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Abstract (Cont.)

Hydroponic plant-culture systems were used to establish absorption capacity and to develop
chemical-fate procedures. The relative order of root absorption or RDX was bush-bean > blando
brome > wheat. Plant absorption was concentration-dependent, thus solid sorption processes
should control the concentration of soil solution RDX and thus that fraction available for root uptake.
The plant mobility of RDX was substantially greater than that previously observed for TNT. No
significant mineralization or residue volatilization from shoot or root tissues was observed. Chemical
fractionation and analyses of short-term hydroponically grown plants indicated that individual tissue
chemical-class distribution patterns for RDX residues changed with duration of exposure. After 7
days, 74% of the total ether-extractable residues were RDX.

Studies with plants to maturity on RDX-amended soils showed RDX-derived metabolites to
accumulate in ali tissues. The relative order of tissue concentration was seed > leaves > stem >
leaves > root > pod. In bush bean, the tissue concentrations of RDX-derived residues at maturity
were as high as 200 and 600 #g/g fresh weight for leavesand seed, respectively. In wheat and
blando brome, leaf concentrations of RDX were as high as 550 I.tg/gfresh weight, while roots
contained less than 45 l_g/g fresh weight. Calculation of the percentage removal of RDX from the
pots by single plants based on biomass production and tissue concentration indicate that 11 to 55%
of the solid RDX was removed by bush bean and that 10 to 40% was removed irl a single harvest of
wheat and blando brome. These absorption rates make biomining a viable remediation option. In
ali cases, the form oi RDX isolated from tissues was greater than 50% RDX, the remainder being
unidentified polar metabolites.
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EXECUTIVE SUMMARY

The objective of these studies was to elucidate the environmental behavior and fate of

hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly as related to its environmental fate

and behavior and its chemical form in the food chain. In general, the plant-availability and

plant-mobility of RDX was substantially greater than that reported for related munitions such as

TNT. The present studies clearly indicate that the environmental behavior of RDX is unique.

RDX is highly mobile and highly plant-available in the soil/plant system with concentration

ratios (tissue concentration per unit weight/soil concentration per unit weight) ranging from 20

to 50 on a fresh-weight basis to 200 tn 500 on a tissue dry-weight basis. In addition, unlike

many other environmental contaminants, RDX is accumulated in se,eds of plants to levels
approaching and in excess of those for leaves.

Mass-balance analyses of RDX amended to soils var]ing in mineralogy, cation

exchange capacity (CEC), and organic-matter content generally were good, ranging from

100% at 11days to greater than 78 % after 60 days of incubation. The extent of soil sorption

of RDX after 60 days incubation was less than 2%. Mass-balance deficits were only partially

attributed to mineralization of RDX to CO2 and no volatile organic residues were detected.

Chemical analysis of solvent extracts of soils incubated for 60 days showed only the parent
compound to be present, with no indication of metat)olite formation°

Hydroponic plant-culture systems were used to establish absorption capacity and to

develop chemical-fate procedures. The relative order of root absorption of RDX was bush

bean > blando brome > wheat. Plant absorption was concentration dependent, thus soil

sorption processes should control the concentration of soil solution RDX and thus that fraction

available for root uptake. Analysis cjf kinetic constsnts for root absorption of RDX indicated a

metabolically mediated absorption process. In 2-h uptake studies, approximately 50% of the

accumulated residues were retained within the root, while in 7-day studies the quantity of RDX

retained in the roots declined t,._less than 20% of that accumulated. Analysis of the rates of

RDX mineralization and resi_Juevolatilization in hydroponically grown plants indicated no
releases of volatiles from e,ther shoot- or root-accumulated RDX residues. Some

mineralization of accumu!ated RDX to 14CO2 was observed for the root/rhizosphere.

Chemical frac',ionation and analyses of the F2 fractions of 1- and 7-day hydroponically

grown plants indicated that greater than 98% of the activity contained in these fractions is RDX.

Thirty to fifty percent of the activity associated with the more-polar fractions (F2, F3, and Aq-

base) was from modified polar forms. Analysis of xylem exudates, which contain the RDX
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transported from root to shoot tissues, showed the mobile transport form to be RDX, with less

than 2% being a more-polar form.

Studies with plants grown to maturity on RDX-amended soils showed RDX-derived
metabolites to accumulate in ali tissues. The relative order of tissue concentration was seed >

leaves > stem > root > pod. In bush bean, the tissuse concentrations for RDX-derived residues

at maturity were as high as 200 and 600 _g/g fresh weight for leaves and seed, respectively.

Roots contained less than 75 I_g/gfresh weight. In wheat and blando brome, leaf

concentrations of RDX were as high a,",550 #g/g fresh weight while roots contained less than

45 _g/g fresh weight. Concentrations of RDX-derived residues in seed of the grasses were as

high as those in the leaves. Calculations of the percentage removal of RDX from the pots by

single plants based on biomass production and tissue concentrations indicate that 11to 55% of

the soil RDX was removed by bush bean and that 10 to 40% was removed in a single harvest

of wheat and blando brome. These absorption rates make biomining a viable remediation

option.

Tissue partitioning and chemical analyses indicated that RDX is the only nonpolar

metabolite isolated from plants grown to maturity. RDX accounts for 6 to 53% of the

accumulated residue activity in wheat and blando brome, 6 to 2% in bush bean leaves, and 2

to 10% of that in bean pods. Polar metabolites account for the vast majority of the remaining

activity.

Total plant concentration is highly dependent on soil type, or soil available RDX

concentrations. In ali cases, plant uptake was inversely proportional to soil organic matter

content for Burbank, Palouse and Cinebar soils. Overall, correlations of plant concentrations

with either CEC or soil organic matter are not consistent. For bush bean_andwheat, RDX

accumulation correlates with CEC, while in blando brome RDX accumulation correlates best

with organic matter content. While it is not possible to clearly define the soil factors influencing

plant availability with only three soil types, the importance of CEC and organic-matter content is

indicated, and can be used to establish priorities for remediation.
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1.0 INTRODUCTION

Munit.ior_ materiel currentlyusedas propellantsor as explosivecharge,_include

trinitrotoluene (TNT) and hexahydro-11,3,5-trinitro-1,3,5-triazine(RDX), octahydro-1,3,5,7-
tetranitro-1,3,5,7-totrazodne(HMX), and 2,4,6-trinitrophenylmethylnitramine(tetryl).
These materialsand their combustion-or decorr:i,,_sition-productscan accumuTlateor
cycle in terrestrial environments,particularly at productionand manufacturingfacilities.
An understandingof the persistence,bioavailability,and chemical fe,teof these
contaminants i,_needed to avoid unwarrantedenvironmentalimpacts and to e.<_tablish
decis_{)npointswith respecttc remedial needs and approaches.

Federal regulP.tionscurr,;;'_tiylimit dischargesof munitionscomponents atthe
point of dischargeto surfacestreams, where currently analysesare performedfor TNT,
RDX,HMX (a common impurity in RDX),and 2,4-dinitrotoluene(Jenkins et al., 1986;

Ba ._3ret al., 1986). This monitoringand the current requirementsto monitor drinking
watersourcest_r TNT, 2,4-DNT and 2,6-DNT (Belkin et ai., 1985) establishthe rangeof
chemical species that would be of init;alconcern for understandingthe envirorlmental
fate and behavior of munitions-basedcontaminantsin soiland plant systems.

Munitionsmateriel canenter the environmentas a result of productionand

manufacturingactivities and field usageand disposal (Small and Rosenblatt, 1974;

Kitchenset al., 1978; Spanggordet al., 1983b; Ryonet al., 1984). Boththe productionof
munitionsmateriel and their use for training purposescan lead to localized
accumulationsof parent munitioncompounds and stable decompositionproducts in
terrestrial and aquatic environments. However,the pre3enceof specific munitions-
related components in the environmentis not in itself indicativeof the prese,_ceor

severityof the impact. Organiccontaminantsor xenobioticsentering terrestrial and
aquatic environments undergo chemicalpartitioning that is dependent on sorptive
processesand water solubility. While these factors influence short-term accumulation

and mobility,respectively,chemical stability and biologically mediated degradative
processes greatly influence persistenceand, therefore, accumulation.

Several abioticand bioticprocessesare importantfor assessingthe relative long-
term importanceof munitions-relatedmater_! released to the envircnment. These
processesinclude the extent to which 1) the parent compound and related residues sorb
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to soil, thus limiting biological uptake and soil transport, 2) soil mic;obes can degrade or

modify the contaminant, 3) the parent compounds and their major decomposition

products are accumulated by food-chain plants, and 4) plant-accumulated contaminants

are metabolized and degraded. Studies of non-munitions-related organic xenobiotics

clearly indicate that biotic systems are effective in degrading or detoxifying a variety of

compound classes.

1.1 Review of Related Literature

Studies have been conducted on numerous munitions-based chemicals. The

vast majority of these studies deal with development of analytical tnethods and with

characterization of parent compounds and decomposition products associated with

waste streams, impoundments, and releases from production sites. Far fewer deal with

environmental persistence, bioavailability, and metabolic detoxification. Except for the

case of TNT, few stuoies have addressed the chemical fate and behavior of parent

compounds and residues at environmental concentrations. The following literature

review discusses the status of TNT and RDX.

1.1.1 Chemistry_and Anal_ic.M_thods

Effluent streams associated with TNT production processes have been

characterized and shown to contain over 30 isomeric nitroaromatics and associated by-

products (Spanggord et al., 1982). Substantially less work has been performed with

respect to RDX and HMX decompositior, products. RDX is known to undergo hydrolysis

in alkaline solution. The first step in the hydrolytic sequence is a proton abstraction with

the concerted displacement of nitrate. Further hydrolysis results in the formation of

nitrate, nitrous oxide, ammonia, formaldehyde, and formic acid (Hoffsommer et al., 1977).

Spanggord et al. (1930a) have determined that RDX, and most likely HMX, _r_ subject to

limited photochemical and soil microbial attack. Photolysis of RDX has been show to

produce nitrate, ammonia, formaldehyde several unidentified nitroorganic compounds,

and a significant proportion of nonextractable material. The nonextractable fraction is

thought to consist largely of formic acid (Glover and Hoffsommer, 1979). lt has been
demonstrated that anaerobic microbial metabolism of RDX results in nitroso metabolites

originating from nitro reductions,, dimethylhydrazines, hydrazine, formaldehyde, and

methanol (McCormick et al., 1981).

1.2



A number of gas chromatography (GC) and gas chromatography/mass

spectroscopy (GC/MS) methods have been developed for analyzing process waters.

These methods permit identification and quantification of parent compounds, reaction

by-products, and decomposition products (Spanggord et al., 1982, 1983a, 1983b; Belkin

et al., 1985) of munitions. More recently, methods involving high-pressure liquid

chromatography (HPLC) have b_en found to be suitable for the resolution and

quantification of these major constituents (Jenkins et al., 1986; Bauer et al., 1986;

Cataldo et al., 1990). Soil-extraction methods are available for the three parent

munitions compounds (Jenkins and Grant, 1987; Cataldo et ai., 1990). However, in plant

tissues analysis of parent compounds and residues has been more troublesome

(Palazzo and Leggett, 1986), because biologica_systems tend to alter the polarity of

organic residues. The approach for TNT analysis described by Cataldo et al. (1990),

based on adsorption chromatography, concurrently removes interfering pigments before

analytical analysis and allows for the separation of polar from major nonpolar

metabolites for mass-balance purposes.

1.1.2 _oil Fate and Microbial Decomposition

Although substantial soil-fate research has been performed for nitroguanidine

(Spanggord et al., 1985), relatively few data are available for TNT. We are aware of no

data relating to the relationship between soil characteristics (i.e., cation exchange

capacity (CEC), pH, organic-matter content) and the extent of sorption and solubility. An

understanding of these relationships is necessary to define limits of environmental

mobility and plant availability.

Soil microbial studies, both in vivo and in vitro, indicate that TNT is subject to

metabolic modification (McCormick et al., 1976). Kearney et al. (1983), using 14C-TNT,

pre-UV irradiated and amended to soil, found respiratory losses of 14OO2 to increase

with time. Addition of microorganisms able to metabolize nitroaromatics resulted in a

sharp increase in respiratory losses. Yang et al,, (1983), using soil-isolated organisms,

demonstrated a 90% reduction in extractable RDX over 3 days, with indications that the

organisms were able to use the nitro groups as an alternate N source. RDX has been

shown to be degraded with a half-life of 7 days in a water/sediment system, but only after

a several-week lag period (Sikka et al., 1980). The latter results indicated that ring

opening occurred. In vitro anaerobic transformations have been reported for RDX and

HMX and their acylated by-products SEX (1-acetyloctahyclro-3,5,7-trinitro-1,3,5,7-
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tetrazocine) and TAX (1-a_etylhexahydro-3,5-dinitro-1,3,5-triazine) (Spanggord et al.,

1982; 1983b), but rates of decomposition were substantially lower than for sediment

systems. Nitroreductions, r!ag opening, and further reduction to methanol,

formaldehyde, and hydrazines were the metabolic pathways implicate_ by these studies.

Although few soil studies have been performed, indications are that both anaerobic and

aerobic biotransformations may occur.

1.1.3 Plant Uptake and Metabolism

Cataldo et al. (1990) recently evaluated the behavior and chemical fate of TNT in

soils. Extensive transformation ef TNT to 2-amino-4,6-dinitrotoluene and 4-amino-

2,6-dinitrotoluene was found to occur rapidly in the three different soils studied.

Additionally, a unique volatile transformation product was isolated from one of the soils

and partially characterized This transfgrmation product was most likely a transient

intermediate in the formation of further nonvolatile transformation products. The amou_t

of irreversibly bound TNT was found to increase in ali soil types throughout the 2-month

study, with the highest percentage of bound residue occurring in the soil with the highest

organic-carbon content. Volatile organics were not evolved by the TNT-amended soils;

however, the evolution of small amounts of 14002 from the soils was verified. The mass

balance of TNT in the three soils was acceptable throughout the 2-month study.

The literature contains very few data related to soil and plant fate, of TNT and to its

bioavailability. In the 1970s a substantial amount of research was performed on aquatic

organisms, including algae and water plants. TNT has been found to be toxic to

duckweed at levels in excess of 1 ppm (Schott and Worthley, 1974), to inhibit freshwater-

algae growth at 2 to 15 ppm (Smock et al., 1976), and to inhibit the growth and

metabolism of microorganisms (Klausmeier et al., 1973; Nay et al., 1974). With the

exception of Smock et al. (1976) and Schott and Worthley (1974), no chemistry was

performed on either culture solutions or materials accumulated. The latter authors did

note a conversion of TNT to 2,4-dinitrotoluene and 4 amino-2-nitrotoluene in their culture
medium.

One higher-plant study was performed using hydroponically grown yellow

nutsedge to assess the uptake, toxicity, and metabolic transformations of 'TNT (Palazzo

and Leggett, 1986). This study showed shoot and, p_rticularly, root growth to be

inhibited at 5 ppm. Although not noted by the authors, these toxicity symptoms are
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characteristic of dinitroaniline herbicide damage. The latter would be expected based

on the chemical struclure of TNT, particularly the dinitrotoluenes. Chemical analysis

showed >90% of ali tissue-extractable material to be 2- and 4-aminodinitrotoluene, with

on!y a small amount of TNT being recovered. Since these species were pot observed in

the nutrient solutions, it is assumed that they are metabolic detoxification products. No
data for either RDX or HMX are available.

Cataldo et al. (1990) recently conducted detailed plant-fate studies of TNT. TNT-

derived 140 was localized primarily in the roots, with a small amount of radiolabel being

transported to the shoot and leaves. Examining the xylem exudate of bush beans grown

in TNT-containing hydroponic solutions ailowed for identifying the primary transport

forms of TNT. Acid-hydrolyzed xylern exudate was founa to contain 2-a,nino-4,6-

dintirotoluene and 4-amino-2,6-d!;_ ,' toll=ene, as well as an unidentified TNT metabolite.

TNT is transported as these polar conju;£.tes to the aerial portions of the plant, wh_ae it

undergoes further metabolic alteration. Studies indicated that the polar TNT metabolites

are sequestered within the plant and are not transpired as volatile organics _;r as 14002.

Chemical fractionation of plant tissues grown in TNT-containing hydroponic solution

indicated that less than 12% of the incorporated radioiabei was due to eitiler TNT, 2-

amino-4,6-dinitrotoluene, or 4-amino-2,6-dinitrotoluene. The majority of the radiolabel

was found either in a polar ether-extractable fraction or in a more-polar non-ether-

extractable fraction. The preponderance of these previously unknown, highiy polar TNT

transformation products was a major finding of this study. Continued research is needed

to characterize these metabolites as well as the unknown metabolite implicated in the

transport of TNT. Such research can be expected to lead to a better understanding of the

toxicity associated with ingesting plant foliage grown on TNT-contaminated plots and of

the possibility for food-chain transfer of TNT metabolites.

1.1.4 Toxicity of RDX

The toxicity of RDX to a variety of organisms has been demonstrated. The oral

LD50 for rats and mice has been estimated to be 100 and 59 mg/kg, respectively.

Toxicity toward rodents has led to the use of RDX as a rat poison (Mer_;k Index, 1983).

Additional toxicity tests have shown detrimental reproductive effects, characterized by

low birth weights and still births in rats administered RDX (Cholakis et al., 1980).

Several cases of toxicity in humans exposed to RDX at munitions manufacturing plants

have been documented. Afi'ected workers suffered from unconsciousne';s and

1.5



epileptiform seizures after exposure to RDX-laden air (Kaplan et al:, 1965). Although

RDX is not mutagenic, its reduction product, hexahyd o-1,3,5-trin!t;'oso-1,3,5-triazine, has

been used as an experimental tumorigen (Merck Index, 1983; Sax ana Lewis, 1989).

This nitroso compound also has been identified _s an RDX metabolite produceJ by

anaerobic bacteria (McCormick et al., 1981).

1.2 Study Obiectives

The major route of entry to the environment for nitro-substituted munitions

materiels such as RDX is through discharges from production facilities and

decommissioning activities. 1he objectives of the following studies were to develop
necessa.'y analytical methodology and to assess the chemical fate and behavior of RDX

in soil and plant systems. Particular emphasis was placed on elucidating 1) the

chemical transformations 'that occur in soils and in plant tissues following accumulation

and 2) the extent of bioaccumulation and thus the potential the impacts to the food web.
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2.0 MATERI._ILSAND METHODS

2.1 PurityandAnalysisof RDXSources

2.1.1 Purity of RDX

Acetonitrile (ACN)solutions of RDX obtainedfrom Battelle Columbus Division

(West Jefferson,Ohio)were cloudyand containedinsolublematerial,even thoughthe
concentrationof RDX in these solutionswaswell below the reportedsolubility of RDX
in this solvent (7.0g/100 mL at 30°C). Before initiatingstudies with RDX, it was
absolutely essential to have pure anaiyte. Chromogographicanalysisof the bulk RDX
revealedthe absenceof any HMX impurity. The insolublematerial was most likely an

insolublefiller material. Purificationinvolved mixing 1.0 g crude RDXwith 10mL of
acetone. The insolublematerialwas removedby filteringthe mixture through a 0.45-
I_mNylon 66 filter (AIItechAssociates,Deerfield, Illinois). RDX in the filtrate was
recrystallizedfromthe acetonesolution. To furtherpurify the RDX, two more

recrystallizations,one from acetoneand one from ACN, were performed. The final
RDXcrystals were washedwith hexaneand allowedto dry. The purity of the
recrystallizedproductwas >99.8%.

2.1.2 ChemicalAnalysisof RDXby HPLC

The analytical chromatographicsystemconsistedofa WatersModel6COE

system controllerand pump,a Wisp Model 710B automaticinjector,and a Waters
Model 490E detector. Injectedcomponents(20 I_L)were separatedon a Beckman

UltrasphereODS column(24 cmx 4.5 mm lD) and detectedby UV absorptionat 243
nm with a detector sensitivity of 0.008 AUFS. The chromatographicconditions

employed for the separationof RDXwere a biphasiclineargradient deliveredat a flow
rateof 1.0 mL/min. The mobilephase was ini'_allyprogrammedfrom 20 to 60% ACN
over a periodof 20 min. The solvent rampwas continuedfrom 60 to 100%ACN over
10 min and held at 100%ACNfor an additional10 min. The final crystallineRDX
productexhibitedone peak when detected at 254, 243, or210 nm. The same

chromatographicconditionswere used for ali soil- and plant-extract samples.

A biphasic gradientwas chosento offer the highestprobability of resol_,ngthe
broadestrange of RDXtransformationproducts. An initialshallow gradientwould
allow for adequate resolutionof the various nitrosotransformationproductsthat have
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been reported by previous investigators (McCormick et al., 1981). Additionally, a slow

initial gradient should allow for the resolution of HMX (an impurity commonly found in

RDX) from RDX. Since RDX transformation products less polar than the parent have

not been described in the literature, the rapid gradient ramp from 60 to 100%

acetonitrile wouid elute nonpolar transformation products, should they exist, within a

limited range of the chromatogram. Radiochromatographic detection was used

extensively for unambiguous identification of transformation products arising from

TNT. During selected chromatographic runs, the column eluate was collected in

0.5-mL increments for a t,,_talof 30 min. Each fraction was assayed for radioactivity by

liquid-scintillation spectrometry. Radiochromatograms were generated by plotting the

disintegrations per minute (dpm) as a function of retention time in each successive

aliquot.

2.1.3 14C-RDX Radiolab_l Purity

Uniformly ring-labeled 14C-RDX (specific activity of 25.3 mCi/mmole) was

obtained from Sigma Chemical Company (St. Louis, Missouri). Initial studies with the

radiolabeled RDX examined its purity by radiochromatography under the

chromatographic conditions given above. Figure 2.1 shows a radiochromatogram

resulting from an injection of radiolabeled RDX. Under the chromatographic

conditions used, RDX had a retention time of 17.64 rain. As evidenced by the

appearance of radiolabeled constituents both before and after the RDX peak, the 14C-

RDX was not pure. By comparing the radioactivity contained in the RDX peak to the

total amount of radiolabel eluted, a purity of 90.5% was calculated. Because this

purity was not sufficient for metabolic studies, further purification of the radiolabeled
RDX was indicated.

Semi-preparative high-performance liquid chromatography was used to purify

the radiolabeled RDX. The chromatographic system consisted of _ Waters Model M-

6000A pump connected to a Waters U6K injector. The column was a Beckman

Uitrasphere ODS (25 cm x 10 mm lD), and detection was accomplished by monitoring

the UV absorption at 254 nm (Schoeffel GM 770 detector). The 30% ACN to 70%

H20 isocratic mobile phase was delivered at a flow rate of 5.0 mL/min. Crystalline

RDX (purified as described above) gave a retention time of 17.60 min under these

conditions. A representative chromatogram of the radiolabeled RDX is shown in

Figure 2.2. This chromatogram resulted from a 140-1_Linjection of the radiolabeled

RDX. Injections of more than 140 I_L resulted in column overloading with the
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concomitant loss of the resolution necessaryto discriminatethe adjacent contaminant
peaks. The columneluant correspondingto Peak1 (retentiontime of 17.60 min) and
Peak2 (retentiontime of 20.1 min) wascollectedduringa total of 22 chromatographic
runs.

Aliquotsof the separatedsemi-preparativematerialswere comparedwith
crys*allineRDXunder analytical-chromatographicconditions to determinewhether

Peak1 or Peak2 correspondedto 14C-RDX.Peak 1 in Figure2.2 co-elutedwith
crystalline RDXon the analytical reversed-phasecolumn. The chromatogram
resulting from the co-injectionof equal,amountsof crystalline RDXand Peak1

material is shown in Figure 2.3. The appearanceof only one peakverifies the identity
of Peak1 as 14C-RDX. Co.-injectionof crystallineRDXand Peak2 resulted in two
peaks on the analytic_lsystem. This experimentserved to furtherverify the identityof
Peak 1 as 14C-RDX.

ACNwas removed from the Peak1 eluant by a stream of dry nitrogen. As the

ACN was removed, 14C-RDXprecipitatedfrom solution. The water solventwas then
frozen and sublimed by lyophilization,leavingcrystalline 14C-RDXon the flask walls.

The RDXwas dissolved in acetoneand examined by HPLCand liquid-scintillation
spectrometry. Approximately2.90 mCi of RDXwas purifiedby this procedurt:. The

radiochromatogrampresented in Figure2.4 demonstratesthat the purified 14C-RDX
was 99.93% pure. This puritywas judged appropriatefor metabolicstudies.

Since RDXoften containsthe explosiveHMX as an impurity,it was essential to

demonstratethat the separationconditionswere capable of resolving RDXfrom HMX.
Figure2.5 presentsa chromatogramillustratingthe separation of RDXand HMX
standards. As shown in this figure, RDXand HMX were readily separatedunder the

chromatographicconditions used in this study, lt follows that the recrystallizedbulk
RDXand purified 14C-RDXwere free from any HMXimpurity.

To furthercharacterize the Purifiedradiolabel,we constructeda standardcurve

for RDX,presented in Figure2.6. By comparingthe 14C-RDX peakarea (detectedat
243 nm) in Figure2.4 with the standardcurve,we caiculatedthat a total of 46.51 mg
of radiolabeledRDXhad beenpurified. Furthercalculations indicatedthat the purified
radiolabel had a specific activity of 13.68 mCi/mmole.

2.4



.... ! .j _ I'

i,._ .... Iii f li ' rE-,lr, i,,-'_' 'l

,_r .r 'l..... Jr......' .... "'...... " '........ _

FIGURE2._. CO-INJECTIONOF PEAK 1 ANDCRYSTALLINE RDX

10000-

Purity _ 99,g3 %
E 8000

v

6000

4000
0

m 2000

t
" I " I " I T' 3

0 10 20 30 40

Retention Time (min)

FIGURE2,4. RADIOCHROMATOGRAMOF THE PURIFIEDRDX

2.5



RDX
HMX

FIGURE 2.5. SEPARATION OF RDX AND HMX STANDARDS

Standard Curve RDX

"(_ 2,00e+7- y: -2'1132e*5. 3,7929e+Sx R_2:0.999

E

r,.

e_

_- 1.OOe+7<
v

L
<

L)'UUe.U " I • I ," I • I • I • I

0 10 20 30 40 50 60

RDX Concentration (ppm)

FIGURE 2,6. STANDARD CURVE FOR RDX

2.6



2.2 .8..Q[L_Q]3&_cterizationanti Samolina- v

The chemical and physical characteristics of soils used in these studie_ are

tabulated in Table 2.1. Palouse soil, representing a typical Washington-state

agricultural soil, was used for ali studies. Palouse is a silt-loam, mixed mesic Pachic

Ultic Haploxero!l. The sample was collected at Pullman, Washington, and consisted

of the Ap horizon. This soil is 77% silt and 21% clay, contains 1.7% organic matter,

and has a CEC of 23.8 meq/100 g and a pH of 5.6. Burbank is a sandy loam (sandy,

skeletal, mixed xeric Torriorl:hent) and is representative of the desert areas of

Washington, Oregon, and Idaho. The sample was collected on the Hanford Site, near

Richland, Washington, and consisted of the Ap horizon. This soil is 51% silt, 4% clay,

and 45% sand, contains 0.5 % organic matter, and has a CEC of 5.5 meq/100 g and a

pH of 5.6. Cinebar, a clay loam, has 51% silt, 13% clay, and 35% sand, contains

7.2% organic matter, and has a CEC of 38.2 meq/100 g and a pH of 5.6. Cinebar is a

Washington forest soil from the Cascade Mountain Range.

_. SELECTED PROPERTIES OF TEST SOILS

Burbank Palouse Cinebar

Soil Property Sandy Loam Silt Loam Clay Loam

% Sand 45.1 1.1 35.2
% Silt 51.4 77.5 51.4

% Clay 4.0 21.4 13.4
% Ash 98.0 93.8 nd(a)

pH (100% field capacity) 7.4 5.4 5.6

Organic carbon (%) 0.5 1.7 7.2
Sulfur (%) 0.053 0.043 nd

Nitrogen (%) 0.061 0.16 0.44
Total P (_g/g) 2400 3770 3400

Phosphate-P (#g/g) 4.8 5.8 26
Carbonate/Bicarbonate (%) <0.1 <0.1 <0.1

Ammonium-N (tig/g) 6.1 18.3 15
CEC (meq/100 g) 5.5 23.8 38.2

(a) nd= not determined.
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For soilexperiments, solutions containing appropriate proportions of labeled

and/or unlabeled RDX were prepared in 2.0 mL of methanol and amended with

quantities of air-dried soil corresponding to oven-dry weights of 400 g to give final

concentrations of 60 ppm RDX containing 10 oI"20 I_Ciof labeled RDX. Soils were _,

brought to 0.66 of field capacity immediately before amendment and were maintained at ,_

this moisture level throughout the experiment. Initial sampling was performed to assure

both mixing efficiency and activity levels. Soils were maintained in a growth-chamber

environment that simulated the luminous intensity and s_'Jectraldispersion of sunlight

(500 i_Em-2sec"1) during the 16-h daily light cycle.

2.3 Plant Cultivation ariel Sampling

The chemical fate of ROX in plants was evaluated using bush beans

(Phaseolus vulgaris ), wheat (Triticum aestivum ), and blando brome (Bromus mollis).

Ali plants used for either hydroponic or soil studies were grown from seed. Ali plants

were maintained in controlled-environment chambers with a 16/8-h light cycle

[500 i_Em2sec "1, photosynthetical active radiation (PAR) at leaf surface], a day/night

temperature of 26/22°C, and 50% relative humidity.

2.3.1 Hydroponic Studies- T

Plants were grown for 18 to 26 days on hydroponic nutrient solutions as

described previously (Cataldo et al., 1978), after which solutions were amended with 1

to 25 ppm RDX containing 5 I_Ciof radiolabeled RDX per 500 mL. 'These solutions

were filter-sterilized and placed in autoclaved 500-mL beakers to minimize bacterial

contamination, which could promote transformation of RDX. Plants were placed in

these solutions and maintained in a growth chamber until harvested. ']'he beakers were

jacketed in an opaque sheath to protect the roots from light and to minimize the

photolysis of RDX. Solutions were analyzed by HPLC and liquid-scintillation

spectrometry at specified intervals. At harvest, plants were removed from the

hydroponic solutions and the roots were rinsed with 0.1 M CaCI2 followed by a rinse in

methanol: water (80% : 20%). Plants were then separated into component tissues

(roots, stems, leaves) as described; the tissues were minced, thoroughly mixed,

analyzed for radiocarbon, and stored at -80°C until chemical analysis.

P
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2.3.2 Soil/Plant Studies

Soil studies were conducted with both unlabeled and radiolabeled RDX. Soils

were urliformly mixed to the concentration noted, and plants were grown to maturity.

Shoot tissues were harvested and the roots washed free of adhering soil. Ali tissues

were assayed for radioactivity and analyzed for RDX and residues.

2.4 Chemica,I/Analytical Procedures

2.4.1 Radioanalvses

Soils and plant tissues were oxidized by total combustion in a Packard Model

306 oxidizer (Packard Instrument Co., Downers Grove, Illinois) to determine 'the amount

of radiocarbon associated with each sample. Combusted samples and liquid samples

were counted Jsing a Beckman 9800 Liquid Scintillation Spectrometer (Beckman

Instruments, Downers Grove, Illinois) with appropriate quench correction.

2.4.2 Residue Analysis

Soil and plant-tissue extracts were analyzed by reversed-phase HPLC with

detection at 243 nm as described above (Section 2.1.2).

2.4.3 Soil Extraction

Soils (400 g oven-dry weight) were amended with a total of 60 ppm RDX

containing 10 _Ci radiolabeled RDX. The three soil types, Burbank, Palouse, and

Cinebar, were the same as those Cataido et al. (1990) used for studies with TNT. Soils

were brought to 0.66 of field capacity before amending them with RDX. Three 10-g

subsamples of each soil were taken immediately after amendment and at 111,30, and

60 days post-amendment. Soil samples were subjected to Soxhlet extraction with 200

mL of acetonitrile lot 48 h. The soil extracts were filtered through a 0.45-1_mNylon-66

filter before reducing the volume to approximately 20 mL by rotary evaporation. The

concentrated extract was filtered a second time through a Nylon-66 filter before the

volume was adjusted to 25.0 mL. To determine the extraction efficiency, a 100-#L

aliquot of the final extract was counted by liquid-scintillation spectrometry an_d

compared to the amount of radiolabel originally added to the soil. A 20-ttL portion of

the final extract was analyzed by HPLC. The HPLC instrumentation and
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chromatographic conditions were described in Section 2.1.2. Extracted soils were dried

in an oven (105°C) overnight to provide an accurate oven-dry weight and were oxidized

to dutermine the percentage of irreversibly bound residue that could not be removed by

extraction with acetonitrile. Oxidations wer_,_)performed on a Packard Model 306

oxidizer (Packard Instrument Co., Downers Grove, Illinois).

2.4.4 Tissue Extraction arielFractionation

Two fractionation schemes were developed for analyzing RDX in plant tissues,.

The initial step of both methods was solvent extraction of RDX from acid-hydrolyzed

plant tissue. The methods differed only in the fractionation of the extracted plant

components, lt was necessary to further fractionate the organic extracts to remove

plant pigments, which would interfere with subsequent HPLC analysis. One method

was based on fractionation using a strong-cation exchange resin, whereas the other

fractionation was based on Florisil chromatography. Figure 2.7 presents a complete

flow chart for the latter method, which was eventually used for the tissue fractionations

contained in this report. The initial solvent extraction of plant leaves (up to the Florisil

chromatography step) was identical for both methods.

Extraction and fractionation studies with RDX examined acid-hydrolyzed bush

bean leaves spiked with radiolabeled RDX. Tissue (1.00 g fresh weight) was

homogenized fol 2.5 rain in a Sorvall Omni-Mixer (Newtown, Conneticut) with

approximately 10.0 mL of 1-M HCI and was then spiked with a total of 0.18 ppm RDX

containing 26,959 dpm. The spiked tissue was subjected to acid hydrolysis for 1 h at

100°C. Neutral and acidic compounds were extracted with 10.0 mL of methylene

chloride. The solutions remaining after extraction are refer'red to as the HCI and the

MeCI2 AN-fractions. The aqueous HCI layer was then made basic by the addition e,f

4.0 mL of 4 M NH4OH and was extracted with a second 10.0-mL aliquot of methylene

chloride. The solutions remaining after the second extraction with methylene chloride

were desigpated the Aq-base and the MeCI2-base fractions. A 100-1J.Laliquot of each

fraction was sampled and counted by liquid scintillation spectrometry. The organic

fractions were next pooled, the solvent evaporated to dryness under a stream of dry

nitrogen, and the residue reconstituted with 2.0 mL of appropriate solvent for further

separation.

Initially, separations were performed on a strnng cation-exchange resin

(Supelco, Bellefonte, Pennsylvania). A methodology based on the LC-SCX resin was
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1.00 g PLANT TISSUE

10.0 ml 1 M HCI
HOMOGENIZE

10.0 ml Et20

Et20 AN HCI Pellet

l 4.0 ml 4 M NH4OH
10 mi Et20

COMBINE ..,=_-.--.--- ,,
Et:O BASE

AQ BASIC

EVAPORATE AND RECONSTITUTE
WITH 2.0 ml MeCZ2

FLORISIL CHROMATOGRAPHY

Loac . 2.0 ml 5,0 ml 5.0 ml 5.0 ml
MeCI 2 Rinse 5 % ACN 5 % ACN 100 %

F1 95 % MeCI 2 95 % MeCI 2 MeOH
F2 F3 F4

I VAPORATE AND RECONSTITUTE

WITH 1.0 ml ACN

HPLC ANALYSIS,

FIGURE 2_. PLANT TISSUE EXTRACTION FLOW CHART

chosen because investigators(McCormick et al., 1981) have reportedmicrobial

transformation of RDX to hydrazine and dimethylhydrazine metabolites. Because it is

r_eutrallycharged, RDX would be expectedto pass throughthe SCX column

unretained, while the hydrazine and dimethylhydrazine components wouldbe strongly

retained by the column. The SCX columnthus offered a convenient means bywhich to
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separate these metabolites from the parent compound. Four different mobile phases of

various solvent strengths were used to elute components from the resin, resulting in

four fractions (F1-F4). In order of application to the resin, the solvents were methylene

chForide,acetonitrile, water, and methanol. After elution, the four fractions were

analyzed by liquid-scintillation spectrometry. The results of this triplicate-spike

experiment are shown in Table 2.2. RDX was found to elute in fraction F1, as might be

expected from a neutral species. Liquid scintillation performed on the spent resin

showed that RDX was not adsorbed, lt was pos'.'ble to further analyze fraction F1 to

quantify RDX by HPLC, since this fraction was relatively free of interfering plant

pigments.

The second method was based on variation of the procedure previously used to

isolate TNT and TNT metabolites from the plant-tissue matrix (Cataldo et al., 1990).

Radiolabeled RDX (26,959 dpm) was applied directly to a Florisil chromatography

column (Sep-Pak, Waters Associates, Milford, Massachusetts). The mobile phases that

were successively applied to the column were methylene chloride, two separate

applications of methylene chloride: ethyl acetate (92:8), and methanol. The distribution

of radiolabel resulting from this factionation is shown in Table 2.3. As was found for

TNT, most of the radiolabel eluted in fraction F2. From the previous work, we knew that

fraction F2 was relatively free of plant pigments and therefore suitable for HPLC

analysis. However, the use of this solvent system for isolating of RDX caused

unacceptable carry-over of RDX radiolabel into fraction F3 (Table 2.3).

Z2_J=,F,_. FRACTIONATION OF ACID-HYDROLYZED LEAF TISSUE SPIKED
WITH 0.18 ppm RDX BY ION-EXCHANGE CHROMATOGRAPHY

Chemical Fraction dpm Volume % Total Radiolabel

F1 934 2.53 88

F2 25 3.54 3

F3 0 4.49 0

F4 0 4.07 0

resin 0 0
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T_2M_J,,F_. FRACTIONATION OF RDX USING THE SAME PROCEDURE AS FOR
TNT (Cataldo et al. 1990)

Chemical Fraction dpm Volume % Total Radiolabel
i

F1 22 3.68 3

F2 414 5.01 77

F3 94 5.35 19

F4 12 5.70 3

We sought to further refine the solvent composition to allow for elution of ali the

RDX within fraction F2 while retaining the plant pigments. These efforts resulted in the

scherne summarized in Figure 2.7. We tested the suitability of this scheme by

performing a triplicate-spike experiment with bush bean leaves. Three tissue samples

(1.00 g) were spiked with 3.66 ppm RDX (containing 27,525 dpm) on a fresh-weight

basis and fractionated in accordance with Figure 2.7 except that extraction was

performed with methylene chloride. Diethyl ether was later substituted to allow for

extraction of RDX-metabolites of higher polarity. Studies comparing the extraction

efficiency of diethyl ether and methylene chloride revealed comparable recoveries of

RDX (over 97.5 %) for both solvents. The tissues were acid-hydrolyzed and extracted

with methylene chloride as described above. The pooled organic extracts were

evaporated with a stream of dry nitrogen and the residue was reconstituted with 2.0 mL

of methylene chloride and then fractionated on Florisil adsorbent. The first Florisil

fraction (F1) was the eluant resulting frc,m sample loading followed by a

2.0-mL aliquot of methylene chloride used to rinse the sample vial. The second and

third fractions (F2 and F3) were eluted from the column with separate 5.0-mL aliquots of

95:5 methylene chloride:acetonitrile (ACN). The last fraction (F4) was eluted with 5.0

mL of 100% methanol in an attempt to strip the adsorbent of the remaining material.

Aliquots (100 ILL)were taken from the Florisil fractions for liquid-scintillation

spectrometry. Fraction F2, which was found to contain RDX, was evaporated to

dryness with a stream of dry nitrogen, reconstituted with 1.0 mL of acetonitrile, and

analyzed by HPLC.
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Table 2.4 presents the distribution of radiolabLt among the Chemical fractions

generated by Florisil fractionation, l he majority of radiolabel from the 1 M HCI

hydrolysis solution was extracted it',tc,methylene chloride. Of the 3.16% left in the HCI

fraction, 1.37% was extracted into a _econd aliquot of methylene chloride after

adjustment of the HCI fraction to bas c pH by the addition of 4 M NH4OH. The

radiolabel eluted almost exclusively _,nfraction F2 (82 + 1.6 %), less than 1% being

carried over into fractions F3 and F4. The pellets contained 5.93 :!:0.58 % of the
radiolabel.

Chromatographic recovery of RDX in fraction F2 was also examined. The top of

Figure 2.8 shows a chromatogram of a 3.66-ppm RDX standard. The HPLC profile of

the F2 fraction from spiked bush bean leaves, shown in the bottom of Figure 2.8,

demonstrates the recovery of 3.66-ppm RDX from bush bean leaves. Figure 2.9

illustrates the chromatographic profiles of the F2 fractions generated by the triplicate-

spike experiment. The chromatographic recovery of RDX in fraction F2 was 86.86 +_

3.11%, which agreed well with the radiolabel recovery of 82.09 + 1.6%. This

experiment demonstrated the efficient recovery and high reproducibility of this

analytical methodology for analyzing RDX in plant tissues.

.T.&BJ._. RADIOLABEL DISTRIBUTION AMONG VARIOUS CHEMICAL
FRACTIONS OF BUSH BEAN LEAVES SPIKED WITH 3.66 ppm RDX

Chemical Fraction % Total Radiolabel + Standard Deviation

HCI 3.16 + 1.81
MeCI2 AN 82.18 :t:0.74

Aq Base C.30 + 0.00
MeCI2 Base 1.37 + 0.45
F1 0.00 + 0.00
F2 82.09 + 1.60
F3 0.68 + 0.81
F4 0.16 + 0.28

Pellet 5.93 + 0.58
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3.66 ppmRDX

RECOVERYOF RDX

FROMLEAFTISSUE

FIGURE 2.8. HPLCCHROMATOGRAMSOF (TOP)A 3.66-ppmSOLUTIONOF RDX
AND (BOTTOM)THE RECOVERYOF3.6 ppm RDX FROM BUSH
BEANLEAVES
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RDX

FIGURE 2._1. CHROMATOGRAMS OF THE F2 FRACTION OF BUSH BEAN LEAVES
SPIKED WITH 3.66 ppm RDX
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3.0 RESULTS AND DISCUSSION

The purpose of this study was to provide an understanding of the environmental {ate

and behavior of hexahydro-l,3,5-trinitro-1,3,5-triazine (RDX). The methods and approaches

used were similar to those used by Cataldo et al. (1990) to study the environmental fate of

TNT. The important parameters that we investigated include 1) the extent of sorption in soils;

2) the chemical transformations of RDX in soils; and 3) the relative availability of RDX to plants,

and the chemical forms of RDX-related residues in plant tissues. In support of these activities,

a principal goal was to develop suitable analytical methodology to separate and characterize

transformation products in soils and plant tissues.

3.1 FATE AND BEHAVIOR OF RDX IN SOIL

3.1.1 Extractability and Mass Balance of RDX in Soil

Soils _,gedwith 60 ppm RDX for'60 days were extracted and analyzed to determine the

extent of sorption and extractability, to determine mass balance and recovery, and to assess

possible chemical transformation products. The results are summarized in Table 3.1 and

provide the percentage of radiolabel extrac_:edwith acetonitrile, the percentage of radioactivity

as RDX following HPLC separation of the extracts, and the percentage of radiolabel remaining

bound to the soil, as determined by oxidation.

After 60 days of incubation, 77, 83, and 92% of the amended RDX radioactivity was

extractable from Burbank, Palouse and Cinebarsoils, respectively. HPLC analysis of these

extracts shows that 68, 74, and 85% of the extractable activity was in the form of RDX. In

general, levels of bound residues continued to increase as the soils were aged with RDX. The

amount of bound radiolabel was lowest for Burbank (0.5%) and highest for Cinebar (2%), and

' was directly proportional to the total organic-carbon content of the soils (Burbank < Palouse <
Cinebar). Although the amount of bound residue increased with time, it should be noted that

only a very small relative amount was present as nonextractable residue at the end of the the

2-month study. The lack of significant soil sorption of RDX contrasted sharply with the

behavior of TNT (Cataldo et al., 1990), where 31 to 54% of TNT-derived radiolabel was

irreversibly bound to the soils after 60 days.

The mass-balance deficit at 30 and 60 days ranged from 22% for Burbank soil to 6% for

Cinebar. A similar pattern was noted for TNT, where mass-balance deficits ranged from 32%

to 6% for Burbank and Cinebar, respectively, after 60 days of incubation (Cataldo et al., 1990).

The mass-balance deficit observed for Burbank soil (22%) was quite large and may represent

mineralization or the formation of volatile transformation products in the soil.
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_. MASS BALANCE OF SOILS CONTAINING 60 ppm RDX (n = 3)

% Radiolabel % Radiolabel
Time in Acetonitrile % Unaltered in Soil After Mass-Balance

Soil (days) Extract RDX Extraction Deficit (%)

Burbank

0 91± 4 95 ± 5 0.04 + 0.02 9
11 100 106 0.13 + 0.02 0
30 80:1:18 82 + 17 0.43 + 0.05 20
60 77 + 7 68 ±3 0.52 ± 0.15 22

Palouse

0 108 ± 18 112 ± 19 0.09 + 0.02 -8
11 104 ± 11 107 + 12 0.51 ± 0.04 -5
31 97 + 20 99 ± 19 1.16 ± 0.11 2
60 83 + 2 74 ± 1 1.10 + 0.26 16

Cinebar

0 102±5 104+5 0.11 +0.01 -2
11 105 + 5 110 ± 3 1.17 + 0.33 -6
31 93 ± 4 93 ± 2 2.31 + 0.65 5
60 92 + 3 85 ± 3 2.03 + 0.20 6

3.1.2 Rates of RDX Mineralization and Volatilization in Soils

Gas-exchange experiments using 14C-RDX-amendedsoils were conducted to

determine the release of volatile organics and 14002 from the three soils, and thus to assess

the cause of the mass-balance deficits observed. Soils were amended with 10 ppm 14C-RDX

and allowed to equilibrate for 40 days, after which organic volatiles and respiratory CO2were
trapped at daily intervals over 3 consecutive days and counted.

Table 3.2 indicates that no volatile RDX-derived residues are released from soil. Rates

of CO2 release ranged from 9.6 to 0.7 ng of RDX-equivalents per day for Burbank and Cinebar
soils, respectively. Assuming 60 days of steady-state release, a maximum of 1.3% of the RDX

in Burbank is decomposed to CO2. This is substantially less than indicated by the mass-

balance deficit of 22% (Table 3.1). No reliable explanation for this discrepancy is possible.

32



_. VOLATILITY AND MINERALIZATION OF SOIL-AMENDED RDX (n = 6)

Organic Daily
Volatiles(a) % Respiration(b) %

Soil (ng RDX/Day)(c) Total RDX (ngRDX/Day)(c) Total RDX
i

Burbank 0.0 :t:0.0 0.0 + 0.0 9.6 ± 49 2.3 x 10-4

Palouse 0.0 ± 0.0 0.0 ± 0.0 2.1 ± 0.44 5.1 x 10-5

Cinebar 0.0 ± 0.0 0.0 ± 0.0 0.72 4-L23 1.5 x 10-5

(a) Trapped with two tandem 1 x 15 cm XAD resin columns and eluted with 100% MeOH.

(b) Trapped using 3-N NaOH (10 mL each in 4 traps in series).

(c) Based on specific activity of soil amendment.

3.1.3 Chemical Soeciation of RDX Residues in Soil

Radiochromatography was used to verify the presence of RDX and the lack of RDX-

derived transformation products in the soil extracts. Radiochromatograms of the acetonitrile

extracts from Burbank, Palouse, and Cinebar soils are shown in Figures 3.1,3.2, and 3.3,

respectively. As illustrated in each chromatographic profile, RDX is the only 14C-containing

peak present. The results from this radiochromatography experiment compliment results

obtained from the soil mass-balance experiment. Both experiments indicate the extraordinary
resistance of RDX to transformation processes in the soils.
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FIGURE 3.1. RADIOCHROMATOGRAM OF BURBANK SOIL 60-DAY EXTRACT
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FIGURE3.3. RADIOCHROMATOGRAM OF CINEBAR SOIL 60-DAY EXTRACT

3.2 SHORT-TERM PLANT AVAILABILITYAND CHEMICAL FATE OF RDX FROM
HYDROPONICS

Hydroponic studies were performed to address several basic needs. The first was to

establish the physiological capacity of plants tc)absorb and transport RDX in the absence of

soils and their sorptive component._. In other words, how does the soluble concentration of

RDX affect its biological availability? "[he second need was to elucidate the extent of
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partitioning of RDX, particularly to the root, which is not amenable to analysis in soil systems.
And finally, we needed to establish the short-term chemical fate of RDX in plant tissues,

including roots.

Plants were grown in hydroponic solutions containing a total of 1 to 10 ppm RDX, with a

total of 5 I_Ci/plantof radiolabeled RDX available for uptake. Plant tissues harvested from

these experiments were subjected to fractionation and analysis for radioactivity, RDX, and

RDX metabolites. The RDX concentrations were selected to provide a range below that which

previously had been determined to produce visible phytotoxic effects in soil-grown wheat al Jd

grasses (25 ppm). Data are provided in Section 3.3.1.

3.2.1 Plant Availability_of RDX from Solution Culture

To determine the uptake rate and relative bioavailability of RDX to the three plant

species, a series of experiments were performed in which the roots of plants grown in solution

culture were exposed to increasing concentrations of RDX. Solution concentrations ranged

from 1 to 10 ppm. The average uptake rates (pg RDX/g fresh-wt root/h ± ! SD) by the plants

as a function of solution concentration (ppm) for each of the three species are presented in

Figure 3.4.

0 Bush Bean (R'2 = I 000)

" Blando Brome (R'._ = 0 991)

A Wheat (R'2 = 09?4)

g-
| 1.

0 • I . . L , . n • • •

0 2 4 6 6 10 12

RDX Concentratlon (l_g/L)

FIGURE _3.4. UPTAKE RATES OF RADIOLABELED RDX BY ROOTS OF BUSH BEAN,
WHEAT, AND BLANDO BROME FROM 1,2.5, 5, AND 10 ppm RDX-
AMENDED NUTRIENT SOLUTIONS. DATA ARE AVERAGES ± STANDARD
DEVIATION (N = :3).
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Differences were observed in uptake rates of 14C-RDXby the roots from the amended

nutrient solutions. The bean exhibited a greater rate of uptake, based on root and shoot

activity accumulated, compared with blando brome and wheat. For example, absorption rates

of the 14C-RDXat solution concentrations of 10 ppm were 26, 21, and 13 I_g/groot/h for bush

bean, blando brome, and wheat, respectively. Further, the uptake rates for the three species

appeared to be linear over the concentrations tested, with no indication of saturation in

absorption potential by the plants for soluble, available RDX. These absorption rates are

,substantially below those observed for TNT, where uptake rates of 900 and 450 l_g/groot/h

were noted for bush bean and the grass species, respectively (Cataldo et al., 1990).

To ascertain specific uptake differences between the plant species, we analyzed the

uptake data for RDX using Lineweaver-Burke double-reciprocal plots and we calculated a Ks,

analogous to the Michaelis-Menten Km, and a root-absorption rate (Vmax) for each species

(Table 3.3). Because Ksis analogous to Km, one would expect that the lower the Ksvalue, the

greater the affinity of transport sites for RDX. For bush bean the average Ks was 389 _M, with

a Vmax (uptake rate at saturating concentration) of 1 t_molesRDX/g fresh-wt root/h. Wheat

exhibited absorption isotherms with an average Ksvalue of 270 and a Vmax value of 0.45

_molgs RDX/g fresh-wt rooVh. For blando brorne the average Ks was calculated to be 96 _M,

with a Vmax of 0.24 I_molesRDX/g fresh-wt root/h. These kinetic constants indicate that the

monocot species (blando brome and wheat) may have higher affinities for RDX than does the

dicot (bean). Bush bean, however, possessed the higher Vma x and would therefore be capable

F

_'._J,j_.._. CALCULATED Ks and Vmax VALUES FROM DOUBLE-RECIPROCAL
PLOTS OF RDX

Species Component Isotherm(a)

Bush Bean Ks 389

Vmax 0.98

Wheat Ks 270

Vmax 0.45

Blando Brome Ks 96

Vmax 0.24

(a) Ks in _.M,Vmax inI_Moles RDX/g fresh wt root/h.



of accumulating more of the material over time, on a per-unit-mass-root basis, lt should be

noted that Vma_ values, -3nalthus uptake capacity, for RDX are substantially lower than for

TNT (Cataido et al. 1990).

3.2.2 Short-Term Partitionino of TNT Within th_ Plantv

Species differences, including difference,_in the rate at which RDX may be absorbed by

a plant's roots, also could affect partitioning of the absorbed TNT between tissues and organs

and the -ubsequent chemical fate or metabolism of the partitioned RDX. The description of the

metabolic fate of plant-absorbed RDX, which involved analyzing tissues derived from the short-

term hydroponic studies, is reported in Section 3.2.41 The partitioning patterns and effects of

elevated !4C-RDX concentrations (1 to 10 ppm) are provided in Table 3.4.

The tissue accumulation of RDX following 2 h of absorption indicate that RDX is evenly

distributed between root and shoot tissues of ali three plant species. This is in s,trikingcontrast

to the accumulation patterns for TNT (Cataldo et al., 1990), where in bush bean and blando

Drome, less than 5% of the absorbed TNT was found in shoot tissues after 2 h of uptake, and

as much as 16% was found in wheat. Thus RDX is substantially more mobile than TNT in the

T_. DISTRIBUTION OF RADIOCARBON IN PLANTS FOLLOWING A 2-h
EXPOSURE IN SOLUTION CULTURE AT VARIOUS TNT CONCENTRATIONS

Exoosure-Solution ConGentratioEJio_m)
Species Tissue 1 2.5 5 10

Average I_gRDX g-1 Fresh Weight Tissue :_:SD (n = 3)

Bush Bean

Root 0.46+0.13 1.24+0.37 2.51+0.56 6.04±1.07
Shoot(a) 0.51±0.20 1.53±0.33 2.57+0.60 6.16+1.42

Wheat

Root 0.43±0.12 1.31±0.27 1.98±0.46 2.43!-0.25
Shoot(a) 0.39±0.23 1.35±0.28 1.53:L--O.31 2.02±0.28

B_andoBrome

Root 0.49±0.13 1.13±0.28 2.69±0.46 4.66±0.93
Shootta) 0.38±0.06 0.82±0.32 1.38±0.62 3.78.[:0.81

(a) Includes stem p4us leaves.
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plant, and the plant root has little storage capacity for RDX. The difference in mobility of RDX

and TNT would indicate that ROX may have a more pronounced impact on the human food
chain.

3.2.3 Respiration arid Volatili_ of RDX by plants (_rown iq Solution Culture

RDX and related residues that are absorbed by plant roots and exported to the stem

and leaves may 1) be further metabolized to a form innocuous to the plant; 2) be sequestered

or stored; 3) undergo further metabolic conversions to achieve a final form of CO2; or 4) pass

through the plant through the transpiration stream to be released to the atmosphere essentially

unchanged. To determine the potential for the latter two processes, a 28-day-old hydroponic-

grown soybean was placed in a beaker containing a 10-ppr_14C-RDX-amendednutrient

solution. The beaker was then placed into the CO2/volatiles trapping chamber. Over 72 h,

volatile organic compounds and CO2 emissions were assayed from the shoot and root portions
of the plant. From the collected data, we constructed a _4C mass-balance between the initial

and remaining label in the nutrient solution and the plant.

The results, given in Table 3.5, demonstrate a mass-balance recovery of approximately

107%. Over a 72-h period, 15% of the RDX, or 692 I_gRDX, was accumulated in the plant.

Respiratory losses from the root accounted for 21 I_g,or 0.47% of the total RDX supplied. In

previous studies (Cataldo et al., 1990), respiratory losses of TNT were not observed. There

was no detectable loss of label in either an organic form or as CO2 from the foliage, respiratory
losses of TNT were not observed of the bean plant. Radioactivity within the plant was evenly
distributed between leaves and root.

These results indicate that RDX or transformed residues are not directly volatilized from

foliage to the atmosphere. Furthermore, oxidative metabolism of the RDX or its transport

products occurred over the 3-day period. This phenomenon, whether occurring in the root or

as a result of mycorhizal associations, represents a significant loss rate for RDX (7 i_g/day of

the 4400 I_gsupplied in solution).

3.2.4 Chemical Fate of RDX in Hydrooonical!y Grow_

Hydroponically grown plants were used to establish the analytical procedures needed to

resolve the relative availability and fate of RDX and associated residues and their chemical fate

once accumulated. This experimental system permits close control of initial chemical forms in

solution and eliminates those processes occurring in soil which are likely to confuse initial steps

in elucidating RDX fate, namely sorption and soil-based chemical transformation of the parent
compound.



.T.._. DISTRIBUTION OF RADIOLABELED RDX IN A HYDROPONICALLY GROWN
BUSH BEAN FOLLOWING A 72-h EXPOSURE TO A 10 ppm SOLUTION.
PLANT WAS MAINTAINED UNDER NORMAL GROWTH CONDITIONS IN A
SPLIT CHAMBER

Component RDX (mg) % Total Initial 14C

Original [14C]RD X Solution 4.4,38 (a) 100.00

Plant Tissue 0.692(b) 15.61

Shoot CO2(c) n.d(d) 0.00
Shoot XAD(e) n.d. 0,00

Root CO2(c) 0.021 0.47
Root XAD(e) n.d 0.00

Transpired Water(f) _
Sum 0.714 16.11

CaCI2 Root Wash 0.049 1.12
Methanol Root Wash 0.567 12.78

Final [140]RDX Solution _,.,_f) 77.16

Sum 4.754 107.17

(a) Based on HPLC analysis of the 350-mL starting solution.

(b) Determined by tissue oxidation and based on [14C]RDx equivalents from solution's specific activity.

(c) Based on [14C]RDX starting-solution equivalents from NaOH traps.
(d) Not detected.

(e) Based on [14C]RDX starting-solution equivalents from XAD resin columns.

(f) Based on [14C]RDX starting-solution equivalents in condensed transpired water in upper (shoot) charnber.

We prepared hydroponic solutions which contained approximately 5 ppm RDX and
5.6 IJ.Ci/500mL. The solutions were filter-sterilized and placed in autoclaved 600-rnL beakers

to minimize bacterial contamination, which could promote transformation of RDX. For each

plant type, three control solutions and six exposure solutions were prepared. Two of the

control solutions were exposed to the full intensity of the growth-chamber lights. The first of
these solutions was aerated, whereas the second was not. The third control solution was

aerated and the beaker was placed in an opaque sheath to protect RDX from

photodecomposition. Six plants were placed in the remaining beakers and allowed to grow for

1 or 7 days, after which they were harvested. Samples for liquid-scintillation spectrometry and

HPLC were removed immediately after preparing the solutions and after harvesting each group
of plants.
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The results of the hydroponic-solution analysis are summarized in Table 3.6. Analysis
of the control solutions showed a conslstent loss of both radiolabel and RDX from the bubbled

controls exposed to light. This result initially was surprising, given the low vapor pressure of

RDX. The most plausible explanation is that RDX was lost from the beaker through

aerosolization, rather than volatilization. A corresponding loss was not observed in the dark

aerated control because this beaker was covered, to exclude light. With the exception of the

aforementioned aerated light-exposed control, losses of radiolabel from the control beakers

were minimal. Calculations of specific activity of the control solutions and their HPLC profiles
both indicate that transformations did not occur.

Analyses of solutions used to maintain plants clearly show losses of RDX from plant

uptake. In contrast with TNT-containing hydroponic solutions, in RDX solutions root-catalyzed

transformation products were not observed. HPLC chromatograms of the hydroponic solutions

indicated only a single peak from RDX. The lack of transformation of RDX is further evidenced

by the specific activity of the hydroponic solutions. The average specific activity in the control

solutions was 1.14 + 0.03 I_Ci/mgRDX (n = 27). If transformations were to occur during

exposure to the plants, one would expect an increase in the specific activity of the solutions.

Since the average specific activity of the plant-containing solutions [average of 1.14 + 0.02
(n = 18)] was the same as the control solutions, transformations of RDX did not occur.

To estimate the extent of RDX metabolite conjugation, an acid-hydrolyzed leaf sample

and its corresponding ether extract were compared with an identical tissue sample

homogenized in water and extracted with diethyl ether. Leaf tissue from a plant exposed to

hydroponic culture for 7 days was chosen for this study to allow sufficient time for the plant to
metabolize and/or sequester RDX. The results showed 56 and 67% of the total radiolabel to

be present in the ether extracts of the acid hydrolyzed and the water hydrolyzed samples,

respectively. After extraction, the acid layer contained 21% of the radiolabel, whereas the

water phase contained 15%. From this analysis it is clear that the majority of radiolabel was

readily extracted into diethyl ether, and, therefore, was not present in the plant tissue as polar

acid-hydrolyzable conjugates. Since metabolism may favor the formation of polar conjugates
in mature plants grown under chronic exposure conditions, and since recoveries of RDX were

acceptable with acid hydrolysis, this step was retained to broaden the applicability of the
analytical scheme.

In the following presentation of results obtained during the fractionation of tissue from

plants grown in RDX-containing hydroponic solutions, the data are presented in terms of both

percentage of total radiolabel and micrograms of RDX equivalents present in each chemical

fraction. This facilitates easy visual comparisons betweendifferent experimental variables.

Also for ease of comparison, the concentration of actual RDX in fraction F2, as determined by

HPLC analysis, is included within the RDX-equivalent data tables. The concentration units of
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_. QUANTITY OF RDX AND RADIOLABEL IN HYDROPONIC SOLUTIONS AT
THE BEGINNING OF THE STUDY AND AT THE TWO HARVEST "rIMES

0 day 1 day 7 day

Species/ I_Ci/ mg RDX/ I_Cl/ mg RDX/ I_Ci/ mg RDX/

Treatment Beaker Beaker Beaker Beaker Beaker Beaker

Bush Bean

Control, light, 5.76 5.12 5.41 4.79 4.59 3.88
bubbled

Control, light, 5.80 5.13 5.75 5.06 5.37 4.50
not bubbled

Control, dark, 5.74 5.12 5.51 4.90 5.36 4.70

bubbled

Plants 1-3 5.73 + o.10 5.14+ 0.02 5.14± o.15 4.53+ 0.04.........

Plants 7-9 5.72+o.o3 5.1o±o.o0 ....... 2.12:t::o.85 1.8o±o.73

Wheat

Control, light, 5.89 5.02 5.90 5.29 3.92 3.27
bubbled

Control, light, 5.77 5.06 5.64 4.95 5.80 4.75

not bubbled

Control, dark, 5.67 5.10 4.98 4.35 5.57 5.00
bubbled

Plants 1-3 5.82±0.14 5.o8±0.o2 4.70±0.26 4.13±0.35 ........

Plants7-9 5.9o±o.o7 5.16±o.o7 ........ 2.69+0.35 2.34±o.31

Blando Brome

Control, light, 5.62 4.90 5.60 4.76 5.16 4.49
bubbled

Control, light, 5.50 4.89 5.34 4.71 5.34 4.65
not bubbled

Control, dark, 5.48 4.88 5.35 4.74 5.35 4.85
bubbled

Plants 1-3 5.48 +0.07 4.88± o.o6 4.80+ O.lO 4.2o± 0.06 ........

Plants 7-9 5.55± 0.01 4.86±0.02 ........ 2.27± 0.46 2.06± 0.40
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the HPLC determinations are I_gRDX/g fresh-weight tissue, or equivalently, I_gRDX, since

1.00 g of tissue was fractionated. Should ali of the radiolabel contained in fraction F2 be

speciated as RDX, the I_g RDX-equivalent values for this fraction and the values determined by

HPLC analYSiSshould be equal.

The results for fractionation of bush bean tissues after 1 and 7 days of exposure to

5 ppm RDX (5.6 I_Ci/500mL) hydroponic cultures are summarized in Tables 3.7 through 3.9.

Figure 3.5 illustrates representative HPLC profiles of F2 fractions of bush bean leaf (top), stem

(center), and roots (bottom) tissues from a plant exposed to hydroponic solution for 1 day. lt is

immediately evident that large quantities of RDX were present in these tissues. Tile

distributions shown {nTables 3.7 through 3.9 illustrate that RDX is accumulated by bush beans

and that a surprisingly small amount of RDX is metabolized even in the plants exposed for a 7-

day period. After a 1-day exposure to the 5 ppm solution of RDX, concentrations of RDX in

leaf tissue approached 20 ppm (Table 3.7). The amounts of RDX contained in the stem and

root tissues of these 1-day plants were approximately 10 ppm. Since practically ali the

radiolabel was present in fraction F2, with very little contained in the polar aqueous-base and

F4 fractions (Table 3.8), it is apparent that RDX is accumulated and not immediately

metabolized. Further evidence for this contention is provided by chromatographic analysis of

the F2 fractions. Concentrations of RDX obtained by HPLC analysis agree well with those

..T..z_k_,__.Z.MICROGRAM RDX EQUIVALENTS IN CHEMICAL FRACTIONS OF BUSH
BEAN(a)

Day 1 Day 7
Fraction Leaves Stem Roots Leaves Stem Roots

HCI 3.9 ± 0.6 1.8 ± 0.4 2.4 ± 0.3 31.7 ± 3.6 9.1 ±1.0 8.7 + 0.8

Et20 acid-neutral 19.0+2.7 11.9±0.5 8.7± 1.1 82.2±9.4 12.3±2.4 7.9±2.2
Aq Base 1.2 ± 0.5 0.6 ± 0.3 1.1 ± 0.6 20.1 ± 3.5 7.3 ± 1.3 7.4 ± 0.2

Et20 base 2.3 ± 0.4 1.2 + 0.3 0.9 + 0,1 11.0 ± 1,8 1.3 ± 0.5 0.9 ± 0.4

F1 0 0 0 0 0 0

F2 18.4±3.6 11.1 ±1.1 9.5±1.6 68.8:1:7.2 10.3±2.4 6.1 ±2.4

F3 0.6 ± 0.4 0.4 ± 0.1 0.03 ±0.06 3.3 ± 1.0 0.2 ± 0.1 0.5 ± 0.1
F4 0 0 0.08 ± 0.03 10.1 ± 1,3 0.5 ±0.2 0.7 ± 0.1

RDXin F2(b) 18.6±3.6 10.9±0.7 9.4+ 1.5 96.6 +26.7 11.1 ±2.5 6.2+2.5

(a) Values are the averages from analysis of three plants.

(b) Values determined by HPLC analysis of fraction F2.
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_. PERCENTAGE OF TOTAL RADIOACTIVITY, BASED ON OXIDATION, IN

CHEMICAL FRACTIONS OF BUSH BEAN AFTER 1 DAY(a)
r ,

Day 1

Fraction Leaves Stem Roots

HCI 14 + 1 12 + 3 18 4-2

Et20 acid-neutral 67 + 4 77 4-9 65 + 7
Aq Base 4 + 1 4 4-2 8 4-3
Et20 base 84-0 84-3 7+1

F1 0 0 0
F2 66 4-4 72 4-10 71 4-4
F3 2 4-1 2 4-1 0.3 4-0.6
F4 0 0 0.7 4-0,6

Pellet 5.7 4-0.6 4.7 4-0.6 7.74- 0.6

(a) Valuesare theaveragesfromanalysisof 3 plants.

_. PERCENTAGE OF TOTAL RADIOACTIVITY, BASED ON OXIDATION, IN
CHEMICAL FRACTIONS OF BUSH BEAN AFTER 7 DAYS(a)

Day 7
Fraction Leaves Stem Roots

HCI 23 4-3 27 4-5 33 4-2

Et20 acid-neutral 60 + 8 35 + 6 30 4-6
Aq Base 14 4-2 21 + 5 28 4-3

Et20 base 84-2 4+1 44-2

F1 0 0 0

F2 50 4-5 30 4-6 23 4-7
F3 34-1 1 +1 24-0

F4 74-1 1+1 34-1

Pellet 5 4-1 15 4-3 14 4-1

(a) Valuesare the averagesfromanalysisof 3 plants.
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FIGURE3.5. CHROMATOGRAMS OF THE F2 FRACTION OF (TOP) BUSH BEAN LEAF,
(CENTER) STEM, AND (BOTTOM) ROOT TISSUES. PLANT WAS EXPOSED
TO RDX-CONTAINING HYDROPONIC SOLU', ION FOR 1 DAY
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obtained by radiocounting, indicating that RDX accounts for ali the material contained within

fraction F2. The bioaccumul_jon trend was even more pronounced in the 7-day exposure

plants (Table 3.9). We see here the first indications of a small amount of metabolism of RDX.

In the 7-day exposure plants, foliar concentrations approach 100-ppm RDX, giving clear

evidence of the bioaccumulation of this munitioncompound.

By the 7-day harvest, significant amounts of radiolabel began to appear in the F4 and

aqueous-base fraction of the fractionated leaf tissue. Twenty percent of the total radiolabel had

undergone sufficient metabolism to be nonextractable into diethyl ether (aqueous-base

fraction) and 10% of the radiolabel was contained in the extractable yet polar fraction F4. The

stem and root tissues displayed little affinity for RDX, containing only 11 and 6 ppm RDX,

respectively. The undeniable evidence for plant bioaccumulation of RDX was by far the most

significant finding of this experiment.

An unusual trend was indicated by the amount of radiolabel contained in the bush bean

pellets. As clearly indicated by the data, root uptake of RDX, transport to the leaf tissue, and

accumulation in the leaf tissue readily occurred. One would expect that after transporting it to

the leaf tissue, the plant would render the foreign material innocuous both by metabolically

alterating it and by physically incorporating the material in nonaccessible forms such as

cellulose. One would therefore expect that the pellet of the 7-day leaf ti:_suewould contain

significantly more radiolabel than that of the 1-day plant. Contrary to expectations, the

amounts of sequestered radiolabel contained in the leaf pellets were about 5% in beth 1- and

7-day plants. Interestingly, the 7-day root tissue contained approximately twice the

nonextractable radiolabel of the 1-day roots. These unusual results suggest that the roots

rather ttlan the leaf tissue were initially involved in immobilizing and sequestering this
xenobiotic.

The F2 fractions from bush bean roots and shoots from both 1- and 7-day plants were

examined by radiochromatography to provide further evidence that fraction F2 contains only

RDX. These radiocarbon profiles are presented in Figures 3.6 through 3.9. In ali of these

profiles, RDX (retention time of 17.5 min) was the only radiocarbon-containing species present.

Minor metabolites were not observed in fraction F2 even in the 7-day-exposure plant tissues.

We chemically fractionated the tissues from the monocotyledon plants, wheat and

blando brome, to determine the extent of formation of polar residues. The microgram RDX

equivalent distribution of radiolabel for wheat plants grown in hydroponic solution for 1 and 7

days is presented in Table 3.10, and the percentage of total radiolabel distribution is giver_in

Table 3.11. As was observed with the bush bean plants, RDX was quickly accumulated in the

foliar tissues of wheat. The shoot tissue contained about 40 ppm RDX in the 1-day plants, with
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_./_l..g. MICROGRAM RDX EQUIVALENTS IN CHEMICAL FRACTIONS OF WHEAT(a)

I_avl Dav 7
Fraction Shoot Root Shoot Root

HCI 11.4 + 1.2 2.2 + 0.5 59.4 ± 4,7 6.1 ± 0.6
Et O acid-neutral 37.8 ±1.2 5.9 + 0.6 74.2 ± 11.4 5.2 + 1.2
Aq2Base 6.2 + 0.8 1.Oi+ 0.2 47.3 + 5.3 4.5 .-t:0.6
Et20 base 4.7 ± 0.4 0.6 + 0.1 8.9 ± 1.2 0.4 :t:0.1

F1 0 0 0 0
F2 37.2 + 2.6 5.q 4-0.9 69.0 4-,13.0 4.3 _-t:1.5
F3 1.1 ± 0.8 0.1 ± 0.1 3.2 ± 0.7 0.2 + 0.2
F4 0.9 4-1.0 0.1 + 0.1 3.4 ± 0.7 0.4 ± 0.1

RDX in F2(b) 41,6 ± 3.0 6.8 4-0.8 88.9 ± 44.3 5.3 ± 0.9

(a) Values are the average of 3 plants.

(b) Values determined by HPLC analysis of fraction 1:."2.

.T.._. PERCENTAGE OF RADIOLABEL IN VARIOUS CHEMICAL FRACTIONS OF
WHEAT(a)

Day 1 Dav 7

Fraction Shoot Root Shoot Root

HCI 17 4-4 21 ± 4 35 4-13 35 4-5
Et20 acid-neutral 55 +6 56 :t:6 43 + 9 30 + 8
Aq Base 9 4-2 10 4-2 28 + 12 25 + 2
Et20 base 7+1 6±1 54-1 3+1

F1 0 0 0 0
F2 54 + 9 57 :_-8 40 4-9 25 ± 7
F3 24- 1 1 4-0 2+0.3 1 4-1
F4 1:1:2 1 ±1 24-1 24-0.3

Pellet 6 ± 2 6 4-2 14 + 5 15 ± 2

(a) Values are the average of 3 plants.
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values reaching approximately 90 ppm in the 7-day plants. The root tissue from both exposure

periods contained about 5 ppm RDX. The amounts of RDX determined by radiocounting agree

reasonabI,j well with those obtained by HPLC analysis, indicating that ali o_the radiotabel

contained in fraction F2 was speclated as RDX. The aqueous-base and F4 fractions

collectively contained 10% of the total radlolabel in the 1-day plants, wherc_s these fractions

contained 30% of the radiolabel in the 7-day plants. Again, metabolism of RDX seemed to be

minimal in the 1-day plants; however, by 7 days considerable metabolism of RDX was evident.

Radiolabel contained in the pellet of wheat tissues did not follow the trend seen with the

bush bean plants. The root and shoot tissues from each distinct exposure period displayed

approximately equivalent amounts of immobilized residue contained within the pellet. Here, the
7-day plants contained about 15% of the total radiolabel in the pellet, and tissues from the

1-day plants about half this value. This trend suggests that upon chronic exposure to RDX,

cellular sequestering mechanisms are brought into play both in the shoot and root tissues of
wheat.

The data for chemical fractionatio_,of blando brome grown in hydroponic culture are

presented in Tables 3.12 and 3.13. Th6sspecies displayed trends similar to those previously

described for bush bean and wheat; however, this species had an extremely high capacity to

bioaccumulate RDX. As with the two previously described species, the root tissue from both 1-

and 7-day plants showed little affinity for RDX, with concentrations remaining below 10 ppm.

The shoot tissue from the 1-day blando brome plants contained about 40 ppm RDX and that

from the 7-day plants approximately 200 ppm, representing the highest concentration of RDX

observed in plant tissues during the hydroponic studies. The concentration of 200 ppm

represents a bioconcentration of 40 times the concentration of RDX available from the

hydroponic solutions. The highest percentage of total radiolabel in fraction F2 also was

observed in blando brome. For the 7-day plants, the percentages of total radiolabel observed

in fraction F2 were 50, 40, and 82% for bush bean, wheat, and blando brome, respectively. As

with the other species, significant metabolism of RDX by blando brome was not observed until

7 days of _xposure to RDX. The 1-day plants contained 10% of the total radlolabel in the

aqueous-base and F4 fractions, while the 7-day plants contained 37% of Ihe total radiolabel in
these two fractions.

3.19
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_. MICROGRAM RDX EQUIVALENTS IN CHEMICAL FRACTIONS OF
BLANDO BROME(a)

Day1....... Dav 7
Fraction Shoot Root Shoot Root

HCI 6.5 + 1,0 1,2 ± 0.1 77.4 4-15.9 6.2 ± 0.6
Et20 acid-neutral 36.5 4-2.1 4.7 4-0.4 183.0 + 76.5 8.0 4-2.6
Aq Base 2.4 ± 0.7 0.4 4-0.1 52.6 ± 14.8 4,.7+ 0.6
Et20 base 4.7 ± 0.5 0.4 + 0.5 23,7 4-9.3 0.9 + 0.2

F1 0 0 0.1 + 0.2 0
F2 37.4 4-2.4 4.5 ± 0.6 177.1 + 80.9 7.1 + 2.6
F3 1.8 4-0.8 0.2 4-0.1 7.0 4-4.9 0.3 4-0.1
F4 0.5 ± 0.3 0 10.2 + 2.6 0.9 ± 0.2

RDX in F2(b) 40,3 4-2.5 5.59 4-0.6 202.2 ± 85.7 8.04 4-3.2

(a) Values are the average of 3 plants.

(b) Values determined by HPLC analysis of fraction F2.

TAI_,,k,F_, PERCENTAGE OF RADIOLABEL IN VARIOUS CHEMICAL FRACTIONS OF
BLANDO BROME(a)

_ Day 1 Day 7
Fraction Shoot Root Shoot Root

HCI 14 + 3 14 ±2 37 ± 5 29 + 6
Et,_Oacid-neutral 77 ± 12 56 4-12 85 + 29 38 4-14
Aq_Base 9 ± 4 5 ± 1 32 ± 9 22 ± 6
Et20 base 10+2 4±3 11 +3 44-1

F1 0 0 0 0
F2 78 ± 13 52 4-13 82 ± 30 34 + 14
F3 44-2 2±1 34-2 1 4-0.3
F4 1 4-0 0 5±2 4+ 1

Pellet 8+1 4±1 18±4 12±1

(a) Values are the average of 3 plants.
...
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The radiolabel contained in the blando brome pellets showed increased vaiues for

longer exposures to RDX. The 7 Jay exposure root pellets contained 112%of the total

radiolabei, a value three times the percentage contained in the 1-day-exposure root pellets.

The 7-day blando brome shoot pellets contained about twice the percentage of radiolabel (18

vs. 8%) of the 1-day-exposure pellets.

3.2.5 T_ransDortForm of RDX in Xylem Exudates

RDX was the sole metabolite isolated in fraction F2 from root and shoot tissues. Since

the extraction procedure uses an acidic extraction step, the question arises as to whether the

RDX is conjugated as noted for TNT (Cataldo et al., 1990). Figure 3.10 shows the transport

form of bush bean exudates from hydroponically grown plants to be principally RDX (96%),

with a small fraction of RDX being present in a more polar form.

3.3 _,BSORPTION AND CHEMICAL FATE OF RDX IN MATURE Pb&NTS GROWN IN SOil

A major objective of the soil/plant-maturity studies was to assess to what extent and in

what form RDX or its principal residues are accumulated, stored, or metabolized in soil-grown

plants (bush bean, blando brorne, and wheat) at physiological maturity. We conducted
preliminary studies to determine the maximum concentration of soil RDX that could be used

; both in hydroponic and long-term soil studies without inducing adverse plant effects or toxicity.

The plant-maturity studies were structured to elucidate accumulation and tissue-partitioning of
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EIGURE 3.10. RADIOCHROMATOGRAM OF BUSH BEAN EXUDATES
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14Cderived from soil-amended RDX. Plantswere grown to physiological maturity,

subsampled, and analyzed for total 14Cand fractionated for detailed chemical analyses. The
following data sets contain treatments referred to as "chamber controls," which are unintented

plants maintained in the same growth chambers as treatments. This is a standard procedure

for dealing with 14C-labeledorganics having the potential either for volatilization or oxidative

decomposition. Actual "treatment controls" were maintained in a separate growth chamber.

3.3.1 Soil/Plant-Toxicity Studies-

To evaluate the potential phytotoxicity of RDX for both soil and hydroponic experiments,
400-g pots of Palouse and Cinebar soils were amended with RDX to final concentrations of 0,

10, 25, or 50 ppm RDX. Pots of each soil and each concentration were then planted with

either bush bean, wheat, or blando brome and the plants allowed to grow for 60 days, or until

maturity. During this period the plants were observed for visible phytotoxic symptoms such as

chlorosis, leaf curl or burn, or reduced growth. In ali species at the 50-ppm concentrations,

reductions in plant height of greater than 50% and chlorosis were observed, and at the 25-ppm

concentration a growth reduction of ~15%was indicated. As with TNT (Cataldo et al., 1990),

no phytotoxic symptoms were visible in the 10-ppm plants. Therefore, the 10-ppm

concentration was chosen for the future long-term soil-uptake studies. Short-term hydroponic

studies were also conducted at solution concentrations of 10 ppm or less.

Tables 3.14 and 3.15 provide biomass data,for plants grown on 10-ppm RDX-amended
soils and on treatment control soils not amended with RDX. Roots were washed free of soil for

calculating mass-balance and assessing tissue distributions. With both wheat and blando

brome, some growth reduction is noted for plants grown on Palouse and Burbank soils, but not

on Cinebar. No phenotypic symptoms such as chlorosis were noted. Seed set and yield were

either low or nonexistent for the grasse_, although we do not believed this to be due to the
presence of RDX.

In bush bean, the effects of RDX on biomass production were less evident (Table 3.15).

Significant growth reductions were noted only for bean roots. No other tissues had weights
less than the controls, and seed production in amended soils exceeded that in c_ntrols. Thus,

whil9 in wheat and blando brome the 10-ppm treatment level resulted in growth reductions, the

absence of other symptoms such as chlorosis or leaf necrosis indicate that any toxicity from
RDX would not likely affect the chemical fate of RDX.
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I_k_,,,F_. AVERAGE FRESH WEIGHT OF WHEAT AND BLANDO BROME PLANTS

GROWN FOR 60 DAYS IN SOILS AMENDED WITH 10 ppm 14C-RDX

AND IN NON-AMENDED CONTROL SOILS

Plant Tissue

Species Condition Soil Shoot Root Seed Total

Average Fresh Weight ± SD(a)or Variance (b)
WHEAT

RDX-Amended (a)

Cinebar 5.41±1.38 12.28±0.86 .(c) 17.69:1:1.94

Palouse 2.24+0.29 5.38±-0.99 - 7.63+1.24

Burbank 2.63±0.04 7.23±1.49 - 9.86:1:1.79

Treatment Control(b)

Cinebar 6.70±0.21 13.54±4.54 21.10+3.12

Palouse 3.34±0.20 9.17+1.44 12.51±0.92

Burbank 3.76.-t:0.65 9.94:1:0.24 13.7+0.41

BLANDO BROME

RDX-Amended(a)

Cinebar 7.69-]:0.70 9.79±0.71 0.22±0.19 17.62:t:0.61

Patouse 3.13±0.40 5.99+0.93 0.06±0.02 9.16+0.99

Burbank 3.19d:0.40 7.10±1.56 0.09+0.05 5.14+0.81

Treatment Control(b)

Cinebar 8.92_-t:0.14 16.41±6.17 .c 23.38:t:5.98

Palouse 4.04+0.42 9.89+2.05 13.93±2.48

Burbank 3.69±0.05 12.60±1.27 0.12±0.00. 10.26±0.69

(a) n - 9.

(b) n = 6.

(c) Significant (P<0.1) according to one-tailed t-Test.
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TABLE 3.15. AVERAGE FRESH WEIGHT OF BUSH BEAN PLANTS GROWN FOR 60 DAYS

IN SOILS AMENDED WITH 10 PPM 14C-RDX AND IN NON-AMENDED
CONTROL SOILS

PlantTissue
Condition/Soil Leaf Stem Pod Seed Root Total

AverageFreshWeight(g).+SD(a)orvariance(b)

RDX-Amended(a)

Cinebar 8.63±2.45 4.02-{-0.23 10.28+0.91 1.71±0.27 3.95±0.44 27.54+2.69

Palouse 5.72+1.41 2.35+0.26 6.95±1.78 1.19±0.81 4.97±1.71 17.6±3.23

Burbank 5.27±-0.84 2.33+0.28 5.294-0.93 0.68:t:0.21 2.22+0.32 15.98+2.10

TreatmentControl(b)

Cinebar 6.21+2.65 4.08±0.62 7.46±1.01 0.23±0.01 9.06±3.37 27.05±4.38
Patouse 5.80±0.40 2.66+0.16 3.61+1.43 0.23:t:0.14 5.25±1.16 16.79±3.73

Burbank 4.27±1.06 2.514-0.19 2.35+0.21 0.08+0.01 4.58+2.31 15.78±5.06

(a) n = 5.
(b) n=2.

3.3.2 Long-Term Partitionina of TNT Within the Plant

The accumulation of RDX by bush bean plants grown on soils containing 10-ppm

14C-RDX, based on RDX activity equivalents, is quite high and is inversely proportional to soil

organic matter and CEC (Table 3.16). Tissue concentration patterns indicate that RDX is

particularly mobile following root uptake. For ali soils, the order of increasing RDX

concentration is seed > leaf > stem > root _>pod. Plants grown on the Iow-CEC and low-

organic-matter Burbank soil showed leaf and seed concentrations of 200 and 600 ppm RDX

equivalents while roots contained only 75 ppm. This distribution pattern indicates that unlike

for TNT (Cataldo et al., 1990), the root has only a limited storage capacity for RDX.

Chamber controls (Table 3.16) showed limited 14C-activity. The activity likely resulted

from the uptake of 14002 from mineralization of radiolabeled RDX by plant roots and soils, as

was seen in the volatilization studies. Treatment controls, not contained within the same

growth chamber, showed no elevated background activity.
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_T.._. SPECIFIC UPTAKE (l_g RDX equivalents/g Fresh Weight x 102(a)) FOR PLANT
TISSUES OF BUSH BEAN GROWN FOR 60 DAYS IN SOILS AMENOED

WITH 10 ppm 14C-RDX AND FOR CHAMBER AND TREATMENT CONTROLS

Plant "l'issu_
Condition/Soil Leaf Stem Pod Seed Root

_g RDXequivalents/gFreshWeight-J-SD

RDX-Amended(b)

Cinebar 22.43+7.50 19.44±5.61 10.52+2.63 39.46+15.78 8.13±1.09

Palouse 119.37+34.74 98.10±32.19 33.37±9.76 300.77+169,78 49.12+3.92
Burbank 216.74+40.89 186.92+38.09 44.54±1"t.51 602.57+256.64 75.01+11.43

ChamberControl(c)

Cinebar 0.07+0.01 0.07±0.002 0.02+0.004 0.06+0.06 0.03±0.01

Palouse 0.07±0.01 0.08±0.002 0.03±0.005 0.00 0.03+0.008

Burbank 0.107±O.007 0.10±0,011 0.04±0.107 0.00 0.02+0.01

TreatmentControl(d)

Cinebar 0.00 0o00 0.00 0.00 0.00

Patouse 0.00 0.00 0.00 0.00 0.00

Burbank 0.00 0.00 0.00 0.00 0.00

La) Derivedfrom specificactivity.
(b) Plantsgrownin RDX-amendedsoit,n = 9.

(c) Plantsgrownin non-amendedsoil insamechamberas RDXplants,n = 6.
(d) Plantsgrownin non-amendedsoil indifferentchamber,n = 6.

Accumulation patterns for the two grass species (Table 3.17) are generally similar to

that observed for bush bean. In both wheat and blando brome, the roots contain only a fraction

of the accumulated RDX activity (equivalent to 7 to 45 ppm), while the leaves contain 40 to 560

ppm RDX equivalents. As with bush bean, tissue concentrations of RDX are inversely

proportional to soil organic matter and CEC.

The uptake rates, plant mobility, and accumulation rates for RDX in leaves and seed are

substantially greater than those for TNT. The behavior of RDX may present special problems

with respect to food-chain transport and effects of herbivores ingesting vegetation growing on
RDX-contaminated soils.

3.3.3 Chemistry of RDX in Mature Plants

The results of the chemical fractionation and analysis of mature bush bean plants
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IAB.[,,F,_._,3J.Z.SPECIFIC UPTAKE (_g RDX equivalents/g Fresh Weight x 102(a))FOR PLANT
TISSUES OF WHEAT AND BLANDO BROME GROWN FOR 60 DAYS iN
SOILS AMENDED WITH 10 ppm 14C-RDXAND FOR CHAMBER AND
TREATMENT CONTROLS

Plant Tissue

Species Condition Soil Shoot Seed Root

I_gRDX equivalents/g Fresh Weight(a) + SD

WHEAT

RDX-Amended(b)

Cinebar 75.72.+.23.22 17.92+3,70

Palouse 422.70±126.67 45.10+8.94

Burbank 549.88+140.93 40.11±9.62
Chamber Control(b)

Cinebar 0.01±0.001 0.03+0.00

Palouse 0,10±0,002 0.03±0.005

Burbank 0.12+0.002 0.03±0.004

BLANDO BROME

RDX.Amended(c)

Cinebar 43,76±9.95 40.00+5,42 7,64±2,03

Palouse 545.45±155.36 257,96±47.72 21,84±3,78

Burbank 564.46±128,15 317.06±122.19 27,95±5.51
Chamber Control (b)

Cinebar 0.07±0.006 0.16±0.09 0,02±0.01

Patouse 0.12+0.01 0.26+0.04 0,03±0.004

Burbank 0,13±0.005 0.26±0,02 0,03±0.02

(a) Derived from specific activity.
(b) n=9.

(c) n = 6.

grown in the three soils are shown in Tables 3.18 and 3.19. The values in these tables are

based on the analysis of one plant, and were used to verify the behavior observed in the

hydroponic studies. Table 3.18 summarizes the quantities of RDX (llg RDX equivalents)

contained in the various fractions, whereas Table 3.19 presents the percentage of total

radiolabel contained in each of the fractions. Table 3.20 presents the results of analysis for
bush bean pods. Unfortunately, a sufficient quantity of bush bean seeds were not available to

allow for chemical fractionation and analysis; however, seed tissue was oxidized to provide
data on the total amount of radiolabel contained in this tissue.
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_.,F,,.._,_I_. MICROGRAM RDX EQUIVALENTS IN CHEMICAL FRACTIONS OF MATURE
BUSH BEAN( a)

Burbank Palouse Cinebar
Fraction Leaves Stem Leaves stem Leaves Stem

HCI 66.4 74.9 44.4 22.0 6.0 6.0
Et20 acid-neutral 52.7 8.1 24.6 4.5 3.5 11.7
Aq Base 57.0 69.3 38.6 19.9 5.2 4.7
Et20 base 6.7 1.5 3.0 0.7 0.3 0.2

F1 2.3 0 0.7 0 0.1 0
F2 39.6 2.9 14.4 2.7 1.7 1.0
F3 0.8 0.1 0.7 0.1 0.1 0
F4 4.9 2.5 4.3 0.8 0.6 0.4

Pellet 26.5 55.6 18.5 18.8 2.9 6.5

RDX in F2(b) 28.9 2.17 9.5 2.7 0.9 1.0

(a) Valuesbasedon theanalysisof 1 plant.
(b) Valuesdeterminedby HPLCanalysisof fractionF2.

_. PERCENTAGE OF TOTAL RADIOACTIVITY, BASED ON OXIDATION, IN
CHEMICAL FRACTIONS OF MATURE BUSH BEAN PLANTS GROWN IN
THREE SOIL TYPES (a)

Burbank . _: Palouse Cinebar
Fraction Leaves Stem Leaves Stem Leaves Stem

HCI 35 43 30 31 22 47
Et20 acid-neutral 28 5 17 6 13 14
Aq Base 30 40 26 28 19 37
Et20 base 4 1 2 1 1 2

F1 1 0 0 0 0 0
F2 21 2 10 4 6 8
F3 0 0 0 0 0 0
F4 3 1 3 1 2 3

Pellet 14 32 12 27 11 51

(a) Valuesbasedon the analysisof 1 plant.
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TABLE 3.20. MICROGRAM RDX EQUIVALENTS AND PERCENTAGE OF TOTAL
RADIOLABEL CONTAINED IN VARIOUS CHEMICAL FRACTIONS OF
MATURE BUSH BEAN PODS(a)

S_il
Burbarlt_ ..... Paleuse Cinel_ar

Fraction _g RDX % total t_gRDX % total p.gRDX % total

HCI 25.2 55.5 20.4 45.7 4.0 61.1
Et20 acid-neutral 2.8 6.2 3.8 8.4 0.8 12.8
Aq Base 23.7 52.2 18.6 41.7 3.6 54.9
Et20 base 0.7 1.5 0.6 1.34 0.1 1.9

F1 0 0 0 0 0 0
F2 1.3 2.9 2.0 4.5 0.7 10.2
F3 0.1 0.1 0.1 0.2 0 0
F4 0.5 1.2 0.5 1.2 0.1 1.4

Pellet 5.3 11.6 4.9 11.0 0.7 10.8

RDX in F2 (b) 1.5 .... 2.0 .... 0.7 ....

(a) Valuesbasedontheanalysisof 1plant.
(b) ValuesdeterminedbyHPLCanalysisoffractionF2.

From the data presented in Tables 3.18 and 3.19, it is clear that RDX was present in the stem

and leaf tissues of mature plants. Plantsgrown in Burbank soil accumulated the largest
quantity of RDX, with Palouse-grown plants containing intermediate amounts and Cinebar-

grown plants contained the lowest quantity. Leaf tissue from the Burbank-grown bush beans

contained about 30 ppm RDX in fraction F2. Since the soils contained only 10 ppm RDX, the
plants were able to bioconcentrate RDX from this soil. Tissues from Palouse and Cinebar soils

showed the presence of RDX, but not to the extent seen in plants grown in Burbank soil.
Significant metabolism of RDX was seen in the mature bush bean tissues. The ether

nonextractables (aqueous-base fractions) contained considerably higher percentages of the
total radiolabel than the corresponding F2 fractions (Table 3.19).

An interesting trend regarding the percentage of radiolabel contained in the pellets, first
noticed during the hydroponic studies of bush beans, was also seen in the mature bush bean

plants. As for the bush bean plants grown in hydroponic culture for 7 days, in ali soil-grown

plants the stem pellets contained a higher percentage of radiolabel than did leaf tissue (Table

3.19). also contained significantly higher amounts of radiolabel than the leaf tissue pellets.

These data may indicate that immobilization and sequestration of RDX occurs primarily in the
root and stem tissue, with less immobilization occurring in the leaf tissue.

3.28



The bush bean pods (Table 3.20) contained small quantities of RDX (<2 ppm). Most of

the radiolabel contained in these tissues had undergone extensive metabolic alteration and

appeared in the nonextractable aqueous-base fraction. The distribution of RDX in the pod

pellets more closely resembled that of the leaf tissue than the stem tissue.

Radiochromatography previously has been used in analyzing plants grown in

hydroponic solution to demonstrate that speciation of radiolabel within fraction F2 was due to

chemically unaltered RDX. lt was essential to repeat radiochromatographic studies of F2

fractions isolated from mature plants, since chronic exposure and accumulation of RDX may

significantly alter metabolic processes.

Figures 3.11 and 3.12 present radiochromatograms derived from bush bean plants

grown in Palousesoil. These plants were chosen for further radiochromatographic studies

because the Palouse soil represents a typical agricultural soil, containing intermediate amounts

of total organic carbon. Radiocarbon profiles from bush bean leaf (Figure 3.11) and pod

(Figure 3.12) showed the presence of RDX only and a lack of RDX metabolites.

Results of the fractionation and analysis of the mature monocotyledons, wheat and

blando brom_.,are presented in Tables 3.21 and 3.22. Table 3.21 gives the microgram RDX

equivalents and HPLC analysis results, while Table 3.22 summarizes the percentage of total

radiolabel distribution. The results in Table 3.21 indicated an enormous ability of both wheat
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TABLE 3.21. MICROGRAM RDX EQUIVALENTS IN CHEMICAL FRACTIONS OF MATURE
WHEAT AND BLANDO BROME(a)

..... Soil
• Burbank .... Palouse Oinebar

SDecies

Fraction Blando Brome Wheat Blando Brome Wheat Blando Brome Wheat

HCI 92.6 126.3 70.8 116.1 13.2 16 9

Et20 acid-neutral 164.4 136.0 216.1 123.8 14.5 5.0
Aq Base 60.9 100 41.5 94.2 10.4 15.7
Et20 base 31.4 12.4 29.5 15.8 2.3 0.5

F1 0 0.1 0 0 0 0
F2 240.4 122.6 210.6 109.1 14.2 2.7
F3 5.3 2.4 4.1 2.2 0.5 0.1

F4 7.1 1! .4 7.1 11.7 0.9 1.5

Pellet 75.8 105.2 60.3 87.9 0.9 8.77

RDX in F2(b) 282.7 114.7 226.3 175.1 12.0 3.3

(a) Values based on the analysis of 1 plant.

(b) Values determined by HPLC analysis of fraction F2.
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_. PERCENTAGE OF TOTAL RADIOACTIVITY, BASED ON OXIDATION, IN
CHEMICAL FRACTIONS OF MATURE WHEAT AND BLANDO BROME
GROWN IN THREE SOIL TYPES(a)

Soil
Burbank Palouse Cinebar

S.oeoies

Fraction Blando Brome Wheat Blando Brome Wheat Blando Brome Wheat

HCI 20 19 11 31 28 40
Et20 acid-neutral 36 21 32 33 31 12
Aq Base 13 15 6 25 22 37
Et20 base 7 2 4 4 5 1

F1 0 0 0 0 0 0
F2 53 19 31 29 30 6
F3 1 0 1 1 1 0
F4 2 2 1 3 2 3

Pellet 17 16 9 23 17 21

(a) Values based on the analysis of 1 plant.

and blando brome to bioconcentrate RDX. Of the two species, blando brome showed the

highest amount of bioaccumulation. Shoot concentrations of RDX in blando brome were 283,

226, and 12 ppm for Burbank, Palouse, and Clnebar soils, respectively. RDX concentrations

for fraction F2 obtained by radiocounting (240 ppm) agree reasonably well with values obtained

by HPLC analysis (283 ppm). Radiochromatographicanalysis of the F2 fraction of blando

brome is shown in Figure 3.13. RDX was the only radiocarbon-containing species in this

fraction. The concentration of RDX observed in blando brome grown in Burbank soil was the

highest observed throughout the mature-plant RDX studies. For blando brome, as for the

mature bush bean, RDX was most available for uptake from Burbank soil, slightly less
available from Palousesoil, and far less available from Cinebar. The RDX metabolism of

blando brome plants was drastically diminished in comparison with the bush beans. For

blando brome, the percentage of total radiolabel contained in fraction F2 was always higher

than that contained in the aqueous-base fractions, This trend suggests a lower metabolic

turnover of RDX than was seen in the mature bush beans. The percentage of radiolabel

localized in fraction F2was 53, 31, and 30% of the total radiolabel for plants grown in Burbank,

Palouse, and Cinebar soils, respectively (Table 3.22). The amount of radiolabel contained in

the blando brome pellets was about the same or lower than amounts observed in the 7-day
blando brome hydroponic plants.

3.31



30000

E

20000

>

O
-- I0000

,

0 - " ...... I " " I " I ' • --i

0 10 20 30 40
Retention Time (mln)

.FIGURE3.13. RADIOCHROMATOGRAM OF FRACTION F2 FROM MATURE BLANDO
BROME SHOOT TISSUE

Mature wheat plants displayed a distribution of radiolabel similar to distributions
observed for mature blando brome. The concentrations of RDX in the shoot tissues, as

determined by HPLC, were 115, 175, and 3 ppm for plants grown in Burbank, Palouse and

Cinebarsoil, respectively (Table 3.21). Only a small relative amount of RDX was found in

shoot tissue of Cinebar-grown plants. Close agreement between RDX concentrations

determined by radiocounting and HPLC analysis again suggested that ali of the activity in
fraction F2 was due to RDX. To obtain further evidence of a lack of metabolites in fraction F2,

a radiochromatogram of this fraction for Palouse-grown shoot tissue was performed. The

radiocarbon profile is shown in Figure 3.14. As was verified for the other two species, 140-

RDX was the only peak observed in the F2 fraction. Although blando brome grown in Burbank

soil contained the highest concentration of RDX (283 ppm), Palouse-grown wheat shoots had

the highest concentrations of RDX (226 ppm). The metabolic conversion of RDX appeared to

be slightly higher in wheat, as evidenced by the higher percentage of radiolabel in the

aqueous-base fraction and the lower percentage in fraction F2 of the wheat plants. The

metabolism of RDX in both monocotyledon species grown in Burbank or Palouse soil in

general was less than that observed in the bush bean plants grown in the same soils. RDX

uptake from Oinebar s0il was very lowcompared with the other two soils. The RDX

metabolism of plants grown in Oinebarsoil, based on the percentage of radiolabel contained in

the aqueous-base fraction, was equivalent for bush bean stem and wheat shoots (37%).

Lesser but similar amounts were found in bush bean leaves and blando brome shoots (19 and

22%).
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3.4 RDX BEHAVIOR IN SOil.,AND RELATIVE PLANT AVAILABILITy

From 77 to 92% of the RDX amended to soil (Burbank and Cinebar, respectively) is

extractable with Solventafter 2.months of incubation (Table 3.1). No evidence exists from

these short-term studies to indicate any detectable chemical transformations of RDX. A small

fraction of the RDX added to soil (0.5 to 2%) remains firmly bound to soils. Figure 3.15 shows

the relationships between RDX solvent extractability and soil organic matter and CEC. The

extent of both extractability and sorption appears to be inversely related to soil CEC and

organic matter. However, it is difficult to assign a mechanism by which RDX can be sorbed

either to cation-exchange sites or organic matter, since RDX is nonpolar. Yet this sorption

phenomenon does occur with RDX, and it was much more pronounced for TNT (Cataldo et al.,

1990,Table 3.2), where extractability ranged from 37 to 60% after 60 days of incubation.

Whatever is the phenomenon controlling RDX solubility in soil, it Ilas a direct influence

on the availability and tissue concentrations of RDX in plants. The tissue-accumulation and

concentration patterns shown in Tables 3.16 and 3.17 clearly demonstrate that RDX is highly

mobile within the plant and that the extent of uptake is characteristic of soil type. Figures 3.16

through 3.18 plot shoot concentrations of RDX in the three plants against soil organic matter
and CEC. Shoot concentrations of RDX are based on ali shoot tissues following harvest of

mature plants grown on Burba_nk,Palouse and Cinebar soils. Overall, correlations of plant

concentrations with either CEC or soil organic matter, while showing a distinct inverse

relationship, are not consistent. For bush bean and wheat, RDX accumulation correlates with

r
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CEC (R2 >0.98), while in blando brome RDX accumulation correlates best with organic matter

content (R2 = 0.98).

An important aspect of the soil/plant-maturity studies is the extent to which RDX is

removed from the soils. Soils were amended with 10 ppm RDX, 4000 I_g/400-gpot. One

harvest of bush bean grown on Burbank soil removed >2200 t_gof RDX, or 55% of the RDX

amended to soil. Similarly, the bush bean removed 37% from Palouse, 11% from the high-

CEC, high organic-matter Cinebar soil. Blando brome removed 1800 I_g,or 45%, of the RDX

from Burbank soil, while wheat removed 52%. While this would suggest that contaminated

sites can be planted and harvested to effectively recover dispersed contamination, these

elevated tissue concentrations could present a prominent food-chain contamination route for
RDX.
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4.0 SUMMARY AND CONCLUSIONS

The goal of the present investigations was to elucidate the environmental behavior

and fate of hexahydro-l,3,5-trinitro-1,3,5-triazine (RDX), particularly as related to its transport

and chemical form in the food chain. To meet this goal, we needed to adapt and develop

suitable analytical methodology to fractionate and characterize both RDX and RDX-derived

residues in soil and plant matrices. Using the methodology that we developed, we assessed

the chemical and physical fate of RDX in soils and plants. In general, the plant availability

and plant mobility of RDX is substantially greater than that of TNT (Cataldo et al. 1990). In ali

cases, the form of RDX isolated from tissues is greater than 50% RDX, the remainder being
unidentified polar metabolites.

4.1 RDX BEHAVIOR IN SOILS AND PLANTS

4.1.1 RDX Fate in Soils

Mass-balance analyses of RDX amended to soils varying in mineralogy, CEC, and

organic-matter content were generally good, ranging from 100% at 11days of incubation, to

greater than 78% after 60 days. The extent of soil sorption of RDX after 60 days was less

than 2%, much less than that reported for TNT (31 to 50%, Cataldo et al. 1990). Mass-

balance deficits were only partially attributed to mineralization of RDX to CO2 (< 9.6 ng/day,
or 0.00023°/o/day,from 400-g pots amended at 10 ppm). No volatile organic residues were

detected. Chemical analyses of solvent extracts of soils incubated for 60 days showed only
the parent compound to be present, with no indication of metabolite formation, noted

previously with TNT.

4.1.2 Short-Term HvdroDoqicStudies

Hydroponic plant-culture systems were used to establish absorption capacity and to

develop chemical-fate procedures. The relative order of root absorption of RDX was bush

bean > blando brome > wheat. Plant absorption is concentration dependent, thus soil-
sorption processes should control the concentration of soil solution RDX and thus that

fraction available for root uptake. Analysis of kinetic constants for root absorption of RDX

indicated a metabolically mediated absorption process. Overall, uptake rates for RDX are

less than those reported for TNT (Cataldo et al. 1990).
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In 2-h uptake studies, approximately 50% of the accumulated residues were retained

within the root, while in 7-day studies the quantity of RDX retained in the roots declined to

less than 20% of that accumulated. The plant mobility of RDX is substantially greater than

that observed for accumulated TNT, greater than 90% of which was retained within the roots

(Cataldo et al. 1990).

Analyses of the rates of RDX mineralization and residue volatilization for hydroponi-

cally grown plants indicated that no volatiles were released from either shoot- or root-
accumulated RDX residues. We observed some mineralization of accumulated RDX to

14CO2observed for the root/rhizosphere, amounting to a Io_s of 0.15%/day.

Chemical fractionation and analyses of 1- and 7-day hydroponically grown plants

indicated that individual tissue chemical-class distribution patterns for RDX residues

changed with duration of exposure. RDX residues contained in fraction F2 of 1-day bush

bean leaves represent 86% of the total ether-extractable residues (acid-neutral + base), less

than 1% of the extractable residues being associated with the slightly polar F3 fraction and

only 5% with the Aq-base or highly polar fraction. After 7 days, 74% of the total ether-
extractable residues were associated with the F2 fraction, less than 14% of the extractable

residues being associated with the slightly polar F3 and F4 fractions and 18% with the Aq-

base fraction. Stem and root tissues of bush bean exhibited a similar temporal behavior,

except that the concentration of RDX residues in the highly polar Aq-base fraction increased

to approximately 50% of the total extractable activity. Very similar partitioning trends were
observed for wheat and blando brome leaves and roots.

Chemical analysis of the F2 fractions clearly demonstrate that greater than 98% of the

activity contained in these fractions is RDX. Thirty to fifty percent of the activity associated

with the more-polar fractions (F2, F3, and Aq-base) was from modified polar forms. Analysis

of xylem exudates, which contain the RDX transported from root to shoot tissues, shows the

mobile transport form to be RDX, with less than 2% being a more-polar form.

4.1.3 RDX Behavior in Mature Plants

Studies with plants grown to maturity on RDX-amended soils show RDX-derived
metabolites to accumulate in ali tissues. The relative order of tissue concentration is seed >

leaves > stem > root > pod. In bush bean, the tissue concentrations for RDX-derived
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residues at maturity were as high as 200 and 600 pg/g fresh weight, for leaves and seed,

respectively. Roots contained less than 75 I_g/gfresh weight. In wheat and blando brome,

leaf concentrations of RDX were as high as 550 I_g/gfresh weight, and roots contained less

than 45 I_g/gfresh weight. Concentrations of RDX-derived residues in seeds from the

grasses were as high as those in the leaves.

Fractionation and chemical analyses of plant tissues grown to maturity on soils

amended with 10 ppm RDX showed metabolism to more polar compounds to be more pro-

nounced than that observed in 7-day hydroponic studies. In bush bean leaves, approxi-
mately 21% of the RDX-derived extractable residues existed in F2 as RDX, 30% were in the

form,of extractable polar metabolites (ether base + F2 and F4), and 11 to 14% of the tissue-

accumulated RDX residue was insoluble and contained in the pellet fraction following

extraction. In stem tissue, and likely root tissue, 2 to 8% of the RDX-derived extractable

residues existed in F2 as RDX, 30 to 40% were in the form of polar metabolites, and 30 to

50% of the tissue-accumulated RDX residue was insoluble and contained in the pellet

fraction following extraction. Bush bean pods, with seeds, contained 2 to 10% of the RDX-

derived extractable residues as RDX, 50% were in the form of extractable polar metabolites,

and 11% of the tissue-accumulated RDX residue was insoluble and contained in the pellet

fraction following extraction. The behavior of RDX in the two grass species, wheat and

blando brome, generally differed from the patterns seen with bush bean. In blando brome,

30 to 50% of the RDX-derived extractable residues existed in F2 as RDX, only 8 to 25% were
in the form of polar metabolites, and 20% of the tissue-accumulated RDX residue was

insoluble and contained in the pellet fraction following extraction. The partitioning of RDX in
wheat was somewhat similar to that observed for bush bean. RDX-derived extractable

residues isolated in F2 as RDX ranged from 6 to 29%, 17 to 40% were in the form of polar
metabolites, and 20% of the tissue-accumulated RDX residue was insoluble and contained

in the pellet fraction following extraction.

Tissue partitioning and chemical analyses clearly indicate that RDX is the only

nonpolar metabolite isolated from plants grown to maturity. RDX accounts for 6 to 53% of the

accumulated residue activity in wheat and blando brome, 6 to 2% in bush bean leaves, and

2 to 10% in bean pods. Polar metabolites account for the vast majority of the remaining

activity, much as seen with TNT (Cataldo et al. 1990).
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4.1.4 BDX Behavior in Soil and Relative Plant Availability

Total plant concentration is highly dependent on soil type, or soil-available RDX

concentrations. In ali cases, plant uptake was inversely proportional to soil organic-matter
content for Burbank, Palouse and Cinebar soils. However, it is difficult to assign a

mechanism by which RDX can be sorbed either to cation-exchange sites or organic matter,

since RDX is nonpolar. Yet this sorption phenomenon does occur with RDX, as it did with

TNT, where it was much more pronounced (Cataldo et al. 1990, l"able 3.2). Extractability of

TNT ranged from 37 to 60% after 60 days incubation.

Whatever is the phenomenon controlling RDX solubility in soil, it has a direct influence

on the availability and tissue concentrations of RDX in plants. The tissue-accumulation

and.concentration patterns observed clearly demonstrated that RDX is highly mobile within

the plant and that the extent of uptake is characteristic of soil type. Correlations of plant
concentrations of RDX with either CEC or soil organic matter, while showing distinct inverse

relationships, are not consistent.

4.2 BESEARCH NEEDS

Results from soil studies indicate that RDX is not as tightly bound to soils as previously

observed for TNT (Cataldo et al. 1990), with greater than 75% of the amended RDX being

solvent extractable. Also, no significant chemical transformations were seen with RDX

incubated in soils for up to 60 days. However, soil/plant studies indicate that the plant

availability of RDX is inversely proportional to those soil factors normally involved in sorption

(CEC and organic matter content). Thus, soil processes are controlling the availability of

RDX. lt is therefore important to understand how nonpolar munitions materiels, including
RDX, interact with soils.

The chemical fate of RDX, once accumulated by plants, is quite unique. RDX is very

mobile compared with TNT (Cataldo et al. 1990), < 20% of the RDX being retained within the

roots after 7 days in hydroponic systems. A similar plant mobility was seen with soil-grown

plants. In soil-grown plants, seed tissues contained concentrations of RDX as high as or

higher than those of leaves (200 to 600 ppm), indicating that RDX is likely phloem-mobile,

The accumulation patterns for RDX would indicate that further studies should be conducted

to evaluate food-chain transfer aspects. Further analysis of the soil/plant data indicates that

the plants removed as much as 50% of the soil-amended RDX within one 60-day growing

4.4

i •



cycle. This rather high plant-accumulation rate for RDX would suggest that biomining of RDX
may be a viable environmental-remediation method and should be explored further.

Chemical analyses of leaves and seeds from mature plants indicated that 21 to 50%

of the extractable RDX-derived residues are unaltered RDX, while 8 to 30% exist as meta-

bolically altered polar residues, and 20 to 50% are not extractable. These chemical

transformations, particularly in light of the high tissue concentrations observed, may be

important from the standpoint of food-c_,_intransfer and ecotoxicology. Studies should be

initiated both to elucidate the chemical nature of polar residues and to resolve their
importance in food-chain transfer.
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