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CARBON-14 IMMOBILIZATION VIA THE Ba(0H)2»8H20 PROCESS 

G. L. Haag 
J. W. Nehls, Jr. 

G. C. Young 

ABSTRACT 

The airborne release of ^^C from various nuclear facili­
ties has been identified as a potential biohazard due to the 
long half-life of ^*C (5730 years) and the ease with #iich it 
may be assimilated into the biosphere. At ORNL, technology 
has been developed for the removal and immobilization of this 
radionuclide. Prior studies have indicated that ^*C will 
likely exist in the oxidized form as CO2 and will contribute 
slightly to the bulk CO2 concentration of the gas stream^ 
which is airlike in nature (~330 ppmv C02)' The technology 
that has been developed utilizes the C02-^a(0H)2^8H20 gas-
solid reaction with the mode of gas-solid contacting being 
a fixed bed. The product, BaC03, possesses excellent ther­
mal and chemical stability, prerequisites for the long-term 
disposal of nuclear wastes. For optimal process operation, 
studies have indicated that an operating window of adequate 
size does exist. When operating within the window^ high 
CO2 removal efficiency (effluent concentrations <100 ppbv), 
high reactant utilization (>99%)5 and an acceptable pressure 
drop across the bed (3 kPa/m at a superficial velocity of 13 
cm/s) are possible. This paper addresses three areas of ex­
perimental investigations (1) microscale studies on 150-mg 
samples to provide information concerning surface properties, 
kinetics, and equilibrium vapor pressures; (2) macroscale 
studies on large fixed beds (4.2 kg of reactant) to determine 
the effects of humidity, temperature, and gas flow rate upon 
bed pressure drop and CO2 breakthrough| and (3) design, con­
struction, and initial operation of a pilot unit capable of 
continuously processing a 34-m^/h (20-ft /min) air-based gas 
stream. 

1. INTRODUCTION 

The release of ^^C from the nuclear fuel cycle has been identified 

as a potential biohazard because of its long half-life (5730 years) 

and the ease with which it may be assimilated into the biosphere.•'•"2" 

1 
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In nuclear reactors, 14c is produced primarily by neutron interactions 

with ^^C, '•%, and '0, which are present in the fuel, the cladding, and 

the coolant. The bulk of the ^^C is released in gaseous form either at 

the reactor or when the spent fuel is reprocessed. Presented in Table 1 

are representative release rates at various nuclear facilities. 

Carbon-14, like % , ^\r, and ^^^I, is a global radionuclide. That 

is, upon release to the environment, its dosage impact Is not limited to 

the region of release, a release which may be legislated by local govern­

ment, but rather the net dosage is distributed globally in a nearly uni­

form manner. Furthermore, because of its long half-life, ^*C release 

poses a health hazard to both present and future generations. Modeling 

studies have been conducted for predicting the dosage effects from ^^C 

release. However, these studies require major assumptions concerning 

the effects of low-level radiation, future population growth, and time 

span of dosage integration. Depending upon the assumptions, total 

dosage estimates typically vary from 400 to 590 man-rem/Gi. 

Table 1. Approximate production and release rates 
of several types of facilities 

Rate 
Facility [Ci/GW(e)yr] 

Nuclear reactors 

LWR 8-10 
CANDU 500 

Reprocessing plants 

LMFBR 6 
LWR 18 
HTGR 200 

Source; ref. 2. 

In a modeling study by Killough and Rohwer at ORNL, a total dosage 

estimate of 540 man-rem/Ci was obtained. This study also predicted dosage 

estimates for time periods of 30 and 100 years of 18 and 23 man-rem/Cl 

respectively. More recent modeling studies by Killough et al. have 
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indicated that for l^C release from a 30.5-m (100-ft) stack at the 

Morris, Illinois, or Barnwell, South Carolina, reprocessing plants, 0.02 

and 0.002% of the total dosage would occur within 100 km of the respec-
1H 

tive points of release. A study by the Nuclear Energy Agency (NEA) on 

the release of global radionuclides -̂ H, ̂ ^C, 85^^^ gj^^ 129i restricted 

the time period of interest to 10,000 years. Hence a partial dosage for 

l̂ C of 290 nan-rem/Cl was used.-'-" With knowledge of the worldwide re­

lease of C, the resulting dosage per curie released, and assuming 146 

fatal effects, 105 nonfatal cancers, and 76 serious genetic effects per 

?0 

million man-rem of dosage as estimated by Fowler and Nelson, an esti­

mate of the health effects resulting from "̂̂ C release may be made. How­

ever, these health effects must be placed in proper perspective; that is, 

they may occur any place and any time within the time limits of dosage 

integration. 

For global radionuclides with long half-lives, the often cited cost-

effective values for controlling radionuclide release, $100 to $1000 per 

man-rem, may not be justified, as certain questions of a philosophical and 

technical nature must first be answered. However, if a technology with 

suitable cost-effectiveness is shown to exist, the control of ^*C release 

will then be warranted. Therefore, the primary goal of this research 

effort has been to develop such a cost-effective technology. 

2. TECHNOLOGY DEVELOPMENT 

In the development of technology for controlling the release of C 

from the nuclear fuel cycle, we have established the following criteria 

for candidate processes: 

1. acceptable process efficiency, with a nominal decontamina­

tion factor of 10, 

2. acceptable final product form for long-term waste disposal, 

3. excellent on-line process characteristics, 

4. process operation at near-ambient conditions, and 

5. acceptable process costs (<$10/man-rera). 

Based upon these criteria, an operationally simple process that 

utilizes fixed-bed canisters of Ba(OH)2*8H20 has been developed at ORNL. 
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At ambient temperatures and pressures, this process is capable of remov­

ing CO2 (330 ppmv) in air to concentrations <100 ppbv. Thermodynamic 

calculations indicate equilibrium concentrations to be at the part-per-

trillion level.̂ •'- The product, BaC03, possesses excellent thermal and 

chemical stability as It decomposes at 1450°C and is sparingly soluble 

in water, 0.124 mg-mol/L at 25®C.^2»2^ Furthermore, the soluble reac­

tant undergoes 100% conversion, thus ensuring an extremely stable 

material for final disposal. Gas throughputs are such that reactor size 

remains practical for the treatment of anticipated process streams. For 

a design superficial velocity of 13 cm/s, a reactor with a diameter of 

0.70 m (27 in.) would be required for the treatment of a 170-m-^/h 

(100-ft^/min) off-gas stream. Although extensive cost studies have not 

been completed, initial comparative studies with alternative technologies 

have Indicated the process to be extremely cost competitive. "^^^^^^~^ 

The estimated process cost is <$10/man-rem. 

This report highlights the contents of two other technical reports .-̂ ^̂ -̂̂  

For additional information, these reports should be consulted. Studies 

concerning the development of the Ba(OH)2*8H20 process for "̂̂ 002 removal 

will be broken into three areas: (1) microscale studies, (2) fixed-bed 

macroscale studies, and (3) design and operation of a pilot plant. 

Experimental studies have concentrated upon the use of flakes of 

Ba(OH)2^8H20. As shown in Fig. 1, the material is a free-flowing solid 

and when reacted with CO2 under proper conditions, the flake form remains 

intact upon conversion to BaC03. Vendor specifications indicate that the 

material is substoichioiaetrlc In water and possesses an overall hydration 

of 7.0 to 7.9 H2O. Discussions with the vendor indicated that the water 

deficiency is Intentional so as to ensure a free-flowing, nonsticking 

product. 

The flakes are prepared by distributing a Ba(0H)2 hydrate magma 

('-78°C) on a stainless steel conveyor belt, which is cooled on the under­

side with cooling water. The resulting flakes have variable thicknesses 

[an average thickness of ~0.10 cm (1/16 in.)]. The results of a particle-

size analysis on material originating from two batches are presented in 

Table 2. Analysis of samples obtained from these batches indicated 

stotchlometries of approximately 7.5 and 7.0 H2O respectively. For a 
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ORNL PHOTO 6941~81A 

Fig. 1. Commercial Ba(OH)2'8H20 flaked reactant and BaC03 
flaked product. The product was obtained at a process relative hu­
midity <60%. 

Table 2. Partlcle-slze analysis of commercial Ba(0H)2*8H20 
flakes obtained from two different batches 

Particle size 

Mesh lEm 

4 > 

8 > 4 

20 > 8 

50 •> 20 

120 •»• 

> 120 

4.75 

2.36 -> 4.75 

0.850 > 236 

0.300 + 0.850 

0.125 > 0.300 

> 0.125 

Weight 

Batch 1 

18.5 

46.9 

31.6 

2.0 

0.4 

0.6 

pe rcent 

Batch 2 

5.8 

33.0 

54.5 

4.9 

1.2 

0.6 
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given batch, little variation was observed in the extent of hydration. 

X-ray analysis of the two samples failed to confirm the presence of 

Ba(0H)2*3H20? the next stable hydrate of lower stolchlometry. However, 

the existence of a Ba(OH)2^3H2(>-*a(OH)2^8H20 eutectic with an overall 

water stoichiometry of 7.19 has been reported. ^ We speculated that 

the trihydrate species was not detected because of its small crystallite 

size. Sorption isotherm studies indicated that the reactant displayed 

negligible microporosity (mean pore diameter, d < 2 nm) or restrictive 

mesoporoslty (2 nm < d < 150 nm). Mercury poroslmetry studies indicated 

that the pore size distribution was blmodal with maxima of 0.17 and 

1.0 |jm and that the flake porosity was 12%. llhen a flake was exposed to a 

water vapor pressure less than or greater than the vapor pressure of 

Ba(0H)2^8H20, the material either dehydrated to the trihydrate or hydrated 

to the octahydrate. The rates of dehydration and rehydration were deter­

mined to be functions of relative humidity. The best correlation for pre­

dicting the vapor pressure of Ba(0H)2*8H20 appears to be that presented by 

Kondakov et al. i •*' 

log P = -fftHlf + 13^238 , 
where 

P = pressure. Pa or nt/m^i 

T = temperature, K. 

With respect to published vapor pressure data on Ba(0H)2*8H20, a compre­

hensive, chronological review of the published vapor pressures is pre­

sented in ref. 32. 

As shown in Fig. 1, operating conditions exist for which the in­

tegrity of the flake form is retained upon conversion to BaC03. Because 

of the low molar volume of the product as compared to that of the reac­

tant, a ratio of 0.31, and an initial particle voldage of 12%, one would 

predict a final product porosity of 73%. Mercury poroslmetry studies 

have indicated product porosities of 66 to 72%.-^^-'^ Visual evidence of 

this porosity may be observed by comparing scanning electron micrographs 

of the reactant and product (Fig. 2). 
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ORNL PHOTO 1305-83 

Fig. 2. Scanning electron micrographs of a flake of commercial 
Ba(0H)2^8H20 (top) and the BaC03 product. The product was obtained 
at a process humidity <60% (original photo, 8.9 x 11.4 cm; magnifica­
tion, 5000x). 
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The following Ba(0H)2 hydrate nomenclature will be used in the re­

mainder of this paper: The substolchiometric flakes m i l be referred 

to as conmercial Ba(0H)2*8H20 (7.5). Where it is of significance, the 

term in parenthesis will refer to the initial hydration stoichiometry. 

The term Ba(0H)2°8H20 will refer to the stable crystalline species with 

8 waters of hydration. 

3. MICROSCALE STUDIES 

Realizing that an understanding or at least an awareness of phenom­

ena which occur on the microscale is often required to develop an under­

standing of macroscale phenomena, basic studies were conducted on the 

hydrates of Ba(0H)2 and the BaC03 product. Analytical techniques con­

sisted of scanning electron microscopy; mercury intrusion for poroslmetry 

determination; acid-base titrations and overall mass balances to determine 

the extent of conversion and hydration; x-ray diffraction analysis; 

single-point BET analysis; and operation of a microbalance system whereby 

studies of a kinetic, thermodynamic, and surface morphological nature 

could be performed on 150-mg samples (Fig. 3). Results from these studies 

were useful in characterizing the Ba(OH)2*8H20 reactant, which was 

reported in the preceding section. The intent of this section is to high­

light experimental results from the microscale studies, which are as 

follows. 

1. Methods to prepare Ba(0H)2*H20, Ba(0H)2''3H20, and Ba(0H)2*8H20 

were developed, and the presence of these species was confirmed. 

2. Commercial Ba(0H)2*8H20 flakes were found to display negligible 

surface area. The rates of hydration to Ba(0H)2*8H20 was observed to be a 

function of relative humidity. For relative humidities <60%5 the increase 

in surface area was small and the flake form remained intact. For rela­

tive humidities >60%5 the flake recrystallized in a manner which resulted 

in greater surface area, but the increase in activity also resulted in a 

more fragile product. 

3. Dehydration of commercial Ba(0H)2'8H20 to Ba(0H)2°3H20 and 

subsequent rehydration to Ba(OH)2°8H20 at relative humidities <60% were 

modeled by a shrinking core model. The relative rate was found to be 

dependent upon the difference between the water sorbed on the surface 
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^o 

Fig. 3. The microbalance system. 
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for a given P/PQ value (I.e., relative humidity) and that required on 

the surface for Ba(0H)2*8H20 to exist in a stable form. 

4. There was evidence of considerable hydrogen bonding within the 

Ba(0H)2^8H20 crystal. These results paralleled the crystallography 

studies of Monohar and Ramaseshan in which they cited difficulty in dif­

ferentiating the location of the hydroxyl ions from the waters of hydra­

tion. ̂ 8 

5. The vapor pressure correlation for Ba(OH)2*8H20 cited in the 

previous section was indirectly verified at two temperatures. 

6. At low CO2 vapor pressures, Ba(0H)2®8H20 was observed to be 

3 orders of magnitude more reactive toward CO2 than either Ba(OH)2^3H20 

or Ba(OH)2^H20o 

7. For relative humidities <60%, the increase in surface area with 

product conversion was found to be a very strong function of the specific 

rate of reaction and was not a linear function of conversion. 

8. The surface area of BaC03 Product was determined to be a func­

tion of relative humidity. In a manner analogous to the dehydration of 

commercial Ba(0H)2^8H20 and the rehydration of Ba(0H)2^3H20, surface 

water appeared to aid in the transport of the reactant and product 

species, thus resulting in lower surface areas at higher values of P/PQ• 

However, the authors feel that the increase in surface water could not 

account for the drastic difference in CO2 reactivity observed for the 

various hydrate species. The difference in reactivity appears to result 

from the additional water in the crystal structure and the greater mobil­

ity of the hydroxyl ions. 

9. Based upon the analysis of nitrogen sorption isotherm data, 

there were no indications of hysteresis. Therefore if capillary conden­

sation should occur, one would speculate it to result from the wall 

effects of noncircular pores (e.g., V-shaped points of Intersurface con­

tact). 

Detailed information is available in ref. 32. 

4. FIXED-BED MACROSCALE STUDIES 

Over 18,000 h of experimental operating time has been completed on 

fixed beds of Ba(0H)2^8H20. These beds typically contained from 2.9 to 
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4.3 kg of reactant. A schematic of the experimental system, which has 

been described in detail in a previous paper,21 is presented in Fig. 4. 

The intent of this aspect of the study was to determine the effects of air 

flow rate (superficial gas velocities of 7-21 cm/s), operating temperature 

(22-42®C), and water vapor pressure or relative humidity (0-80%) on the 

operational characteristics of the fixed bed, most notably the shape of 

the breakthrough curve and the pressure drop across the fixed bed. Since 

the reaction is endothermic, the reactor was jacketed and the tempera­

tures of the influent and effluent streams were held constant. Presented 

in Fig. 5 is a typical breakthrough curve and pressure drop plot. For 

this particular run, the pressure drop increase was noticeable and was not 

solely a function of bed conversion. 

In the course of these fixed-bed studies, it was observed that for 

a given mass throughput, certain process conditions resulted in a greater 

pressure drop than others. In several instances, the increase in pressure 

drop during a run behaved in an autocatalytic manner and necessitated dis­

continuation of the run. The increase in pressure drop appeared to result 

from two phenomenal a slow gradual increase that was a function of bed 

conversion and a rapid increase that was a function of relative humidity. 

The magnitude of the latter often overshadowed the former. The observed 

pressure drop, plotted as a function of relative humidity at two tempera­

tures (295 and 305 K) and a superficial velocity of ~13 cm/s, is presented 

in Fig. 6. It is significant that the data are consistent at the two tem­

peratures since the saturation vapor pressures differed by a factor of 

1.8. Furthermore, the dependency upon relative humidity indicates the 

presence of a surface adsorption phenomenon. For physical adsorption on 

surfaces, the extent of adsorption is dependent upon the extent of satura-

saturation, P/PQ, or in the case of water, the relative humidity. The 

fact that the pressure drop became more severe at ~60% relative humidity 

indicates that capillary condensation is likely present. Since no hyster­

esis was observed during nitrogen adsorption studies, we speculate that 

the condensation occurs at V-shaped contact points or pores. The presence 

of the condensed water then provides sites of either rapid reaction, rapid 

recrystallizatlon or both. As shown in Fig. 7, flakes of commercial 

Ba(0H)2*8H20 were observed to curl during hydration when exposed to higher 
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Fig. 7. Top and bottom views of a commercial Ba(0H)2°8H20 
flake subjected to relative humidity >60%. 
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relative humidities. This resulted in a more fragile reactant and a car­

bonate product that easily degraded. Both of these factors are capable of 

contributing to the greater pressure drop observed at the higher relative 

humidities. However, experimental data from the pilot unit studies con­

ducted under near-adiabatic conditions indicated that a second phenomenom 

is likely controlling. Because of the isothermal operating conditions and 

the relatively small contribution to the influent relative humidity from 

the water reaction product (6-11%) for the macroscale studies, we could 

not distinguish from this data whether influent or effluent relative hu­

midity was triggering the significant increase in pressure drop. This 

phenomena will be addressed in more detail in the next section. 

The functional dependency of pressure drop upon relative humidity 

is helpful in understanding the autocatalytic pressure drop behavior 

observed at high relative humidities. For a fixed influent water vapor 

concentration, any increase in system pressure at constant temperature 

will result in an increase in the water vapor pressure and likewise the 

relative humidity, P/PQ- Therefore as the pressure drop across the bed 

Increases, so does the relative humidity within the bed, and each con­

tinues to increase until the run must be terminated. At lower relative 

humidities, the rate of increase in pressure drop as a function of rela­

tive humidity is not sufficient to autocatalyze the process. 

The pressure drop dependency upon relative humidity also restricts 

the upper flow rate that the process may treat. Increased gas flows 

result in greater pressure drops across the bed (i.e., a greater pressure 

at the entrance to the bed). Therefore, the relative humidity at the 

entrance of the bed must be <60%, but the influent water vapor pressure 

must be greater than the dissociation vapor pressure of Ba(0H)2*8H20. 

Extensive modeling studies were performed on the breakthrough curves 

from the fixed-bed studies. Because of the nature of the governing par­

tial differential equations and their respective boundary conditions, 

solutions were of a numerical nature. An in-depth review of the method of 

analysis and of the associated assumptions Is presented elsewhere.32 The 

analysis indicated that the rate expression could be modeled by an 

equation of the form: 

R = K^Aod - X)C , 
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where 

Kp = gas film mass transfer coefficient, 

AQ - initial surface area available for mass transfer, 

X = fractional conversion of reactant, 

C = bulk CO2 concentration. 

Data analysis indicated KpAg to be a weak function of temperature 

and a strong function of velocity, indicative of gas-film control. 

Considerable dispersion in the value of the KFAQ coefficients was ob­

served for a given mass throughput. There were Indications that the 

dispersion resulted from differences in the actual area available for 

mass transfer and the possible presence of localized channeling. Based 

upon published correlations for the Kp coefficient, the correlation for 

the KpAg coefficient possessed a greater functional dependency upon 

velocity than expected. Because the studies were conducted on flaked 

material with considerable interparticle contact, we speculate that the 

amount of surface area available for mass transfer increased as a func­

tion of gas velocity, thus resulting in the greater than anticipated 

functional dependency of KpAg upon velocity. This factor may also 

account for the greater than anticipated dispersion in KpAg as some 

localized packing arrangements would be more conducive to restructuring. 

Representative breakthrough curves and the model-predicted curves are 

presented in Fig. 8. 

5. PILOT UNIT DEVELOPMENT 

In the development of this fixed-bed technology, a pilot unit cap­

able of continuously processing an air stream of 34 nr/h. (20 ft^/min) 

was designed, constructed, and is operating. Specific goals of this 

aspect of process development were to provide 

1. the basis for the design of a •"•'̂C immobilization module for 

future testing under hot conditions; 

2. data at operating conditions not achievable with present 

bench-scale equipment, In particular operation at near-

adiabatic conditions; 

3. necessary scale-up data; and 

4. operating data on key hardware items and instrumentation. 
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Presented in Fig. 9 is a flow schematic of the 14c Immobilization 

pilot unit; a photograph of the system is presented in Fig. 10. The 

designed gas throughput at a superficial velocity of 13 cm/s in the 

reactor is 34 m-'/h (20 ft^/min). The system consists of two reactors 

which contain canisters loaded with 32 kg (70 lb) of commercial 

Ba(OH)2®8H20 reactant. Due to the size of the canisters and the rela­

tively long loading times prior to breakthrough, continuous operation 

with only two reactors is possible. The steam, air, and CO2 flow sta­

tions are unique to our pilot unit and will not be discussed in detail. 

The overall pilot unit is controlled by a 5TI logic controller manu­

factured by Texas Instruments. The unit is currently capable of monitor­

ing 8 DC and 16 AC input signals and providing 24 DC and 16 AC output 

signals. The logic controller monitors alarm signals from the CO2 ana­

lyzer, hygrometer, flowmeters, timers, and pressure and temperature 

sensors. Upon sensing an alarm condition such as a CO2 concentration of 

1 ppmv in the effluent gas stream, valves may be actuated in the proper 

sequence at prescribed time intervals thus diverting flow to the second 

column. Mimerous 3/4- and 1/4-ln. Wiltey ball valves are located within 

the system for bulk flow control and for gas sampling. For valve actua­

tion, electronic DC signals from the logic controller are converted to 

pneumatic signals using modular Humphrey TAC-' electric air valves. The 

Whitey ball valves are then actuated pneumatically via Wiitey actuators. 

Gas samples may be routinely taken and returned from any one of five 

points within the system. Sampling from these locations may be control­

led by the logic controller. The sample gas is filtered and a portion 

of it fed to a General Eastern model 1200 APS hygrometer sensor. The 

unit utilizes the "vapor condensation on a mirror" principle, thus pro­

viding a true dewpoint determination. Because of the small sensor vol­

ume and the resulting small gas throughput (0.5 L/min), this portion of 

the gas sample Is vented to the atmosphere. The remainder of the sample 

gas Is pressurized via a metal bellows pump, fed to two knockout vessels 

for H2O removal, and then moves to a Wilks-Foxboro Mlran lA infrared 

spectrometer. This unit, described elsewhere,^^^^^ is capable of ana­

lyzing CO2 over the continuous 100 ppbv to 330 ppmv CO2 range. Because 

of the 5.6-L sensor volume and to ensure an adequate Instrument response 
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Fig. 10. The ^^C immobilization pilot unit. 
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time, the gas throughput is appreciable and the sample stream is recy­

cled to the pilot unit. 

Gas preheaters connected to Barber-Coleman series 520 temperature 

controllers are located before each reactor to provide the desired in­

fluent temperature. The pressure drop across each column and the gauge 

pressure at the base of the column are monitored via Foxboro model E13DH 

differential pressure cells. Dwyer Photohellx pressure gauges/switches 

monitor the pressure drop across the gas distributors and HEP4 filters. 

Thermocouples are located throughout the system for temperature control 

and sensing. 

Whereas prior studies on the 10.2-cni-ID fixed beds were conducted 

at near isothermal conditions and pressure drop was observed to be a 

strong function of relative huralditys the pilot unit studies were per­

formed under near-adiabatlc conditions (Inlet gas temperature ~28°C). 

Under such conditions^ changes in the gas stream temperature resulting 

from endo- or exothermic reactions are extremely important since for a 

given water concentration, relative humidity is a strong function of 

temperature. For the treatment of an air-based (330-ppmv-C02) gas 

stream, one would predict a temperature drop of ~4''C in the gas stream 

due to the endothermic nature of the reaction (364 kJ/mol). However^ 

the hydration of the water-deficient Ba(0H)2^8H20 flakes (water stolchi-

ometry of 7.0 to 7.9) to Ba(OH)2*8H20 is exothermic. A comparison of the 

thermal effects of the hydration and carbonation reactions indicated the 

hydration reaction to be relatively slow. Based upon the observed curling 

and recrystallizatlon of the substoichionetric flakes and the onset of 

appreciable pressure drop at ^60% relative humidity (possibly attributed 

to capillary condensation of water vapor In pores and rapid recrystalliza­

tlon), we speculated that the controlling conditions were those at which 

the bulk of the bed hydration occurred — that is, the effluent relative 

humidity. It was hypothesized that flakes hydrated at relative humidities 

>60% were significantly more fragile and thus degraded upon conversion to 

BaC03. 

However, consistency of the pressure drop data from the pilot unit 

studies performed under near-adiabatlc conditions with the isothermal data 

discussed previously was only possible when the basis of comparison was 
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the influent relative humidities (Fig. 11). The addition of the water 

vapor reaction product and the 4°G drop in gas temperature resulted in a 

clear distinction between the influent and effluent relative humidities. 

The latter, effluent relative humidity, was roughly 30% greater. Further­

more, if the preceding hypotheses based upon effluent relative humidity 

were correct, one could prehydrate a bed at relative humidities <60% and 

then operate the CO2 sorption process at relative humidities »60%. Ex­

perimental studies on the pilot unit indicated that prior hydration had 

little. If any, effect upon the subsequent pressure drop. Therefore, 

based upon the conditions of the influent gas, a regime of more optimal 

process operation for the treatment of an air-based gas stream was 

defined. The influent water vapor pressure must be greater than the 

dissociation vapor pressure of Ba(OH)2*8ii20 and the influent relative 

humidity <60% (Fig. 12). From mechanistic perspective, these observations 

are more difficult to explain since the portion of the unreacted bed con­

tacting the gas stream at influent relative humidity conditions is small. 

Studies have indicated that the bulk of the pressure drop, when it is 

significant, occurs during the early stages of the run. The authors 

speculate that the pressure drop may result from the greater localized 

reaction rate at the entrance of the bed during process start-up and 

prior to the formation of pseudo-steady-state conversion and concentration 

profiles within the bed. If this should be the case, the observed pres­

sure drop may be a one-time phenomenom and may be reduced in subsequent 

columns when the beds are operated in series. No such studies were con­

ducted. However, significant degradation and caking of the beds were 

observed in the lower (entrance) sections. These observations are con­

sistent with the preceding hypotheses. It is speculated that water con­

densing within the pores at relative humidities >60% facilitate the 

aqueous C02-Ba(0H)2 reaction and aid in reactant and product transfer and 

recrystallizatlon. 

6. CONCLUSIONS 

Extensive studies have been conducted on Ba(0H)2 hydrates, their re­

action with CO2, and the operation of a fixed-bed process for CO2 removal. 

Microscale studies indicated that (1) the published vapor pressure data 
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for Ba(0H)2*8H20 is valid, (2) the rate of dehydration or rehydration is 

proportional to the amount of free water on the surface (i.e., a function 

of relative humidity), and (3) the reactivity of Ba(0H)2*8H20 is 3 orders 

of magnitude greater than that of either Ba(0H)2^3H20 or Ba(0H)2*H20. 

Macroscale studies under near-isothermal conditions on 10.2-cm-ID fixed 

beds of commercial Ba(0H)2»8H20 flakes and under near-adiabatlc conditions 

on the pilot unit indicated that the pressure drop across the bed increased 

dramatically as 60% relative humidity in the influent gas was approached. 

It is speculated that this phenomenon results from the rapid rate of reac­

tion at the entrance of the bed upon process start-up. The capillary con­

densation of water at V-shaped contact points or pores likely facilitates 

the rates of reaction, rehydration, and recrystallizatlon of the flake at 

the higher relative humidities. Although the flakes hydrated at the high 

relative humidities have greater external surface area, they are more 

fragile and degrade more readily upon conversion to BaC03s thus also 

contributing to an increase in pressure drop. 

Experimental studies indicated that the transfer of the reactant gas 

through the gas film is the major resistance to mass transfer. A model, 

assuming gas film control, was developed, and exact numerical solutions 

were obtained. An excellent correlation between the model-predicted 

breakthrough curves and the experimental breakthrough curves was obtained 

when the area available for mass transfer was modeled as a linear function 

of conversion [I.e., A = A Q ( 1 - X)]. The magnitude of the mass transfer 

coefficient was characteristic of literature values. There were indica­

tions that the magnitude of the initial surface area available for reac­

tion, A Q , may be a weak function of velocity due to a realignment of the 

flakes. This realignment results from fluid shear forces and an accom­

panying reduction in the number of planar contact points between neigh­

boring flakes, thus increasing the area available for mass transfer. 

Based upon the experimental data obtained on beds under near-

isothermal and near-adiabatic conditions, a m.ndow or regime of optimal 

process operation was determined to exist for the fixed-bed process. The 

window is bounded on the lower side by the dissociation vapor pressure of 

Ba(OH)2»8H20 and on the upper side by the onset of appreciable capillary 
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condensation and subsequent pressure drop problems (~60% relative humid­

ity). An operating envelope is presented in Fig. 12 for the treatment of 

a 330-ppmv-CO2 gas stream at a system pressure of 104.8 kPa (0.5 pslg). 

The relative humidity of the influent gas must fall within the envelope 

for optimal gas throughput. If changes are made either in the CO2 concen­

tration, thus affecting the amount of water vapor produced, or in the 

system pressure, which will affect the partial pressure of the water vapor 

and subsequently the relative humidity ( P / P Q ) , the operating envelope will 

change. The operating envelope also demonstrates "^y operational problems 

at 22 and 32°C were not severe and why considerable difficulty was encoun­

tered when attempting to operate the process at 42"C. 

Based upon mechanistic arguments and the observed dependence upon 

influent relative huymldity, it was speculated that the pressure drop 

problem at relative hunldltiese >60% may result from the more rapid rate 

of reaction at the reaction front during process start-up. If this should 

be the case, the pressure drop observed across downstream columns, which 

experience only pseudo-steady-state conversion and concentration profiles 

passing through them, should be reduced. Furthermore, the pressure drop 

problem should be reduced for more dilute C02-bearing gas streams (<330 

ppm CO2) and enhanced for gas streams that are richer in CO2 due to 

corresponding localized rates of reaction upon process startup. 
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