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A nodal method is developed for the solution of the multigroup neutron-
diffusion equation in three—dimensional hexagonal-z geometry. The method
employs an extension to hexagonal geometry of the transverse—integration

" procedure used extensively in the development of nodal schemes in Cartesian

geometry. The partially-integrated fluxes in the three hex-plane directions
are approximated by a polynomial tailored to the unique properties of the
transverse—integrated equations in hexagonal geometry. The final equations,
which are cast in the form of local inhomogeneous response matrix equations
for each energy group, involve spatial moments of the node-interior flux
distribution plus surface-averaged partial currents across the faces of the

node.

Numerical calculations for models of heterogeneous—core LMFBR designs
have shown the accuracy of the nodal scheme to be superior to that of the
mesh~centered finite difference method using six triangular mesh cells per
hexagonal fuel assembly. Particular improvement is seen in the average fluxes
in the internal blanket regions and in the computed values for k~effective,
thus leading to more accurate predictions of internal blanket burnups,
breeding ratios, and burnup reactivity swings. This enhanced accuracy is
obtalned with a potential order—of-magnitude reduction in the computational

cost of a three-dimensional calculation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

cmployees, makes any warranty, express or implied, or assumes any legal liability or responsi-

P : bility for the accuracy, completeness, or uscfulness of any information, apparatus, product, or

i process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed hercin do not necessarily state or reflect those of the
United States Government or any agency thereof,

*Work supported by the U. S. vepaciment oL cnecgye.

MAS].ER #STRIMITON OF THIS BOSUMERT 15 RLIMITED gﬁ B



A NODAL METHOD FOR THREE-DIMENSIONAL
FAST REACTOR CALCULATIONS IN HEXAGONAL GEOMETRY

INTRODUCTION

The physics and safety analysis of current Liquid Metal Fast Breeder
Reactor (LMFBR) designs requires the capability to compute accurate numerical
solutions in the neutron diffusion equation in three—-dimensional hexagonal-z
geometry. These neutronics calculations are generally performed within the
U.S. fast reactor program using either standard mesh—centered finite difference
codes! or flux synthesis methods such as the single-channel flux synthesis
code SYN3D (Ref. 2). Due to the large number of unknowns involved, these
calculations can be very expensive, particularly for fuel management studies
which require repeated solution of the diffusion equation.

At Argonne National Laboratory, depletion calculations using the burnup
code REBUS-3 (Ref. 3) are performed routinely in support of ongoing fast
reactor design and analysis activities. The depletion calculation in REBUS-3
requires average group fluxes for burnup zones (over which the cross sections
are taken to be spatially constant) defined such that each zone is composed of
at least one hexagonal fuel assembly with an axial zone dimension of approxi-
mately 15 cm. A standard finite difference neutronics calculation requires
six triangular mesh cells per hexagonal fuel assembly and an axial mesh
spacing of approximately 5 cm in order to reduce spatial truncation errors to
an acceptable level. Since only the zone—averaged fluxes are required for the
actual depletion calculation, it is clear that a significant reduction in the
overall computational expense can be achieved by reducing the number of mesh-
noints used to approximate the flux in each burnup zone. Thus there exists a
strong motivation to develop a diffusion-theory method which will compute
accurate fluxes and eigenvalues when applied on a mesh defined by the dimen-—
aions of the hexagonal fuel assemblies and the axial zone boundaries.

Nodal methods comprise a class of coarse—-mesh numerical methods which
1ave demonstrated considerable potential for the analysis of light water
reactors in Cartesian geometry. Many of the earlier nodal schemes" involved
empirical coupling parameters which were determined from the results of
detailed fine-mesh calculations or from actual operating data. Nodal schemes
developed in the past eight years have, for the most part, eliminated the need
for empirical constants by computing the inter-node coupling relationships
using higher-order approximations to the diffusion equation. Thus, unlike
the earlier ad—-hoc methods, these more recent nodal schemes can be viewed as
coarse—mesh approximations to the neutron diffusion equation, and can thus be
expected to converge to the exact solution of the diffusion equation in the

limit as the mesh spacing goes to zero.
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- " The success of these Cartesian-geometry schemes has prompted the more
recent development of analogous techniques®~® for fast reactor calculations
~ in hexagonal geometry. The nodal method 89 described in this paper is based

on a response matrix formulation in which the principal unknowns are surface-

averaged partial currents across the nodal interfaces and spatial moments of
~_ the node-interior flux distribution. The response matrix equations are

derived using an extension to hexagonal geometry of the transverse integra-
tion procedure® widely used in the development of Cartesian-geometry nodal
_schemes. Since these equations are written separately for each energy group,
application of the method to multigroup calculations is straightforward.

¥

DERIVATION OF THE NODAL EQUATIONS

- THE NODAL BALANCE EQUATION

The starting point in the derivation of the nodal scheme is the nodal
balance equation obtained by integrating the multigroup neutron diffusion
equation over a homogeneous hexagonal-z node. Using the orientation shown
in Figure 1, with the origin (in local coordinates) taken as the center of

the node, the k=th node is defined by
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h is the lattice pitch, and azK 1s the axial mesh spacing. Integrating
the diffusion equation over the k—th node and then dividing by the node
volume VK yields the nodal balance equation
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and 6k 1s the node—averaged multigroup source ferm due to fission and
in-scatter into group g. The remaining terms in Eq. (2) are leakages in
the three hex—plane directions and in the axlal direction, e.g. .
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where jkx(thZ) and jgz(tAzkIZ) are surface-normal components of

the net current averaged over the x— and z-directed faces:
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THE TRANSVERSE INTEGRATION PROCEDURE IN HEXAGONAL GEOMETRY

The equations for the face-averaged partial currents required for
the evaluation of the leakages in Eq. (2) are derived via an extension
to hexagonal geometry of the transverse integration procedure® widely
used in the develcpment of Cartesian—~geometry nodal schemes. In
Cartesian geometry this technique involves spatially integrating the
n—dimensional diffusion equation over the n-1 directions transverse to
each coordinate direction. The resulting set of n coupled ordinary
differential equations are approximated using techniques appropriate
for the numerical solution of the one-~dimensional diffusion equation.
Additional approximations to the transverse—leakage terms which couple
the one-dimensional equations are also required.

Direct application of the analogous transverse integration procedure
in three~dimensional hexagonal geometry yields four second-order ordinary

differential equations in the x-, u~, v-, and z-=directions. However, a
more straightforward procedure is to derive the P-1 forms of these
equations using simple neuiron balance arguments. For example, the
one—dimensional equation in the x-direction is obtained by first

introducing the partially-integrated quantities
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and then performing a neutron balance on the two—dimensional slice
(perpendicular to the x-direction) defined by
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The terms J (x,*ys(x)) are z-integrated, surface-normal components of
" the net currents across the u- and v-directed surfaces:
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and, for example, n,4+ denotes the unit vector normal to the surface in
the positive v—-direction shown in Figure 1. The final term in Eq. (10)
~4involves the z-direction leakage
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Integration of Eq. (10) over xe[-h/2,+h/2] yields the nodal balance
equation, as it should. ’

Since Eq. (10) is in’P-1 form, we require an additional equation

'(analogous to Fick's Law) relating the partially-integrated flux and
net current. This relationship is derived by differentiating Eq. (8)

and rearranging:
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" The u- and v-direction counterparts to Eqs. (10) and (13) are derived
- in an analogous manner.

The one—~dimensional equation in the z~direction can be derived
elther by integrating the three—dimensional diffusion equation over
the x- and y-directions, or by performing a neutron balance over a
two—dimensional slice perpendicular to the z-direction. The result is
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The total hex—plane leakage is
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As before, integration of Eq. (16) over ze [-azK/2,4+0zk/2] yields the
nodal balance equation. o o _ o o

It is clear that the partially-integrated net currents introduced
in Eqs. (9) and (18) must be continuous over the respective one-
dimensional intervals. Therefore, with reference to Eqs. (13) and (15),
it 1s also clear that the partially-integrated fluxes in the three hex-
plane directions will exhibit first—derivative discontinuities of the

fcerm
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This behavior, which does not appear in Cartesian ggometry, must be
represented by any polynomial used to approximate ¢gx(x).

- APPROXIMATION OF THE ONE-DIMENSIONAL HEX-PLANE EQUATIONS

The ﬁ&rtially-integrated fluxes in the three hex~plane directions
are approximated by
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Here, ggx(ih,/Z) denotes the two face-averaged fluxes in the
- x—-direction, and the basis functions satisfy
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Note that f3(x) has a first-derivative discontinuity at x=0.
The 'éxpansion coefficient akx3 is calculated in the following
manner. Requiring that Eq. (22)°satisfy Eq. (21) yields
k. __k : .
83 ° ng(O), ; (27)
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The y-direction leakage £ky(x) is approximated by its respective

averages over the half-infervals -h/2 < x < 0 and 0 < x < h/2. These
average values are calculated in terms of average leakages in the u-—

(29)
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and v-directions by requiring that the x-dependent net currents defined

in Eq. (11) satisfy the constraints
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This calculation? leads to an expression for akx3 which is used to
eliminate the expansion coefficient from the final equations.

(31a)

(31b)

The expansion coefficient akx4 is calculated by applying a weighted

. residual procedure to Eq. (10) with weight function we(x) = sgn(x).

This

procedure, when applied in the x-, u-, and v-directions, is equivalent to

preserving a neutron balance over each pair of half-nodes in the three

directions. The coefficient akx4 is eliminated from the final
equations in favor of the x-direction flux moment
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APPROXIMATION OF THE ONE-DIMENSIONAL AXIAL EQUATION

The partially—integrated flux [Eq. (17)] in the axial direction is
approximated by a cubic pdlynomial equivalent to that used to approximate
the one-dimensional fluxes in the Cartesian-geometry nodal expansion
method.1® The cubic coefficient is computed using a weighted residual
approximation to Eq. (16) with weight function w,(z) = z/6zK. As in the
hex—-plane approximation, this coefficient is eliminated in favor of the

spatial moment
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THE RESPONSE MATRIX EQUATION o o _ » _

Using the polynomial approximations to the partially-integrated
fluxes in the hex-plane and axial directions, equations for the face-
averaged outgoing partial currents on the eight surfaces of the
hexagonal-z node can be derived. Combining results in the four
directions yields the inhomogeneous response matrix equation for the

k-th node and g—~th energy group:

out,k _  k k -k k, .in,k
I, [z, 1 {9g Lt + [R1 I (34)

The vectors £°“t:k and gin,k contain, respectively, the eight out-
going and eight incoming®face—averaged partial currents for the node.
The source-moment vector is calculated using

c .
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where
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The leakage-moment vector is
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where ngxl and L§xyz1 aré spatial moments [analogous to Eqs. (32)
ea

- and (33)] of the kages defined in Egqs. (12) and (19), respectively.
The local source ([PK]) and response ({RK]) matrices involve a com-
bined total of 13 un%que entries for eacﬁ node and each group. However,
gince these entries depend only upon the material properties and axial
mesh spacing for the k-th node, they are pre—computed and stored only
for unique nodes characterized by material composition assigrment and
axial mesh spacing.

The transverse leakage moments [Eq. (37)] are computed using the
following simple approximations to Eqs. (12) and (19):

k - 4
ng(x,y) = ng , (38)

L:xy(Z) z p:xy(?.)s

where p: (z) is a quadratic polynomiallo involving the total hex—plane
- leakages [Eq. (20)] in the k—th node and its two immediate neighbors in

the axial direction. Use of Eq. (38) yields

A N Ly % (40)
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k
while use of Eq. (39) permits evaluation of Lgyy,] in terms of the
-available partial currents in the k—-th node and its immediate axial

neighbors.

NUMERICAL SCLUTION OF THE NODAL EQUATIONS

The'fésponse matrix and flux-moment equations are solved using a
conventional fission souice iteration accelerated by coarse—mesh re-—
balancell and asymptctic source extrapolation.l2 The rebalance is
performed on a mesh such that each ring of hexagons forms a hex-plane
rebalance zone. The response matrix equations are solved at each outer
iteration using two axial sweeps (for each energy group) of the mesh
planes in a standard checkerboard ordering. The hex-plane partial



currents for each planea are computed using a "four—color checkerboard” sweep
in which all outgoing hex-plane partial currents from nodes not sharing a
common surface are solved simultaneously at each of four passes through the
nodes on the plane. Two such sweeps are typically performed on each plane
encountered during the axlal sweeps. The outgeing z-directed partial
currents are then computed using a single sequential sweep of the nodes

on the plane. Once all partial currents for a single group have been
computed in this manner, the spatial flux moments are updated using the
nodal balance equation and the moments equations generated via the weighted

residual approximations.
9

NUMERICAL RESULTS

Numerical results at the beginning of cycle 1 (BOCl) for a 4-group
version of the three—dimensional Large Core Code Evaluation Working Group
(LCCEWG) benchmark problem13 are summarized in Table 1. This problem is a
model of a 1000 MWe heterogeneous—core design with 17 rings of hexagons and a
lattice pitch of 16.33 cm« Shown in Table 1 are results obtained using the
nodal scheme, which has been implemented as an option9 in the fast-reactor
diffusion-theory code DIF3D (Ref. 1), as well as results calculated using the
highly-optimized mesh—centered finite difference option with 6 and 24 tri-
angular mesh cells per hexagonal assembly. The l4-plane mesh structure uses
an axial mesh spacing of 15.24 cm in the driver fuel, and is the coarsest
mesh permitted by the axial zone boundaries used to define the burnup regions.
Extrapolated results assuming an infinite number of axial planes have been
included in order to allow isolation of the errors due to the respective axial
approximations. Using these extrapolated results, it can be seen that the
errors in eigenvalue due to the axial approximation are greater in the 56—
plane finite difference calculations than in the l4~plane nodal calculation.
Comparison of the axially-converged (=—plane) calculations shows that the
nodal option produces somewhat larger (but very acceptable) errors in the
driver fuel, but yields significantly smaller errors in eigenvalue and in the
internal and radial blankets than the DIF3D(6A) calculation. Although the
overall accuracy of the l4—plane nodal calculation is superior to that of the
56—plane DIF3D(6A) calculation, the nodal calculation required a factor of 9
less computing time with a reduction in dollar cost by a factor of nearly 12.
The reduction in job cost reflects the reduced core storage requirements and
I/0 activity for the nodal option in addition to the smaller CPU time.

Depletion calculations 13 using the DIF3D nodal option have shown that
the improved accuracy in the computed eigenvalues and internal blanket fluxes
leads in turn to significantly improved predictions of the reactivity swing
due to burnup. REBUS-3 (Ref. 3) burnup calculations !* using DIF3D nodal and
finite-difference neutronics solutions are summarized in Table 2. The
excellent agreement between the burnup swings computed using the DIF3D(NODAL)
and DIF3D(244) options confirms the improved accuracy of the nodal method
relative to the conventional 6 triangles-per-hexagon finite difference scheme.



- - ST T T T 7T CONCLUSIONS ST o T

The results presented in the previous section (plus additional results
given in Refs. 9 and 13) have shown the accuracy of the nodal scheme to be
superior to that of the standard 6 triangles—per-hexagon finite difference
method. The higher-~order axial approximation in the nodal scheme permits the
use of an axial mesh which is at least 4 times coarser than that used in a
typical finite difference calculation. Particular improvement is seen in the
average fluxes in the internal blanket regions and in the computed values for
k~effective, thus leading to more accurate predictions of intermal blanket
burnups, breeding ratios, sand burnup reactivity swings. This enhanced
accuracy is obtained with a potential order-of-magnitude reduction in the
computational cost of a three-dimensional calculation. The accuracy and
computational efficiency of the nodal scheme will make possible the develop-
ment of an efficient three-dimensional hexagonal-geometry kinetics capability
for the analysis of LMFBR transients.
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Table l. Summary of BOCl Results for the Three-Dimensional LCCEWG Problem®

No. of

AB = average error in reglon-averaged power density over axial blanket regions.

CPU

Hethoda\ Axial Planes k-eff ek(Z) EDF(%) EIB(Z) eRB(Z) eAB(Z) Time®(min) Cost (§) |

DIF3D(NODAL) 14 0.9985 0.15 1.4 3.1 0.8 2.3 1.1 7.28
DIF3D(NODAL) 28 0.9983 0.13 1.6 3.2 0.7 1.6 2.5 18.29 ,
- -
DIF3D(6A) 28 1.0033 0,63 0.8 4e2 3.4 5.3 & 303 43.14
DIF3D(6A) 56 1.0021 0,51 0.7 4ot 3.1 2.1 10,2 85.27 |
DIF3D{64) o 1,0017 0,47 0.7 bob 3.0 1.0 -— —-— g
DIF3D(244) 28 0.9998 0,28 0.5 1.1 1.3 4.9 30.5 336.72 3}
DIF3D(244) 56 0.9986 0.16 0.2 1.1 0.8 1.3 59.0 674.00 '
DIF3D(244) L 0.9981 0.11 0.1 1.1 " 0.6 " 0.1 S - if
Refe:enceb © 0.9970 - -— -— -—— -—- —— - éé
. |
€, = error in k-effective ;1
€oF S average error in region-averaged power density over driver fuel regions. fi
€18 £ average error in region-averaged power density over internal blanket regions. ‘!
ERB = average error in reglon-averaged power density over radial blanket regions. :
€,n ;
j

bReference solution obtained by h? extrapolation of DIF3D(6A) - 28 plane and DIF3D(24a) - 56 plane
calculations.

S18M 3033 Computer using sixth-core planar symmetry.



Table 2. Computed Burnup Swings for the Three-—
Dimensional LCCEWG Benchmark Problem?

No. of Burnup Neutronics
Method Axial Planes Swing (Ak) CPU Time® (min)

DIF3D(NODAL) 17 -0.00426 2.6
DIF3D(64) 42 -0. 00489 14.0
DIF3D(244) 42 -0.00420 81.1

4The burnup swings are for the first half of a 388.5 day cycle.

breM 3033.

Figure l. Nodal Coordinate System




