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1 Summary

From November 1995 to March 1996 a total of 9 broadband temporary sta-
tions were deployed across the Saudi Arabian shield. These stations consisted
of STS-2 seismometers recorded continuously at 40 sps on RefTek datalog-
gers. All installations were at bedrock sites. Using data sections selected
randomly during the deployment, noise studies showed that most stations
were exceptionally quiet with noise levels near the USGS (Peterson, 1993)
low noise model for freqencies higher than 0.1 Hz. At lower frequencies, the
horizontal components showed increased noise levels, possibly due to instru-
mental characteristics. High-frequency ( > 1 Hz ) noise varied as much as 10
db between day and night for some stations (RAYN, TAIF) while more iso-
lated stations (HALM) were constant. Seasonal noise levels also varied, with
April to June being the quietest months. Slight changes in peak microseism

frequency aiso cccurred seasonally.
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2 Noise survey

The goal of the noise survey is to characterize the power spectral density
(PSD) at each station and to identify consistent variations in noise levels
with time. This information is useful in identifying specific sites for future
deployments, in calibrating detection thresholds, and in identifying instru-
mental problems.

We followed the approach of Astiz (1997) to estimate the PSD. Single

Aaxra Af ~An+: Aata wrava anlant naatidn ranAdanmales faaan s

days OI conunuous data were selected pSeuao-ranaomiy iromi the LUIIlpleLe
recorded dataset. From each sampled day, 15 minute data segments were fur-
ther randomly selected. Random sampling was used to ensure that periodic
effects due to instruments (for example, hourly GPS locks or disk access)
do not bias the data strongly. Data segments which fell 3 hours after large
global earthquakes (above magnitude 5.5 in the Harvard CMT catalog) were
rejected to avoid contamination of the long period data. Power spectral es-
timates were then calculated over windows with a length of 32768 samples
(819.2 seconds). This window length was chosen to eliminate excessive bi-
asing of the lowest frequencies (about 0.008 Hz for the STS-2) due to the
tapering. A 4w prolate taper was applied to the data, and it was then trans-
formed using an FFT. Windows 32768 points long were selected from the
dataset, and the robust PSD was calculated using the weighted median es-
timate of Chave et al. (1987). This robust estimate ensures that isolated
outliers do not adversely affect the resulting spectral estimate. The spectra
were the averaged over bins of 4 frequencies and converted to acceleration
spectra. Because the STS-3 has essentially flat response over the choosen
frequency range, instrument response was not removed. The roll-off at 16 Hz
of the anti-alias FIR filters on the digitizer remains however.

A feature of this approach is that the data are not examined by eye prior
to the power spectral estimate, so the resulting estimate reliably estimates
the noise levels at that station, rather than providing the quietest possible
estimate. Small local and regional earthquakes will be included in the es-
timate; however, the long windows and robust estimate will minimize their
effect.

The following plots show noise levels by station and channel, and follow
the format of Astiz (1997). The lower axis shows period (seconds) while the
upper axis shows frequency (Hz). The left axis is in decibels with respect
to acceleration (m?/s*)/Hz. The black curve shows the vertical (BHZ), the
red shows the east-west (BHE), and the blue marks the north-south (BHN).
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Figure 1: Station map of Saudi Arabian deployment



The dashed line denote the USGS low- and high-noise models (e.g. Peterson,
1993). Plots showing diurnal and seasonal changes are appropriately marked.
Because the deployment was of limited duration, some stations did not record
enough data to provide seasonal changes.

Some data which had known station and instrument problems was not
used. This includes HALM data up to day 062 of 1996, which had a much
reduced low frequency response. Ida RAYN data was also not included in
this study, as the vault, instrument, and digitizer are different.

Figure 2 shows the noise levels for all stations for each channel (BHZ, BHN
and BHE). In general, the stations are very quiet. The vertical components
in particular lie very near the USGS low noise model except at higher (above
2 Hz) frequencies. This noise is generally due to cultural causes. It is clear
that the horizontals are significantly noisier at frequencies less than 0.1 Hz.
Not all stations has equal number of data points so some caution should
be taken when comparing individual stations. The systematics of this noise
study differs from that used to determine the USGS low- and high-noise
models and consequently absolute power levels may differ slightly due to
bias induced by different tapers and windows.

Figures 3 and 4 show the noise levels at each station. The number of
observations at each station are shown in the upper left corner. HALM,
RAYN, AFIF and UQSK are the quietest stations. RIYD, TAIF, and SODA
show enhanced high frequency noise which is expected as all are relatively
" close to large cities. In general, noise levels are similar for all channels for a
given station for frequencies greater than 0.9 Hz. Between 0.9 Hz and roughly
0.1 Hz, the vertical is slightly noisier than the horizontals, and at frequencies
less than 0.1 Hz, the horizontals are much noisier. This pattern is true of all
stations except RIYD, which shows a lower noise on the vertical at almost
all frequencies. The most likely possibility is an instrumental problem.

Figures 4a through 4show diurnal and seasonal variations at the stations,
as constrained by the available data. In general, noise levels were quietest
at night and noisiest during morning and early afternoon, as expected for

cultural noise. The most significant variations occurred at frequencies above
1 Hz.
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3 Long period noise

The most obvious discrepancy between the noise levels from the Saudi sta-
tions and the low noise model is at the horizontal long periods. At frequencies
greater than 0.1 Hz (10 second period), the noise levels between the verticals
and the horizontals varies greatly (by up to 40 db). Examination of the data
shows that longer period noise is clearly present in the data. This presents
a problem for studies using longer period data such as surface wave studies
and regional moment tensor inversions, which are forced to depend solely on
vertical data for moderate sized events.

The source of the noise is not clear. The long period noise often anti-
correlates on the two horionzontal channels (Figure 5a) and consequently a
simple rotation will eliminate the noise on one channel at least (Figure 5b).
The direction of rotation can be determined by polarization analysis or by a
simple arctan(z/y) if it is assumed the motion is linear.

The 57 degree angle for UQSK suggests that the long period noise may
be due to a single component on the STS-2 seismometer. The components
on an STS-2 are 120 degrees from each other with one component pointing
south. Therefore the 57 degree vector is within 3 degrees of one component,
which is within the range of error of measurement or possible misalignment
of the seismometer.

An alternate possibility is that the long period noise may be due to small
tilts which affect the horizontal more than the verticals.
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4 Station description

RAYN - Located on a granite outcrop a few km from the town of Rayn.
The vault was well-built, and under a overhanging ledge of granite. The site
of the permanent IRIS/IDA station RAYN is approximately 200 m east.
Solar panels are mounted on a steel pole set in concrete 3 meters from vault.

HALM - Located in a well-built vault on a granite outcrop in a very
isolated location. The nearest town is at least 50 km away, and the only
other possible source of cultural noise are Bedouin encampments and
shepherds in pickup trucks. Again, the vault is under a granite ledge. Solar
panels are mounted on a steel pole set in concrete 3 meters from vault.

AFTF - The station is on a low ridge of crystalline rock about 10 km from
the town of AFIF and a few km from the nearest paved road. The vault is
in a rectangular hole lined with cinder blocks. The top of the vault consists
of a metal plate exposed to the sun. Solar panels are mounted on a steel
pole set in concrete 3 meters from vault.

RANTI - Station is under a granite ledge about 3 km from a fairly heavily
traveled paved road (one vehicle every few minutes during the day).
Well-built vault. Solar panels are mounted on a steel pole set in concrete 3
meters from vault. Appears to be some sort of earth-moving equipment
visible (and audible) in the distance to the west about 10 km away
(possible quarry ?).

BISH - Station located under a large granite boulder at the edge of an
outcrop. Well-built vault with solar panel mounted on pole a few meters
away.

SODA - Station is on the top of a mountain on metamorphosed sediments.
The vault is in a large, cinder block lined hole covered by wooden boards.
The KSU station SODA is also at this site. Solar panel mounted low to the
ground 4 meters. Paved road 5 km away. Some trees and bushes nearby.
TATF - Station is on the top of a mountain next to the city of Taif. Vault
is a hole dug into ground lined with cinder block. Due to lack of space, disk
was placed on seismometer mini-vault. Co-located with KSU station TAIF.

UQSK - Station on low granite outcrop. Vault placed in hole lined with
concrete. Co-located with KSU station UQSK.

RIYD - Station on pier in large vault in the midst of the city of Riyadh.
Basement rock is probably limestone.
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Station | latitude | longitude | elev geology location

AFIF | 23.9310 | 43.0400 | 1.1160 | gneiss Afif

BISH 19.9228 | 42.6901 1.3790 | granitic Bisha

HALM | 22.8454 | 44.3173 | 0.9300 | granitic Hadabat Al-Mahri
RANI | 21.3116 | 42.7761 | 1.0010 | granitic Raniyah

RAYN | 23.5220 | 45.5008 | 0.7920 | granitic Ar-Rayn

RIYD | 24.7220 | 46.6430 | 0.7170 | limestone Riyadh
SODA | 18.2921 | 42.3769 | 2.8760 | metamorphic | Al-Soda,
TAIF | 21.2810 | 40.3490 | 2.0500 | granitic Taif

UQSK | 25.7890 | 42.3600 | 0.9500 | granitic Uglat Squoor

5 Known data problems and instrument changes

RIYD - Seismometer/DAS connection problem from day 069 1996 to day
156 1996 - no data. High-frequency intermittant noise (due to disk spin-up)
- all data Possible problem with seismometer gain on vertical component -
see noise results above.

HALM - Seismometer problem - no long-period response from day 7 1995
to day 062 1996.

TAIF - high-frequency intermittant noise (due to disk spin-up) - all data
SODA - loose vault (due to water softening plaster) caused leveling
problems. Large offsets on data. Seismometer changed day 164 1996,
host-box changed day 165 1996.

RANI - leveling problems, seismometer changed day 063 1996.
Intermittant cable problems due to rodents.

BISH - station vandalized between November 1995 and March 1996,
shortly after installation.
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