

MLRF(LE 2233-8.1)

(20567)

DOE/ET/20567--T3

MASTER

MONTHLY TECHNICAL PROGRESS REPORT

SAN/ET-78-C-03-2233-TPE-5

FOR THE MONTH OF FEBRUARY 1979

SOLAR CENTRAL RECEIVER
HYBRID POWER SYSTEM

ISSUE DATE: MARCH 1979

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed; or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ROCKWELL INTERNATIONAL
ENERGY SYSTEMS GROUP
8900 DE SOTO AVENUE
CANOGA PARK, CALIFORNIA 91304

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

gj

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

EXECUTIVE SUMMARY

The three best regions for marketing a solar hybrid plant were studied. These are: East South Central, Rocky Mountain, and Pacific regions. The "base load" and "intermediate load" markets appear to be approximately 90 giga watts.

The economic analysis made by SRI shows that a coal fired hybrid plant is economically competitive with pure coal plants for fuel escalation rates above 9% per year. For example: at 10% per year escalation the hybrid plant BBEC is 67 mils/Kwh compared to 70.7 mils/Kwh for a typical coal plant.

The optimization studies conducted by McDonnell Douglas on the field geometry, tower height, and receiver dimensions are converging on an optical tower height of 120 m, 7,332 heliostats and a receiver which is 10 m in diameter and 12 m high. One more iteration should fix the optical geometry for the 100 MWe plant with a solar multiple of 0.8.

The preliminary values of the performance and design data sheets for the 100 MWe 0.9 S.M. hybrid base line plant have been prepared.

TASK 1 - REVIEW AND ANALYSIS OF REQUIREMENTS DEFINITION

Complete.

TASK 2 - MARKET ANALYSIS

MARKET SIZE

Forecast Demand

Market size was estimated by a detailed analysis based on previous SRI projections of regional markets for electricity.* These projections were derived from a detailed and regionalized computer analysis of energy supply and demand in the U.S. and the price competition that determines the choice between fuels (or between fuels and electricity).

The analysis emphasized those fuels used in electricity production and those other fuels in competition with electricity. The nationwide electricity growth was projected at 5.3% for the period 1975-1985, and 3.8% for the period 1985-2000. This latter period is of greatest interest for this study, although the lower growth rate of 2.5% predicted by SRI for electricity growth over the period 2000-2022 will also have an impact on the long-term solar hybrid markets.

Examination of the projected regional growth rates in conjunction with solar insolation maps led to a selection of the East South Central, Rocky Mountain and Pacific regions as having the best potential for solar hybrid systems. (Best insolation, best growth.)

The three regional demand (sales) forecasts were subdivided into state demand estimates for 1986, 1989, and 2001 using reported 1976 sales and recent sales trends as guides. The states analyzed were those with growth

*"Fuel and Energy Price Forecasts," EPRI-433. Electric Power Research Institute, Palo Alto, California, 1977

potential and favorable insolation. Line losses (7%) were added to the state sales to obtain generation load requirements. Average capacity factors were estimated for each state. These factors include the reserve margins actually maintained by the utility. These factors as for the state-by-state distribution of regional sales were based on 1976 data and projected forward, using recent trends as guidance. It was assumed in the projection that capacity factors would be improved with the installation of modern equipment selected with the idea of obtaining improved on-line availability and performance as this is now a major utility industry concern. The overall generation allocation for each state was divided into requirements for base, intermediate, and peak load service. By dividing the hours of use for each load type into the proportion of generating capacity, the total capacity required to satisfy the load was derived. The average allocation of capacity was base 50%, intermediate 31%, and peak 19%. These allocations are hypothetical and can only be used as rough guides. A utility will operate its units as base, intermediate, or peak load, depending on need, the unit capability and the direct cost of power. The low cost generation unit (or mix of units) will be preferred by the dispatcher.

The study was extended in the same manner to the major utilities in each state selected. The selection again was based on growth and insolation characteristics. The states and utilities selected are shown in Table I. Adjustments to sales were necessary in those utilities cases with sales in more than one state. The individual utility requirements were adjusted for interchange. The sales figures finally used were for sales within the service areas. This excluded sales to other privately owned utilities (thereby removing interchange). Sales to municipally owned organizations were included in the sales base as these generally are sales within the territory, are expected to continue, and are not to organizations with large generating capability. Entitlements, i.e., sales by governmental organizations to preferred customers, were included in available peak capacity, as indicated below. Correction for average line loss experienced by each utility were applied to sales to calculate capacity requirements.

TABLE I
UTILITIES EXAMINED AS POTENTIAL MARKETS
FOR HYBRID POWER PLANTS

<u>State</u>	<u>Utilities</u>
Arizona	Arizona Public Service Company Salt River Project Agricultural Improvement and Power District
California	Los Angeles Department of Water & Power Pacific Gas & Electric Company Sacramento Municipal Utility District San Diego Gas & Electric Company Southern California Edison Company
Colorado	Public Service Company of Colorado
Kansas	Kansas Power & Light Company
Louisiana	Central Louisiana Electric Co., Inc. Louisiana Power & Light Company New Orleans Public Service, Inc. Southwestern Electric Power Company
Nevada	Nevada Power Company Sierra Pacific Power Company
New Mexico	Public Service Company of New Mexico
Texas	Central Power & Light Company Community Public Service Company Dallas Power & Light Company El Paso Electric Company Gulf States Utilities Company Houston Lighting & Power Company
Utah	Utah Power & Light Company

Needed Capacity

Existing capacity by state and utility was obtained from EEI and FERC data. This was corrected for each category: base, intermediate, peak for:

- Announced additions (+)
- Expected retirements (after 30 years) (-)
- Expected transfers from base (-, +) to intermediate (units < 400 MW and >15-years old).
- Entitlements (+)

The corrected capacity was compared with the expected requirements. Deficits between existing and required capacity are interpreted as the total market available to electric generating equipment.

Typical data for a single utility is shown in Table II. Table III summarizes the various state demands. These data, in this table, are explained below.

In Table III, Column 3 sets out the current generating capacity of utilities considered within each state. The forecast capacity needed for each utility in the Years 1986, 1989, and 2001 is set forth in Columns 4 to 6. The capacity available is the current capacity plus announced additions and entitlements, less expected retirements. This is set forth in Columns 7 to 9. The additional capacity that must be installed to meet the expected load is set forth in Columns 10 and 11. In some cases the existing capacity plus planned additions is surplus to the utilities own needs in the Year 1985 and even in 2001. In these cases, no additional capacity is needed. In cases where there is surplus capacity in 1986 or 1989, but a deficit in 1989 or 2001, respectively, only the deficit portion of the change in capacity need is entered in Columns 10 and 11.

TABLE II
PROJECTED CAPACITY REQUIREMENTS OF A MAJOR UTILITY, GW

	<u>BASE</u>	<u>INTERMEDIATE</u>	<u>PEAK</u>	<u>TOTAL</u>
Installed, 1977	5.6	3.5	1.9	11.0
Required for Load, 1986	9.7	6.1	3.8	19.1
Installed Capacity, 1986 ¹	8.1	3.6	7.1	18.1
Additional Capacity Required	1.6	2.5	(3.3) ²	
Required for Load, 1989	11.1	6.9	4.2	22.0
Installed Capacity, 1989 ¹	8.5	3.4	7.1	19.0
Additional Capacity Required	2.6	3.5	(2.9) ²	---
Required for Load, 2001	17.0	10.6	6.6	3.0
Installed Capacity, 2001 ¹	10.9	1.1	7.1	19.0
Additional Capacity Required	6.1	9.5	(0.5)	---
Additions Requirements, 1989-2001	3.5	6.0	---	---

(1) Net of current, announced additions, retirements, and transfers.

(2) Surplus, no additions required.

TABLE III

PROJECTED CAPACITY AND REQUIREMENTS, SUM OF MAJOR UTILITIES, SELECTED STATES, GW

STATE	CURRENT CAPACITY	CAPACITY NEEDED			CAPACITY AVAILABLE (PRESENT PLANS)			ADDITIONAL CAPACITY REQUIRED	
		1986	1989	2001	1986	1989	2001	TOTAL POTENTIAL MARKET	1986-1989
Arizona									
Base	3.5	4.2	4.7	7.2	6.7	7.9	8.9		None
Intermediate	1.1	2.6	3.0	4.5	3.1	3.0	2.0		2.5
Peak	2.2	1.6	1.8	2.8	1.8	1.9	2.1		0.7
California									
Base	16.7	26.1	29.5	44.2	20.0	23.0	24.4	6.4	13.3
Intermediate	8.4	16.5	18.4	28.8	13.3	11.8	5.9	3.4	15.3
Peak	6.9	10.1	11.4	17.2	15.6	15.7	15.6		1.6
Colorado									
Base	1.2	1.8	2.2	3.8	2.8	3.2	3.2		0.6
Intermediate	0.8	0.5	1.4	2.4	1.6	1.5	1.3		1.1
Peak	0.6	0.6	0.8	1.4	0.5	0.5	0.5	0.1	0.6
Kansas									
Base	0.8	1.6	1.7	1.9	1.7	1.7	1.7		0.2
Intermediate	0.4	1.0	1.0	1.2	0.7	0.7	0.4		0.5
Peak	0.5	0.6	0.7	0.6	0.7	0.6	0.5	0.1	0.1
Louisiana									
Base	5.7	8.3	9.7	15.5	10.3	10.3	8.7		6.8
Intermediate	2.6	5.3	6.2	9.9	3.1	2.7	1.4	1.3	5.0
Peak	1.3	3.3	3.7	5.8	0.7	0.4	0.1	0.7	3.4
Nevada									
Base	1.2	1.0	1.2	1.6	1.1	1.4	1.4		0.2
Intermediate	0.4	0.7	0.7	1.0	1.2	1.1	0.3		0.7
Peak	0.4	0.4	0.4	0.6	1.1	1.1	1.2		---

TABLE III
(Concluded)

<u>STATE</u>	<u>CURRENT CAPACITY</u>	<u>CAPACITY NEEDED</u>			<u>CAPACITY AVAILABLE (PRESENT PLANS)</u>			<u>ADDITIONAL CAPACITY REQUIRED</u>	
		<u>1986</u>	<u>1989</u>	<u>2001</u>	<u>1986</u>	<u>1989</u>	<u>2001</u>	<u>TOTAL POTENTIAL MARKET</u>	<u>1989-2001</u>
New Mexico									
Base	0.6	0.5	0.6	0.8	1.7	2.1	2.7	---	
Intermediate	0.2	0.3	0.4	0.5	---	---	---	0.1	
Peak	0.1	0.2	0.2	0.2	0.2	0.2	---	0.1	0.2
Texas									
Base	24.1	39.2	44.2	63.9	39.9	42.5	36.2	1.7	26.0
Intermediate	11.6	24.4	28.1	40.1	11.7	11.5	5.9	3.9	17.6
Peak	6.3	15.1	17.1	24.7	6.7	4.6	2.0	4.1	10.2
Utah									
Base	1.4	1.6	1.7	2.5	3.0	4.3	4.3	---	
Intermediate	0.6	1.0	1.1	1.6	0.8	0.7	0.3	0.2	0.7
Peak	0.3	0.6	0.6	0.9	0.2	0.2	0.2		0.3

The base and possibly the intermediate load markets indicated in Columns 10 and 11 are of primary importance. Preliminary economic calculations indicate the importance of high load factor operation of the hybrid. The projected need for base load units in the states examined during the Period 1989-2001 amounts to 49.6 GW, and for intermediate units, 41 GW. The base load capacity demand is thus approximately 500 units of the referenced 100-MWe design.

It must be remembered that some utilities have made plans to export power to deficient states, such as California. The apparent surplus of capacity in the exporting states is thus artificial. The deficit in capacity in importing states is identically in error. Thus, the overall requirements are in balance. As the presumed major exporting and importing regions have locations with similar insolation characteristics, the overall market projection is accurate.

Special Considerations

Much, if not all, of California's need for additional capacity is contained within utility systems located in areas of favorable insolation. California has a few large systems with good transmission and interconnection. This is not true of Texas. There are many utilities and interconnections which are more complicated. The Houston Lighting service area is generally located in areas with relatively poor direct normal solar insolation. Houston Lighting capacity need makes up 25-30% of the total estimated need for base and intermediate power. Satisfaction of this demand by hybrid solar installations will require either (a) economic operation in a relatively unfavorable area, or (b) plant location in West Texas, accompanied by transmission (or displacement of load across intervening systems). Further consideration of these options is planned.

Early Replacement of Capacity

The investigation of market size was extended to consider the effect of oil and gas shortages and/or Government requirements for early retirement of this capacity. Early retirement would increase the total market available to solar hybrid units. The effect is illustrated in Table IV. In it, requirements over the Period 1989-2001 for three typical utilities are set forth. For these sample utilities, the market size would increase from 40 to over 100% if early retirement was instituted. It appears that the influence of Government intervention in the market will be an important consideration in estimating market size as well as share.

Comments

It is clear that there is sufficient demand for new electric generating units in solar favorable regions to justify the development of hybrid solar electric units if the units meet economic standards. As many units will be needed, calculations of cost of electricity from the units should be made on the basis of Nth plant as well as 1st plant costs.

The demand is concentrated in areas with different insolation characteristics. Thus, estimates of electricity cost from the hybrid solar units should be developed with the capital costs or solar efficiencies that would be appropriate if the units were located in these two regions. The calculation would also consider the effect of using coals appropriate to the separate regions. Texas Lignite, Western Interior Basin, Black Mesa, Unita Basin, and San Juan Basin coals would be appropriate.

Comparative Economics - Preliminary Data

As a first step in establishing the relative competitiveness of hybrid solar systems with others that might be used to fill the electric power demand in the regions studied, SRI compared existing estimates for other systems with preliminary values for the hybrid solar plant.

TABLE IV
COMPARISON OF UTILITY CAPACITY ADDITION REQUIREMENTS UNDER NORMAL AND ACCELERATED RETIREMENT
DURING PERIOD 1989-2001, GW

UTILITY	CURRENT CAPACITY	MARKET NORMAL CONDITIONS	AVAILABLE CAPACITY		AVAILABLE CAPACITY ACCELERATED RETIREMENT	TOTAL MARKET ACCELERATED CONDITIONS	ADDITIONAL MARKET ACCELERATED CONDITIONS 1989-2001
			1989	2001			
Southern California Edison							
Base	7.0	6.4	7.9	7.2	4.2	9.4	3.0
Intermediate	2.4	5.9	4.9	2.6	---	8.5	2.6
Peak	3.6	2.2	4.2	4.2	2.4	4.0	1.8
TOTAL	13.0	24.5				21.9	
Arizona Public Service Co.							
Base	1.3	---	2.8	3.1	3.1	---	---
Intermediate	0.5	0.9	2.1	1.0	0.5	1.4	0.5
Peak	1.1	0.2	0.8	1.0	0.3	0.4	0.2 ¹
TOTAL	2.9	1.1				1.8	
Houston Lighting & Power Co.							
Base	5.2	8.1	10.8	8.1	6.1	14.2	2.0
Intermediate	3.1	4.5	2.2	1.0	0.4	4.9	0.6
Peak	2.1	2.3	0.9	0.7	---	3.0	0.7
TOTAL	10.4	14.9				22.1	

(1) Only 0.2 GW needed to fill estimated peak load.

The economic bases for comparison and the methods of computation are not exactly the same as those set forth in the requirements definition documents. The economic assumptions used are set forth in Table V. The computational method, EUTEBEC, that was used is modeled after the standard JPL-EPRI methodology, but has some differences in assumptions regarding utility costing and rate establishing procedures. These assumptions give rise to higher levelized busbar costs for electricity than the standard JPL-EPRI or BUCKS methodologies.

SRI estimates of electric power production costs were initially drawn from several related studies. The assumptions were recently normalized to obtain a consistent base for capital and operating costs and for unit efficiency. These data were used to compute the costs shown in the right hand columns of Table VI. Costs of electricity from the 100 MW all coal and the 100-MW hybrid coal solar plant were based on Rockwell data; all plant costs were for Nth units. These latter data must be considered preliminary and subject to revision. Nevertheless, it would appear that if the basic design hybrid system is considered as a base load unit it is reasonably competitive with other coal fired units--with the exception of a unit fired with subbituminous coal and operating without flue gas desulfurization. It cannot compete with the assumed base load nuclear plant, but the political fate of nuclear power is uncertain.

Turbine Selection

Complete.

Solar Energy System Optimization

During the past reporting period, material was generated and presented in the quarterly review. Included in this progress report is a discussion of charts presented in the review which were not previously reported on in earlier progress reports pertaining to the field optimization effort.

TABLE V
FINANCIAL ASSUMPTIONS

Base Year for Costs	1978
Year of First Investment	1985
Year of Commercial Operation	1990
System Lifetime	30 Years
Rated Output	100 MW.
Depreciation Option	Sum-of-the-Years' Digits
Depreciation Lifetime	22 Years
Debt/Equity Ratio	50/50
Corporate Debt Interest Rate	8 %
Rate of Return	12 %
Federal and State Taxes	50 %
Other Taxes, Investment Tax Credit, and Insurance	0 %
Capital Expenditure Escalation Rate	10 % per Year
O&M Cost Escalation Rate	8 % per Year
Fuel Cost Escalation Rate	6, 8, 10, 15 % per Year
Base Capital Cost (in 1978 Dollars)	
Coal, Hybrid First Commercial	128 Million
Oil, Hybrid First Commercial	116 Million
Gas, Hybrid First Commercial	113 Million
Coal, Hybrid Nth Commercial	106 Million
Coal Only	97 Million
Deflator Used in Converting 1990 Levelized Electricity Costs to 1978 Dollars	8 % per Year

TABLE VI

PRELIMINARY LEVELIZED POWER COSTS: ALTERNATE POWER SYSTEMS
 MILLS PER kWh, 1978 DOLLARS
 1990 START UP

FUEL ESCALATION RATE	COAL SOLAR HYBRID	BITUMINOUS COAL, 70% CF					SUB BITUMINOUS COAL w/o FGD, 500 MW, 70%	NUCLEAR 1000 MW, 65% CF	ADVANCED GAS TURBINE 100 MW, 15% CF			
		FLUID		COAL								
		FGD 100 MW	FGD 500 MW	BED 500 MW	GAS,CC 500 MW							
6	50.6	45.2	47.1	53.7	62.1		36.2					
8	57.7	54.8	55.6	62.6	70.5		44.9		82.2			
10	67.0	70.7							108.7			
OTHER							42.9					

In response to a discussion, which follows, pertaining to the effect of fixed costs on the optimization, an additional review of the costs included in the fixed cost model was made. The subsequent analysis of these costs revealed that two of the components of the fixed cost, namely, the costs associated with Design and Support Engineering and Indirect A&E, were based on first plant costs. For the sake of consistency, these costs were updated (reduced) to reflect estimates for Nth plant (the basis for other costs used in the optimization). The following summarizes these changes:

<u>Item</u>	<u>1st Plant</u> <u>(10⁶ \$)</u>	<u>Nth Plant</u> <u>(10⁶ \$)</u>
Design and Support Engineering	1.84	1.0
Indirect A&E	1.43	.70
Total Fixed Cost	4.19	2.62

Other work initiated during this reporting period was a master control review of the preliminary P and I.D. The following areas were identified as requiring further definition and explanation.

- 1) Coordinated control of sodium supply to receiver and heater.
- 2) Sodium flow control to superheater and reheater.
- 3) Feedwater control; drum level control and superheater/reheater H₂O regulation as a function of turbine pressure or flow.

Clarification of these items will be made during the next reporting period to allow further definition and analyses of the master control system.

The following is a discussion of the previously unreported on charts presented in the quarterly review.

TABLE VII

FAVORS LARGER TOWERS

- o LARGE FIXED COST
- o TOWER COST SUB QUADRATIC
- o RESTRICTED OR EXPENSIVE LAND

FAVORS SMALLER TOWERS

- o ZERO FIXED COST
- o TOWER COST SUPER QUADRATIC
- o LARGE BEAM SPREAD

FAVORS LARGER RECEIVERS

- o LOW RECEIVER COST/M²
- o LOW RECEIVER LOSSES/M²
- o LARGE FLAT HELIOSTAT
- o SEVERE ABERRATIONS
- o LARGE BEAM SPREAD

FAVORS SMALLER RECEIVERS

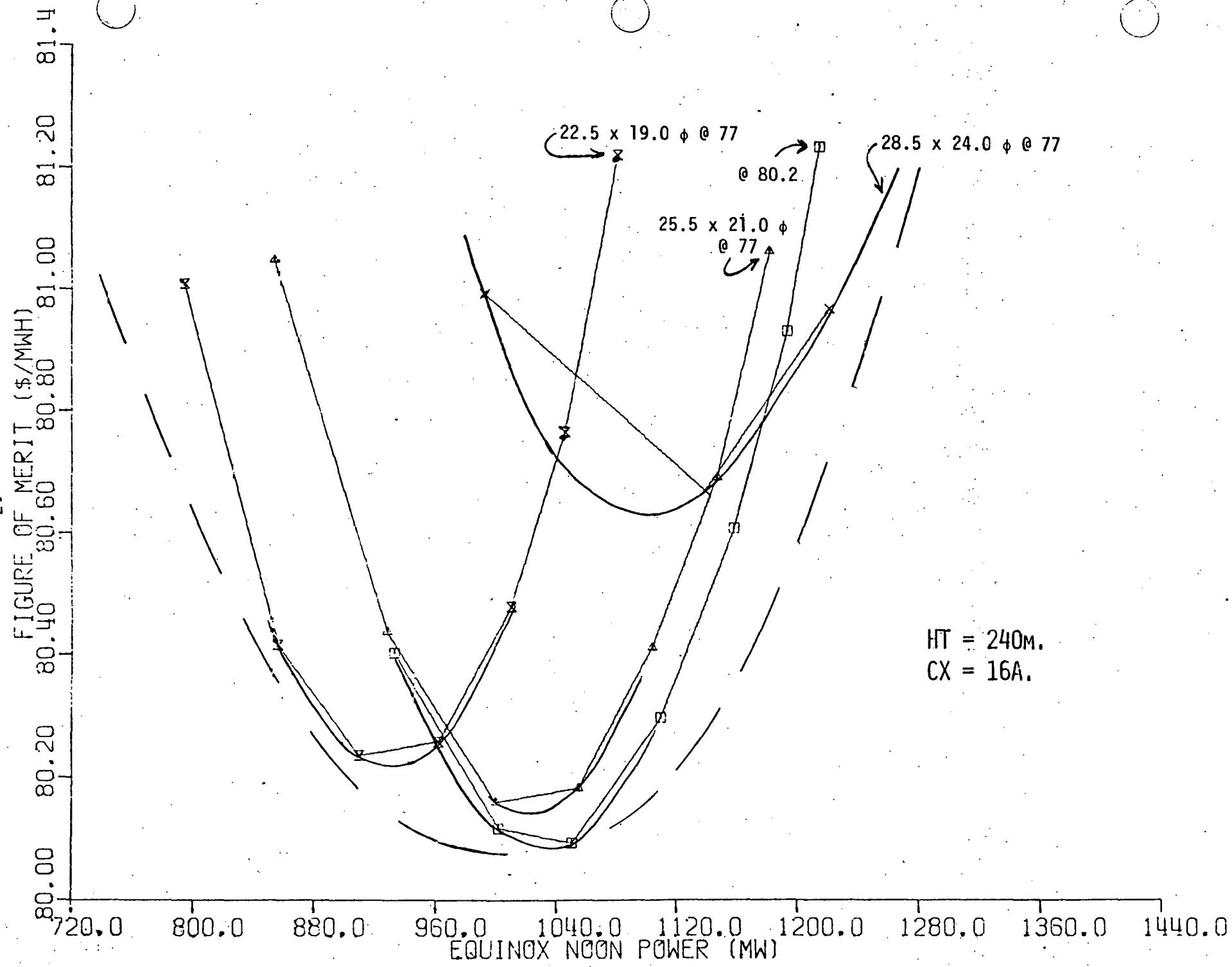
- o HIGH RECEIVER COST/M²
- o HIGH RECEIVER LOSSES/M²
- o HIGH PERFORMANCE HELIOSTAT
- o SMALLER HELIOSTAT

FAVORS LARGER FIELD

- o EXPENSIVE RECEIVER SS
- o CHEAP HELIOSTATS
- o CHEAP LAND AND WIRE
- o LOW ATMOSPHERIC ATTENUATION

FAVORS SMALLER FIELDS

- o EXPENSIVE HELIOSTATS
- o CHEAP RECEIVER SS
- o EXPENSIVE LAND OR WIRE
- o HIGH ATMOSPHERIC ATTENUATION
- o RESTRICTED AREA
- o HIGH COST COMPETITION


By way of introduction, Table VII lists the parameters that influence field optimization.

Tower, receiver, and field size are each influenced by numerous factors. For example, restricted or expensive land favors a taller tower so blocking will be reduced and heliostats packed more densely. Simultaneously, it favors a smaller field (compared to a baseline system) because the peripheral heliostats use ground inefficiently. In contrast, cheap land favors a larger field, limited primarily by beam spillage and atmospheric attenuation; the heliostats can be distributed sparsely, as required by the necessity to eliminate blocking. A larger field may allow the required power level to be reached with a shorter tower.

The chart should be used with some wisdom to distinguish between drivers favoring smaller systems versus those favoring a smaller tower, or receiver or field irrespective of system size.

The last item, high cost competition, for example, should really be applied to smaller systems, as competition at 10 MWe may be a diesel at 10 ¢/kW hr, compared to a coal plant at 2 ¢/kW hr for a 500 MWe system.

Optimization results will be shown for a range of focal heights [(receiver @ elevation -4.0 m) = 120, 150, 180, 240 m]. For each case, a range of external cylindrical receiver sizes have been investigated, e.g., on Figure 1, 28.5 m tall by 24.0 m diameter. Each "parabolic" curve represents the output figure of merit versus design point power for a range of field size (i.e., trim lines) for a specific input figure of merit (FOM - system cost/annual thermal output in MWh, \$/a MWht). A completely optimized system would have an input figure of merit equal to the output figure of merit achieved at the low power on the curve, e.g., on Figure 1 at 80.1 and 1040, the input figure of merit was 80.2, very close to convergence. By investigating a range of input conditions

(receiver dimensions and input figure of merit), an envelope of achievable output figure of merits versus equinox noon power is obtained for each focal height (vertical distance from receiver centerline to the plane of the heliostat center points).

In Figure 1, we see that a 240 m focal height with a 16 acre central exclusion area leads to an equinox noon power output of 1000 Mwt and a minimum figure of merit of 80.1 \$/a MWht for a receiver about 25 m tall and 20 to 21 m in diameter.

In Figure 2, if the performance envelopes are plotted for each focal height considered, an envelope of envelopes is defined which is indicative of the performance which could be achieved if the optimum focal height were chosen for a desired equinox noon power and then the correct receiver size were selected. Note that at lower powers (< 500 Mwt) this baseline design curve begins to rise and at 200 Mwt it is very steep. Reasons for this rise will be discussed later. Because of this rising design curve, the smaller systems cannot be optimized in the usual way; the minimum of the "parabolic" design envelope does not represent the contact with the baseline design curve. Rather this contact occurs on the low power side of the envelope where it defines the baseline design envelope.

Figure 3

The consequence of this rising baseline design curve is that the critical portion of the envelope for the smaller systems is not the bottom of the "parabola," but the left side, i.e., the area of contact. Consequently, the design data for the smaller systems concentrates on defining the left side of the "parabolas." This is accomplished most effectively by using an input figure of merit substantially less than the output, or converged, value. Thus, for the 150 m focal height case, the definitive curves have an input figure of merit of .65 rather than 80. At 150 m, the exclusion area in the center of the field has been scaled to 12.5 acres and the optimum receiver would be about 15 m tall

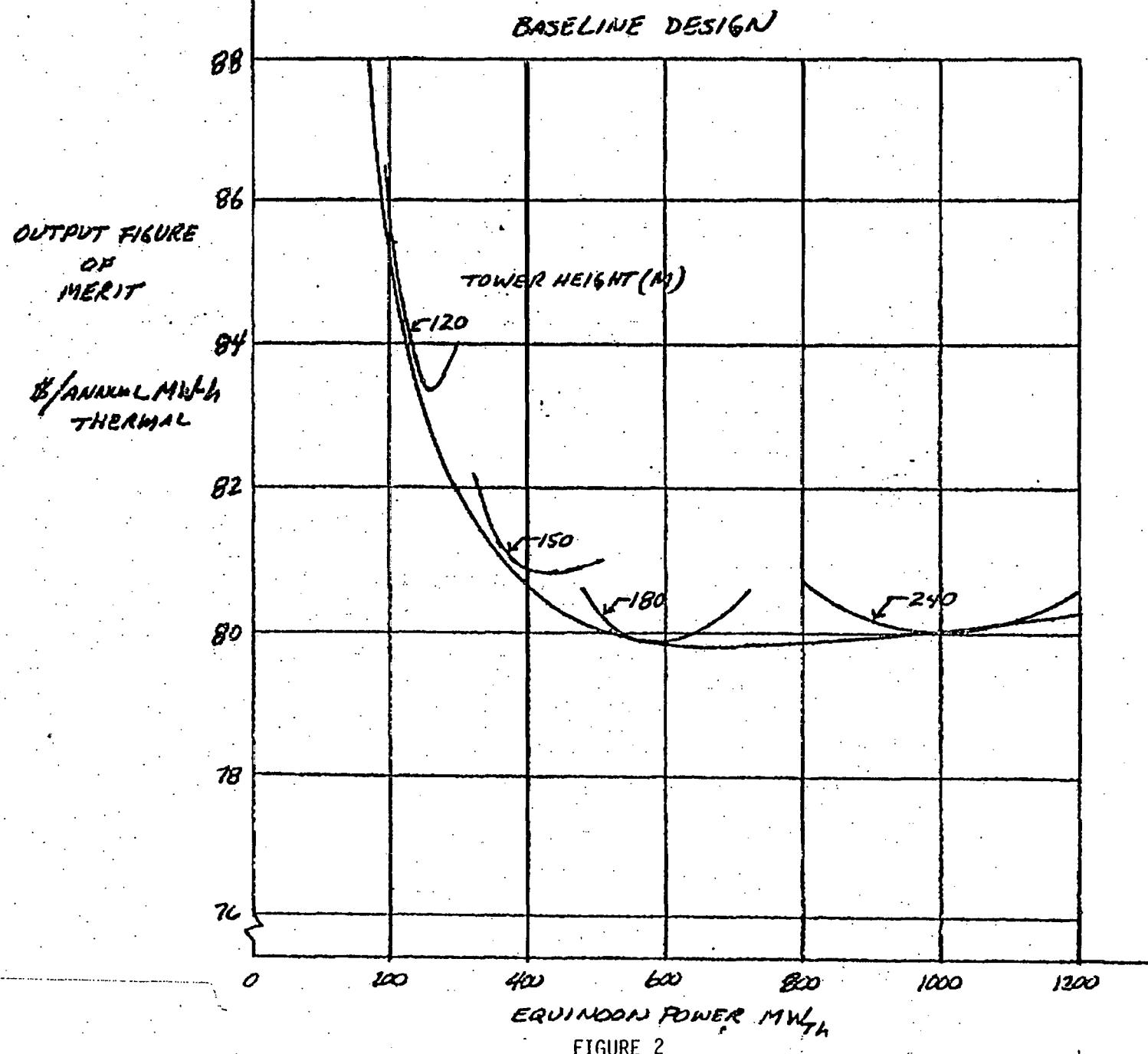
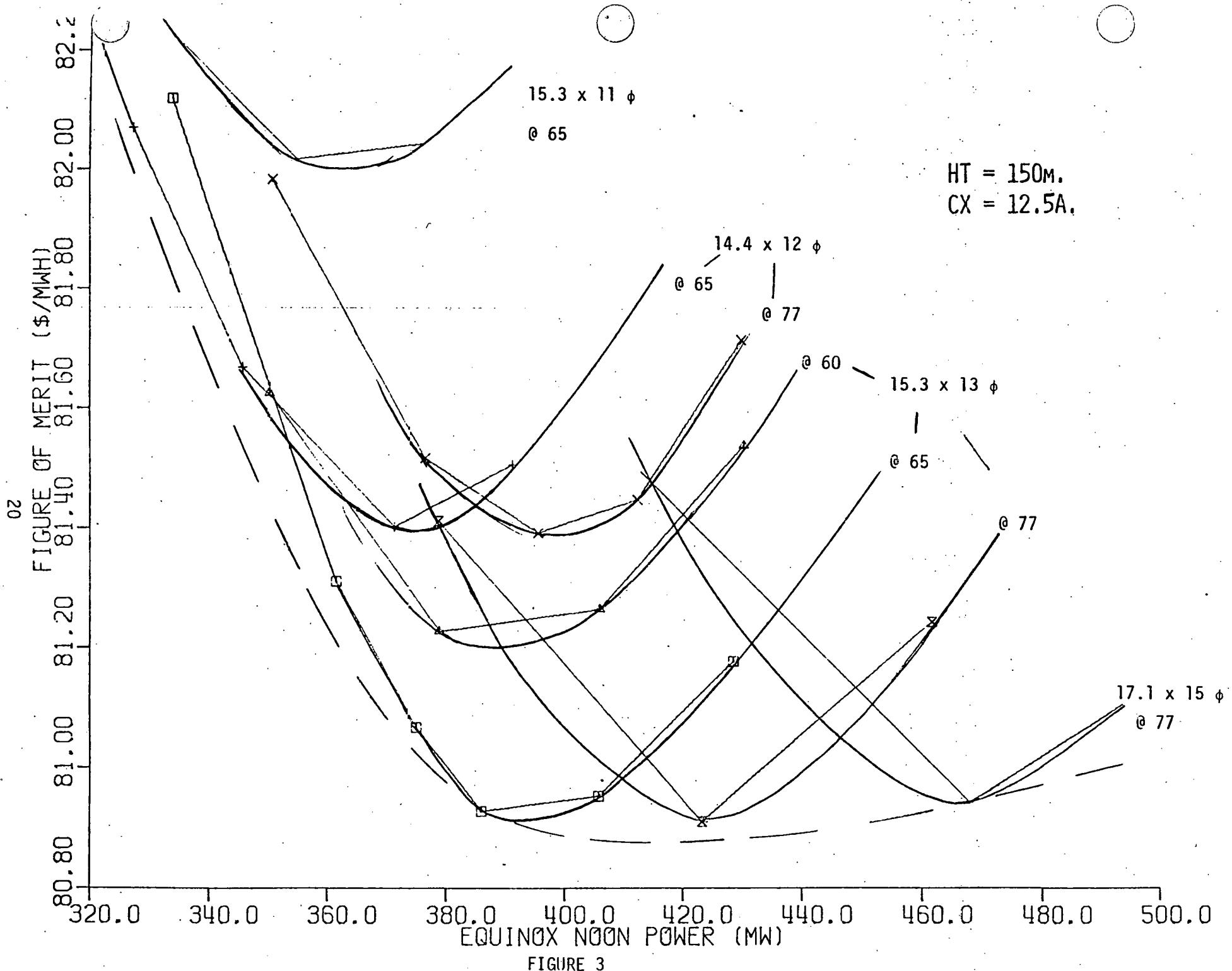



FIGURE 2

by 12.5 m in diameter. The contact point with the baseline design curve occurs at a figure of merit of 81.2 and an equinox noon power of 360 Mwt. In contrast, the lowest figure of merit for this focal height is 80.9 at 420 Mwt.

Figure 4

For a 120 m focal height, the baseline design curve is rising so fast that the ordinate has been compressed 10 fold relative to the previous curves. With an eight-acre exclusion area, this system provides the required 208 Mwt essentially at the point of contact with the baseline design curve. An input figure of merit of 65 has been used to reduce the system size below the 260 Mwt achieved for an optimized system at this focal height.

At this point in the study (early) we had a receiver cost algorithm which favored "square" receivers so our optimal receiver was 10.4 m tall by 10.4 m diameter. The more recent algorithm gives essentially the same cost of this size receiver, but favors tall, thin receivers. Consequently, we estimate the final optimal receiver will be more nearly 12 m tall by 10 m diameter.

Table VIII is a performance summary page from the best constrained system providing the desired 208 Mwt at the equinox noon design point with an insolation of 950 W/m^2 . On the upper right is given the number of heliostats required, the total glass area and the total land area (the ratio gives an average glass density of 21.7 percent). The three matrices show the east half-field of the cellwise design. Each cell has an area of $15 \text{ H}^2/4 = 18,000 \text{ m}^2$. The tower is centered in the cell marked with a zero in the middle of the leftmost column.

The "trim control" matrix (of 4's) shows the cell occupation number in quarters, three corresponding to a cell which lies 75 percent inside of the useful heliostat field. In the "limits" matrix, the 3's indicate cells in which mechanical limits have been active in defining the heliostat spacing (three refers to the diagonal neighbor).

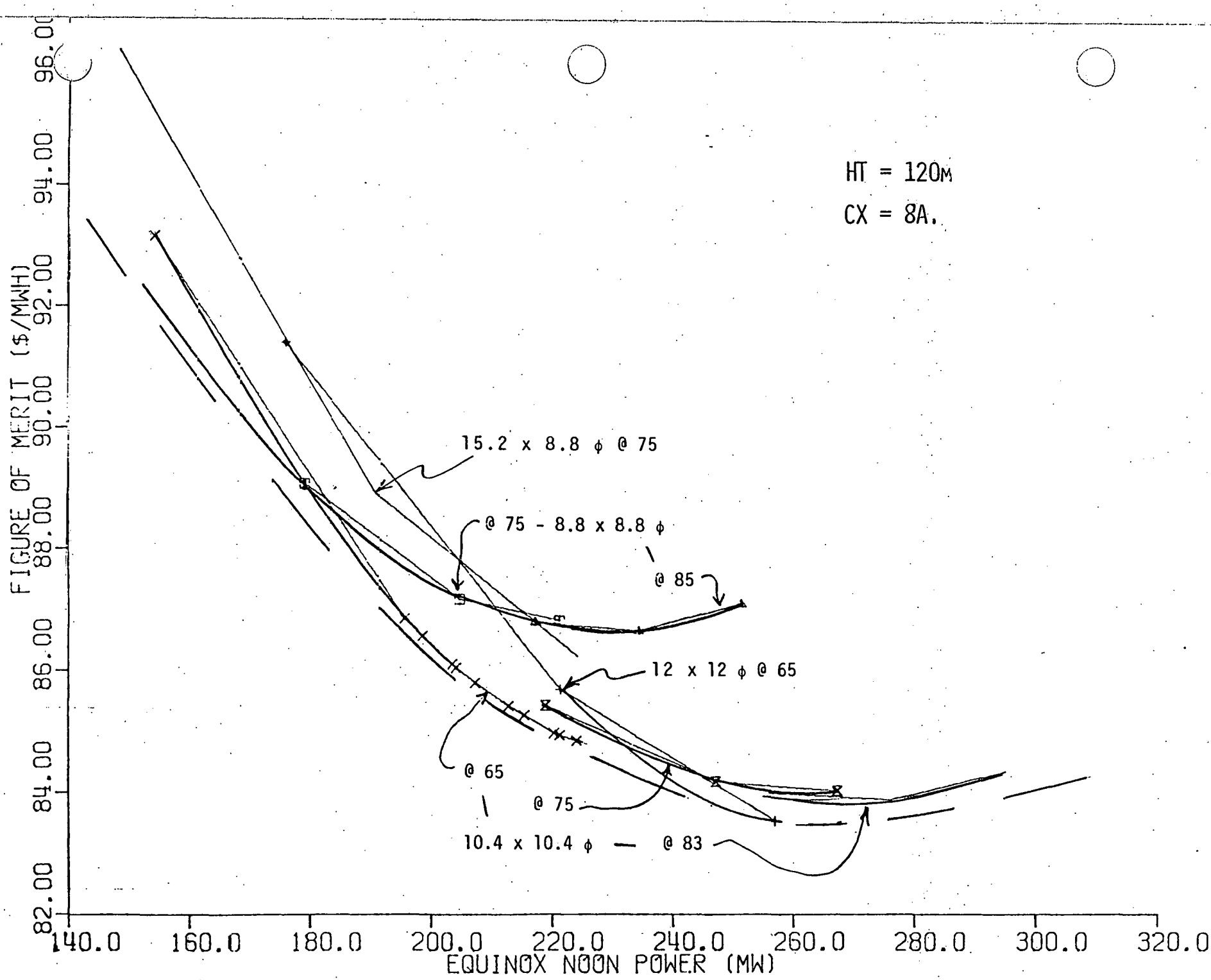


FIGURE 4

TRIM CONTROL LIMITS

00000000	00000000
00000000	00000000
44410000	00000000
44442000	00000000
44444200	00000000
44444400	00000000
44444400	00000000
34444400	33000000
03444400	03000000
44444300	33000000
44443000	00000000
44420000	00000000
11100000	00000000
00000000	00000000

TABLE VIII

MAX. NUMBER OF HELIOS./CELL = 367.0 ; HGLASS/DMIR**2 = 0.8963

7332. HELIOS AHELI = 54.7263 ASEG = 54.7263

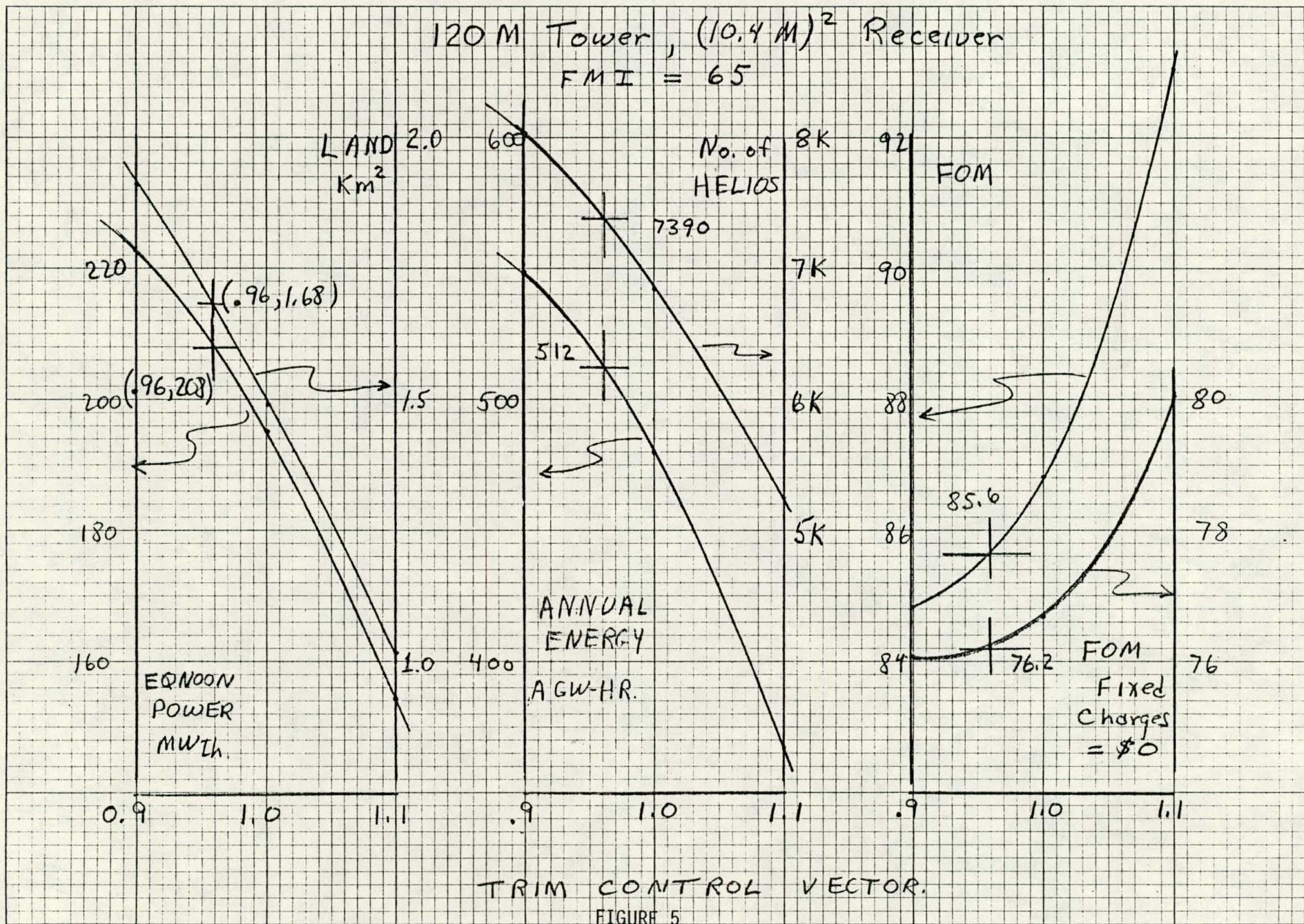
; TOTAL GLASS = 0.35967E 06

; TOTAL LAND = 0.16560E 07

* ; HT = 120.0 METERS

| | | | | | | | |
|-------|-------|-------|-------|-------|-------|----|----|
| 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. |
| 46.6 | 91.9 | 86.9 | 19.9 | 0. | 0. | 0. | 0. |
| 57.6 | 112.4 | 105.8 | 95.9 | 42.2 | 0. | 0. | 0. |
| 71.6 | 139.7 | 128.4 | 114.4 | 98.4 | 41.4 | 0. | 0. |
| 92.6 | 177.6 | 157.7 | 134.4 | 113.3 | 93.4 | 0. | 0. |
| 128.6 | 236.5 | 194.1 | 155.3 | 125.7 | 102.2 | 0. | 0. |
| 117.4 | 310.7 | 233.5 | 173.9 | 135.1 | 107.5 | 0. | 0. |
| 0. | 233.6 | 252.4 | 180.4 | 136.0 | 108.5 | 0. | 0. |
| 156.8 | 321.9 | 229.1 | 170.6 | 132.1 | 78.1 | 0. | 0. |
| 125.3 | 226.6 | 183.1 | 146.3 | 88.3 | 0. | 0. | 0. |
| 83.4 | 161.3 | 142.8 | 60.2 | 0. | 0. | 0. | 0. |
| 14.6 | 29.2 | 26.9 | 0. | 0. | 0. | 0. | 0. |
| 0. | 0. | 0. | 0. | 0. | 0. | 0. | 0. |

PERFORMANCE SUMMARY AND COST BREAKDOWN FOR OPTIMIZED COLLECTOR FIELD - TRIM LINE AT 0.960


| | | | | |
|-----------------|---|---------|---------|---|
| EQUINOON POWER | = | 218.903 | 207.068 | IN MW - (SCALED TO 950 W/M2) |
| ANNUAL ENERGY | = | 506.465 | IN GWH | |
| FIXED COSTS | = | 4.8030 | IN \$M | |
| TOWER COST | = | 9.1788 | 2.4388 | 4.2298 0.9428 1.5674 IN \$M FOR 950. EQUINOON POW |
| LAND COST | = | 2.4012 | IN \$M | |
| WIRING COST | = | 1.1786 | IN \$M | |
| HELIOSTAT COST | = | 20.7064 | 25.6821 | 31.0578 IN \$M |
| TOTAL COST | = | 38.2680 | 43.4437 | 48.6194 IN \$M |
| FIGURE OF MERIT | = | 75.559 | 85.778 | 95.998 IN \$/MWH , FOR AN INPUT OF 65.000 USING HELIOSTAT |

The "number of heliostats per cell" matrix represents a sum over the right and left half-fields, thus, although only the right half-field is depicted, the heliostat number is 7,332. Variations in heliostat packing across the field are obvious, although the heliostats in those cells with trim control numbers < 4 (i.e., at the perimeter of the field) are packed into a fraction of a cell.

The performance summary shows first the equinox noon power delivered to sodium using the University of Houston's insolation model (about 1002 W/m^2) and then the Sandia dictated 950 W/m^2 . The annual energy is all collected when the sun is above 10^0 elevation. Monthly, the long term average values appropriate to the southwestern desert of cloud cover, turbidity and precipitable water are used in developing this estimate. The fixed costs include the cost of preparing the central exclusion area for construction. The tower cost gives first the total, then the costs of the tower, the receiver, the vertical plumbing and the riser pump. The land cost includes only the heliostat field. The wiring cost includes the present value of the O&M components associated with azimuthal spacing (Category 3). The heliostat cost is given for a baseline case and ± 20 percent. Thus, we are interested in the center column, where the "heliostat cost" is based on an area cost of $71.96 \text{ \$/m}^2$. This includes a capital cost of $60.12 \text{ \$/m}^2$ and O&M of $11.84 \text{ \$/m}^2$. The Figure of Merit is the output value, computed as the ratio of the Total Cost divided by the Annual Energy. The input figure of merit is listed to the right.

The extent of the heliostat field is defined by the trim control matrix which is set by the trim control to include those cells with a trim ratio greater than that defined by the "trim line," given as 0.960 in this case. The trim line should be close to unity at the design power for an optimal constrained system.

By taking outputs at several trim lines, a range of system sizes is defined, allowing interpolation to an exact desired point. In Figure 5, we see a set of such interpolation curves for our design case. The

leftmost curve shows the origin of the trim line of 0.960, as this is the number required to deliver 208 Mwt. Comparison with the previous figure shows that the three point interpolation curves drawn here were not perfect, missing the actual design values by 1/2 to 1 percent.

The performance summary page for the optimal converged design at a 120 m focal height is shown in Table IX. The power level is 276 Mwt and the output figure of merit (corrected to the new receiver cost model) is 83.87 \$/a MWh. (but see Figure 3).

Figure 6

The steep rise of the baseline design curve for systems smaller than 400 Mwt is of interest. A first order study of the effect of the fixed cost is shown in the lower curve. The actual fixed cost was subtracted from the total cost and the figure of merit recomputed for appropriate cases. The resulting curve is substantially lower, and shows a minimum in the range of 300 to 600 Mwt cf 500 to 1000 Mwt for the baseline design. The curve below 300 Mwt is not very well defined because the design studies for the 120 m case concentrated on defining the point of contact with the baseline design curve, i.e., the left side of the design envelope, rather than the bottom. Thus, these two envelopes may still come down somewhat more. Following a reevaluation of the rationale for the fixed cost assignment, the 120 m case will be reevaluated to achieve the final system design. Subsequently, the new "baseline design" curve will be defined.

The effect of visual range (atmospheric absorption between the heliostat and the receiver) on the shape of the baseline design was investigated by going to an extremely poor visibility figure of 15 km for the average annual visual ranges. The 240, 180 and 120 m focal height cases were recalculated. Obviously, larger systems suffer somewhat, with a minimum occurring between 375 and 750 Mwt. However, see the next figure.

NGON = ; MAX. NUMBER OF HELIOS./CELL = 367.0 ; AHELI/DMIR**2 = 0.8963 ; TOTAL GLASS D.52053E-
 TRIM CONTROL LIMITS 10612. HELIOS AHELI = 54.7263 ASEG = 54.7263 ; TOTAL LAND = 0.25560E

100000000 00000000
 44430000 00000000
 44444100 00000000
 44444400 00000000
 44444430 00000000
 44444440 00000000
 44444441 00000000
 34444442 33000000
 03444441 00000000
 44444440 03000000
 44444430 00000000
 44444440 00000000
 44443000 00000000
 44310000 00000000

TABLE IX

***** NUMBER OF HELIOSTATS PER CELL ***** ; HT = 120.0 METERS

| | | | | | | | |
|-------|-------|-------|-------|-------|-------|------|------|
| 8.7 | 0. | 0. | 0. | 0. | 0. | 0. | 0. |
| 42.3 | 83.6 | 80.1 | 56.0 | 0. | 0. | 0. | 0. |
| 51.0 | 100.7 | 96.4 | 89.0 | 80.9 | 17.8 | 0. | 0. |
| 62.0 | 122.1 | 115.2 | 105.6 | 94.0 | 82.4 | 0. | 0. |
| 77.4 | 150.2 | 139.3 | 124.3 | 108.6 | 93.4 | 59.4 | 0. |
| 99.5 | 191.9 | 169.8 | 146.1 | 123.5 | 103.6 | 87.2 | 0. |
| 139.6 | 256.2 | 210.3 | 168.8 | 138.0 | 113.0 | 93.6 | 19.1 |
| 117.3 | 311.4 | 256.8 | 190.2 | 149.0 | 120.1 | 97.8 | 39.6 |
| 0. | 236.8 | 283.1 | 200.7 | 153.7 | 122.4 | 98.9 | 19.9 |
| 157.9 | 321.3 | 264.1 | 192.9 | 149.6 | 119.7 | 95.9 | 0. |
| 151.4 | 275.2 | 218.6 | 170.4 | 136.6 | 110.7 | 67.3 | 0. |
| 106.3 | 202.0 | 173.9 | 144.9 | 119.7 | 98.1 | 0. | 0. |
| 77.9 | 152.0 | 137.8 | 118.8 | 75.4 | 0. | 0. | 0. |
| 57.8 | 113.8 | 79.4 | 23.4 | 0. | 0. | 0. | 0. |

PERFORMANCE SUMMARY AND COST BREAKDOWN FOR OPTIMIZED COLLECTOR FIELD - TRIM LINE AT 1.000

EQNOON POWER = 291.577 275.970 IN MW - (SCALED TO 950 W/M2)

ANNUAL ENERGY = 685.525 IN GWH

FIXED COSTS = 4.8000 IN \$M

TOWER COST = 9.7207 2.4388 4.1045 1.0884 2.0890 IN \$M FOR 950. EQUINOON POWER

LAND COST = 3.7062 IN \$M 4.2193

WIRING COST = 1.6985 IN \$M

HELIOSTAT COST = 29.9669 37.4574 44.9478 IN \$M

TOTAL COST = 49.8924 57.3828 64.8732 IN \$M

FIGURE OF MERIT = 72.780 83.8706 94.633 IN \$/MWH , FOR AN INPUT OF 83.000 USING HELIOSTAT COS

28
OUTPUT
FIGURE
OF
MERIT
\$/AMWHR
(THERMAL)

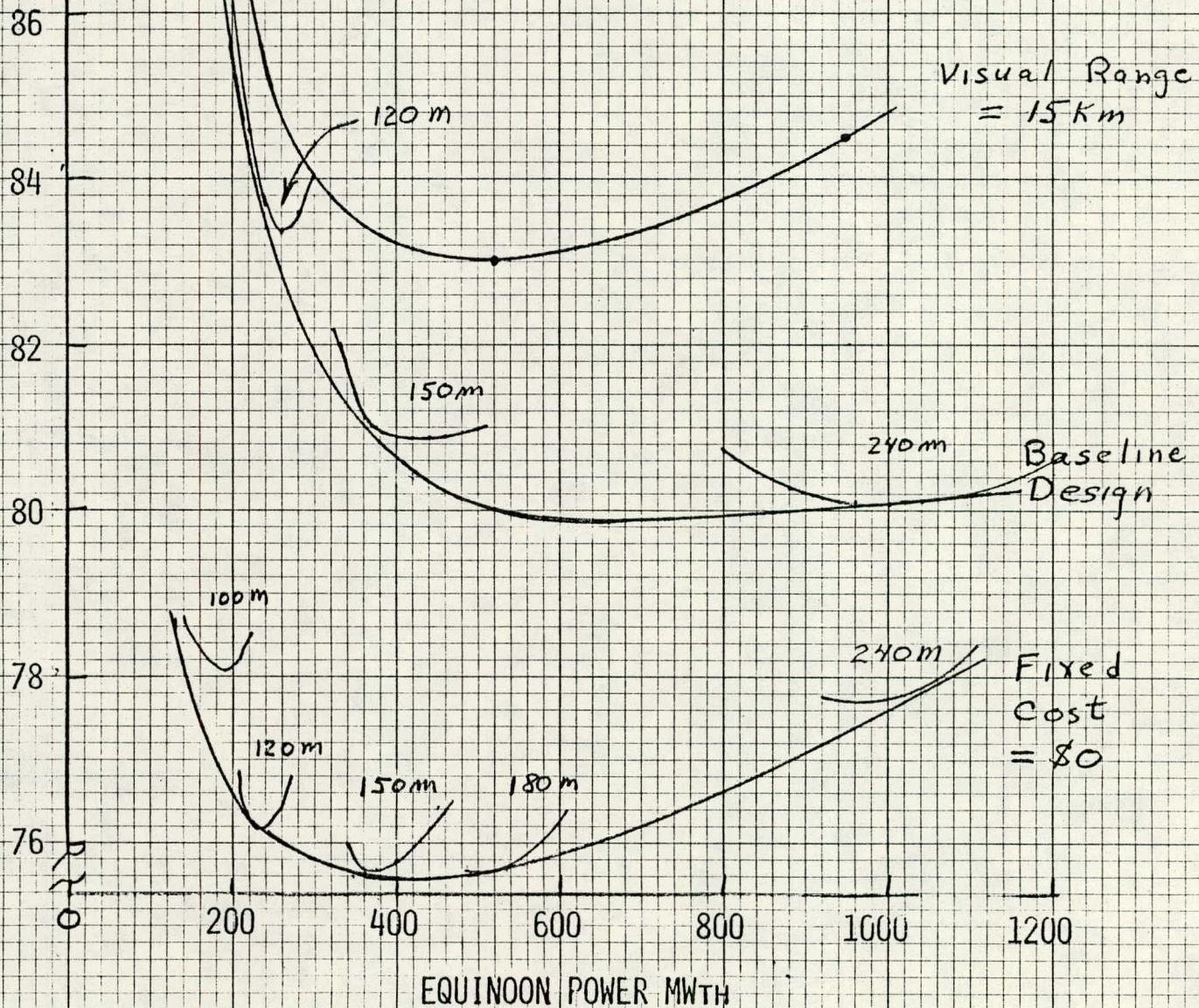


FIGURE 6

To determine if a visual range of 15 km (10 miles) makes any sense in a desert environment, the 1962 Albuquerque data take "sanitized" by Eldon Boes was analyzed. Table X was generated giving the number of hours in which a given visual range and fraction of sky cover coexisted. The leftmost column in the table corresponds to perfectly cloudless hours, and we see that of the 2,051 such hours, 220 had visual ranges of 50 miles (80 km) and 1,723 had visual ranges of 60 miles or greater (100 km). In contrast, most of the days with short visual range were associated with high cloud cover.

Alongside and below the table we have calculated the several reasonable sums, percentages, and cumulative percentages. "Beam hours" is taken as the product of $(1 - \text{sky cover})$ and the total number of occurrences. We can see from this computation that 95 percent of the annual daylight hours had a visual range of 30 miles (50 km) or greater, and 96 percent of the hours with over 50 percent clear sky had a visual range of 40 miles (64 km) or greater. It is also useful to note that 94 percent of the "beam hours" satisfy this condition. Thus, it appears that our standard visual range of 50 km may considerably over estimate the atmospheric attenuation of reflected light, and that 75 km might be a more realistic estimate. Surely 15 km is not of program interest: we chose it only to be certain of showing an effect in the parametric study.

PERFORMANCE SPECIFICATIONS

The preliminary values of the performance and design specifications have been prepared. These are in the form of Design Data Sheets and are given in the Appendix.

714-G.35/jjs/sjh

TABLE X
1962 ALBUQUERQUE (BOES)

| VISUAL
MILES | SKY COVER S | | | | | | | | | | Σ | % | % | Σ | % | % | | |
|-----------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-----|------|------|
| | 0. | .1 | .2 | .3 | .4 | .5 | .6 | .7 | .8 | .9 | | | | | | | | |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 9 | 12 | .3 | 100 | 2 | .1 | 100 | |
| 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 9 | 13 | .3 | 99.7 | 2 | .1 | 100 | |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 1 | 12 | 16 | .3 | 99.4 | 0 | 0 | 99.8 | |
| 10 | 2 | 1 | 2 | 6 | 6 | 2 | 1 | 1 | 3 | 4 | 38 | 66 | 1.4 | 99.1 | 19 | .6 | 99.8 | |
| 15 | 5 | 1 | 7 | 0 | 2 | 0 | 1 | 3 | 2 | 1 | 20 | 42 | .9 | 97.7 | 15 | .5 | 99.2 | |
| 30 | 20 | 15 | 5 | 3 | 3 | 1 | 0 | 0 | 0 | 7 | 8 | 33 | 75 | 1.6 | 96.8 | 27 | .9 | 98.7 |
| | 25 | 5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 | 9 | .2 | 95.2 | 5 | .2 | 97.8 | |
| | 30 | 20 | 5 | 3 | 5 | 2 | 5 | 7 | 8 | 8 | 12 | 75 | 150 | 3.2 | 95.0 | 40 | 1.3 | 97.6 |
| | 35 | 5 | 1 | 1 | 0 | 0 | 2 | 0 | 2 | 2 | 1 | 3 | 17 | .4 | 91.8 | 9 | .3 | 96.3 |
| | 40 | 46 | 15 | 12 | 12 | 13 | 5 | 9 | 17 | 21 | 35 | 80 | 265 | 5.6 | 91.4 | 103 | 3.3 | 96.0 |
| | 45 | 10 | 3 | 1 | 5 | 1 | 1 | 1 | 0 | 1 | 1 | 5 | 29 | .6 | 85.8 | 21 | .7 | 92.7 |
| | 50 | 220 | 44 | 41 | 34 | 27 | 41 | 32 | 62 | 69 | 80 | 203 | 853 | 17.8 | 85.2 | 407 | 13.0 | 92.0 |
| 55 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67.4 | 0 | 0 | 79 |
| 60 | 1723 | 278 | 143 | 156 | 97 | 84 | 92 | 136 | 156 | 131 | 217 | 3213 | 67.4 | 67.4 | 2481 | 79 | 79 | |
| Σ | 2051 | 353 | 213 | 221 | 151 | 142 | 145 | 232 | 271 | 274 | 707 | 4760 | 100 | | 3131 | 100 | | |
| % | 43 | 7 | 4 | 5 | 3 | 3 | 3 | 5 | 6 | 6 | 15 | 100 | | | | | | |
| %
(cum) | 43 | 50 | 54 | 59 | 62 | 65 | 68 | 73 | 79 | 85 | 100 | | | | | | | |

APPENDIX

RECEIVER SUBSYSTEM

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE
Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

WBS NO.

PAGE 1 of 14

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-------------------------------------|--------------------------|--|-----------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>Receiver Subsystem</u> | | | | | |
| | | Nominal Thermal Power | MWt | 260 | | | |
| | | Maximum Thermal Power | MWt | TBD | | | |
| | | Receiver Temperature | | | | | |
| | | - In | °C (°F) | 288 (550) | | | |
| | | - Out | °C (°F) | 593 (1100) | | | |
| | | Flow Rate - Max Receiver | Kg/hr (lb/hr) | 2.43×10^6 (5.36 x 10^6) | | | |
| | | - Max Steam Generator | Kg/hr (lb/hr) | 2.43×10^6 (5.36 x 10^6) | | | |
| | | Volume of Sodium in Subsystem | m ³ (gals) | 202 (53,000) | | | |
| | | Weight of Sodium in Subsystem | kg (lb) | 172,000 (379,000) | | | |
| | | Pump Outlet Pressure | MN/m ² (psia) | 1.57 (230) | | | |
| | | Pump Inlet Pressure | MN/m ² (psia) | 0.10 (15) | | | |
| | | Total Radiation and Convection Loss | % | 9% at Peak Power
12.5% at 50% Power | | | |

DESIGN DATA SHEET

TITLE
Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 2 of 14

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-----------------------------------|--------------------|------------------------------|-----------|------|---|
| | | | UNIT | VALUE | | | |
| | | Receiver Subsystem (Cont.) | | | | | |
| | | Steam Generator Units Sodium Side | | | | | |
| | | Superheat - Temp In | °C (°F) | 593 (1100) | | | Tube and Shell Hockey Stick |
| | | - Temp Out | °C (°F) | 462 (864) | | | |
| | | - Power | MWt | 76.1 | | | |
| | | Reheat - Temp In | °C (°F) | 593 (1100) | | | Tube and Shell Hockey Stick |
| | | - Temp Out | °C (°F) | 462 (864) | | | |
| | | - Power | MWt | 35.3 | | | |
| | | Evaporator - Temp In | °C (°F) | 462 (864) | | | Tube and Shell Hockey Stick |
| | | - Temp Out | °C (°F) | 288 (550) | | | |
| | | - Power | MWt | 148.6 | | | |
| | | Pumps - Number and Type | | 1 | | | Fixed Speed, Double Suction
Centrifugal, Single Stage
External 24 Panel |
| | | Receiver - Size and Type | m x m (ft
x ft) | 12.3 x 12.3
(40.4 x 40.4) | | | |
| | | Large Valves, 51 cm (20") Block | | 2 | | | CS, Riser and Pump Return |
| | | 51 cm (20") Check | | 1 | | | CS, Riser |
| | | 25 cm (10") Block | | 1 | | | SS, Downcomer |
| | | 41 cm (16") Control | | 1 | | | SS, Superheater Control |
| | | 20 cm (8") Control | | 24 | | | SS, Receiver Panel Control |
| | | 15 cm (6") Control | | 1 | | | SS, Reheater Control |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE

3 of 14

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-----------------------------------|--------------|-------------------|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>Receiver Subsystem (Cont.)</u> | | | | | |
| | | Large Pipe Length, 51 cm (20") | m (ft) | 305 (1000) | | | CS |
| | | 46 cm (18") | m (ft) | 366 (1200) | | | CS and SS |
| | | 41 cm (16") | m (ft) | 18 (60) | | | SS |
| | | 20 cm (8") | m (ft) | 512 (1680) | | | CS and SS |
| | | 15 cm (6") | m (ft) | 18 (60) | | | SS |
| | | <u>Receiver Assembly</u> | | | | | |
| | | Diameter | m (ft) | 12.3 (40.4) | | | |
| | | Height | m (ft) | 12.3 (40.4) | | | |
| | | Receiver Mid-Point Elevation | m (ft) | 135 (443) | | | |
| | | Receiver Maximum Elevation | m (ft) | 141 (463) | | | |
| | | Number of Absorber Panels | | 24 | | | |
| | | <u>Receiver Weight</u> | | | | | |
| | | Total | kg (lb) | 284,500 (624,000) | | | |
| | | Pressure Parts | kg (lb) | 74,900 (164,800) | | | |
| | | <u>Absorber Panel</u> | | | | | |
| | | Height | m (ft) | 12.3 (40.4) | | | |
| | | Width | m (ft) | 1.6 (5.3) | | | |
| | | Dry Weight, Pressure Parts | kg (lb) | 1,455 (3,200) | | | |
| | | Number of Tubes | | 85 | | | |
| | | Tube OD | cm (in.) | 1.91 (0.75) | | | |
| | | Tube ID | cm (in.) | 1.65 (0.65) | | | |

Rockwell International
Energy Systems Group

| DESIGN DATA SHEET | | TITLE
Solar Central Receiver Hybrid
Receiver Subsystem | NUMBER | | | | |
|-------------------------------|-------------|--|---|------------|------------|------|------------------------|
| PREPARED BY | APPROVED BY | | PAGE 4 of 14 | | | | |
| | | | WBS NO. | DATE | | | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| <u>Absorber Panel (Cont.)</u> | | | | | | | |
| | | Tube Material | | CRES 304H | | | |
| | | Solar Surface Coating | | Pyromark | | | |
| | | Panel Insulation | cm (in.) | 15.2 (6) | | | Closed-Pore Fiberglass |
| | | Thermal Expansion | cm (in.) | 12.7 (5) | | | Flexible Tube Bends |
| | | Absorptivity, Minimum | | 0.95 | | | |
| | | Peak Heat Flux | MW/m ²
(Btu/in ² -sec) | 1.5 (0.82) | | | |
| | | Outlet Temperature | °C (°F) | 593 (1100) | | | |
| | | Inlet Temperature | °C (°F) | 288 (550) | | | |
| | | Maximum Tube Surface Temperature | °C (°F) | 635 (1175) | | | |
| <u>Tower Assembly</u> | | | | | | | |
| | | Construction | | | | | Slip formed concrete |
| | | Concrete Height | m (ft) | 122 (400) | | | |
| | | Diameter - Base | m (ft) | 24 (80) | | | |
| | | - Top | m (ft) | 9.1 (30) | | | |
| | | Wall Thickness - Base | m (ft) | 0.46 (1.5) | | | |
| | | - Top | m (ft) | 0.25 (.83) | | | |
| | | Mat - OD | m (ft) | 39.6 (130) | | | |
| | | - ID | m (ft) | 9.1 (30) | | | |
| | | - Thickness | m (ft) | 3.0 (10) | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

WBS NO.

PAGE

5 of 14

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-------------------------------|-----------------------------|---|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>Riser</u> | | | | | |
| | | Nominal Pipe OD | cm (in.) | 51 (20) | | | |
| | | Nominal Wall Thickness | | TBD | | | |
| | | Material | | CS | | | |
| | | Design Temperature | °C (°F) | 371 (700) | | | |
| | | Design Pressure ANSI B31.1 | MN/m ²
(psia) | 2.76 (400) | | | |
| | | Maximum Flow Rate | kg/h
(lb/h) | 2.43 x 10 ⁶
(5.36 x 10 ⁶) | | | |
| | | Velocity at Maximum Flow Rate | m/sec
(ft/sec) | 3.8 (12.4) | | | |
| | | <u>Downcomer</u> | | | | | |
| | | Nominal Pipe OD | cm (in.) | 25 (10) | | | |
| | | Nominal wall thickness | | TBD | | | |
| | | Material | | 304H | | | |
| | | Design Temperature | °C (°F) | 593 (1100) | | | |
| | | Design Pressure ANSI B31.1 | MN/m ²
(psia) | 2.76 (400) | | | |
| | | Maximum Flow Rate | kg/h
(lb/h) | 2.43 x 10 ⁶
(5.36 x 10 ⁶) | | | |
| | | Velocity at Maximum Flow Rate | m/sec
(ft/sec) | 16.6 (55) | | | |

Rockwell International

Energy Systems Group

DESIGN DATA SHEET

TITLE Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 6 of 14

WBS NO.

DATE

| NEW
REV | NO. | ITEM | DESIGN POINT | | TEN-
TATIVE | FIRM | REFERENCES AND REMARKS |
|------------|-----|-----------------------------|--------------|-------------------------|----------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>Receiver Pump</u> | | | | | |
| | | <u>Physical Description</u> | | | | | |
| | | Quantity | | 1 | | | |
| | | Number of Stages | | 2 | | | |
| | | Height, w/motor | m (ft) | 6 (19.7) | | | |
| | | Tank Size | m (ft) | 1.83 x 3.66
(6 x 12) | | | |
| | | Inlet Nozzle | m (in.) | 61 (24) | | | |
| | | Outlet Nozzle | m (in.) | 51 (20) | | | |
| | | Dry Weight Pump | kg (lb) | 34,000 (75,000) | | | |
| | | <u>Motor</u> | | | | | |
| | | Size | MW (hp) | 1.95 (2,630) | | | |
| | | Dimensions w/coupling | m (ft) | 1.3 x 2.8
(4 x 9) | | | |
| | | Voltage | V | 4160 | | | |
| | | Cooling | | TBD | | | |
| | | Weight | kg (lb) | 7,300 (16,000) | | | |

Rockwell International

Energy Systems Group

DESIGN DATA SHEET

TITLE
Sodium Central Receiver Hybrid
Receiver Subsystem

NUMBER

WBS NO.

PAGE
7 of 14

DESIGN POINT

UNIT

VALUE

TENTATIVE

FIRM

REFERENCES AND REMARKS

| NEW REV | NO. | ITEM | UNIT | VALUE | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|----------------------------------|-------------------------|---|-----------|------|------------------------|
| | | Receiver Pump (Cont.) | | | | | |
| | | <u>Pump Operating Conditions</u> | | | | | |
| | | Developed Head | m (ft) | 206 (675) | | | |
| | | Flow Rate | kg/hr
(lb/hr) | 2.43 x 10 ⁶
(5.36 x 10 ⁶) | | | |
| | | Speed | rpm | 700 | | | |
| | | Temperature | °C (°F) | 288 (550) | | | |
| | | Sodium Volume | m ³ (gal) | 4.5 (1200) | | | |
| | | NPSH | m (ft) | 9.1 (30) | | | |
| | | Speed Control | % | Fixed Speed | | | |
| | | Pump Power ($\eta = 78\%$) | MW (hp) | 1.92 (2,610) | | | |
| | | <u>Design Conditions</u> | | | | | |
| | | Developed Head | m (ft) | 211 (691) | | | |
| | | Flow Rate | m ³ /s (gpm) | 0.8 (12,000) | | | |
| | | Speed | rpm | 700 | | | |
| | | Temperature | °C (°F) | 300 (600) | | | |
| | | NPSH (Minimum Required) | m (ft) | 9.1 (30) | | | |
| | | Code | | | | | Sect. VIII, Div. 1 |

| PREPARED BY | | APPROVED BY | | TITLE
Solar Central Receiver Hybrid
Receiver Subsystem | NUMBER | | |
|-------------|-----|------------------------------|--------------------------|--|-----------|---------|---------------------------|
| | | | | | | WBS NO. | PAGE
8 of 14 |
| NEW REV | NO. | ITEM | DESIGN POINT | | DATE | | |
| | | | UNIT | VALUE | TENTATIVE | FIRM | REFERENCES AND REMARKS |
| | | Steam Generator - Evaporator | | | | | |
| | | <u>Physical Description</u> | | | | | |
| | | Quantity | | 1 | | | |
| | | Type | | | | | Tube & Shell Hockey Stick |
| | | Height | m (ft) | 29.0 (95) | | | |
| | | Width | m (ft) | 4.87 (16) | | | |
| | | Shell diameter | m (in.) | 1.22 (48) | | | |
| | | Heat Transfer Area | m^2 (ft ²) | 1305 (14,039) | | | |
| | | Number of Tubes | | 1100 | | | |
| | | Tube Size | cm (in.) | 1.59 (5/8) | | | |
| | | Tube Wall Thickness | cm (in.) | 0.19 (0.075) | | | |
| | | Material | | 2-1/4 Cr - 1 Mo | | | |
| | | Sodium Nozzle OD/Thickness | cm (in.) | 91/2.5 (36/1.0) | | | |
| | | Tubesheet Diameter/Thickness | cm (in.) | 122/30.5 (48/12) | | | |
| | | Steam Nozzle OD/Thickness | cm (in.) | 201/3.8 (8/1.5) | | | |
| | | Weight | kg (ton) | 58,000 (64) | | | |

| | | DESIGN DATA SHEET | | TITLE
Solar Central Receiver Hybrid
Receiver Subsystem | | | NUMBER | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|---|------------------------------|---|--------------|--|------------|------|------------------------|------|------------------|---|--|--|--|--|-------------------|---------|-----------|--|--|--|--|--------------------|---------|-----------|--|--|--|--|---------------|----------------------------|------------|--|--|--|--|------|-----|-------|--|--|--|--|------|------------------|---|--|--|--|--|-------------------|---------|-----------|--|--|--|--|--------------------|---------|-----------|--|--|--|--|----------|-----------------------------|--------------|--|--|--|--|---------------|----------------------------|------------|--|--|--|--|----------------------|-----------------------------|------------|--|--|--|--|---------------------|------------------------------|--------------|--|--|--|--|
| PREPARED BY | | APPROVED BY | | | | | PAGE
9 of 14 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | WBS NO. | | | DATE | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | UNIT | VALUE | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| <p>Steam Generator - Evaporator (Cont.)</p> <p><u>Operating Conditions</u></p> <p>Sodium Side:</p> <table> <tbody> <tr> <td>Flow</td> <td>kg/hr
(lb/hr)</td> <td>2.43 x 10⁶
(5.36 x 10⁶)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Inlet Temperature</td> <td>°C (°F)</td> <td>462 (864)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Outlet Temperature</td> <td>°C (°F)</td> <td>288 (500)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure Drop</td> <td>MN/m²
(psi)</td> <td>0.207 (30)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Duty</td> <td>MWt</td> <td>148.6</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>Water/Steam:</p> <table> <tbody> <tr> <td>Flow</td> <td>kg/hr
(lb/hr)</td> <td>3.33 x 10⁵
(7.32 x 10⁵)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Inlet Temperature</td> <td>°C (°F)</td> <td>234 (453)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Outlet Temperature</td> <td>°C (°F)</td> <td>341 (646)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure</td> <td>MN/m²
(psia)</td> <td>15.06 (2185)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure Drop</td> <td>MN/m²
(psi)</td> <td>0.207 (30)</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>Design Conditions:</p> <table> <tbody> <tr> <td>Pressure-Sodium Side</td> <td>MN/m²
(psig)</td> <td>2.07 (300)</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure-Steam Side</td> <td>MN/hr²
(psig)</td> <td>16.55 (2400)</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> | | | | | | | | Flow | kg/hr
(lb/hr) | 2.43 x 10 ⁶
(5.36 x 10 ⁶) | | | | | Inlet Temperature | °C (°F) | 462 (864) | | | | | Outlet Temperature | °C (°F) | 288 (500) | | | | | Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | | | Duty | MWt | 148.6 | | | | | Flow | kg/hr
(lb/hr) | 3.33 x 10 ⁵
(7.32 x 10 ⁵) | | | | | Inlet Temperature | °C (°F) | 234 (453) | | | | | Outlet Temperature | °C (°F) | 341 (646) | | | | | Pressure | MN/m ²
(psia) | 15.06 (2185) | | | | | Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | | | Pressure-Sodium Side | MN/m ²
(psig) | 2.07 (300) | | | | | Pressure-Steam Side | MN/hr ²
(psig) | 16.55 (2400) | | | | |
| Flow | kg/hr
(lb/hr) | 2.43 x 10 ⁶
(5.36 x 10 ⁶) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Inlet Temperature | °C (°F) | 462 (864) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Outlet Temperature | °C (°F) | 288 (500) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Duty | MWt | 148.6 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Flow | kg/hr
(lb/hr) | 3.33 x 10 ⁵
(7.32 x 10 ⁵) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Inlet Temperature | °C (°F) | 234 (453) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Outlet Temperature | °C (°F) | 341 (646) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure | MN/m ²
(psia) | 15.06 (2185) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure-Sodium Side | MN/m ²
(psig) | 2.07 (300) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure-Steam Side | MN/hr ²
(psig) | 16.55 (2400) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

WBS NO.

PAGE

10 of 14

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|--------------------------------------|-----------------------------------|-----------------------|------------|------|---------------------------|
| | | | UNIT | VALUE | | | |
| | | Steam Generator - Evaporator (Cont.) | | | | | |
| | | Operating Conditions (Cont.) | | | | | |
| | | Design Conditions (Cont.) | | | | | |
| | | Temperature | °C (°F) | 482 (900) | | | |
| | | Code | | | | | ASME Section VIII, Div. 1 |
| | | Steam Generator - Superheater | | | | | |
| | | Physical Description | | | | | |
| | | Quantity | | 1 | | | |
| | | Type | | | | | Tube & Shell Hockey-Stick |
| | | Height | m (ft) | 27.7 (91) | | | |
| | | Width | m (ft) | 4.57 (15) | | | |
| | | Shell Diameter | m (in.) | 0.76 (30) | | | |
| | | Heat Transfer Area | m ² (ft ²) | 402.8 (4334) | | | |
| | | Number of Tubes | | 283 | | | |
| | | Tube Size | cm (in.) | 1.91 (3/4) | | | |
| | | Tube Wall Thickness | cm (in.) | 0.335 (0.132) | | | |
| | | Material | | SS 304 | | | |
| | | Sodium Nozzle OD/Thickness | cm (in.) | 45.7/2.54
(18/1.0) | | | |

Rockwell International

Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

WBS NO.

PAGE

11 of 14

DATE

| NEW
REV | NO. | ITEM | DESIGN POINT | | TEN-
TATIVE | FIRM | REFERENCES AND REMARKS |
|------------|-----|---------------------------------------|-----------------------------|--|----------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | Steam Generator - Superheater (Cont.) | | | | | |
| | | Physical Description (Cont.) | | | | | |
| | | Tubesheet Diameter/Thickness | cm (in.) | 76.2/20.3
(30/8) | | | |
| | | Steam Nozzle OD/Thickness | cm (in.) | 20, 3/3 (8/1.2) | | | |
| | | Weight | kg (ton) | 20,000 (22) | | | |
| | | Operating Conditions | | | | | |
| | | Sodium Side | | | | | |
| | | Flow | kg/hr
(lb/hr) | 1.67×10^6
(3.67×10^6) | | | |
| | | Inlet Temperature | °C (°F) | 593 (1100) | | | |
| | | Outlet Temperature | °C (°F) | 462 (864) | | | |
| | | Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | |
| | | Duty (Mwt) | | 76.1 | | | |
| | | Water/Steam: | | | | | |
| | | Flow | kg/hr
(lb/hr) | 3.32×10^5
(7.32×10^5) | | | |
| | | Inlet Temperature | °C (°F) | 341 (646) | | | |
| | | Outlet Temperature | °C (°F) | 538 (1000) | | | |
| | | Pressure | MN/m ²
(psig) | 13.0 (1880) | | | |

Rockwell International
Energy Systems Group

| | | DESIGN DATA SHEET | | TITLE
Solar Central Receiver Hybrid
Receiver Subsystem | | | NUMBER | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|---|-----------------------------------|-------------------|--------------|--|------------|------|--------------------------------|---------------|----------------------------|------------|--|--|--|--|--|--------------------|--|--|--|--|--|--|--|----------------------|-----------------------------|------------|--|--|--|--|--|---------------------|-----------------------------|-------------|--|--|--|--|--|-------------|---------|------------|--|--|--|--|--|------|--|--|--|--|--|--|--------------------------------|----------|--|---|--|--|--|--|--|------|--|--|--|--|--|--|---------------------------|--------|--------|-----------|--|--|--|--|--|-------|--------|-----------|--|--|--|--|--|----------------|---------|-----------|--|--|--|--|--|--------------------|-----------------------------------|--------------|--|--|--|--|--|-----------------|--|-----|--|--|--|--|--|-----------|----------|--------------|--|--|--|--|--|
| PREPARED BY | | APPROVED BY | | | | | PAGE
12 of 14 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | WBS NO. | | | DATE | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | | | UNIT | VALUE | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| <p>Steam Generator - Superheater (Cont.)</p> <p><u>Operating Conditions</u> (Cont.)</p> <p>Water/Steam: (Cont.)</p> <table> <tr> <td>Pressure Drop</td> <td>MN/m²
(psi)</td> <td>1.77 (256)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Design Conditions:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure-Sodium Side</td> <td>MN/m²
(psig)</td> <td>2.07 (300)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Pressure-Steam Side</td> <td>MN/m²
(psig)</td> <td>15.2 (2200)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Temperature</td> <td>°C (°F)</td> <td>593 (1100)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Code</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ASME, Section VIII, Division I</td> </tr> </table> <p>Steam Generator - Reheater</p> <p><u>Physical Description</u></p> <table> <tr> <td>Quantity</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Type</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Tube & Shell Hockey-Stick</td> </tr> <tr> <td>Height</td> <td>m (ft)</td> <td>20.1 (66)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Width</td> <td>m (ft)</td> <td>5.49 (18)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Shell Diameter</td> <td>m (in.)</td> <td>0.81 (32)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Heat Transfer Area</td> <td>m² (ft²)</td> <td>309.4 (3329)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Number of Tubes</td> <td></td> <td>163</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>Tube Size</td> <td>cm (in.)</td> <td>3.81 (1-1/2)</td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </table> | | | | | | | | Pressure Drop | MN/m ²
(psi) | 1.77 (256) | | | | | | Design Conditions: | | | | | | | | Pressure-Sodium Side | MN/m ²
(psig) | 2.07 (300) | | | | | | Pressure-Steam Side | MN/m ²
(psig) | 15.2 (2200) | | | | | | Temperature | °C (°F) | 593 (1100) | | | | | | Code | | | | | | | ASME, Section VIII, Division I | Quantity | | 1 | | | | | | Type | | | | | | | Tube & Shell Hockey-Stick | Height | m (ft) | 20.1 (66) | | | | | | Width | m (ft) | 5.49 (18) | | | | | | Shell Diameter | m (in.) | 0.81 (32) | | | | | | Heat Transfer Area | m ² (ft ²) | 309.4 (3329) | | | | | | Number of Tubes | | 163 | | | | | | Tube Size | cm (in.) | 3.81 (1-1/2) | | | | | |
| Pressure Drop | MN/m ²
(psi) | 1.77 (256) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Design Conditions: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure-Sodium Side | MN/m ²
(psig) | 2.07 (300) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Pressure-Steam Side | MN/m ²
(psig) | 15.2 (2200) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Temperature | °C (°F) | 593 (1100) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Code | | | | | | | ASME, Section VIII, Division I | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Quantity | | 1 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Type | | | | | | | Tube & Shell Hockey-Stick | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Height | m (ft) | 20.1 (66) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Width | m (ft) | 5.49 (18) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Shell Diameter | m (in.) | 0.81 (32) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Heat Transfer Area | m ² (ft ²) | 309.4 (3329) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Number of Tubes | | 163 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Tube Size | cm (in.) | 3.81 (1-1/2) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 13 of 14

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-------------------------------------|----------------------------|---|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | Steam Generator - Reheater (Cont.) | | | | | |
| | | <u>Physical Description (Cont.)</u> | | | | | |
| | | Tube Wall Thickness | cm (in.) | 0.272 (0.107) | | | |
| | | Material | | SS 304 | | | |
| | | Sodium Nozzle OD/Thickness | cm (in.) | 30.5/1.9
(12/.75) | | | |
| | | Tubesheet Diameter/Thickness | cm (in.) | 81.3/12.7 (32/5) | | | |
| | | Steam Nozzle OD/Thickness | cm (in.) | 16.8/15 (6.6/.6) | | | |
| | | Weight | kg (ton) | 22,000 (24) | | | |
| | | <u>Operating Conditions</u> | | | | | |
| | | Sodium Side: | | | | | |
| | | Flow | kg/hr
(lb/hr) | 0.76 x 10 ⁶
(1.68 x 10 ⁶) | | | |
| | | Inlet Temperature | °C (°F) | 593 (1100) | | | |
| | | Outlet Temperature | °C (°F) | 462 (864) | | | |
| | | Pressure Drop | MN/m ²
(psi) | 0.207 (30) | | | |
| | | Duty | MWt | 35.3 | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Receiver Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 14 of 14

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|------------------------------------|---|--|------------|------|--------------------------------|
| | | | UNIT | VALUE | | | |
| | | Steam Generator - Reheater (Cont.) | | | | | |
| | | Operating Conditions (Cont.) | | | | | |
| | | Water/Steam: | | | | | |
| | | Flow | kg/hr
(lb/hr) | 2.89×10^5
(6.36×10^5) | | | |
| | | Inlet Temperature | $^{\circ}\text{C}$ ($^{\circ}\text{F}$) | 342 (647) | | | |
| | | Outlet Temperature | $^{\circ}\text{C}$ ($^{\circ}\text{F}$) | 538 (1000) | | | |
| | | Pressure | MN/m^2
(psia) | 2.80 (406) | | | |
| | | Pressure Drop | MN/m^2
(psi) | 0.15 (22) | | | |
| | | Design Conditions: | | | | | |
| | | Pressure-Sodium Side | MN/m^2
(psig) | 2.07 (300) | | | |
| | | Pressure-Steam Side | MN/m^2
(psig) | 3.65 (530) | | | |
| | | Temperature | $^{\circ}\text{C}$ ($^{\circ}\text{F}$) | 593 (1100) | | | |
| | | Code | | | | | ASME, Section VIII, Division I |
| | | jlc:215 | | | | | |

NON SOLAR SUBSYSTEM

| Rockwell International
Energy Systems Group | | DESIGN DATA SHEET | | TITLE
Solar Central Receiver
Hybrid Power System Fossil
Heater | | | NUMBER |
|--|-----|--|----------------------------|---|-----------|------|--|
| PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W | | APPROVED BY | | WBS NO. | | | PAGE 1 of 8 |
| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| | | Sodium Heater(s) Required | | 1 | | | |
| | | Fuel | | Pulverized Coal | | | See Page 6 for coal characteristics |
| | | Function Design Point: Steady-State | | | | | |
| | | Heat Transfer to Sodium | MWt | 265 | | | Economics and availability favor coal over oil, gas, and syngas. Oil can be used as an alternate fuel in case of a coal shortage (i.e., heater sized for coal firing). |
| | | Sodium Flow | kg/hr
(lb/hr) | 2.5×10^6
(5.4×10^6) | | | |
| | | Sodium Pressure Drop | MN/m ² | $.483 \pm .035$ | | | |
| | | Sodium Pressure | (psi)
MN/m ² | (70 ± 5)
1.277 | | | |
| | | Sodium Discharge Temperature | °C (°F) | 593 (1100) | | | |
| | | Sodium ΔT | °C (°F) | 305 (550) | | | |
| | | Combustion Efficiency | percent | 87 | | | |
| | | Availability | percent | 90 | | | Based on higher heatingr value and maximum sodium flow |
| | | Operating Conditions: | | | | | |
| | | Continuously, Controllable Heat Transfer Range | MWt | 53 265 | | | |
| | | Minimum Sodium Flow | kg/hr
(lb/hr) | $490,090$
(1.08×10^6) | | | |
| | | Sodium Flow Transient | %/sec. | 1.0 | | | |

Rockwell International
Energy Systems Group

| DESIGN DATA SHEET | | TITLE
Solar Central Receiver
Hybrid Power System Fossil
Heater | | | NUMBER | | |
|--|-----|---|---|---|------------------------|------|---|
| PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W | | APPROVED BY | | | PAGE 2 of 8 | | |
| | | WBS NO. | | | DATE February 13, 1979 | | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| | | Fuel Handling Equipment: | | Direct feed
from pulverizers
to burners | | | This arrangement is chosen on
the basis of economics. A unit
turndown ratio of 5:1 can be
achieved with half of the burners
in operation. |
| | | Combustion Equipment: | | | | | |
| | | Total Heat Input From Fuel | MWt | 304.7 | | | |
| | | Total Air | percent | 115 | | | |
| | | Fuel Feed Rate | Metric ton
hr
(ton/hr) | 49.9 (55) | | | NO_x considerations
(B&W standards) |
| | | Pulverizers: | | | | | |
| | | Type | | ball and race | | | |
| | | Number | ea. | 4 | | | |
| | | Burners: | | | | | |
| | | Type | | dual register | | | Dual-register burners specified
for NO_x control. |
| | | Number | ea. | 8 | | | Burners and associated
pulverizers are operated as
complete units. |
| | | Minimum Secondary Air Temperature | $^{\circ}\text{C}$ ($^{\circ}\text{F}$) | 260 (500) | | | |
| | | Heat Input/Burner | (MWt) | 38.09 | | | |
| | | Burner Arrangement | | (2) horizontal rows | | | |
| | | | | (4) burners per row | | | |
| | | | | (2) burners (same row) | | | |
| | | | | per pulverizer | | | |
| | | | | | | | The arrangement was chosen to
achieve the maximum unit
turndown to add flexibility to
shut down a complete burner
row while maintaining good
distribution. |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE
Solar Central Receiver
Hybrid Power System
Fossil Heater

NUMBER

PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W

APPROVED BY

PAGE 3 of 8

WBS NO.

DATE February 13, 1979

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|--------------------------------------|---------------------------|--|------------|------|--|
| | | | UNIT | VALUE | | | |
| | | Structural Design: | | | | | |
| | | Useful Life | year | 30 | | | UCB Zone 3 |
| | | Structural Code | | | | | ASME Section VIII Division 1 |
| | | Pressure Vessel Code | | | | | ANSI B31.1 |
| | | Piping Code | | | | | TBD |
| | | Sodium Containment Material | | | | | |
| | | Sodium Corrosion Allowance | cm (in.) | .03 (0.01) | | | |
| | | Environmental Conditions: | | | | | |
| | | Wind Velocity | m/sec.
(mph) | 3.5 (8 ave.
55 max.) | | | A 10621, systems requirement
definition |
| | | Altitude | m (ft) | 730 (2400) | | | |
| | | Temperature | °C (°F) | -30 min.
+50 max.
(-20 min.
120 max.) | | | |
| | | Rainfall | cm (in.) | 101.6 (40 ave) | | | |
| | | Seismic | g | 0.2 horizontal
0.1 vertical | | | UCB Zone 3 (static analysis) |
| | | Interfaces: | | | | | |
| | | Main Sodium Inlet and Disch. Nozzles | cm x cm
(in. x
in.) | TBD | | | Welded - |
| | | Vents and Drains - Size and Number | cm (in.) | TBD | | | |
| | | Electric Power | kW | TBD | | | |
| | | Emergency Power | kW | TBD | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver
Hybrid Power System Fossil
Heater

NUMBER

PREPARED BY

W. W. Willcox, ESG
J. Slavens, B&W

APPROVED BY

PAGE 4 of 8

WBS NO.

DATE February 13, 1979

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-----------------------------------|-----------------------------|--|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | Uninterruptable Power | kW | TBD | | | |
| | | Fuel Oil - Size and Numner | cm (in.) | TBD | | | |
| | | Nitrogen | | TBD | | | |
| | | Argon | | TBD | | | |
| | | Plant Control | | TBD | | | |
| | | Plant Protection | | TBD | | | |
| | | Natural Gas | | TBD | | | |
| | | Baseline Design Details: | | | | | |
| | | Size: | | | | | |
| | | Plan | m x m
(ft x ft) | 10 x 8.2
(33 x 27) | | | |
| | | Height | m (ft) | 27.4 (90) | | | |
| | | Stack Height | m (ft) | (TBD) | | | |
| | | Thermohydraulics: | | | | | |
| | | Sodium Flow | kg/hr
(lb/hr) | 2.5×10^6
(5.4×10^6) | | | |
| | | Sodium In-Out Temperature | °C (°F) | 305-593
(550-1100) | | | |
| | | Sodium In-Out Pressure | MN/m ²
(psig) | 1.28-1.25
(185-115) | | | |
| | | Heat Release | MWt | 304.7 | | | |
| | | Heat Absorption - Radiant Section | MWt | 121.9 | | | |
| | | Flux Density - Radiant Section | MWt/m ² | 0.16 | | | |

| DESIGN DATA SHEET | | TITLE
Solar Central Receiver
Hybrid Power System Fossil
Heater | | | NUMBER | | |
|--|-----|---|--------------------|-----------------------------------|------------------------|------|------------------------|
| PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W | | APPROVED BY | | | PAGE 5 of 8 | | |
| | | WBS NO. | | | DATE February 13, 1979 | | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| | | Heat Absorption - Convection Section | MWt | 143.1 | | | |
| | | Flux Density - Convection Section | MWt/m ² | .023 | | | |
| | | Air Preheat Exchange | MWt | 26.4 | | | |
| | | Hot-Gas Flow | kg/hr
(lb/hr) | 454,540
(1 x 10 ⁶) | | | |
| | | Calculated Efficiency | percent | 87 | | | |
| | | Radiation Loss | percent | .23 | | | |
| | | Flue Gas Temperature: | °C (°F) | | | | |
| | | Leaving Radiant Section | | 1149 (2100) | | | |
| | | Leaving H.T. Convection | | 788 (1450) | | | |
| | | Leaving L.T. Convection | | 371 (700) | | | |
| | | Leaving Air Convection | | 149 (300) | | | |
| | | Air Temperature: | | | | | |
| | | Ambient | | 28 (83) | | | |
| | | Leaving Air Heater | | 260 (500) | | | |
| | | Sodium Temperature: | | | | | |
| | | Inlet | | 288 (550) | | | |
| | | Leaving L.T. Convection | | 372 (701) | | | |
| | | Leaving Radiant Section | | 514 (958) | | | |
| | | Leaving H.T. Convection | | 593 (1100) | | | |

Rockwell International
Energy Systems Group

| PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W | | APPROVED BY | | TITLE
Solar Central Receiver
Hybrid Power System Fossil
Heater | | | NUMBER | |
|--|-----|-------------------------------|--------------------|---|--|------------|------------------------|--|
| | | | | WBS NO. | | | PAGE 6 of 8 | |
| | | | | | | | DATE February 13, 1979 | |
| NEW REV | NO. | ITEM | DESIGN POINT | | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | | |
| | | Fuel Characteristics: | | | | | | |
| | | Type | | | | | | ASTM Class III Group 2 coal
(subbituminous) |
| | | Origin | | | | | | Colorado - Grant Mine |
| | | Proximate Analysis (As-Fired) | wt % | | | | | |
| | | Moisture | | 20.8 | | | | |
| | | Volatile Material | | 30.0 | | | | |
| | | Fixed Carbon | | 43.8 | | | | |
| | | Ash | | 5.4 | | | | |
| | | Heat Value (Higher) | kWt/kg
(Btu/lb) | 6.2
(9670) | | | | |
| | | Fuel Ultimate Analysis: | As-fired
wt % | | | | | |
| | | Ash | | 5.4 | | | | |
| | | S | | 0.6 | | | | |
| | | H ₂ | | 3.2 | | | | |
| | | C | | 57.6 | | | | |
| | | Moisture | | 20.8 | | | | |
| | | N ₂ | | 1.2 | | | | |
| | | O ₂ | | 11.2 | | | | |

Rockwell International
Energy Systems Group

PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W

DESIGN DATA SHEET

TITLE

Solar Central Receiver
Hybrid Power System Fossil
Heater

NUMBER

PAGE 7 of 8

WBS NO.

DATE February 13, 1979

| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-------------------------------|---|---|-----------|------|---|
| | | | UNIT | VALUE | | | |
| | | Heat Transfer Surface: | | | | | |
| | | Tube OD | cm (in.) | 2.2 (.875)
6.35 (2.5)
6.35 (2.5) | | | Radiant section
H.T. convection section
L.T. convection section |
| | | Inside Film Coefficient | W/cm/ ⁰ C
(Btu/hr/ ⁰ F/ft ²) | 26 (1500)
17.3 (1000)
17.3 (1000) | | | Radiant section
H.T. convection section
L.T. convection section |
| | | Max. Tube Wall Temperature | °C (°F) | 517 (963)
596 (1105)
374 (706) | | | Radiant section
H.T. convection section
L.T. convection section |
| | | Number of Passes | | 1
21
56 | | | Radiant section
H.T. convection section
L.T. convection section |
| | | Overall Tube Length | m (ft) | 22.9 (75)
89.6 (294)
186.6 (612) | | | Radiant section
H.T. convection section
L.T. convection section |
| | | Total Contained Sodium Volume | m ³ (ft ³) | TBD | | | |
| | | Forced-Draft Fans: | | | | | |
| | | Number | | 1 | | | |
| | | Volumetric Flow | m ³ /min
(cfm) | 6.27 x 10 ⁷
(6.75 x 10 ⁸) | | | |
| | | Discharge Pressure | MN/m ²
(in H ₂ O) | TBD | | | |
| | | Horsepower | | TBD | | | |
| | | RPM | | TBD | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver
Hybrid Power System Fossil
Heater

NUMBER

WBS NO.

PAGE 8 of 8

DATE February 13, 1979

PREPARED BY
W. W. Willcox, ESG
J. Slavens, B&W

APPROVED BY

| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|------------------------|--|------------|-----------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | Induced-Draft Fans: | | | | | |
| | | Number | | 1 | | | |
| | | Suction Pressure | MN/m ²
(in H ₂ O) | TBD
TBD | | | |
| | | Horsepower | | TBD | | | |
| | | RPM | | TBD | | | |
| | | Water Required | kg/sec.
(gpm) | TBD | | | |
| | | Electrical Power | kW/hr | TBD | | | |
| | | Gas Recirculation Fan: | | | | | |
| | | Number | | 1 | | | |
| | | Discharge Pressure | MN/m ²
(in H ₂ O) | TBD
TBD | | | |
| | | Horsepower | | TBD | | | |
| | | RPM | | TBD | | | |

**SOLAR CENTRAL RECEIVER HYBRID POWER SYSTEM
COLLECTOR SUBSYSTEM**

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

SOLAR CENTRAL RECEIVER
HYBRID COLLECTOR SUBSYSTEM

NUMBER

PREPARED BY

APPROVED BY

WBS NO.

PAGE 1 of 3

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|---|---|--------------------|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>General</u> | | | | | |
| | | Total Field Area
(Excluding Central Exclusion) | 10^6 m^2
(10^6 ft^2) | 0.60
(6.0) | | | |
| | | Number of Heliostats | -- | 8,464
Inverted | | | |
| | | Total Mirror Area | 10^6 m^2
(10^6 ft^2) | .126
(1.36) | | | |
| | | Peak Power @ 950 W/m^2 | MW | 2.35 | | | |
| | | Annual Collectable Energy | MWH _t | 547,000 | | | |
| | | Tower Height | m (ft) | 129 (423) | | | |
| | | Receiver Centerline Elevation | m (ft) | 135 (443) | | | |
| | | Heliostat Arrangement | -- | Radial
Stagger | | | |
| | | Aim Strategy | -- | 1-Point
Equator | | | |
| | | Peak Receiver Heat Flux | MW/m ² | 1.37 | | | |

Rockwell International

Energy Systems Group

| Rockwell International
Energy Systems Group | | DESIGN DATA SHEET | | TITLE
SOLAR CENTRAL RECEIVER
HYBRID COLLECTOR SUBSYSTEM | | | NUMBER |
|--|-----|-------------------------|-----------------------------------|---|------------|------|------------------------|
| PREPARED BY | | APPROVED BY | | WBS NO. | | | PAGE 2 of 3 |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| | | <u>Helio</u> stat | | | | | |
| | | Reflector Shape | -- | Square | | | |
| | | Reflector Envelope | m
(ft) | 7.0 x 7.0
(23.0 x 23.0) | | | |
| | | Mirror Type | | Second Surface, silvered fusion/float laminated glass | | | |
| | | Mirror Area | m ² (ft ²) | 49.0 (527) | | | |
| | | Average Reflectivity | | 0.91 | | | |
| | | Drive System | | | | | |
| | | Elevation | | Dual screw jacks
3 Ø, 480V ac | | | |
| | | Azimuth | | Harmonic drive
3 Ø, 480V ac | | | |
| | | Reflected Beam Accuracy | (mr) | 2.83 | | | |
| | | Drive Rate | | | | | |
| | | Elevation | Deg/min | 15 | | | |
| | | Azimuth | Deg/min | 15 | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

SOLAR CENTRAL RECEIVER
HYBRID COLLECTOR SUBSYSTEM

NUMBER

PREPARED BY

APPROVED BY

WBS NO.

PAGE 3 of 3

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|---|--------------|--------------|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | Cant Range | m (ft) | 1190 (3900) | | | |
| | | Electrical Draw | | | | | |
| | | Motor Running (Steady State) | amp | 1.5 | | | |
| | | Motor Start Surge Current | amp | 3.0 | | | |
| | | Time Average Power Draw
(per Heliostat Incl Electronics) | Watts | ~ 39 | | | |
| | | Individual Heliostat Availability | -- | 0.9999 | | | |
| | | Field Electronics | | | | | |
| | | Primary Feeder Power | Voltage | 4160 | | | |
| | | Primary Feeder Cable | Awg | #4 | | | |
| | | Secondary Feeder Power | Voltage | 480 | | | |
| | | Data Network | -- | Fiber Optics | | | |

**SOLAR CENTRAL RECEIVER HYBRID POWER SYSTEM
THERMAL STORAGE SUBSYSTEM
ALL-SODIUM STORAGE**

DESIGN DATA SHEET**TITLE**Solar Central Receiver Hybrid
Thermal Storage Subsystem**NUMBER**

PREPARED BY

APPROVED BY

PAGE 1 of 4

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|---------------------------------------|--------------|--|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| | | <u>Thermal Storage Subsystem</u> | | | | | |
| | | Storage Material | | Sodium | | | |
| | | Number of Tanks | | 1 | | | |
| | | Thermal Storage Capacity | MWt | 156 | | | |
| | | Maximum Charging Rate | MWt | 260 | | | |
| | | Maximum Extraction Rate | MWt | 260 | | | |
| | | Time at Maximum Extraction Rate | hr | 0.6 | | | |
| | | Weight of Sodium in Subsystem | kg (lb) | 1.5×10^6
(3.3×10^6) | | | |
| | | Temperature - Cold Tank Storage | °C (°F) | 288 (550) | | | |
| | | Large Valves - 25.4-cm (10-in.) Block | | 2 | | | CS and SS |
| | | - 25.4-cm (10-in.) Drag | | 1 | | | SS |
| | | Large Pipe Length - 25.4 cm (10 in.) | in (ft) | 73 (240) | | | CS, Standard Wall |
| | | - 25.4 cm (10 in.) | in (ft) | 107 (350) | | | SS, Standard Wall |
| | | <u>Low-Temperature Sodium Tank</u> | | | | | |
| | | Number | | 1 | | | |
| | | Type | | | | | Cylindrical API Type |
| | | Diameter | m (ft) | 17.5 (56) | | | |
| | | Height | m (ft) | 6.6 (21) | | | |

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Thermal Storage Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 2 of 4

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TENTATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|--|-------------------------|--------------------------------|-----------|------|---|
| | | | UNIT | VALUE | | | |
| | | <u>Low-Temperature Sodium Tank (Continued)</u> | | | | | |
| | | Wall Thickness | | | | | |
| | | Top | cm (in.) | 0.64 (0.25) | | | |
| | | Bottom | cm (in.) | 2.5 (1.0) | | | |
| | | Volume | m ³ (gal) | 1,476 (3.9 x 10 ⁵) | | | |
| | | Tank Material | | | | | Carbon Steel |
| | | Insulation, Roof, and Walls | cm (in.) | 15.2 (6) | | | Calcium Silicate with Aluminum Weather Protection |
| | | Base Insulation | m (ft) | 1 (3) | | | Perlitic Concrete |
| | | Electric Preheat-Temperature Maintenance | kW | 274 | | | Low Sodium Temperature |
| | | Low Sodium Temperature | °C (°F) | 288 (55) | | | |
| | | Ullage Maintenance Unit | | | | | |
| | | Ullage Pressure | MN/m ² (psi) | 0.0069 (1) | | | |
| | | Pressurization Media | | | | | |
| | | <u>High-Temperature Sodium Tank</u> | | | | | |
| | | Type | | | | | Cylindrical Medium Pressure |
| | | Diameter | m (ft) | 17.5 (56) | | | |
| | | Height | m (ft) | 7.2 (23) | | | |
| | | Wall Thickness | | | | | |
| | | Top | cm (in.) | 0.64 (0.25) | | | |
| | | Bottom | cm (in.) | 5.1 (2.0) | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Thermal Storage Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 3 of 4

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|---|---|---------------------------|------------|------|---|
| | | | UNIT | VALUE | | | |
| | | <u>High-Temperature Sodium Tank (Continued)</u> | | | | | |
| | | Volume | m^3 (gal) | $1,590 (4.2 \times 10^5)$ | | | |
| | | Tank Material, Thickness | cm (in.) | 0.64 (0.25 - 2.5 (1.0) | | | Type 304 SS |
| | | Insulation, Roof, and Walls | cm (in.) | 30.5 (12) | | | Calcium Silicate with Aluminum Weather Protection |
| | | Base Insulation | m (ft) | 1 (3) | | | Perlitic Concrete |
| | | Electric Preheat-Temperature Maintenance | kW | 540 | | | |
| | | Number of High-Temperature Tanks | | 1 | | | |
| | | High Sodium Temperature | $^{\circ}\text{C}$ ($^{\circ}\text{F}$) | 593 (1,100) | | | |
| | | Ullage Maintenance Unit | | Argon | | | |
| | | Ullage Pressure | MN/m^2 (psia) | 1.4 (200) | | | |
| | | <u>Drag Valve</u> | | | | | |
| | | Location | | | | | Upstream of High-Temperature Sodium Storage Tank |
| | | Type | | | | | Babcock-Wilcox Drag Valve with Velocity Control Elements Type SL II |
| | | Size (nominal) | in. | 10 | | | |

Rockwell International

DESIGN DATA SHEET

TITLE
Solar Central Receiver Hybrid
Thermal Storage Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE

4 of 4

WBS NO.

DATA

| NEW
REV | NO. | ITEM | DESIGN POINT | | TEN-
TATIVE | FIRM | REFERENCES AND REMARKS |
|------------|-----|-------------------------------|--|---------------|----------------|------|---|
| | | | UNIT | VALUE | | | |
| | | <u>Drag Valve (Continued)</u> | | | | | |
| | | Flow Rate | m^3/s
(gpm) | 0.77 (12,200) | | | |
| | | Pressure Drop | MN/m^2
(psi) | 1.74 (253) | | | |
| | | Pressure Rating | MN/m^2
(psi) | 2.75 (400) | | | |
| | | Temperature | $^{\circ}C$ ($^{\circ}F$) | 649 (1,200) | | | |
| | | Flow Coefficient, C_v | $m^3/sec/\sqrt{MN/m^2}$
(gpm/
\sqrt{psi}) | .582 (767) | | | |
| | | Operator | | | | | Yes--Type TBD |
| | | Insulation | | | | | Calcium Silicate |
| | | Material | in. | 8 | | | Stainless Steel; Inconel
Velocity Control Elements |
| | | Pressure Class | | | | | ANSI 2,500 lb |

**SOLAR CENTRAL RECEIVER HYBRID POWER SYSTEM
MASTER CONTROL SUBSYSTEM**

Rockwell International
Energy Systems Group

| PREPARED BY | | APPROVED BY | | TITLE
SOLAR CENTRAL RECEIVER HYBRID
MASTER CONTROL SUBSYSTEM | | | NUMBER | |
|-------------|-----|---|--------------|--|------------|------|------------------------|--|
| | | | | WBS NO. | | | PAGE 1 of 3 | |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS | |
| | | | UNIT | VALUE | | | | |
| N | 1 | Plant Central Control Console (1) | | | | | | |
| | | Length | ft | 25 | | | | |
| | | Depth | ft | 2 | | | | |
| | | Height | ft | 4 | | | | |
| R | 2 | Control Processors (5) | | | | | | |
| | | Throughput | KOPS/sec | 350 | | | | |
| | | Primary Storage Capacity | 16 bit words | 48,000 | | | | |
| R | 3 | Secondary Control Processor Storage (5) | | | | | | |
| | | Capacity | Megabits | .25 | | | | |
| | | Access Time | Msec | 35 | | | | |
| | | Latency | Msec | 15 | | | | |
| N | 4 | Hardcopy Logger (2) | | | | | | |
| | | Characters | Per Line | 132 | | | | |
| | | Speed | Lines/Min | 300 | | | | |
| N | 5 | Recorders, Magnetic (2) | | | | | | |
| | | Density | Bits/in. | 500/800 | | | | |
| | | Speed | in./sec | 45 | | | | |
| N | 6 | Safing - Control Panel (1) | | | | | | |
| | | | TBD | TBD | | | | |
| H | 7 | Serial Digital Data Bus (2) | | | | | | |
| | | Throughout | <bits/sec | 1500 | | | | |
| R | 8 | Color CRT Displays (5) | | | | | | |
| | | Raster Scan | No. Lines | 256 x 512 | | | | |
| | | Colors | No. | 4 | | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

SOLAR CENTRAL RECEIVER HYBRID
MASTER CONTROL SUBSYSTEM

NUMBER

PREPARED BY

APPROVED BY

PAGE 2 of 3

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|-------------------------------|--------------|------------|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| N | 9 | PID Controllers (100) | | | | | |
| | | Microprocessor Loop | Update Rate | Per sec | 3 | | |
| | | Scaling | % | 0 - 100 | | | |
| | | Resolution | Bits | 12 | | | |
| | | Output | MV | 4-20 | | | |
| N | 10 | Discrete Controllers (125) | | | | | |
| | | Resolution | Bits | 12 | | | |
| | | Output | MV | 4-20 | | | |
| N | 11 | Analog Data Acquisition (350) | | | | | |
| | | Normal Rate | Chan/sec | 350 | | | |
| | | Emergency Rate | Chan/sec | 200,000 | | | |
| | | Resolution | Bits | 12 | | | |
| | | Multiplexing | Type | Sequential | | | |
| N | 12 | Analog Outputs (TBD) | | | | | |
| N | 13 | Closed-Circuit Television (4) | | | | | |
| | | Monitor Size | In. | 19 | | | |
| | | Camera | TBD | TBD | | | |
| | | Auto Pan/Tilt | Degrees | 90 | | | |
| | | Zoom | TBD | TBD | | | |
| N | 14 | Uninterruptible Power Source | | | | | |
| | | Ten input | V ac | 115 ±10% | | | |
| | | Regulated 10 output | V ac | 115 ±2% | | | |
| | | Storage Battery Capacity | KVA | .5 | | | |
| | | Derated Power | | TBD | | | |

Rockwell International
Energy Systems Group

| | | DESIGN DATA SHEET | | TITLE
SOLAR CENTRAL RECEIVER HYBRID
MASTER CONTROL SUBSYSTEM | | | NUMBER |
|-------------|-----|--|---|--|------------|------|------------------------|
| PREPARED BY | | APPROVED BY | | | | | PAGE 3 of 3 |
| | | | | WBS NO. | | | DATE |
| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
| | | | UNIT | VALUE | | | |
| N | 15 | Time of Day Reference
Input-WWV Synch.
Output - Time of Day BCD Format | Hertz | 1000 | | | |
| N | 16 | Annunciator Panel | Bits | 31 | | | |
| N | 17 | Local Weather Station Wind
Barometric Pressure
Humidity
Solar Radiation
Precipitation
Temperature | Functions
MPH
Degrees
in./HG
Percent/Rel
9M/CM ² /min
in.
deg F | 25
80
360
26-34
0-100
.36-2.0 microns
20
-15, +50 | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE
BEAM SOLAR CENTRAL RECEIVER
HYBRID MASTER CONTROL CHARACTER-
IZATION SUBSYSTEM

NUMBER

WBS NO.

PAGE 1 of 2

DATE

PREPARED BY

APPROVED BY

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-
TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|---|------------------------|-----------------|----------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| N | 1 | Video Camera System (4) | Ambient Temp C | -20 to +60 | | | |
| | | Self-Contained Camera including Environmental Housing and Sync Generator | Weight -# | 27 | | | |
| | | | Volume -M ³ | .34 | | | |
| | | Lens | Speed | f 2.8 | | | |
| | | | Focal Length | 32-320 MM Zoom | | | |
| N | 2 | Video Signal Processing System. Composite Video Input, Serial Digital Output. (4) | A/D Conversion | Word Length-bit | 10 | | |
| | | | Conversion Time- S | 32 | | | |
| | | Controller | TBD | | | | |
| | | Line Driver | Level - Diff Volts | 0.25 | | | |
| | | | Distance - M. | 1500 | | | |

Rockwell International

Energy Systems Group

DESIGN DATA SHEET

TITLE

BEAM SOLAR CENTRAL RECEIVER
HYBRID MASTER CONTROL CHARACTER-
IZATION SUBSYSTEM

NUMBER

PREPARED BY

APPROVED BY

WBS NO.

PAGE 2 OF 2

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|--|-------------------|------------------------|------------|------|------------------------|
| | | | UNIT | VALUE | | | |
| N | 3 | Target Panels, Tower Mounted 1/4-in.
Steel, Painted (4) | Size -
M. | Approx.
12 x 12 | | | |
| N | 4 | Target Instrumentation System (4)
Radiance Sensors
Shutter Controller
MUX - A/D | TBD
TBD
TBD | | | | |
| N | 5 | Data Line - RG-11/U (5) | | Avg. length 1000
M. | | | |

**SOLAR CENTRAL RECEIVER HYBRID POWER SYSTEM
ELECTRIC POWER GENERATION**

Rockwell International

Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Electrical Power Generation
Subsystem

NUMBER

WBS NO.

PAGE 1 of 3

DESIGN POINT

UNIT

VALUE

TEN-
TATIVE

FIRM

REFERENCES AND REMARKS

| NEW REV | NO. | ITEM | UNIT | VALUE | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|--|------|-----------------|------------|------|--|
| | | <u>Turbine</u> | | | | | |
| | | Type | | | | | Tandem Compound, Double-Flow, Extraction, Condensing Turbine |
| | | Rating (kWe) | | 112,000 | | | |
| | | Heater Extractions | | 6 | | | |
| | | Shaft Speed (rpm) | | 3,600 | | | |
| | | Last Stage Bucket Size, cm (in.) | | 58.4 (23) | | | |
| | | Throttle Flow Control Mode | | | | | Steam Generator/Turbine Coordinated Control |
| | | <u>Generator</u> | | | | | |
| | | Generator Rating (kVA) | | 130,000 | | | |
| | | Power Factor | | 0.9 | | | |
| | | Output Voltage (v) | | 13,800 | | | |
| | | Frequency (hz) | | 60 | | | |
| | | Cooling | | | | | Hydrogen Cooled |
| | | Exciter | | | | | Static Excitation System |
| | | Shaft Speed (rpm) | | 3,600 | | | |
| | | <u>Condenser</u> | | | | | |
| | | Type | | | | | Shell and Tube, Two-Pass |
| | | Surface, m ² (ft ³) | | 9,431 (101,500) | | | |
| | | Tube Material | | 90-10 Copper | | | ASTM BIII, Alloy 706 |
| | | Tube Diameter OD, mm (in.) | | 22.2 (0.875) | | | |

Rockwell International

Energy Systems Group

| PREPARED BY | | APPROVED BY | | TITLE | | | NUMBER |
|-------------|-----|---|-------------------------------|--------------|---|-----------|-------------|
| | | Solar Central Receiver Hybrid
Electrical Power Generation
Subsystem | | | WBS NO. | | |
| | | | | | | | PAGE 2 of 3 |
| NEW REV | NO. | ITEM | | DESIGN POINT | | TENTATIVE | DATE |
| | | UNIT | VALUE | FIRM | REFERENCES AND REMARKS | | |
| | | <u>Condenser (Continued)</u> | | | | | |
| | | Tube Wall Thickness, mm (in.) | 0.89 (0.035) | | 20 BWG | | |
| | | Tube Length, Effect, m (ft) | 8.54 (28) | | | | |
| | | Condenser Pressure, kPa (in.-HgA) | 6.71 (2.0) | | | | |
| | | Heat Rejection, MW (Btu/hr) | 1.73 (590 x 10 ⁶) | | | | |
| | | Cooling Water Flow, m ³ (gpm) | 5.3 (84,250) | | | | |
| | | Water Velocity, m/s (fps) | 2.13 (7.00) | | | | |
| | | Cooling Water In, °C (°F) | 31.1 (88.0) | | | | |
| | | Cooling Water Out, °C (°F) | 39.0 (102.0) | | | | |
| | | Condenser Air Removal | - | | Mechanical Vacuum Pump
(Two-full capacity) | | |
| | | <u>Cooling Tower</u> | | | | | |
| | | Quantity | 1 | | | | |
| | | Type | | | Mechanical Draft, Cross Flow | | |
| | | Number of Cells | 5 | | | | |
| | | Fan Motor Size, kW (hp) | 5-150 (200) | | | | |
| | | Design Wet Bulb Temperature, °C (°F) | 23 (73.4) | | | | |
| | | Cold Water Temperature, °C (°F) | 31.1 (88.0) | | | | |
| | | Hot Water Temperature, °C (°F) | 39.0 (102.0) | | | | |
| | | Circulating Water Flow, m ³ /s (gpm) | 5.3 (84,250) | | | | |
| | | Heat Rejection, MW (Btu/hr) | 173 (590 x 10 ⁶) | | | | |

Rockwell International
Energy Systems Group

DESIGN DATA SHEET

TITLE

Solar Central Receiver Hybrid
Electrical Power Generation
Subsystem

NUMBER

PREPARED BY

APPROVED BY

PAGE 3 of 3

WBS NO.

DATE

| NEW REV | NO. | ITEM | DESIGN POINT | | TEN-TATIVE | FIRM | REFERENCES AND REMARKS |
|---------|-----|------------------------------------|--------------|-------|------------|------|--|
| | | | UNIT | VALUE | | | |
| | | <u>Feedwater Heaters</u> | | | | | |
| | | Low-Pressure Heater | Number | 2 | | | Horizontal, Stainless Steel Tubes, Carbon Steel Shell with Drain Cooler, Maximum Tube Side Pressure: 2.2 MPa (315 psia) |
| | | Deaerator | Number | 1 | | | Stainless Steel Trays and Vent Condenser, Carbon Steel Shell, Horizontal Condensate Storage Section, 75.7 m ³ (20,000 gal), Pressure Rating: 0.45 MPa (65 psia) |
| | | High-Pressure Heater | Number | 3 | | | Horizontal, Carbon Steel Tubes, Carbon Steel Shell with Drain Cooler, Maximum Tube Side Pressure: 17.23 MPa (2,500 psia) |
| | | <u>Feedwater Treatment</u> | | | | | |
| | | Equipment | | | | | |
| | | - In-Line Polishing Demineralizers | | | | | Two Full-Capacity Units |
| | | - Makeup Water Demineralizers | | | | | Two Full-Capacity Units |
| | | Chemicals | | | | | |
| | | - pH Control | | | | | Ammonia |
| | | - Oxygen Scavenger | | | | | Hydrazine |
| | | | | | | | |

dmr:216