5 (May 1969), p. 289-294. 

ANSI Subcommittee X3J3, Clarification of Fortran Standards -- second 
report. Comm ACM 14, 10 (Oct 1971), p. 628-642 

Fortran 77, Comm ACM 21, 10 (Oct 1978), p. 806-820. --




