

CONF-851115--32

RADIATION DOSE RATES FROM CONSOLIDATED FUEL IN CURRENT  
GENERATION SHIPPING CASKS

C. V. Parks  
O. W. Hermann  
J. R. Knight

CONF-851115--32

DE86 002189

COMPUTING AND TELECOMMUNICATIONS DIVISION

at \*

Oak Ridge National Laboratory  
Post Office Box X  
Oak Ridge, Tennessee 37831

**DISCLAIMER**

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

To be  
Presented at the American Nuclear Society  
1985 Winter Meeting  
San Francisco, California  
November 10-14, 1985

By acceptance of this article, the  
publisher or recipient acknowledges  
the U.S. Government's right to  
retain a nonexclusive, royalty-free  
license in and to any copyright  
covering the article.

\* Operated by Martin Marietta Energy Systems, Inc. under contract with  
the Nuclear and Chemical Waste Program, ONL WR 01, and Contract  
DE-AC05-84OR21400 with the U. S. Department of Energy.

**MASTER**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

7/18

RADIATION DOSE RATES FROM CONSOLIDATED FUEL IN CURRENT  
GENERATION SHIPPING CASKS

C. V. Parks  
O. W. Hermann  
J. R. Knight

As part of a DOE study of public risk from cask transport of consolidated and unconsolidated spent fuel cooled beyond five years, radiation dose rates from two current generation shipping casks were evaluated. The IF300 rail shipping cask<sup>1</sup> (with a capacity of seven PWR assemblies) and NLI 1/2 truck shipping cask<sup>2</sup> (with a capacity of one PWR assembly) were selected as appropriate cask models. A Westinghouse 17x17 fuel assembly with a 3.3 wt % <sup>235</sup>U enrichment, operated at a specific power of 37.5 MW/MTU for 880 full-power days (20% downtime in history), and discharged at a burnup of 33 GWD/MTU was specified. Results for spent fuel cooling times of 5, 10, 15, and 25 years are reported here.

All calculations were performed using the SCALE computational system.<sup>3</sup> The SAS2 control module was used for the fuel depletion and the shielding analyses for unconsolidated fuel (normal fuel assemblies). The execution includes: repeated passes through BONAMI-S, NITAWLS, XSDRNPM-S, COUPLE and ORIGEN-S for cross-section processing and fuel burnup; radiation source computations by ORIGEN-S; a one-dimensional radial shielding analysis of the cask via XSDRNPM-S; and the final determination of the dose rates by XSDOSE using the surface angular flux from the finite cask. The SAS1 module was used for the shielding analyses involving consolidated fuel because appropriate fuel number densities and volume fractions can be input whereas the SAS2 shielding portion automatically uses the assembly data from the depletion analysis. The SAS1 module also employs NITAWL-S, XSDRNPM-S, and XSDOSE for resonance self-shielding, radiation transport, and dose evaluation, respectively.

The SCALE 27-group ENDF/B-IV neutron cross sections were used in the depletion analysis and the SCALE 27n-18 $\gamma$  coupled ENDF/B-IV library was used in the shielding analysis.

The calculations were performed by stopping SAS2 following the depletion analysis, running ORIGEN-S stand-alone to decay the fuel assembly to the specified cooling times and generate radiation sources, and finally using these sources as input to a SAS1 case or a SAS2 restart case with the appropriate cask model specifications. ORIGEN-S generates an output file with both the neutron and gamma source spectrum in the specified 27n-18 $\gamma$  energy group structure at the required decay times. The ORIGEN-S output files differed for the consolidated and unconsolidated fuel in that Co-60 in the structural hardware of the assembly was removed for the consolidated fuel because the hardware is not present in the cask and Co-60 contributes almost all of the hardware's gamma source.

The results obtained with the consolidated fuel are shown in Table 1 where a consolidation of fuel pins from two assemblies is assumed to be placed in an assembly-equivalent area. Dose rates for the casks containing unconsolidated fuel assemblies are provided in Table 2. All of the results are for normal conditions of transport; i.e., dry fuel cavity and water-filled neutron shield. As expected the doubling of the fuel capacity by consolidation of fuel pins does not double the dose rate because of increased self-shielding and loss of the Co-60 hardware source. In general the results indicate the amount of extra shielding available (beyond that needed to meet NRC and DOT regulations) in these casks for long-term cooled fuel in both a consolidated and unconsolidated form. However, note that the dose rates are based on a uniform axial distribution of the source and so represent an "average" radial dose rate emitted from the cask. If a maximum dose rate

is desired, multiplication of the results by an axial peaking factor is recommended. These results provide useful information for evaluating public exposure for present generation shipping casks and give a basis for comparison during the design of new generation casks developed specifically for long-term cooled fuel.

Table 1. Dose Rates from PWR Consolidated Fuel <sup>\*</sup> Using the IF300 Rail Cask and NLI 1/2 Truck Cask Models

| Cask    | Fuel<br>Cooling<br>Time | Dose<br>Type | Dose Rate in mr/hr <sup>**</sup> |         |         |
|---------|-------------------------|--------------|----------------------------------|---------|---------|
|         |                         |              | Surface                          | 1 Meter | 2 Meter |
| IF300   | 5 yr                    | Neutron      | 11.748                           | 3.743   | 2.002   |
|         |                         | Gamma        | 10.838                           | 3.186   | 1.584   |
|         |                         | Total        | 22.586                           | 6.929   | 3.586   |
| IF300   | 10 yr                   | Neutron      | 9.803                            | 3.124   | 1.670   |
|         |                         | Gamma        | 7.607                            | 2.120   | 1.010   |
|         |                         | Total        | 17.410                           | 5.244   | 2.680   |
| IF300   | 15 yr                   | Neutron      | 8.203                            | 2.614   | 1.398   |
|         |                         | Gamma        | 6.253                            | 1.733   | 0.822   |
|         |                         | Total        | 14.456                           | 4.347   | 2.220   |
| IF300   | 25 yr                   | Neutron      | 5.784                            | 1.843   | 0.986   |
|         |                         | Gamma        | 4.361                            | 1.205   | 0.570   |
|         |                         | Total        | 10.145                           | 3.048   | 1.556   |
| NLI 1/2 | 5 yr                    | Neutron      | 3.481                            | 0.868   | 0.442   |
|         |                         | Gamma        | 4.287                            | 1.062   | 0.520   |
|         |                         | Total        | 7.768                            | 1.930   | 0.962   |
| NLI 1/2 | 10 yr                   | Neutron      | 2.905                            | 0.724   | 0.369   |
|         |                         | Gamma        | 2.635                            | 0.607   | 0.280   |
|         |                         | Total        | 5.540                            | 1.331   | 0.649   |
| NLI 1/2 | 15 yr                   | Neutron      | 2.431                            | 0.606   | 0.309   |
|         |                         | Gamma        | 2.129                            | 0.485   | 0.223   |
|         |                         | Total        | 4.560                            | 1.091   | 0.532   |
| NLI 1/2 | 25 yr                   | Neutron      | 1.715                            | 0.428   | 0.218   |
|         |                         | Gamma        | 1.470                            | 0.333   | 0.152   |
|         |                         | Total        | 3.185                            | 0.761   | 0.370   |

<sup>\*</sup> Fuel pins from two fuel assemblies consolidated into one assembly - equivalent area.

<sup>\*\*</sup> ANSI dose conversion factors used to obtain the dose rates.

Table 2. Dose Rates from PWR Fuel Assemblies Using the IF300  
Rail Cask and NLI 1/2 Truck Cask

| Cask    | Fuel<br>Cooling<br>Time | Dose<br>Type | Dose Rate in mr/hr <sup>*</sup> |         |         |
|---------|-------------------------|--------------|---------------------------------|---------|---------|
|         |                         |              | Surface                         | 1 Meter | 2 Meter |
| IF300   | 5 yr                    | Neutron      | 8.273                           | 2.623   | 1.414   |
|         |                         | Gamma        | 9.065                           | 2.769   | 1.439   |
|         |                         | Total        | 17.338                          | 5.392   | 2.853   |
| IF300   | 10 yr                   | Neutron      | 6.896                           | 2.187   | 1.179   |
|         |                         | Gamma        | 5.726                           | 1.633   | 0.808   |
|         |                         | Total        | 12.622                          | 3.820   | 1.987   |
| IF300   | 15 yr                   | Neutron      | 5.766                           | 1.829   | 0.985   |
|         |                         | Gamma        | 4.480                           | 1.254   | 0.611   |
|         |                         | Total        | 10.246                          | 3.083   | 1.596   |
| IF300   | 25 yr                   | Neutron      | 4.057                           | 1.287   | 0.693   |
|         |                         | Gamma        | 2.968                           | 0.816   | 0.392   |
|         |                         | Total        | 7.025                           | 2.103   | 1.085   |
| NLI 1/2 | 5 yr                    | Neutron      | 2.092                           | 0.518   | 0.266   |
|         |                         | Gamma        | 3.681                           | 0.956   | 0.493   |
|         |                         | Total        | 5.773                           | 1.475   | 0.759   |
| NLI 1/2 | 10 yr                   | Neutron      | 1.745                           | 0.433   | 0.222   |
|         |                         | Gamma        | 1.938                           | 0.470   | 0.230   |
|         |                         | Total        | 3.683                           | 0.903   | 0.452   |
| NLI 1/2 | 15 yr                   | Neutron      | 1.460                           | 0.362   | 0.186   |
|         |                         | Gamma        | 1.423                           | 0.336   | 0.161   |
|         |                         | Total        | 2.883                           | 0.698   | 0.347   |
| NLI 1/2 | 25 yr                   | Neutron      | 1.030                           | 0.256   | 0.131   |
|         |                         | Gamma        | 0.884                           | 0.203   | 0.095   |
|         |                         | Total        | 1.914                           | 0.459   | 0.226   |

\* ANSI Standard dose conversion factors were used.

References

1. IF300 Shipping Cask: Consolidated Safety Analysis Report, NEDO-10084-2, Nuclear Fuel and Services Division, General Electric Corporation (October 1979).
2. Safety Analysis Report: NLI-1/2 Spent Fuel Shipping Cask, National Lead Industries, Inc., Nuclear Division (1974).
3. SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-0200 (ORNL/NUREG/CSD-2), Vols. 1-3, Computing and Telecommunications Division at Oak Ridge National Laboratory (as revised December 1984). Original publication was January 1982 followed by major revisions and additions in June 1983 and December 1984.