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ACCOMPLISHMENTS AND ACTIVITIES
UNDER CONTRACT DE-A'SO8-77DP40003,

Theoretical Studies of Plasma Turbulence and Hydrodynamic

Instability in Fusion Targets
by R. L. Morse
University of Arizona

Under this contract, which ended November 14, 1979, the following

items have been completed or carried to the point of obtaining useful

results:

1.

Development of the steady-flow model of ablation to include:

a) Implosion of thin spherical shells

b) Charged particle beam-driven ablation

c) Calculation of exhaust velocities for comparison with long
pulse experiments and simulations

d) Inverse bremstrahlung absorption

e) Ablative flows with critical/sonic point discontinuities for

application to low power and/or high Z target cases

Calculation of linear instability growth rates in planar and
spherical geometry using the steady flow model of ablatively
accelerated shells to provide zero-order solutions. Comparisons
of results of these calculations with full two-dimensional

simulations shown good agreement of instability growth rates.

Analytic theory of the maximum ion velocity found in expanding
laser-produced plasmas. This work has contributed to an

understanding of hot electrons produced by laser light absorption.

Development of a triangular zone, two-dimensional hydrodynamics
and thermal conduction code for study of the nonlinear develop-

ment of Taylor instability.

Studies with the triangular code (Item 4 above) of the nonlinear
development of Taylor instability and the mechanics of large
amplitude saturation phenomena. These studies have suggested

recently that under some conditions of interest ablation-driven



10.

Taylor instability in ablation-accelerated shells saturates
without destroying the integrity of the shell. This area is
believed to be very important to the future of the ICF program.

Analytic basis of the steady-flow theory of nonlinear satufation

of Taylor instability.

Analytic theory of the scaling of large compressions ablatively
driven by highly shaped pulses.

Time development of ablation from the short to long pulse regi?es
and the identification of a signature of ablation that can be
seen experimentally in ion diagnostics. This work, which was
done with colleagues at Sandia showed good agreement with

Thompson parabola data from long pulse experiments done at

Sandia.

Inclusion of rates of growth and transport of ion acoustic micro-
turbulence in macroscopic models of laser-produced plasmas. This

work contributes to an understanding of flux-~limiting phenomena.

In addition, the author has helped with various programatic

tasks at DOE Laboratories.

"Included here as a part of this report are reprints of two papers

written under this contract and preprints of two other papers which are

to be published?¥;These papers contain the principal technical results

obtained under this contract.
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Stationary Flow Model of

Ablatively Imploded Spherical Shells
by

L. Montierth and R. Morse
University of Arizona
Tueson, Arizoma B5721

Abstract

The stationary flow model of spherical ablation is extended to

shells, solutions with a density discontinuity at the critical surface,

and charged particle beam driven ablation. Parameter studies of the

shell solutions show the relationship between shell aspect ratio,

relative ablative mass removal or burn thru, laser power, and shell

material type. The discontinuous solutions are shown to occur when

the critical surface and sonic surface coalesce. The relationship

of these solutions to particular physical situations is shown to be

ambiguous in a way that must be resolved by microscopic transport

calculations.  Charged particle driven ablative implosion processes

are shown to resemble laser driven ablation. However, qualitatively

different ablation processes occur in different regimes of the power

and range of the incident beam. Procedures are described by which

stationary solutions can be used to interpret and predict the results

of experiments and numerical simulations.



STATTORARY TFTLOW MODEL OF ABLATIVELY
_ IMPLODED SPHERICAL SHELLS

by
L. Montierth & R. Morse
Department of Nuclear Engineering
University or Arizona
Tucson, Arizona 85721

1. Introduction

Compression by ablation pressure is needed in the implosion process

to obtain the large target compression ratios required for inertial confine-
ment fusion (I.C.F.).(l) Ablation applies continuous pressure to the

outside of the dense, compressed core of a target in a narrow region called

the ablation front which may be thought of as constituting the surface of
\

the core. This continuous ablation pressure compresses the core by causing

one or more inward moving shocks and by adiabatic compression, which usually

follows the shock compression and heating. By far the most effective schemes

for obtaining large compressions use ablative compression of a target consisting

of one or more thin spherical shells inside of which there is either a low

(1,2)
density gas or a void.

jMost stqdies of 1.C.F. implosion systems are done with time dgpendent
numerical simulation codes. Such computations are essential to detailed
understanding of particular target and pulse systems. However, the large
number of different physical phenomena involved makes it difficult to do
sufficiently thorough parameter studies to identify and understand fegions
of obtimum performance. Analytic, or at least partially analytic, models
of implosion processes can, therefore, be very helpful not only because bf
the general qualitative insight that they give, but also because the scaling
laws that they yield can indicate optimum performance regioﬁs. The latter

can then be studied in more detail by simulation methods and experimentation.



An additional important usc of analytic models of spherically svmmetric
imploding shells is as a starting point for hydrodynamic stability analysis.
Because of their continuous inward acceleration, ablatively imploded thin
shells are usually hydrodynamically unstable near the ablation front in a
way that is basically the Rayleigh-Taylor instability but is considerably
complicated by heat flow. The authors have begun a perturbation analysis

of this stability problem using the model of imploding shells presented

below as the zeroth order solution.

(3)
In a previous paper, Gitomer, Morse & Newberger have developed a

stationary flow model of laser driven spherical ablation. The basic assumption
of this stationary flow model is that an ablated element of fluid passes
through the ablation front; and as far beyond as is necessary for the problem
of interest, in a time short compared with the time during which the ablation
front moves inward by a significant fraction of its radius. TUnder these
conditions ablation is viewed as coupled stationary heat and fluid flow

in the frame of the ablation front. The ablation pressure, mass ablation

rate, and other properties of the implosion system are then calculated from

the laser power and wavelength, and the stationary energy, momentum and
continuity eguations. It i; shown in that paper that physical solutions

that are relevent to I.C.F. can only be obtained in the presence of acceleration,
i.e., an effective gravity in the model, and/or the nozzling effect of

diverging flow such as is produéed by the sphericallysymmetric geometry that

is considered. It is also shown that continuous solutions cannot be obtained

in which the critical density, OE, at which the laser.energy is deposited,

is greater than the density, Cg, at the sonic point in the flow.



Numerically integrated solutions of the stationary flow equations
are shown for spherically symmetric cases with no inward acceleration.

The family of these solutions has two parameters, a parameter M characterizing

the ablation front profiles, and pc. This family of solutions shows several

appruximate scaling laws, including a A—% dependence of energy transfer

efficiency on laser wavelength, A, in addition to the exact scaling laws

derived from putting the stationary flow equations in dimensi&nless form.

These solutions without the gravity term corrcspond to implusion cases in

wﬂich there is no void inside of the target and inward acceleration forces

are not significant. It is pointed out that solutions with a gravity term

in the momentum equation comparable to or greater than the sﬁherical divergence

térm correspond to imploding spherical shells; the effect of gravity in the

stationary model is to make the density decrease inside of the ablation front.
An analytic solution to the stationary flow equations with gravity

has been obtained by Felber(A) with gravity and in the limit of zero spherical

divergence by using different approximations in the qualitatively different

regions of the flow. This case corresponds to a plane slab accelerated by

ablation and is treated below in Section III-C.

The occurrence of stationary flow solutions with density and velocity

discontinuities at the critical surface has been shown by C. Max(s) This

work was the beginning point for our work on discontinuous solutions in

Section IV below.

L‘



This paper cxtends the development and application of the stationary
flow model of ablation driven implosions to treat additional target types
and phenomena which are important in I.C.F. The topics treated are:

1) Shell solutions and the relationship'between a number of

physical parameters of these solutions including shell aspect ratio,

absorbed power, ablated maés fraction, critical density and exhaust
velocity.

2) Solutions with a discontinuity in density and flow velo;ity at

the critical surface. These solutions occur when the critical density3

P> is made to exceed the sonic density, P> by reducing laser wave-

length and/or absorbed laser power.

3) Solutions representing ablation driven by charged particle

beams. It is shown that qualitatively different aBlation processes

occur in different regimes.of the power and range of the incident

beam. These differences have no parallel in laser driven ablatiom.

The subjects of the remaining sections are, by number,

II. Stationary Flow Model Equations and Method of Solution.

I11. Shell Solutions and Parameter Studies.

Iv. Sélutions with Critical Surface Density Discontinuities.
v. Charged Particle.Beam Driven Ablation.

VI. _Scaling Laws and Applications.

VII. Acknovledgement

This paper differs from the early version, which was presented at the
1977 Anomalous Absorption Meeting in Tucson and appeared as a report, by the
addition of the discontinuous solution section (IV), some new material in the

charged particle section (V), and the (A,B,g,ﬁp) contour diagram analysis in the

shell solution section (III).
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Tht: section contains essentially the same material in the same

notation a:. Section II of Ref. 3, with modifications to accommodate the
additional phenomena treated in this paper.

In this model the flow is sphericall& symmetric, radially outward,
and stationary. Stationary flow is a reasonable approximation in most cases
of interest because the time required to establish the flow between the
pellet surface and the outer, lower density region where most of the incident
energy is deposited is less than the characteristic implosion time and because the
pressure gradient forces in the ablation region are larger than the forces

associated with the average inward acceleration.
A. The Model and Scaling

For our purposes, very little generality is lost and considerable
simplicity is gained by assuming a single temperature instead of separate

electron and ion temperatures. The steady state hydrodynamic equations

are then

continuity:

_d 2y _ (1
3 (pvr®) =0, )
momentum:

dv _ _dp o ay, | (2)
PVar T Tar T Par
energy:
i 2 LB '_ﬁ_;d_T_}i:_]; 2 3
3 v® + -1lp +U 5 ar S > vb s (3)

where p is the fluid mass density, v is the radial fluid velocity, r is the
radius, P is the pressure, ¥ is the gravitational potential which represents
the inward acceleration of a shell, Y is the ratio of specific heats which

will be 5/3 in all that follows, a = 4nr2 is the cross sectional area, and

v§(>0) is the Bernoulli energy flow



constant. An inward acccleration corresponds Lo dn outward direCted
gravity gz-dy/dr>o. Although in treating the high density part of a shell g
might better be taken to increase with r, an inéreasing g(r) tends to make

the lower density region near the sonic pbint and beyond less realistic. On
balance for the calculations presented here, we have chosen § = (rs—r)g, where

rs is the sonic radius (see below), with g(r) = constant.
The model requires

a non-zero value of vi to be consistent with the stationary flow from inside
the ablation region. However, in cases of interest vi is much smaller than
the values of v2 which occur in the ablation region and beyond. The term
(ak/S)(dT/dr) represents thermal conduction. Here a?énrz is the surface area

at r, SZpva is the mass flow rate, a constant of the motiom by Eq. (1), T is

temperature, and K is the tﬁermal conducﬁivity coefficient given by
« = (1% ", (4)
Here Z is the ion charge number. Following Spitzer6 we take o = 5/2 and
B = 0, where numerical solutioﬁs are obtained below.
Although G(Z) = KO/Z is valid for 2z>>1, and this form
will be used in some scaling discussions below, it should be borne in mind
that for smaller Z, G(Z) is more complex.

W(>0) is the inward energy flow rate represented by the flux of incident
laser radiation or charged particles. In the laser case, in which the incident
energy is taken to be deposited at the critical radius, L W increases
discontinmusiy from zero inside T, to W_, the incident laser power, outside
of rc. In the charged partiéle beam case W increases continuously from zero

at the smallest radius which particles reach, to W_ as roe,
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P is related to ¢ and T through the ideal gas equation of state,
P = RpT, where R E(l+Z)k/mi; and k and m, are the Boltzman constant and ion

mass respectively. After some manipulation, Egs. (1), (2), and (3) become

pva = S, (5)
RT }dv _ 2 _1dT) 4y

vil - 7 ar T RT r Tdr| dr°’ (6)

1.2 J_P.}. _a ﬂ_ﬂ—lz

7 Vv + 71 T 1] s X 4r s =5 Yy (7)

In the charged particle beam case in which W varies continuously with

r, we use the simplified relationship

aw _p = (8)
dr o W '

which would be satisfied by a monoenergetic beam of particles with range

inversely propo?tional to energy squared. Here W_ is the incident beam power,

i.e., the Eeam power at infinity, and o_ is the range in mass.per unit area

of the incident particles. A more complex range energy relétionship could be
used, including such effgcts as a temperature dependent range or a spread of

incident particle energies, but many of the charged particle beam phenomena

of interest can be modeled with Eq. (8).

Because transonic solutions are of particular interest to us, it is

useful to séale the equations in the following way. Define p = p/ps,

~ 2~ _ 2 =~ _ . 2 T
v/vs, Y = W/vs, g = Ers/vs, W= Zk/Svs, G cw/psrs

~

T="T/T, Vv
S

where Pgs Ts’ and v, are the values of the flow variables at the isothermal sonic

i
point, L that is, at T, Vo = (RTs)z. Using this scaling, Eqs. (6), (7)

and (8) become
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T{ﬁ-.ld—T+§ ]

—d_S’— - l T T dr , ) (%)
A v -
M 52 _2 + L _ _W_]
ar _ [1(v vb) 71 T + 79 > ’ (10)
FE: 7 —
T r2(.1+B) Tav+8
N ”1; )
. = . (11)
dr W3 :
The dimensionless quantity M is defined as
: - 1+ 2
rop V3 r o 1+3V3' . p1-|~3Rl-mav 1-2a £ BRB/
S S s _ s s s s S s _ _s8's
M= - T - - o 12)
Ksls G(Z)TS G(2) G(Z)Ts

"and is the only place in the equations where dimensional parameters appear

explicitly,

B. Methods of Integration and Limits on Solution Parameters

The'némerical solution 6f Eqs; (9), (10) and (11) is accomplished by
integrating inward (r<l) and outward (£>1) from thébsingularity of Eq. (9)
at T = 1. The flow is seen to be supersonic for r>1 and subsonic for r<l,
except that there is in general a second sonic point, fs2’ between r = 0
and r = 1. However, the stationary flow model is not appli;able at radii
this small and smaller. We will discuss this point below in connection with
specific. solutions of Egs. (9), (10) and (11). In the solutions that are
continuous at r = 1, dv/dr is finite there. Thus, since the value of the
denominator of the right-hand side of Eq. (9) becomes zero at T = 1, the

numerator must also be .zero there.



The value of the temperature derivative at r=1 must then be

and from Eq. (13) and Eq. (10) a relationship between V; and M is obtained;

- 24g

M —
~2 o~
(l-vb)/2+ n—ws/z

> (14)

where n=y/(y-1), and ﬁs is the value of ﬁ at ;=;s=1, which is only non zero for

those charged particle beam cases in which particles penetrate inside of r . In

b

order to obtain values of dVv/df at the singular point, ¥=1, to begin the inward

and outward integrations, L'Hospital's rule is applied there and with Eq. (11) gives

v L
dvi 1 [—B+(B2—8C) 2 (15)
dr 721 4 J
where B = M- (1+8)(2+g)
- N2
~ : - W
C = (2+g) [Mn-4—28—0(2+g)J - M ( i ) + 2 o
u 3,

C differs slightly from Ref. 3 because different forms of
Y are used. In those cases in which ﬁs=0, dW/dT=0, and the ﬁi/ZQSEm term in C

above, which comes from Eq. (11), is absent.

" Limits When W =0
s

When g=0 the lower limit on %s is zero, and it will be seen that this
limit corresponds to vanishingly small specific entropy and, therefore, infinite
density at the pellet surface. However, vhen g>0 the net energy in the flow

at the sonic point must be greater than zero if it is to have the limiting zero

value at the pellet surface because the fluid falls through a difference in pc:ential

v» (Eq.(7)) between the shell and the sonic point. The lower limit on 52

blS



2
then determined by setting Ql/z equal to this potential energy differencc.
)

Consequently for £>0 the lower, 2 5) 3 c 2 (5y 52,
q y I » VoL (g), is of the form O<va(g) e

Values of GEL(é) cannot be known a priori because the distance between the

pellet surface and the sonic point must be found by solving Egqs. (9), (10),

and (11). Values of GiL will be found below in practice by seeking the

lowest value of Gi for a given g for which solutions exist. The upper limit

on v is set in principle by the requirement that dv/dr>0 at r=1. From

Eq. (15), this is equivalent to C<0, or

ye (248) [4+2B+a(245) ) =2

(16)
~ W2
2ntg(n-1) - "=
25 W
@ g -
Therefore, from Eq. (14) , w2
o ~ ~ ~~

-2 - -
g<vb<l M zi‘n W2 (2+g) [4+2B+a(2+g)] -2

g>0, VbLJ

For the parameter values o=5/2, B=0, y=5/3 so that n=5/2, g=0, and ﬁs=0,

Eq. (17) gives 0<§§<l9/4. For the same values except for g=1, §§<24/5.
For the same values except for g=, G§<24/5. These upper limit values of

~

v, are equivalent to the convective energy flow from the origin being a major

fraction of the convective energy flow through the sonic point (see Eq. 7).
Hence it will not be surprising that in cases for which these parameter

. - - ~2
values are representative the upper limit values of Vb

interest and are in fact near the burn through, or exploding pusher, limit

will not be of physical

where the concept of ablation does not apply.
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Lirits Vhen Vs# 0

In those particle beam cases in which ¥ >0, a slightly different
A s 3
. . . ~2
situation occurs. The upper limit values of vb can be of interest because
the upper limit can be much less than one and can in fact go to zero, for the
following reason. It is unphysical to have M<0 because from Eq. (12) it can
be seen that this is equivalent to Ks<0. Thus the limiting physical case is

Ks* + 0, M= + o, From Eq. (14), M < + o is equivalent to

\712)<1 + 2n-W_. ‘ (18)
Consequently, since 0 < ﬁiL < V%, where ﬁ%L = 0 for g=0, (recall that

ﬁiL (g) is the physical lower limit on Gg for a given value of §), solutions

only exist when

ﬁs <2n + 1 —QEL = 6 when Y = 5/3 and g = 0. (19)

Equation (19) will, therefore, be an upper limit on the particle energy flux

through the sonic point in charged particle beam driven ablation. In general

‘the upper limit given by Eq. (18), for particle beam driven cases, i.e.,

~ ~2
= — +
Ws 1.vb 2n (20)

will be seen to correspond to the interesting type of ablative flow in which

thermal conduction plays no role (M=+4 =, Ky = 0) and all energy is transported

by convection and the particle beam. From Egs. (14) and (18), as well as on intuitive

grounds, for such flows to occur the beam particles must penetrate inside

r , i.e., W > 0.
s s

C. Distinguishable Intervals in ¥ for Laser and Particle Cases and Determination

of W_, Ws, fR and v_

In the case of laser deposition, the incidept power, Ww, which is deposited
at rc, is adjusted to give a solution T(r) which approaches 0 as r approaches
infinity (see asymptotic solutions in Ref. 3, Sec. III). Since 4T/dr is
positive at rs and negative beyﬁnd L laser deposition must always occur at,

\
or at radii larger than, the isothermal sonic radius. In those laser cases



discussed below in which there is a discontinuity in p and v at r , this is
, c
still essentially true but some modifications in detail are required.
There are four distinguishable intervals in T in the laser cases;

. < [ | i =
1 T, o Tp S the point at which d¥/df = U

at}
A

and is the point which is to be identified with the pellet surface.

In most cases because dv/dY is a strong function of T near ¥ , and
P

-~

S =r2pv =1, r 1is very close to the point of maximum P in a shell.

Heat flow is not very important in this region.

2. ;p < ¥ <1. This is the subsonic part of the ablation front.

3. 1<r«< fc; asymptotic solutions can be obtained when fc apﬁroaches
infinity (see Ref. 3) and are helpful in interpreting numerical solutions
when fc >>1. This.intervél disappears in those cases in which LI and a
discontinuity occurs at L

4. T > T ;the asymptotic solutions in this region (Ref. 3) for ¥ + =

c
ndicate that T +~ 0 is the proper boundary condition. Values of the jump in

i
W from 0 to W at T = fcfare adjusted to satisfy this condition. Values of

the asymptotic, or exhaust velocity, Vm are obtained from the numerical integration

for the case §=0.
In the charged particle beam cases there are also four distinguishable

intervals in r. The interval scheme involves the radius rR defined to be

the end point of the particle trajectories, which is determined by the range,

o, (see Egs. (8) and (11)). The first interval, the adiabatic flow regime

Pand ~ -
Y 5 < f <f¥ , is the same as interval (1) in the laser case above. If T_<1,, ie.,
s P
1 < ¥ , the rest of the intervals are also similar to the laser case. Intervals

(2) and (3)are the same as in the laser case except that the outer end of interval
(3) is %{ instead of ;c’ ie., interval (3) becomes 1 < Tt < ;R' Interval (4)

is then T < r, and the solution procedure here is analogous to that in the

»



Lasir ocasc. L. (31) fe dniezrated cutvard together with gl (9) anc (10)

sizreing frer V=0 o2t the chosen point 1 o= ;R' The ratio W-/c , is adjusted to
[+ 5 Ou

give a solution that satisfies the boundary condition T = 0 as r - «. This

can be shown to be a physical boundary condition from a large r asymptotic

solution which is similar to that obtained for the laser case, Eq. (13d) in

Ref. 3,
vZ=v2 4y2 D v2 < (21)
co m ) m
T =T§, T <0
m m
ﬁ=ﬁw+§mf-’,' W< o0
_ (1t 28)
where m = - ?1:53_
. - I
JN( V- vg— W) (1+0)

T >
©

m m m
W

-~ -]

‘\’!m::_
92 5
oo o]

-~

and v_ is the limiting value of V as ¥ + «, Both W_and v_ are obtained as

results of the integration.

In the event that o < T de, Tp <1, the solution procedure is

different. A value of ﬁs is chosen, consistently with Eq. (18), and Eq. (11)

is integrated inwards and outwards from the singularity at r=1, together with

Egqs. (9) and (10). Again is is adjusted to give the boundary condition E + 0

ar T » ©, The asymptotic solutions, Eq. (21),are also applicable in this case.
Values of fR; ﬁw and> when §=0, values of ¥_ are obtained as results of the inward
and outward integrations. In the particular zero heat flow case in which G% has the-
limiting value in Eq. {(18) and consequently, M=» (or Ko™ 0), it yill be seen

that ;R = fp. That is, the beam particles penetrate all the way through the

ablation front, as they must because they provide 211 of the inward energy transpor!



111. ShHLLl, SOLUTIONS AWD PARAMETER STUDIES

In the laser case only Egs. (9) and (10) are uséd, together with the

form of W(r) that specifies total energy deposition at ¥ = fc,

W= 0, f<E (22)
= W > Y S
L(>0), T > .
solutions
The family of ... . of this system has three parameters ﬁc(; D Kg, g, and
: c

a third parametér which was taken to be M in Ref. (3). However when we vary
g, Lhe allowed range of M changes, and M becomes a less informative parameter.
Instead of M, which primarily characterizes the flow in the region £<1l, we
will use as the third parameter 5D(E p /pJ. The interesting range of §

P
F 5
is typically from about 10 up to 103. For smaller values the ablation rate

is so large that the ablation front structure becomes indistinct and the

stationary flow approximation becomes less applicable.
A. g=0

Figures la and 1b show linear and logarithmic profiles of the case
p = 102, g = 0, for various values of'bc. This solution is typical of those
p
presented in Ref. (3). The second sonic point is on the left at st = 0.305.

For comparison, Fig. lc shows logarithmic profiles for the case § = 10 and

N
g = 0. Note that in this case vi and, correspondingly, the specific entropy

of the dense pellet material are larger than in the § = 102 case. Figure 2
shows various ratios of quantities at fp and fs (1), and other characteristics
of the ablation region, for the § = 0 family of solutions. These properties
are independent of § because §C>l. The quantity m is the dimensionless mass

c

between T, On the left side of a shell and a given point r, and is defined as



m = m/&ﬂpsrs = 3 dr °p = dr t°p (23a)
pr
s 8 T T
s2 s2
The quantities m and ﬁs are the masses between r,on the left and r and
p ! . " P
rs respectively;
ﬁp z ﬁ(fp), m_ = m(rs). (23b)

The stationary model approximation to the shell mass is, therefore, ﬁp. The

additional mass in ﬁs is mass in the ablation region which has alread§ been removed
from the shell. It will be seen that for small values of g, i.e., g <1,
(ﬁsfﬁp)/ﬁp << 1. That is, the amount of mass at any time in the ablation region
between the maximum density and sonic points, rp and rs is relatively small.

For larger g, on the other hand, it will be seen that more than a third of

the mass between rs2 and rs is between ﬁ) énd rs. This part is expected to

be significant for the Taylor instability problem because the instability

develops in the ablation region and additional mass there should reduce the

growth rate.
A related quantity, Ar, which will be used below in connection with

8¥#0 solutions, is the dimensionless shell thickness defined as

~

"p P

fr = . (24)
4mr TP pT
Spep PP

N

Note from Fig. 2 that P /5 and r (=r /r ) are nearly independent of o (3 /
g z s D p’' s y P [ pp(:ppps)

i.e., nearly the same for all members of the family of solutions. Also.fi,.1is nearly

p

proportional to Bp as would be expected for, §=O. By contrast in the

g % 0 solutions shown below shell mass is nearly independent of p for a
P
given g and larger values of 5p.



Figure 3 shows ratios of various quantities at fs(sl) and EC as a function
of 5C. Also included is the dimensionless laser power ﬁw, required to support
a given solution. Curves are given for several widely spaced values of ﬁ),
except where the curves are indistinguishable. It is clear that except near
Bc = 1 these quantities are essentially independent of the details of the

ablation front, and, therefore, of the value of ©f . It can be seen that Vi, is
P

1L
?, which is to say proportional

approximately proportional to‘S;

(7

to laser wavelength, 2 . This point has been confirmed by‘numerical simulation.
Figure 3 is essentially the same as Fig. 28 in Ref. (3) except for
;m = Vw/vs’ the exhaust velocity, which was not shown there. The flow velocity
approaches this value as r + ® in a manner much like the exhaust of a rocket.
This, therefore, is the blow off velocity that should be seen by an external
ion detector such as a Faréday cup (8) " or Thompson parabola

analyzer ' ' , when target conditions are such that the
ablation is essentially stationary. Of course, incident laser power, W_, is

a ‘function of time and so, therefore, is Vs and ps, and therefore, BC(E oc/ps).
Consequently neither Vs nor ;w will be constant throughout a target shot-
However, it is shown below that TS and, therefore, vs are weak functions of

W_, and it is seen in Fig. 3 that ;m is a weak function of pclps. It should,
therefore, be expected that in experiments in which approximately stationary
ablation occurs, the ion blow off spectrum will have a clear peak in velocity.
From Fig. 3 tbe peak should occur ;omewhere between 4<\%>and 8<\%?, depending

on pc, where< v: is a time averaged sonic velocity which will be near the value

of v, at peak power.



It may be noted that because of the scaling chosen (ﬁwzwm/(3v§/2) and
vwsvm/vs), if there were no convective internal energy transport as r-+e, ’
then energy conservation would require ﬁw=ﬁi—ﬁ§. Since in most cases of
interest vi>>ﬁ§, we should expect to find ﬁw=ﬁi, but from Fig. 3 this is
clearly not so except for larger bc, i.e., smaller fc. fhe reason for
this can be shown from the asymptotic solutions given in Ref. 3 to be the
perhaps surprising fact that there is a finite outward heat flow as -+,
This heat flow loss to infinity increases as fc increases and is the cause
of the fact that ﬁw increases faster than ﬁi with decreasing 5C, i.e.,

increasing fc. This same effect occurs in the charged particle beam

driven case and is discussed below in connection with Fig. 16.



The contributions of spherical divergence and acceleration to the
momentum equation, Eq. (9), are the 2T/% and g terms respectively. In the
ablation regioﬁ, ?p < T <1, the divergence term typically increases smoothly
from close to zero at fp,Where 0 < T<<1l,to 2 at T=1, where T=1 (seeFigs. 1
and 4). The influence of acceleration on the ablation process should then
be comparable to the nozzling effect of spherical divergence when g ~ 1.
Figures 4a and b show profiles of the case p = 102, g = 1.0, for various
values of 5c. The second sonic point is at ;s2 = 0.85. Note the shell like
structure of the density profile. Figure 5a shows the ablation region parameters
for the g = 1.0 family of solutions. In addition to the parameters given in
Fig. 2 for the g = 0 family, Fig. 5 gives the quantity (i;fp)/Af, which is thé
ratio of the distance between the maximum density point, r , and the sonic
point to the thickness of the shell, Ar (Eq. (24)). It will be seen that for

a given Bl)this ratio increases significantly with increasing g.

In order to show the effects of different values of g, the ablation

- +s

region parameters for g = 10 are given in Figs. 5b and 5c respectively.

and 10
Figure 6 shows the various critical to sonic ratios and other quantities which
depend on Bc for g = 1.0. The blow off velocity, ;w, given for g = 0 in Fig. 3 is
not giyen here for the reason that g = const + 0 makes this quantity diverge

in our calculations. Values of ;w for g + 0 could be obtained from the steady
flow model by making g decrease to zero with increasing r. However, by

comparing Figs. 3 and 6 it can be seen that behavior between the sonic and
critical points is not very different for § = O and for E’: 1.0, even for

small bc and the correspondingly large values of fc. Moreover the implosion

velocities of shells are usually somewhat less than the ablation exhaust velocity.



Consequently the exhaust velocities given in Fig. 3 for g = 0 are a good
approximation to these for imploding shells except for very large g and/or

very small 5c. Graphs 1ike4Fig. 6 of 5c dependent quantities are not shown

here for other values of g except for very large values of g (see the

g = w sectionbelow) since they are very similar to the ¢=1 curves shown in Fig. 6.
The values of the shell mass, ﬁp (Eq. 23)) and the shell surface pressuré and
radius, Ep and fp, shown in Fig. 5 can be seen to betalmost constant in the

range gf interest, which is to say for 5§:l0. This is especially true for

g = 10 and 10 2, Over the same range the shell aspect ratio, which is given

the usual definition

Eﬂcﬂe

r
A= Z% = (See Eq. (24) for Ar) (25)

increases approximately in proportion to Bp' This behavior can be seen in Fig. 7

which shows A as a function of 5p for various values of g. The linear dependence

of A on 5p for large Bp has a simple explanation. When A is sufficiently large,
the iﬁward acceleration of the thin, dense shell of mass mp (Eq. 23)and below)
which lies between st and rp can be calculated by treating the shell as if

it were a sheet mass. That is, for this purpose spherical corrections

can be neglected. The equatién of motion is then

2
= 4Tr_ P ,
mpg rp > (26)

where the right side is the inward force on the outside surface of the shell
and g is the ﬁagnitude of the inward acceleration. Applying the various

definitions and scaling relationships above, including Egs. (24),(25) and the

2 .
fact that PS = psvs’ gives



£ ¥ 53
R O P A= 22 (27b)
p B P

Since as seen above ﬁp and fp are weak functions of Bp for. large é) the independence of
ﬁp and the approximate linear relationship between A and g for large %)
follows. Equation (27) can be seen to agree with Figs. 5 and 7 for large 5p. On the
other hand it was shown above that for g of the order of one, or less, spherical
divergence effects in the ablation region are comparable to or larger than
acceleration effects. Thus we see that,asﬁell can be so thin that its
spherical geometry can be neglected in calculating its acceleration, while at
the same time spherical effects are very important in determining the ablation
pressure which derives that acceleration. It can, therefore, be incorrect
to assume that a shell can be treated as planar because its aspect ratio is
large.
C.'§=°°

When g + «, Egs. (9) and (10) are simplified by the absence of various
spherical divergence corrections. Under these conditions the aspect ratio
A > = (see Eq. (27)), and r_ can no longer be used as a scale length. Instead
the_length,xg, |

X =.'2/
g - V'8 _ (28)

must be used, so that the dimensionless length is X = r/x . With these changes

and the origin of X taken to be the sonic point, Egs. (9-12) become

~ dT -
dv _ _4x -8 , (29)
dx v(1-T/v2)



MPEG - D) + T+ - Ly

a1 _ - (30)
dx %a
av _ b (31)
dx WK
S
3
X PV
M= —g———K T (32)
s's

This system is planar. If g is taken to be independent of position then
$ = - X and § = 1 in this scaling. An approximate analytic solution to this
system has been obtained by Felber(a). Figure 8 shows the spatial profiles
of the planar solution with 5p = 102, plotted log/linear because there is now
no natural origin to the left of the shell. The g = 1.0, 5p = 102 profiles
are included (dashed lines) in the ﬁg based units for comparison. Note that
the sonic point is further from the shell, in units of AX, and there is
relatively more mass in the ablation region in the planar case. Figure 9
gives the ablation region parameters, which show these same features for the
range of 5p values, when compared to Fig. S. Figure 10 shows the 5c dependent
parameters for the planar case and should be compared to Fig. 6.

The g > ® limit is an appealing simplification and is sometimes useful for
treating large aspect ratio shells. However, this limit neglects spherical

divergence effects, and, as noted above in the discussions of aspect ratios,

this is not always &. good approximation.

D. Range of Validity of Stationary Flow Model of Shells
In order for the stationary flow model of an inward accelerating shell to

be valid, the effects of the fictitiocusoutward flow from inside the shell



should be small. Since the stationary model breaks down at the second sonic
point, rsz,where in general tﬂe density is much less than the maximum density
at rp, this point has been taken as the inside edge of the shell. A measure
of the validity of the model is the ratio of the pressure at r_to the
pressure at T oo» Pp/PSZJIf'the ratio is large, the pressure at the inside

edge, which should in reality be zero, has only a small effect on the inward
acceleration and related structure of the shell. Figure 11 shows this ratio

as a function of bv and g. The minimum values of Pp/PSZ that are acceptable
depend on the particular application and the accuracy required; for most

purposes the authors feel that the pressure ratio should satisfy Pp/Pszza.

For g = 1.0 for example, it is seen from Fig. 11 that this is equivalent to

saying thét the model is only valid for bp > 10. For smaller g the minimum

Bp is seen to be larger.

Such restrictions on Pp/P-52 should not be applied to modeling those
implosion situations in which g = 0 because there is a s}gpificant material density
and pressure at r = 0. Such situations occur, for instance, in the compression
of initially homogeneous solid spheres by highly shaped pulses(g). The

g = 0 solutions presented above and in Ref. 3 are a limiting case of this

class of solutions.

E. Burn Through

Up to this point the removal of mass from a shell by ablation during
an implosion has not been considered. As a measure of mass removal we define

a burn through parameter, B,

m o (33)



where AmA and étl are the mass removed from a shell by ablation during irts
implosion and the duration of the implosion respectively. Recall that

S = Aﬂri v P, is the mass flow rate and mp = m(rp) is the shell mass. If
it is assumed that the shell starts from the radiﬁs rp and accelerates

uniformly to the origin with an average acceleration g, then At_ is given by

1

: | (36)

Substituting Eq. (34) and the necessary scaling definitions including Eq. (23)

into Eq. (33) gives

(35)

Figure 12 shows B vs. 5p for various values of g. The
approximate constancy of B for large 5p is a consequence of the approximate

constancy of ﬁp for large p (see Eq.(27)and above).
P

Substituting Eq. (27a) for ﬁp into Eq. (35) for B gives the asymptotic

value of B for large Ep, and therefore large Aj;

~ 2r _\% ,
B =5 (36)
r P g :
PP

Equation (36) can be seen to be in agreement with Fig. 12 when the weakly
5p dependent values of ;p and Ep from Fig, 5 are taken into account.

There are many ways in which Eé. (34) can be refined and/or made
more complicated, including in particular greater acceleration for a given
incident power as the shell mass is reduced by ablation. IMost of these will

make AtI, and



therefore,B, smaller for z given g and 5p, but most will not reduce B by
much more than a factor of 2. The inclusion of values of B larger than 1 in
Fig. 12 makes adjustment for such corrections possible by simply sliding the
logarithmic‘B scale by an amount equal to the correction factor.

The efficiency of an ablatively driven implosion depends on the ratio

of ablatively removed mass to final imploded mass in essentially the same

(10)

way as the efficiency of a rocket depends on the fuel to payload mass ratio
The greatest energy is given to the imploded shell if its mass is about 1l/e
times the total initial shell mass. This would be equivalent to B=1-1/e = 0.63,
but when the various corrections to AtI‘including increasing acceleration
as the shell mass decreases, the B scaie may move up by as much as a.factor
of 2. The optimum would then be about where B = 1.0 on the scale in Fig. 12.

In any case within the range of likely implosion time histories, it
is seen from Fig. 12 that values of g larger than about 10%, and certainly
as large as 10, correspond to too much mass removal, i.e., essentially

>

complete burn through, for any Bp < 10. Moreover, for ﬁp < 10 there appear to be

no -solutions with acceptably small values of B, which is consistent with the previous

observation that stationary ablative behavior does not occur for p < 1C.

If physical requirements are placed on A and B, the regions in
bp and g where acceptable solutions exist, if any, can be seen from comparing

Figs. 7 and 12 or by use of Fig. 13 (see further discussion of Fig. 13 in Section

V1) which give A and B as functions of p and g. For example if

P
Taylor stability considerations require that A £ 10, while efficiency requires

0.5 <B< 1.0, then there is a region near g = 0.1 and § = 60 where
P

appropriate solutions are found.



V. Solutions wWith Critical Surface Density Discontinuities

A. Jump Conditions, Existence of Solutions and Profile Modification

.

In addition to the continuous solutions discussed above, there are
ablative stationary flow solutions which cpﬁtain a discontinuity in density
and velocity at the critical radius, L These solutions can be derived
from the continuous solutions above by invoking continuity of mass
and momentum flow at the discontinuity. Since the'discontinuity is at
the critical surface and the laser light impinges from the right (large

r), the density to the right of the discontinuity must be less than or

)
equal to Pe and the density to the left must be equal to or larger than

P If the subscript 1 identifies quantities to the left (smaller 1)

of the discontinuity and subscript 2 to the right, then Py 2 P 2P,

and the continuity conditions are
PyVy = PV, = S/a, _ (37a)

pvi+ P =pv,>+P +P (37b)

p!l P2 R

Here a = Anrcz is the surface area at L S is the mass flow rate, P_ is

the plasma pressure and PR is the pressure of the incident laser radiation
which is only non-zero on the low density side of rc.' By taking PR to

be discontinuous at T, we are neglecting structure on the scale of the

laser wavelength. The plasma pressure is

N

= = 2
? “RPa, Te TPaL G 38

p1,2)
where CC is the isothermal sound speed at T and there is only one tempera-
ture, Tc’ at rC because T must be continuous vhere the thermal conductivity,

K, is non-zero. Substituting Eqs. (37a) and (38) into (37b) gives

c? c ? Pa
vog-S-v 45 4 : (39)
1 V] 2 v, S



Solving for v, gives

ccz Poa { cc2 P2 2 N L
v, =k, +55) - =] ¢ oy +eo - <1 - 4c 2§y 40
1 1
In cases where P_ is negligible, this gives
R -
2
Ce /Vl (= RT-/v.), ( -sign)
Vz = c 1 (41)

v, , ( +sign)

Since p,<0, and, v2>v1,if vﬁ*‘b’ i.e., if a discontinuity does occur, then

the root corresponding to the (-) sign, Eq. (41, applies, and v]<Cc<v That

e
is, in going from r<r, to >r. the flow changes from
subsonic to supersonic across any stationary discontinuity which occurs
-at r_- Discontinuous supersonic to supersonic transitions are not
possible undgr these conditions. When the laser wavelength, XA, is
1.06 um of the Nd glass laser, the critical electron density is neC=1021cm_3.
If the critical surface temperature is a typical 103eV, then the critical
surface electron pressure is 1.6x10!2 dynes/cm?. By coﬁtrast, if the
‘incident power is a typical 103 W/cm2, then (neglecting the plasma di-
electric effects near rc) PR=3X1011 dynes/cm?, and the radiation pressure
is small though not necessarily insignificant compared to Pp. However if
19 _

2=10.6 um from a 002 laser, then n = 10 cm 3 and under the same other
ec

conditions P is larger than P
R P

The value of Vo given by Eq. (40) with the (-) sign, can be seen

to be reduced by non-zero values of PR’ since P S and a are all posi-

R’
tive. Consequently for a given vy and Pys the effect of increasing the
radiation pressure, PR, from zero is to reduce v_ and increase Py i.e.,

to reduce the magnitude of the discontinuity.



1t happens in many cases of interest where Pe is small enough to
allow PR to be important that the flow at the critical surface is

far above sonic.. In such cases it can be seen from Eq. (40) that
stationary discontinuities which satisfy the necessary condition PP,

" do not exist. The effect of non-zero PR to the right of L in stationary

solutions ig to increase p, not to decreace-it. Consequently, density pro-

file modifications which are caused by radiation pressure to the right

of a critical surface in the supersonic flow region and which introduce

a sharp decrease in density with increasing r at the critical surface

would seem to be transient. Since the instant effect of

applying PR to the right of T must be to decrease p there, and the

position of T, changes with changes in the profile of p, oscillatory

transients should be éxpected. 'when'PR ic sufficiently large. When such

density oscillations occur in.a supersonic region, they must be-convected with the
flow to larger r and not be felt to the left of r

1
)may be of this type.

c- The profile modifications
seen by Virmont

B. Role of Discontinuous Solutions and Relationship of pC to p1 and p2

A particular reason for interest in the discontinuous solutions is that
situations can occur in which~the isothermal sonic point density falls below
the laser light critical density, P+ This tends to occur when the mass
ablation rate is decreased as a result of decreasing the.incident power and/or
decreasing the conductivity coefficient, G(Z), of the target by increasing z.
For example for a given target density, pp, which might be the initial density
multiplied by a shock jump ratio of about 4, consider a set of cases with the
same critical density but progressively smaller incident laser power, w; or

conductivity coefficient,G. The sonic density,



QS, decreasen with decrceeszing Wor G, That is 5p(§pp/ps) increases with
decreasing Wor G. This can be seen from Figs. 2 and 3 or 5 and 6 above and will

be discussed in more detail in the scaling laws section below. When W or G are

sufficiently small,p = p . If W or G are decreased still further, no continuous
: s c
Stationary solutions exist because, as shown in Ref. 3, continuous stationary

solutions do not exist with ps<pc. However, discontinuous solutions do exist

with a given pp and pt and an arbitrarily small W or G. These solutions-are, there-
fore,needed to complete the description of laser driven ablation phenomena.

In cases in which there is a stationary discontinutiy at rc, PR is

usually small if not negligible compared with Pp' This may be seen from the

particular examples of Pp and P_ given above by recalling from Ref. 3 that

R

the critical surface pressure falls more slowly than the absorbed power. That
is, the dependence of critical surface pressure on absorbed power is weaker

than linear. On the other hand PR is proportional to incident power which

usually falls at least as rapidly as absorbed power because the absorption
fraction tends: to increase with decreasing power. Consequently
as incident power decreases and the critical point approaches the sonic point,

PR/P (rc) decreases and P_ is, for example, even less important than in the

R

10 SW/mZ, A = 1.06pm example above. This argument is stronger for longer

wavelengths. In what follows the corrections introduced by the PR terms in

Eq. (40) will be dropped because the effect of PR is usually small and because

retaining PR would introduce the complication of another scaling parameter. The
jump conditions then reduce to Eq. (36) and Eq. (41) .which give a relationship

between (ol,vl) and (pz,v ) that depends only on CC (= VﬁTC). v

2

At this point the problem appears to be ill posed. Equatiomns (9) and (10)

(momentum and energy respectively) can be solved with the jump conditions



Lgs. (36) and (41), replacing the treatment of the sonic singularity described
in Section II. However, a definite relationship between pc and pl or 02 is
needed to relate these solutions to physical problems, and all that is available
is p12pC202 (Section IV-A above); There ;re several approaches to obtaining this
relationship. These include:

1) some minimization argument to indicate the relationship,

2) a microscopic treatment of the flow through the discontinuity, or

3) time dependent numerical simulation.
We will consider each of these three approaches in turn and see that a complete
solution to the problem requires additional information about the laser energy
deposition process.

1) Minimization arguments. It is interesting to ask what relationship

between pC and pl will support a given pressure and density on the high density
side, Pl and pl, with the minimum input power W. Alternatively one could ask
what relationship gives the greatest Pl for a given pl and W. In either case
the answer is pc = p2, that is, the critical density occurs on the low density
side of the step. This can be seen by moving to the laboratory frame where

the fluid to the left of L is static and that immediately to the right has the
velocity U. Then, if TC is the critical surface temperature, the pressure

balance relationship across the discontinuity is

= - 2 _ 2,.2
P, =Rp, T = p2U + RQZTC pz(U +CC). - (42)

The power that must be supplied to produce the flow energy is

p,U o} P
W= -2 Lo



vhere the second equality comes from substituting Eq. (42). From Eq. (43),

if P1 is held fixed, (Bwlap2)<0. The minimum value of W consistent with a given
pc is, therefore, obtained when p2 has the largest possible value. Since it

is necessary that pzsq:to have a discontinuous solution, the minimum W is

. required wheq p2=pc. By a similar argument it can be shown that the largest
possible p2 namely 02=pc, also gives the maximum possible pellet side pressure,
Pl’ for a given W. These arguments can be seen to be forms of familiar rocket
impulse and efficiency relationships. Unfortunately, while they suggest that
P,=P, should be used, they do not prove it, and in fact the suggestion may be
misleading in some cases.

2) Microscopic treatment of the flow through the discontinuity. The
discontinuity is discontinuous because of the assumption that laser energy
deposition occurs only where p=pc. 1f instead the .deposition is taken to
occur over a small range on either side 6f L then the discontinuity becomes
a thin region with large buﬁ finite density and velocity gradients and with T
essentially constant at T=Tc' In general part of the deposited laser power
leaves this region by thermal conduction just as in the Eontinuous solutions.
However, the remainder of the deposited power is converted directly into
streaming energy by doing work against the rapidly expanding fluid. This process,
which occurs at almost constant temperature, converts this part of the absorbed
laser energy directly into kinetic energy of streaming without first converting
it into thermalized internal energy. This conversion must, therefore, occur
on a length scale of the order of the mean free path of the . primary electrons,
those which initially acquire the absorbed energy. 1If because of relative length

scales the absorption can be regarded as occurring only at p=pc, then when

viewed on the microscopic scale the discontinuity must have a thickness of the



order of a primary electron mean free path. This is clearly reminiscent of
N .
the role of mean free paths in shock front structure. On the other hand the

thickness of the discontinuity could simply be determined by the spread about p
c

of the values of pC at which absorption occurs. A consequence of the direct

conversion-is lower values of T than would occur if absorbed energy were
Lo

first converted into thermalized internal energy.

The reduction of TC that accompanies discontinuity formation is discussed

~

further in Section IV-C below. Because of the lower density

of the discoutinuiry, pz, can be no less than the lowest density at which

direct conversion can occur, 02 could be as large as pc, depending on details

of the absorption and direct conversion process. Thus 0. =P, is possible. However,
it is clear that the finite range of primary electrons could require that

pc>p 2" To resolve the relafionship between pc and pz,it will, thgrefore, be
necessary to solve the microscopic transport problem in the vicinity of rc.

3) Time dependent numerical simulation. Time dependent hydrodynamic and

heat flow simulations have been done with parameter values which give

. . . (12 . . . .
discontinuous solutions. ‘These simulations do show a quasi-stationary
discontinuity in the form of a step a few zones wide. Within zone structure
resolution these solutions show p2 = pc. These calculations were done with

. the prescription which deposits the absorbed laser energy in the outer most

zone with p>pc i.e., the first over dense zone encountered by the laser beam,

“which is the prescription used in most laser fusion codes. Consequently
direct conversion in zones with pgpC is not possible in the simulation.
Since the stationary solution requires DCZDZ, pC = 0, is to be expected
in-éuch simulations if a quasi-stationary discontinuity does develop.
What is significant from the simulations is that such discontinuous

solutions are seen to develop and to be stable.

-



A diffcrent energy deéposition procedure could be incorporated in the
simulations which would allow direct conversion at densities below Po» but
this would need to be based on some microscopic model of transport processes near
.- To illu;trate the properties and scaling of the family of discontinuous
solutions, solutions with 02 = pc are shown in the next section. We expect

that'p2 = pc will be a good approximation in most but not necessariiy all

cases of interest in laser fusion research.



C. XNumerical Soluticons and Scaling

Because the sonic velocity in discontinuous solutions occurs between
vV, and vV, (see K. (1), sonic point values of r, p and v are not natural

values bv which to scale the solutions. Instead we scale p r, and v by 1

Py and \3, and T by (\EZ/R ). That is, we define r = r/rc, 550/02,'VEV/V

and TET/(V22/R). T could have been scaled by Tc’ but this could give the

misleading impression that v, is the sonic velocity at .- That this scaling

singles out the density p, is consistent with the view discussed above

2
that P is the most likely wvalue of pc. However, the solutions obtained
here do not assume any particular relationship between Pe and Pye

For a given g, s Py and v, s if PR is neglected there is a two
parameter ‘family of discontinuous solutions. The two parameters are

1) The isothermal mach number, defined gs MIEwé/(R'TC)% = ic_%'

2) The pellet surface density, 5P.
Notice from Ej. (41)that pl/p2 (551) is determined by MI' Combining the

definition of M_ and Egs. (36) and (41) gives

I 2
Py Vi RT_ I Te :

Note that MI>1' While p- is determined by HI’ v, 2 in Eq. (10 can be
- 1

b
varied and give different values of 5p for a given 51. M in Eq. (10) is

not now determined by ;02 through the requirement of continuity at the Sonic
singularity. However, for I<r_ the discontinuous solutions are the same

one parameter family as the continuous solutions for r<;s because of the
common physical require&ent that the solution approach adiabatic flow

with decreasing T. Consequently the relationship between M and Vb2 is

the same as in the continuous solutions.



Figure ldashovws two discontinuous solutions with g=0 and HI=2 but

different values of p_. Note that the discontinuities in ¢ and V satisfy
P

Eq. (44). The family of solutions has only one parameter,

MI’ for r>r and two parameters, M

o f <r . B ontrast the
1 and pp, or r<r vy c
family of continuous solutions have one parameter, Bp’ for r<rS and two
> o £ r>Tr .

parameters, pp and p. for <

The shell solutions with g# described in Section III1 above can be
modified by a discontinuity at L just as shown here for g=0.

Figure 14b shows a dimensionless "variable which is linear in IC, as

well as several quantities which characterize the discontinuity, including

the step ratio, pl/pz, plotted as a function of a dimensionless variable
413,

which is proportional to (G(Z)W ). This is done for two rather different
values of pp/pc within the range of interest for laser fusion applications.
It is seen from Fig. 14b that for values of the indepeﬁdent variable less
than about 50 a discontinuity occurs. In making this figure it was assumed
that when a discontinuity occurs, p2=pc. Hence the notation p(c,Z)' As
explained above p2=pC ié possible but is nevertheless an arbitrary assumption.
However, if instead p2<pc, then the variable that is proportional to TC would
fall even faster -in the discontinuity.region with decreasing values of the
independent variable. Consequently, it will develop ;hat the points which
are made below with regard to Fig. 14b would only be strengthened if PP,
Now take the v;ew that the pellet radius, rp, and p(c,2) are held constant
while G(Z) and/or W change. The independent variable is then (Gw4/3), except
for a constant multiplier, and the variable containing Tc becomes (TCW-2/3),

except for a constant multiplier. It is then seen that, as discussed above

in Section.IV-A, as G(Z) and/or W decrease, [TCW—2/3] increases, the critical



point approaches the sonic point until they coalesce, and a density dis-

c 4/3 -2/3 . .
continuity occurs. As (GW ) decreases further, (TCW ) at first continues
to increase slightly and then decreases sharply.

If W is also held constant, then the situation is particularly simple,
with increasing Z and, therefore, decreasing conductivity coefficient, G(Z2),
Tc increases until a discontinuity occurs and then, after a slight further
increase begins to decrease rapidly. That the critical surface temperature,

Tc’ should increase at first as thermal conduction into the ablation region

from the critical surface is restricted by decreasing G(Z) is not at all

surprising. As G(Z) decreases further, Tc decreases and a discontinuity
occurs inAwhich direct conversion becomes significant, this is perhaps more
interesting and may have important consequences in some applications.

If on the other hand, G(Z) is held constant while the laser power, W,
is allowed to change, the relationships are a little more complicated
because the W dependence in the dependent quantity (TCW-Z/B) must be con-
sidered. It can be seen that TC is everywhere an increasing function of
W, as would be expected. In particular, on the right side of Fig. 14b in
the PPy regime where the curve repre;enting (TCW—Z/B) has the most negative
slope, from the slope of this curve and the W dependence of the independen;
and dependent variables, the relationship between TC and W is approximately

TC~W1/3. Elsewhere, particularly in the density discontinuity regime, T 1is

a more strongly increasing function of W.
Figure 14b shows, therefore, that TC is a very strong function of laser
power and the thermal conductivity coefficient, W and G(Z), in the range of

parameters in which density discontinuities exist. In addition, while TC is

everywhere an increasing function of W when G(Z) is held fixed, when W is held



fixed Tc decreases with increasing G(Z) when there is no density discontinuity
but increases with increasing G(Z) when there is a discontinuity of sufficient
size. This latter result would mean, for instance, that increasing tho decrease
G(Z), and therefore, to increase TC would only be effective-to a point and TC

would reach a maximum and begin decreasing if Z were increased further.

V. Charged Particle Beam Driven Ablation

Profiles generated by charged particle beam driven ablation are shown
in Fig. 15. Figures 15a, b, and c all have M chosen to give Bp = 102, have
g = 0, and differ in having respectively O_= .48, .81 and .92 respectively.
Recall from Section I1 that 6; is the chargegvparticle range (in mass per unit

-area) at incident particle energy. In these three cases the terminal point of

~

the particle trajectories, rR,

can be seen to be respectively a) outside the
sonic point at about o = 1.3, b) approximately midway .between rp and L3 at

~

about ;R = 0.97, ¢c) very close to ;p at about ;R = rp = 0.93. 1In all cases
the profiles of the laser and charged particle driven systems are identical

at radii less than both-rC and rR.because the inward energy flow is transported
entirely by thermal conduction. The case shown in Fig. 15c in which the beam
penetrates all of the way through the ablation front to rp is an example of

the interesting limiting behavior described by Eq. (20) in which all
inward energy flow is transported by the beam and thermal conduction plays

no role. In such cases the scaling constraints imposed on implosion systems



by the temperature and Z dependence of thermal conductivity are removed. This,
for instance, could allow design of systems of larger radius with lower
temperatures than would be possible if electron thermal conduction were
needed to transport energy into the ablation region. This limiting class of
solutions would, therefore, seem to provide some potentially useful flexibility
in the use of charged particle beam implosion drivers.

Notice also that the beam power, ﬁ, approaches larger values at large
T as ;R increases. ﬁ was defined in Section II'to be W s ZW/SVE. This is
similar to the increase of ﬁw with ;c which was shown in Ref. 3 gnd in Section
III above in the case of laser driven ablation. The basic cause in both cases
is that input beam power deposited further from the ablation region must be
transported further through outward flowing material before reaching the ablation
region and contributing to the ablation process. The energy flow is attenuated

along this transport path by conversion into hydrodynamic flow energy.

Thus with increasing ¥ or fR’ the exhaust velocity, V_, increases, as
c

seen above in Fig. 3 and below in Fig. 16. Also, as can-be demonstrated from

the asymptotic solutions given by Eq. 21 above, there is a finite outward

heat flow as ¥++~. This heat flow loss increases with increasing fc or fR

-~

and is responsible for the fact that W_ increases faster than Gi with in-
creasing fc or fR. (Recall that ﬁmEWw/(Sv§/2) and VmEvm/vS so that if there

were no internal energy or heat flow as f+, then energy conservation would

require W =Gz—'§, which for most cases of interest Gi>>§§.). Consequently
o @ . -

to support a given ablation region structure, 'more input beam energy
must be supplied if the beam energy is deposited further from the ablation region.
The quantities w_ and vm,_ws, the value of Watr =1 (r=rs) as well as »

e and the material flow velocity at (r_, v_) are shown as a function of"g°° in
R R

Fig. 16. Curves are shown for two very different values of Sp, which show

very little dependencé of these quantities in © ., except at the longer
‘ @



range end of the scale. Note that rR< 1, i.e., that the particle trajectories

terminate inside the sonic point, only for G greater than about 0.7. Also, for the
larger value of pp, which is representative of cases of interest for inertial
confinement fusion, the maximum possible value of S is about 1,

The meaning of this maximum value of G is that - as the particle energy,

and, therefore, range, is increased, while p (= pp/ps) is held fixed, the
incident beam power, ﬁm, decreases as described above until the limiting, most
efficient case is reached. If the range is increased then B must decrease.
1f pp is held fixed then ps must increase. The decrease of S with increasing
range would continue until, as discussed in Ref. 3 and Section II, the flow

could no longer be described as ablation.

VI. Scaling Laws and Applications

In order to apply the solutions obtained above to the interprétation
and prediction of experiments and numerical simulations it is necessary
to identify the solution that corresponds to a particular set of physical
parameters. This can be done by calculating the parameter M, Eq. (12),
with the values of bhysical parameters at the pellet surface, rp, instead
of the sonic point rs. From Eq. (12) this dimensionless constant, Mp, is

148 ~ 1
rop v 3 r R (°+1)p (o+B+s)
M=-PP D _ 2 P
Pog(z) T 1 c(z) p &7

P P
_y P

(45)

MP is plotted as a function of 5p (Epp/ps) for o=5/2, 8 =0, and g=0,

1, 10—1/2 and 10™ in Figs. 2, 5a, 5b, 5c respectively. To identify a
solution, substitute values of r, pand P at the pellet surface, and the
gas constant R and conductivity coefficient G(2) (Eq.(4)) of the target
material into the second equality of Eq.(45). In those cases in which

inward acceleration is negligible, which includes most solid ball cases,




g can be taken te be zero and the corresponding stationary flow solution
can be identified from Tig. 2 with the calculated values of Mp.
Note that as the conductivity coefficient Q(Z) increaseé with r , p
and Pp held fixed, from the second equality in Eq. (45), Mp decreases and
from Fig. 2 5P(Epp/ps) decreases. Therefore, since G(Z) decreases with in-
creasing Z, for a given rp, pp and»Pp the sonic density, ps, decreases with
increasing Z. While it can be seen similarly that v increases with increasing
Z, the mass ablation rate, S#hnrszpsvs, also decreases with increasing Z, while
Ts increases. This should be expected. As conductivity decreases with
increasing Z, heat flow into the pellet is reduced and less material is
removed for a given incident power. However, what mass is removed must
convect away a greater energy‘per unit mass and must, therefore, have
a higher velocity and temperature.
Similarly, Figs. 2 and 5 show that if the pellet radius, surface density
and conductivity coefficient, h op and G(Z), are held constant while
the pellet pressure, Pp, is decreased{ the sonic density
.ps decreases. Consequently for fixed P> pC/pS increases, and
\it therefore follows from Figs. 3 ahd 6 (critical surface parameterss
that both the dimensionless and the physical laser powers, W (§2w/4ﬂr§ psvz)
and W , decrease. That is, if pellet density and material type are held
fixed while pellet pressure is decreased, then the sonic point density
and the required laser power decrease. Looked at another way, if the
pellet material and density are held fixed while the incident power is
decreased, thgn the sonic density, P decreases. Thus ps decreases with
either increasing Z or decreasing W .
As discussed above-in Section IV on discontinuous solutions, this decrease
in ps with decreasing W or increasing Z can continue until ps=pc. At that
point the solutions become discontinuous at rc if ¥ decreases or Z increases

further. This behavior can be



expectcd to occur in practice with decreasing W or increasine 7 bhecause pellet

density, Dp, is usually a weak function of these parameters. For instance
pp might be the initial material density multiplied by a hypersonic

shock density ratic of about 4.
® .
When Py has been determined from Fig. 2, then from the critical density,

Pes pc/pS is obtained. With pc/ps and Fig. 3 for §=0, or Fig. 6 for
§70, properties of the solution at the critical surface, as well as the
exhaust velocity, v _, and the required laser power W, can be obtained.

In this procedure values of py» T, Vs must first be obtained from Figs. 2

s
or 5 to be used in reading Figs. 3 or 6.

Vhen accelerating shell solutions are to be identified, ‘§#0 an.
additional step is required in the identification procedure. -The aspect
ratio, A (Fig. 7), must be specified. Note that this is the in flight
aspect ratio, which is not in general the same as the initial aspect
ratio and is usually larger. By inspection of Fig. 7 and Fig. 5, the
values of g and 5p are found which correspond to the given values of
A and Mp. This will in general require interpolating between values of
g§. From these values of g and 6p, Fig. 12 gives the value of tﬁe burn
thru parameter, B, for the particular solution. At this point it can
be seen if the specified shell parameters constitute a reasonable choice.
As discussed above in Section III C, B should be near 1. Larger values
indicate a tendency for ablation to burn thru the shell before the
implosion is completed. Smaller values of B indicate small ablative
mass removal and, therefore, low energy transfer efficiency.

With the values of A and § obtained above the implosion velocity

can be estimated. By the same constant acceleration approximation

surface



that gave the implosion time, Lt. Eq. (34), an approximate final implosion

I
velocity, vy is
I BT gl
= = 2 7z
v Egm s P ey BT (46)

The last equality in Eq. (46) is approximate because ;p = rp/rs =~ 1.

From a mathematical point of view the above procedure of identifying
solutions by specifying the shell aépect ratio, A, and the shell M parameter,
M# Eq. (45), may be the most logical. However, the most effective way of
determining target and laser parameters from target requirements and physical
constraints, i.e., designing a targeﬁ, is probably to start by specifying
aspect ratio, A, and burn through parameter, B. From these parameters and
Figf 13, which is a composite plot of ﬁp and § vs. A and B, ﬁp and g can
be obtained quite easily. For example, suppose that a shell aspect ratio of
about A=30 is desired to obtain a sufficient compressedffpdr, and B=1 is
desired to give an efficient implosion. Then from Fig. 13, 5p = 70 and § = 1,
which uniquely determihes the dimensionless solution. From these parameters and
Fig. 2 or 5 the various properties of the ablation region can be obtained. Also, as
discussed above in the contexts of E = 0 solutions, if pc/ps is given then
Figs. 3 and 6 can be used to determine critical surface properties of the
solutions, including the required dimensionless laser power ﬁw. If, in addition
the absolute value of the shell density, pp, and the'iﬁplosion velocity, Vi
are specified, then the pﬂysical values of all other quantitiés can be obtained.
From Epvand the absolute value of pé, g and, therefore, pc/pS are known.

From vy and Eq. (46), Ve is known, and, therefore, from the definition of W

and Ww, the absolute value of the laser power, Wm, is known.



\ith these parenzters Eg. (45) for Mp constitutes & rclationship between
the shell density pp, and the conductivity coefficient G(2Z). That is, if thc
density of rhe imploding shell is chosen then the atomic number, Z, of the

shell material is determined.

1t is helpful to notice from Figs. 2 or 5 that for the large values

-

of 5p of usual interest, ;p’ Pp and M are essentially independent of 5p.

An important consequence of this near constancy of M, which was
shown in Ref.(3)for §=0, can be seen from Eq.(12). I1f a particular
implosion system, i.e., fixed pp, A and B, is scaled up to larger di-
mensions, then e?ther G(Z) or Ts must increase. I1f the implosion velocity
is also held fixéd in the scaling, then Ts is fixed and G(Z) must increase.
That is, larger targets with the same implosion <velocity must be made of
lower Z materjials. On the other hand the implésion velocity can be

increased in a target of a given material by increasing the power with

increasing dimensions so as to increase the surface temperature.

The discussion above of scaling laws and applications deals explicitly
with laser driven ablation im which pc < ps. However, the same approach will
apply to shells i.e., g # O solutions, driven by particle beams and, with some
modification, to shells driven by lasers when pc = ps and a density discontinuity
occurs. Subsequent publications will present more details of both pC =p

s

and particle beam solutions with g # 0.
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Fig. la. Steady flow profiles of the pellet and ablation region for the
2 ) . o
laser case with § = 10° and § = 0 for several values of P+
p .
Fig. 1b Logarithmic profiles for the case Bp = 102, g =0 and a range

of values of.Bc.
Fig. 1lc Logarithmic profiles for the comparison case of Sp = 10 and E =0.

. ~2
Fig. 2 Flow variables at the pellet surface and values of vy and M as

-~

a function of Ep for g = 0.

Fig. 3 The dimensionless laser power and the scaled flow variables
evaluated at the critical surface as a function of Bc for E = 0.

The exhaust fluid velocity, $m, is also given.

Fig. 4a A linear plot of the pellet and ablation front profiles for
~ 2 ~ :
Dp = 10" and g = 1 with the pellet mass, ﬂp, and mass, ms, within

the sonic point, ¥ = 1, shown.

. ~ 2 ~
Fig. 4b Logarithmic profiles of the laser case with pp = 10" and g = 1.
for several values of Bc'
Fig. 5a Values of the flow variablesat the pellet surface, the mass of the
pellet, the mass within the sonic point T = 1 and the values of

~2 ~ ~
i M i f £ = 1.
Vi M and Ap as a function o pp or g 1l



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

5c

oo}

10

11

joa caled guantities evaluated at the pellet surface and

X

sonic point as a function of P_ for § = 10

The same ‘quantities as shown in Fig. 5b plotted for the case

g = 10%3,

The dimensionless laser power, W_, and the scaled flow variables

evaluated at the critical surface as a function of § for g = 1.

The aspect ratio, A, as a function of Bp for a range of values

~

of g.

Steady flow profiles for the case g - and pp=102 with a comparison

case of g=1 and 6p=102 plotted against xg scaled units.
Values of the flow variables and other quantities evaluated at
the pellet surface and sonic point X = 0 for the planar case.

The flow variables at the critical surface and the dimensionless

powers W . as a function of P for the planar case.

The ratio of the pressure at the pellet surface to that at the

inner sonic point as a function of Ep for a range of values of g.

This is used to determine the region of parameter space in which

the model is wvalid.



Yig., 12

Tig. 13

Tig. lé4a

“ig. 14b

v

15a

1
o9

Fig. 15b

Fig. 15c¢

Fig. 16

The burn-thru ratio, B, as a function of ﬁp for various values
of §.
A composite plot of the burn thru parameter and aspect ratio for a

range of values of 5p and g.

Discontinuous profiles with an isothermal mach number of 2 at
£ =1 for 5p=102 for (solid-line) and p,=10 with (dashed line)

and g=0.

A dimensionless variable linear in 'I‘c and other quantities which
characterize the critical surface as a function of a dimensionless

variable proportional to (G(Z)Wz’/3

). Values to the left of the
vertical dashed line are from discontinuous solutions, while

those to the right are from cases in which fc>fs.

Logarithmic profiles of the charged particle beam deposition case

for 5p=102, g=0, and fR>fs.

Profiles of the charged particle beam deposit ion with 5p=102 and
g§=0 in which the beam penetrates within the sonic point but thermal
conduction is important.

A case which is similar to that shown in Fig. 15b except that
TR>fs.?nd thermal conduction plays a very small role.

The dimensionless particle beam power, ﬁw, necessary to drive

the ablation, the exhaust flow velocity, Gw, and other computed

quantities, as a function of the rance, ¢ .

o
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TAYLOR INSTABILITY IN FUSION TARGETS
R. L. McCrory

University of Rochester, Laboratory for Laser Energetics
Rochester, New York 14623

L. Montierth
R. L. Morse
C. P. Verdon*

University of Arizona, Department of Nuclear Engineering
Tucson, Arizona 85721 '

ABSTRACT

Optimum performance in laser driven fusion targets is enhanced
by the use of high aspect ratio shells in commonly employed spheri=
cally symmetric designs. Taylor instability occurs in these systems
at (1) the ablation surface when the acceleration is in the same
direction as the local density gradient, and (2) later in the im-
plosion process when the fuel decelerates the pusher. Results for
a linear stability analysis of the ablation-driven Taylor instabil-
ity are obtained from a perturbation analysis of the two parameter
stationary ablative flow model. The linear growth rates are shown
to be in agreement with full two-dimensional numerical simulations.
From the linear analysis, the potentially most damaging unstable
mode is identified, and full two-dimensional numerical simulations
are performed. The two-dimensional calculations determine the
nature and saturation behavior associated with the unstable mode.
Our results indicate that saturation of the ablatively driven
Taylor instability does occur. This saturation occurs at an ampli-
tude which is sufficiently large to be a possible cause of diffi-
culty in using large aspect ratio shells in fusion targets, but is
seen to prevent these shells from breaking up and becoming turbu-
lent. It appears plausible that such distorted but laminar, i.e.
non-turbulent, shells could be successfully employed in fusion
targets.

*Present address: University of Rochester, Laboratory for Laser
Energetics, 250 E. River Rd., Rochester, New York 14623
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1. INTRODUCTION

Taylor instability is the instability which occurs at the.
interface of a heavier fluid superposed over a lighter fluid.]
Gravity causes ripples at the interface to grow until the heavier
fluid falls through the lighter, and in the end the heavier fluid
comes to rest on the bottom of the container. A modified version
of this instability occurs in spherical implosion systems in
inertial confinement fusion (ICF) targets, with radial accelera-
tions playing the role of gravity. The most effective implosion
systems are particularly vulnerable to this type of instability
because they consist of one or more relatively thin spherical
shells which acce}eyate through many times their initial thickness
during implosion.“”/ Fiqure 1, adapted from Ref. 2, shows density
profiles of the standard types of systems. Type IV with "levitated
fuel", which is a more elaborate version of Type II, in general
gives higher compressions for given constraints on the driver
pulse, i.e., laser or particle beam pulse, than do Types I and III.

Solid or gaseous fuel

/ngh zZ&p
Solid fuel (s.1. LowZ
P 1) sf. . conduction
material
—————— ‘
r r . r
v \'/
Solid or
HighZ & p gaseous fuel
P LtowZ
conduction
matenrial * |
r r

FIG. 1 Five common types of spherically symmetric inertial
confinement fusion pellets. (Adapted from Ref, 2).



In general, the larger the initial aspect ratio, A, = r,/ar,
(where r, and ar, are initial shell radius and thickness), of the
shells, the better the performance of the system. Typical desir-
able values of A, are in the range 10 S AoS 100. The currently
popular use of multiple high density shells, of which Type V is a
typical example, makes possible various implosion timing improve-
ments at some cost in efficiency, but does not introduce any in-
stability phenomena which are qualitatively different from those
found in Types III and IV.

Taylor instability occurs in these systems when and where
acceleration is in the same direction as the local density gradient,
so that in effect a heavier fluid is above a lighter one in the
local gravitational field. This occurs first at the outside
surface of the outer shell as illustrated in Fig. 2. The role of
the lower density fluid is played by the material which has been
heated directly by thermal conduction from the outer high-tempera-
ture corona region and is being ablated outwardly from the shell.

FIG. 2. Classical Taylor instability conditions are illustrated by
the container of two fluids in a gravitational field, as
illustrated in the sketch on the left. The analogous
situation for the ablation driven Taylor instability is
illustrated on the right.
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~either linear growth rates or nonlinear development of the outside

The inward acceleration causes ripples in the ablation front region
to grow unstably. Later, when the fuel has reached the center, the
interface between the fuel and the high density pusher shell in
Type III or IV systems also becomes unstable, because the pusher is
decelerated by fuel pressure.?l |

When successful implosion systems are designed for optimum per-
formance they will probably come as close as possible to failure
from Taylor instability without failing. In the manner of failure
that would be approached, outside instability could cause growth of
shell distortions but not to the point of complete loss of shell
integrity at the inner surface. The inside instability would then
cause further growth until the interface between the fuel and the

.pusher shell became so distorted that fuel and pusher material would

become intermixed; further fuel compression would cease, and igni- :
tion precluded or any thermonuclear burn in progress would be quenched.
Because both the inside and outside instability contribute to this
failure mode, it will eventually be necessary to calculate the be-
havior of both in detail to predict and to avert failure. However,

at present the outside instability is in a sense more important,
because much less is known about it,and because it appears possible
that it may not be as troub]eso?e in all cases as has previously been
predicted from linear analysis.

The inside instability is usually classical, i.e., ablative
phenomena usually do not play_a significant role. Classical analy-
tic estimates of growth rates! are, therefore, approximately correct,
and the nonlinear development can be anticipated from previous numeri-
cal simulations of the c]asgi?al Taylor instability which show the
bubble and spike structure.8-10 In section II below we give a brief "
description of the analytic theory of these classical growth rates
and their application to the implosion of shells. In contrast with
the state of understanding of the approximately classical inside
instability, there has been no complete systematic treatment of ,
instability, which is more complicated because the heat flow and
convection associated with gb]?tixn play an important role. Research
done on linear growth rates¢s'!=!% shows that in cases of interest,
ablation phenomena reduce the linear growth rates significantly at
shorter wavelengths, but that t?? growth rates are still large enough
to cause serious difficu]ty.z’ There has also been an indication
from numerical simulations that nonlinear saturation mechanisms may -
in some cases 1imit shell distortion enough to prevent failure.}
This effect could be very important if it occurs over a sufficient
range of parameters to make usable large aspect ratio systems which
would be expected to fail from a simple extrapolation of linear
theory.
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Preliminary results are presented below from two separate sets
of calculations of the behavior of ablation-driven Taylor instabil-
ity. The first (Section III) is a parameter study of linear growth
rates which is based on zero-order stationary ablative flow solutions.
The second (Section IV) is a numerical simulation study of nonlinear
development done with a two-dimensional, triangular zone, Lagrangian
hydrodynamic and heat flow code which was developed for this purpose.
From the linear growth rates, it will be possible to determine, for
a given implosion system, the range of modes which grow enough that
failure should be expected from extrapolation of linear theory.

The two-dimensional simulations should then show which of these
modes would be prevented by nonlinear effects from growing to suffi-
ciently large amplitude to cause failure and, therefore, which sys-
tems should be expected to implode successfully.

I1. CLASSICAL ESTIMATES OF SHELL INSTABILITY

Figure 2 shows the classical Taylor instability conditions in
the container of the two fluids in a gravity, g, on the left and
the analogous situation on the outside of the shell on the right,
which is being given an inward acceleration, a, by ablation pressure
at the outside surface. Suppose the amplitude of the ripple of the
interface between the two fluids in the container has the form,

£ = g, exp(ikx + yt), )

where x is the coordinate parallel to the interface,

k = 2n/x , and
E, is the amplitude at t = 0.

If the fluids are incompressible and inviscid, the thicknesses of
the fluid layers are great compared to the ripple wavelength, A,
and the heavy fluid is much more dense than the light fluid; then
the growth rate, y, is

y = (k)2 (2

To the extent that classical theory is at all applicable to
the ablative outside surface, the assumption that the heavy fluid
is much more dense than the light is a good approximation. This is
so, because typical density ratios-across the ablation front from
the shell, which is the heavy fluid, to the ablated material near
the isothermal sonic point of the flow (which is a Eeasonable place
to define the lower density) are of the order of 10¢.
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Failure

From this classical theory, estimates can be made of the con-
ditions under which shell failure would occur. The subject of
failure is not well understood, but it is expected that failure
would occur if the surface r1pp1e amplitude became of the order of
or larger than the shell thickness at the time 6f failure. If we
accept this criterion for failure, then from the definition of
aspect ratio, A = r/ar, the failure amplitude, E¢s is

£ = &r = r/A . ‘ (3)

Here all quantities are taken not at initial time but at the time
of tf, when failure occurs. That is, t¢ is the time when the
failure criterion is first met,even though shell distortions may
increase after this time. To obtain numerical estimates that in-
dicate the magnitude of the problem, we must choose the values of
k that will be most troublesome, and this we do according to the
conventional wisdom, to which the authors at least partly subscribe.
That is, the most troublesome mode is the fastest-growing mode that
can cause the shell to break up. From Eq. (2) the growth rate
increases with k. On the other hand, the e-folding depth of 1
penetration of the k mode into the f1u1d from the interface is k~
and nonlinear calculations indicate that growth slows from exponen-
tial to linear, or in some cases, saturates turbulently and stops
when the amplitude reaches this penetration length. Modes with

. values of k-1 Tess than the shell thickness, the conventional wis-

dom dictates will not cause the shell to break up and are not as
troublesome as the slightly slower modes that can cause break up.

This worst value of k is then ky = ar-l, or since for large %
= 2/r, we also have a corresponding worst %, and, from Eq. (3)

< "l - r _r
&g = kw - %, A : (4)

Substituting Eq.(4) into Eq.(2) gives the growth rate for the
"worst" mode:

v, = (B¢ . (5)

It should be noted that A here is the in- flight aspect ratio, as

“discussed below, not the initial aspect ratio Ay. Substituting

Eq.(5) into Eq.(1) gives the amplification of the "worst" mode,
£ = g e [( 25, (6)

The larger t can be, that is, the longer the instability has to
grow, the smaller E must be to prevent failure, and practical



limits on surface finish put lower limits on £.. The procedure to
follow is then to estimate the minimum value o?Eo and the maximum
value of t and to ask if the resulting £ exceeds £f from Eq.(3).
It is tempting to assume that failure can occur as late as the
full implosion time, rI,,defined as

o = (Ee)lE, | (7)

This is simply the time required for a shell to reach the origin
if it implodes with a constant acceleration, g. This, however, is
probably a bit pessimistic in the sense that it allows more time
for the instability to develop than is actually available, for
several reasons. First, the outer shell surface does not travel
all.the way to the origin, because the compression is finite. In
high compression ICF systems, however, the outer surface does
travel well over half way. Spherical convergence makes a further
contribution to limiting growth time. In most cases of interest,
as the shell moves toward the origin, its aspect ratio first in-
creases rapidly because the shell is made thinner by shock and
acceleration-induced compression. Typically A increases from Ag
by a factor of 4 or a bit more. A then changes slowly for an
intermediate period during which the effects of convergence and
ablative mass removal roughly cancel. In cases of interest, which
do not burn through, the convergence then finally wins; the shell
thickens while the radius decreases, and A decreases again. It is
during the intermediate period when A is largest and the shell is
- npear its initial radius, rg, that the shell is most vulnerable to
break up by the larger & (or k) faster growing modes. Thereafter,
as A decreases, it is expected that further growth of the higher
2 modes will have relatively less disruptive effects on the shell.
For these reasons in applying Eq.(6), we choose tf = 1,/2,
A = 4Ry, and r = r,. These choices of "round numbers"“all appear
to err a bit in the direction of underestimating growth of
unstable modes. Substituting into Eq.(6) gives the initial per-
turbation amplitude, Ey, which would cause failure:

r 4A g T
£, - ;ﬁ—oexp [-(——,%—)1/2 71
Ar
- _0 . 1/2
= gexp [(2A))77) (8)

Notice that the acceleration, g, has cancelled out. To see what
this means, consider a typical case of interest: Ap = 25 and

ro = 100 um. From Eq.(8) the requirement to avert failure is

Eo < 8.5 x 10-8 cm. Without going into the particulars of the
possible spectra of shell surface imperfections responsible for
Eo, it can be seen that this requirement places severe



restrictions on the surface finish. If instead A, = 10, then the
requirement is £, < 2.8 x 10-6, and if Ay = 5, then o < 2.1 x 1072,
Only the requirement for A = 5 represents a surface finish which
seems clearly-attainable.

Linearized calculations presented in Ref. (2), which include
ablative effects, obtain amplifications which are a bit smaller
than, but within an order of magnitude of those obtained from
Eq.(6) above. From these more realistic calculations and slightly
more conservative estimates of attainable surface finish, Ref. 2
also concluded that Ag < 5 is required to avert shell breakup.
Clearly if anything can be done to relax this restriction, it
would be very desirable, because the performance expected from
shells with Ay-< 5 is rather disappointing.

Compressibility Correction

There is a further correction to the classical linear growth
rates that is caused by compressibility, which may be important,
and should be pointed out before the ablative calculations are
presented. In the classical calculationsl it is assumed that the
fluids are incompressible. For present purposes this is essen-
tially equivilent to assuming that the linear growth time of a
mode, T £ Y™, is greater than the acoustic transit time, 71g,
across the characteristic length of the mode structure., That is,
since the characteristic length of a Taylor mode is k-1, it is
implicitly assumed that '

Yy ¢ kCg, (9)

where Cs is the sound speed in the shell. A Taylor mode cannot in
fact grow much faster than the upper limit given by the equality
in Eq.(9), because the pressure differences that cause the flow
cannot be transmitted across the mode structure on a shorter time
scale. In ideal gases, the sound speed is

- 5P 11/2
¢ = (3P, (10)

where P and p are pressure and density, and the pressure in a
shell at the outside, or ablation, surface is approximately given
by the effective weight per unit area of the shell on the ablation
surface,

P = ( patr) . | (11)
Here for consistency with the estimates of growth rates above, the

final shell thickness, Ar,, is used as an estimate of the in-flight
thickness, Combining Eqs. (9), (10), and (11) gives



-

1/2 1/2
Y f_k(%ﬁ arey/? - (ak)l/z'(gk are)2 = k(3 igi) . (12)

Comparison of Eq. (12) with (2) above, with a = g, shows that in the
"worst case" discussed above, for which k, arg =1, Eq. (12) places .
an upper limit on y which is larger than ¥he classical growth rate
but only by a factor of (5/3)1/2, For smaller values of k, it is
seen that Eq. (12) limits y to values which are smaller than the
classical incompressible result. It will in fact be seen in section
IIT that for a range of smaller values of k below k,, Eq. (12) be-

comes approximately the correct expression for y, instead of Eq. (2).

If nonlinear saturation prevents shell breakup from modes with

k < k., this reduction in linear growth rates for smaller k may
then ge important.

II1I. CALCULATION OF LINEAR GROWTH RATES USING THE STEADY FLOW MODEL

Exact calculation of amplification of Tinearly unstable Taylor
modes during an implosion requires calculation of the development
in time of first-order perturbations of a time-dependent zero order
flow. The separation into modes occurs naturally through An expan-
sion ‘of the angle dependence in the spherical harmonics, Yl(e,w).
The various first-order quantities then appear in the form f l(r,t)-
Y0 (e,y), where f1g is one of the first-order quantities, P1g> le,
tﬁe radial component of the perturbed velocity, Vipg Or &y, the
perturbed displacement, or the divergence of the corresponding

angular components of these two quantities, v-V and v-£ The

system of coupled differential equations for these f1,’s i% degener-
ate with respect to m and decouples with respect to 2.12-14  Tpe
different modes are, therefore, identified by their £ number.
Solution consists of numerical integration in time of the system

of equations for the fy,'s for as many different &'s as are de-
sired. The zero-order quantities, the fo(r, t)'s, which describe
the spherically symmetric implosion, appear as coefficients in the
system of equations for the fjp's and can be computed simultaneously
or computed previously and stored. :

This exact method of sg]ution has been applied successfully to
implosions of shells¢»13:14 and will probably be necessary for de-
tailed examination of specific fusion target designs in the future,
However, the method in a sense gives too much information for making
qualitative, i.e., order of magnitude, judgments about broad classes
of implosion systems. Total amplifications of perturbations are
obtained for a specific implosion system driven by a specific inci-

_ dent driver pulse. In practice, this solution space has so many

parameters that extracting patterns of behavior and insight from it
can be a bit tedious.



What is needed to complement these exact calculations of total
linear amplifications is the instantaneous linear growth rates of
- the Taylor modes as a function of & for the minimum number of
fundamental parameters needed to describe the instantaneous state
of an unstable region. The classical theory, of which Eq. (2) is a
simplified form, fi1ls this need for non-ablative unstable regions
when, as discussed below, the compressibility corrections are
added. The numerical calculations of growth rates of ablation-
driven Taylor instability presented here are intended to fill
the similar need for ablative regions where heat flow and convec-
tion are important.

An appropriate family of zero-order ablative flow solutions
from which to derive iqgtigtaneous growth rates is obtained from
the steady flow model.*2**° In cases of interest, the instability
growth time is short compared to the implosion time, i.e., the time
for shell density, temperature, and velocity profiles to change
significantly. However, the growth time is not necessarily
shorter, and can be longer, than the characteristic time for a
fluid element to flow through the ablation front region. By being
stationary in time while including the effect of convection, the
steady flow model meets the requirements of this ordering of times,
but is simple enough that the family of solutions may be described
by a two parameter family. A brief description of the steady flow
model and solutions will be given next, before the stability cal-
culations are presented.

Steady Flow. Model

In this model, the flow is spherically symmetric, radially
outward, and stationary. Stationary flow is a reasonable approxi-
mation in most cases of interest,because the time required to es-
tablish the flow between the pellet surface and the region where
the absorbed energy is assumed to be deposited is less than the
characteristic implosion time and, because the pressure gradient
forces in the ablation region are larger than the forces associa-
ted with the average inward acceleration.

For our purposes, very little generality is lost and consider-
able simplicity is gained, by assuming a single temperature instead
of separate electron and ion temperatures. The steady-state hydro-
dynamic equations are then:

Continuity:

d 4 - .
a‘- (pVY‘ ) o, . (13)

10
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Momentum:
d_V_ S - QP_ - -d_\!)_ .9 d (]4)
A - I
Energy:
124 % Py y -Q = l.Vz s (15)
Yc'l p 2

where p is the fluid mass density, v is the radial fluid ve]ocity3

r is the radius, P is the pressure, y is the gravitational potential,
Y~ 1s the ratio of specific heats, and Vb is the Bgrnoq]11 energy
f?nw constant. The gravitational potential, y, which is introduced -
to represent inward acceleration must be included to yield shell-
l1ike density %rof'les. The quantity Q is defined to be

2 = {ok/S)(d /dr}, where S = 4nr® gv is the mass flux, a constant
of the motion by Eq. (13). « is the thermal conductivity coeffi-
-cient given by

k= G(Z) T* p7B . (16)

Following Sp'itzelr']7 we takea=5/2, 8 = 0, and G(Z) = «_/Z,

where x_is a constant, for most of what follows. We h3ve ignored
the weaf temperature and density disendence in_the TnA term

which appears in the conductivity,*/ T is the temperature, and we
have defined o = 4nr”. P is related to T through the fully ion-
ized ideal gas equation of state P = PRT/u, where R is the gas
constant, v = u_ /(1 + Z), u, is the atomic mass of the fluid,

and Z its atomic number. After some manipulation, Eqs. (13),
(14), and (15) become: '

pvo = S , » (17)
-RT,ydv_ RT (2-1 dTy.dy ., 18
v(1 ;VQ) &= (r T HF) T (18)
12 Y_Rl -0 dT=12 .
ZVtryT e i WY - (19)

Because transonic solutions are of particular interest to us,
it is useful to scale the equations in the_following way. Define
p =plpgs T =T/Tg, V=V/vs,¥ = y/vS, and r = r/r_, where pss Tes
and vg are the va?ues of the flow viriables at thd .{sothermal sdnic
point r.; that is, at r_, v_ = (RTS/u)1 2, Using this scaling,
Eqs. (18} and (19} becofe: S
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The dimensionless quantity M is defined as

Y'DI+BV3 r.p V3
M'=__S__S___FS =.---—-—SSS ’ (22)
o
- G(Z)TS ksTs

and is the only place in the equations where dimensional parameters
appear explicitly.

For use in Eq. (20), we define § = -_3y/3F. The form of ¢
that has been used is ¢ = -g(r - rg), or § = -§(F¥ - 1), where the

dimensionless form of the gravity constant then becomes § = grg/vg™.

The numerical solution of Eqs. (20) and (21) is accomplished
by integrating inward (¥ < 1) and outward (¥ > 1) from the singu-
larity of Eq. (20) at ¥ = 1. We further restrict our attention to
solutions which are subsonic for ¥ < 1 and supersonic for ¥ > 1.
We require that dv/dF¥ be finite at ¥ = 1. Thus, since the denomi-
nator of the right-hand side of Eq. (20) becomes zero at ¥ = 1,
the numerator must also be zero there. Values of the temperature
and velocity derivatives at this singularity are determined as a
function of M and § by requiring that the solutions be continuous
there. Limits on the range of values of M are also determined, as
a function of g, by conditions at ¥ = 1, i.e., r = rg. These
constraints, as well as the procedure for treating €ie laser energy
deposition at a critical surface, and some asymptotic analytic
solutions for r + = are derived in Ref. 15.

It is also shown that values of M near the lower 1imit of the
allowed range correspond to larger values of the ratio pp = pp/ps
of the peak density at the outer shell surface pp, to the sonic
point density, ps.

For present purposes, the driver energy is assumed to be
deposited at larger radii than are directly involved in the
stability calculations, i.e., at r = +=. In other applications of
the steady flow model, the driver energy is explicitly introduced
at finite radiild, such as the critical surface of laser light,
and one or more additional parameters are introduced, which are not
necessary for the present requirements here.

12
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The solutions of Eqs. (21) and (22) form a two-parameter .
family. The two parameters are M and g, but M, whose physical
meaning is not transparent, is equivalent to the ratio of peak
shell density to the sonic density. That is, M is found to be
equivalent to pp = Pp/ P where pp is the peak density of the shell
or pellet._ Cases of interest fgr laser fusion applications have
values of op of the order of 10“. All other things being equal,
larger Pp corresponds to smaller incident power. Values of pp of
the order of 10 or less approach the rapid thermal burn through
1imit where exploding pusher behavior accurs. _It may be interes-
ting to the reader to note from Eq. (20) that g (defined as
- 3y/ar)is effectively a measure of the relative importance of
spherical divergence and acceleration in determining the flow in
the sonic region. The 1imit g << 1 gives solutions in which
acceleration is unimportant, and the shells are so thick that
A$1, As g +=, A +=, spherical curvature is not important, and :
flat slab solutions are obtainad for this limit. For ICF applications,
solutions with g of order 1 are often most relevant, as we discuss
below. Figure 3 shows the steady flow solution profiles for the
particular case Bp = 50 g = 1.0, and represents one of the
particular cases for which instability growth rates and mode forms
are obtained by the procedures described in the following section.

WeT T T T T T T T T T T T T T T T T T TS
E ~ =
- p G=1 m
10 = =
— 3
- -
- . -
E 3
- .
10~ =
-
D S T T T N T N Y N O S B
08 0.9 1.0 1.1 1.2
N
R

FIG. 3 Stationary ablative flow profiles for the normalized
density (), pressure (P ), velocity (V_), and tem-
‘perature ( T ) obtained for the case G = . The flow
variables are normalized at the isothermal sonic point ’
(% = r/rg = 1).



A further transformation of parameters is useful for applica-
tions of the steady flow solutions and their stability properties
- to imp]osion systems. The aspect ratio, A, defined in Section II
above, is defined from each computed solution as the width of the
shell density profile at half height. This is the first trans-
formed parameter. The second parameter is the fraction of the
she]] mass that is removed by ablation during the implosion time
. 11, defined in Section II. If M and AM are the initial mass and

t e ablated mass increment respectively, this burn through para-
meter is then
3
i R LS QR I (23)
M M re’ g M

B

Figure 4 illustrates the dependence_of A on g and pp Note
the linear dependence of A on pp and on § for large § and Pp-
Figure 5 shows the full mapping from the solution parameters
(Pp,g) to the parameters (A,B). Maximum energy transfer is achieved
-from the energy source driving the ablation to part of the imploding
shell that is not ablated if AM/M is ab?gt 2/3, just as one would.
expect in analogy with a "rocket model":® to which this system is
approximately equivalent. Taking into account the approximations
involved, one then expects the optimum solutions to be in the
range 0.5 < B < 1.0. Other implosion system design constraints
could, however, lead to the use of solutions outside of this range.
From Fig. 5 it is seen that this range of B values and aspect
ratios in the popular range 10 < A < 100 requires solutions in the
neighborhood of 5p= 50 to 100 and § = 1.0.

Method of Calculating Perturbations

The method used here is similar to that used in Refs. 12-14,
and described briefly above, except that the equations for the
time dependence of the perturbed quantities are written in Eulerian
form and solved on a regular fixed grid instead of being written
in Lagrangian form. This procedure was adopted because the zeroth

order steady flow solutions are computed on a regular fixed Eulerian

grid, as opposed to the procedure used when the exact zeroth order
solutions of Refs. 12-14 are computed which emp1oy a Lagrangian
grid moving with the fluid. In either case, it is desirable, for
simplicity and accuracy, to have the first and zeroth order compu-
tations done on the same grid. The first order equations are ob-
tained by expansion of the angle dependence in spherical harmonics,
YR (8,p), and make use of the fact that the resulting system of
equations decouple with respect to £ and are degenerate with respect
to m. These equations are, therefore, the same as those derived in
Ref. 12, exceépt for the differences required by the change from
Lagrangian to Eulerian coordinates and will not be written out here.

14
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FIG. 4 Dependence of the aspect ratio, A, as a function of pp, for
various values of the normalized acceleration, § obtained
from the two parameter stationary ablative flow model. Note
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the linear dependence of aspect ratio on EP for large pp, G.
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FIG. 5 Full mapping from the solution parameters (pp, §) to the parameters
(A,B) from the stationary ablative flow model. A is the shell aspect
ratio, and B is the burn through parameter, defined in the text,

(Eq. 23), B = aM/M.
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The first order variables are Ty, py, V4, and £, the perturbed
temperature, density, velocity, and displacement. All scalar
quantities have the form Ty = T](r,t)YQ(e.w) as described near
the beginning of this section. ° The zeroth order quantities
obtained from the steady flow model appear as coefficients in the
equations of motion for the first order variables. The displace-
ment, L, is the distance between the perturbed and unperturbed
positions of a fluid element and is introduced primarily as a
diagnostic variable. & is a measure of shell distortion and is
obtained by integrating

faaf]

D %gt- + (VO.V)E = vl . . (24)
The mode form and growth rates for a given % are obtained from
the equations of motion for the perturbations by introducing an
arbitrary initial perturbation (in practice a Gaussian pertur-
bation of o](rg localized near the ablation surface of width
2nr/% was used) and integrating the equations in time until the
form of the mode and the growth rate of its amplitude become
approximately constant. In this way, the fastest growing mode
with the given £ and its growth rate are obtained.

=

Results

Figure 6 shows the growth rates for three zero-order steady flow
solutions with B,(= pp/pg) = 50. The zeroth order solution with
g = 1 is the case shown in Fig. 3. These three zeroth order solu-
tions can be identified in Figs. 4 and 5. Recall that the dimension-
less growth rate is y = v r./vg. The scale time r /vg, is a
characteristic convection time for the ablative flow ia]though
perhaps this time is a bit longer than is typical of flow through
the ablation front because re is the full radius of the system).
Consequently, solutions with®y >> 1 should not be greatly in-
fluenced by convection, while those with y << 1 should be in-
fluenced by convection, in whatever way this influence expresses
itself. It is interesting that there appears to be no qualitative
change in the growth rate curves (see Fig. 6) from one side of
Y =1 to the other.

For larger 2, i.e., larger k, it is seen that ablative effects
cause Y to reach a maximum and then decrease to zero, instead of
increasing indefinitely as classical, non-ablative inviscid, in-
compressible theory would predict. For smaller values of 2, it
is seen from Fig. 6 that ¥ becomes independent of g and A and
approximately proportional to £. That ¥y is approximately indepen-
dent of A and g for smaller £ is a consequence of the approximately
linear dependence of A on g for larger Pp and g (see Fig. 4). The
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FIG. 6 Growth rates obtained for perturbation calculations per-
formed for three stationary flow solutions with g, = 50.
The steady flow solution profiles for the § = 1 case are
those of Fig. 3. The classic incompressibie inviscid growth
lines are given for the three cases; y(classic)= VZg. The
acoustic limit line, ¥(1imit) = 2/.6(g/7A), is also shown.
This line illustrates the effects of compressibility,
important at low 2 values, which is responsible for the large
departure of the growth rates for these %'s from the
classical value. The "worst case" £ values given by the
approximate formula, 2 = A, are marked by crosses.

10"

approximately linear relationship between ¥ and £ seen in Fig. 6
is in approximate agreement with the equality in Eq. (12) and the
Timitation on ¥ imposed by the acoustic transit time. Recall that
for 2 >> 1, k = 8/r. When numerical values from Fig. 4 are sub-
stituted into Eq. (12), the acoustic limit line of Fig. 6 is ob-
tained. It is seen that ¥ nowhere exceeds this limit but lies
rather close to it for small 2, where it also appears that
ablative effects have not significantly reduced ¥. On the other
hand, for these smaller values of %, and therefore k, ¥ lies far
below the incompressible value given by Eq. (2), which further
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indicates that compressibility is determining the growth rates

for small values of 2. An additional effect, not treated in the
above argument, occurs for small values of 2: k ~ £/r is not appli-
cable, because the wavelength of the mode is no longer small compared
to the radius of the shell,and curvature effects must be considered.
The 1ines with slope 1/2 on Fig. 6 are those given by Eq. (2) with
k= &r., for the different values of g. The "worst case" values
of 2, at which 2 = A are indicated in Figure 6. It is interesting
that these classical "worst case" values of % are quite close .
(within a factor of 2) to the values of % at which the maxima of Y
occur. The values of these maxima Y at these "worst case" values of
2 are seen in all cases to be significantly less than the y one
obtains from the classical estimate associated with that 2 (see
Fig. 6). From this result, we see it is possible to increase signifi=
cantly the value of the lowest aspect ratio, A at which shell break-
up should be expected to occur.

Figure 7 shows the form of the perturbed radial displacement

3 T T T
Py 50
1=50

2 - g = 1.0 —

E =
A 14+

O - -

-1 i 1

0.80 0.85 0.90 0.95 1.00

FIG. 7 Perturbed radial displacement £. for the case fp = 50, g=1,
and £ = 50. This case has nearTy the maximum growth rate
(see Fig. 6). Note that £, penetrates the shell to a
depth ~ 27!, and is extended by convection far into the
exhaust region to the right.
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E., for the case pp = 50, G =1, and £ = 50. This case is seen from
ng. 6 to have approximately the maximum growth rate for g = 1.0 Ep =
50. It is seen that, as would be expected, the_flow diitortion,
E.» penetrates the shell to a depth of about k'], or 7', and is
:ﬁtendeg by convection far into the exhaust or blow-off region to

e right.

IV. NUMERICAL SIMULATION

In order to learn about nonlinear development of the ablation-
driven Taylor instability, two-dimensional numerical simulations have
been done. These have been doTS with a Langrangian hydrodynamic
and heat-flow code named DAISY'Z which was written with triangular

zones in order better to treat the highly distorted flows that occur

during the large amplitude development of the instability.

It may be interesting to the reader to know that developing the
numerical method for treating the heat flow was a much more chal-
lenging task than that presented by the hydrodynamics. The problem
is that most of the schemes that come to mind give an inaccurate
approximation to VT when the shape of the zones are far from being
equilateral triangles, and can even cause heat to flow "up hill"
for some cases of highly irregular meshes. These problems also occur
in codes employing quadrilateral zones, but only after the usually
approximately rectilinear initial zoning has been distorted by the
flow. In some ways, these problems are then more insidious in a
quadrilateral code than they are in a triangular code in which many
of the difficulties manifest themselves near the initialization time
and therefore are more obvious. These additional difficulties en-
countered in a triangular code force one to devise a numerical scheme
which, from the outset, gives an accurate approximation of vT, for
highly irregular mesh configurations. The resulting method turns
out to be more elaborate than those usually formulated for quadri-
lateral two-dimensional codes. The method that was developed to
calculate heat flow on triangular grids has been found to be satis-
factory for a variety of difficult (nonlinear) heat flow problems
and was described in Ref. 19.

Initialization

The class of problems we have chosen for studying nonlinear
development are flat slab targets which represent the limit of A+ =,
In the context of the steady flow model discussed above this also
corresponds to the 1imit § +=. This 1imit was chosen for simplicity,
because no particular finite aspect ratio seemed singularly interes-
ting,and it is expected that almost all of the nonlinear ablative
phenomena of interest should also be found to occur in the flat
targets.
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To initialize the_two-dimensional code DAISY, an equ1va1ent
one-dimensional code is run until approximately steady accelerating
ablative flow develops. The resulting one-dimensional temperature
and density profiles are transferred to the two-dimensional code
in a planar configuration; a perturbation is then applied that is
localized near the ablation surface, and the two-dimensional simu-
lation is begun. This procedure not only reduces the amount of
comput1n% required, but also minimizes certain types of tran-
sients9,20 which can obscure interpretation when the problem is
begun with a perturbation, and facilitates comparisons with the
steady flow model.

The fam11{ of cases presented here was begun with a carbon
slab 3 um thic D1mens1on1ess, rather than physical variables,
could have been used in this presentation of the two-dimensional
results, but it was felt that representative physical values would
make it easier for the reader to relate the cases presented to other
experience with laser driven ablgt1on The absorbed laser irradia-
tion has a g?nstant value of 101°w/cm? absorbed at a critical density
of nec That is, we have assumed a ste func§1on pulse
of l.Osum 11ght S1mu1ations with 2.5 and 5.0 x 10 w/cm have also
been done and will be discussed elsewhere. Figure 8 shows a

sequence of temperature and density profiles generated by the planar
one-dimensional calculation. Transfer of the results to initialize
the two-dimensional code was performed at 60 psec.

Results

In discussing these flat targets it is useful to use a burn
through time, defined as

wos (hE)7 ()

because we no longer have an implosion time, Ty from which to obtain
the burn through parameter, B, discussed above. In practice, in or-
der to maximize transfer of energy to kinetic energy of an imploding
shell, one would choose Tg = Ty, which is equivalent to B = 1. In
thinking about the relevance of flat target cases to spherical
shel]s, it is therefore useful to think of Tp as being equivalent
in this sense to T A flat target is then more unstable (according
to the classical tﬁeory discussed above), in the sense that the am- .
plification of perturbations is larger, if in the time Tg it acceler-
ates through distances which are correspondingly greater multiples
of its thickness.

From Fig. 8, it is seen that, if the slab remained planar,
burn through would occur around 130 psec.when the peak density is
beginning to decrease and the slab has moved about 25 um from its
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position at t = 0 or about 20 um from its position at 60 psec.

when initialization of the perturbation was performed. This latter
distance of 20 um is about 20 times the shell thickness at

t = 60 psec. (about 1 um). If we consider t = 60 psec. to be

the beginning of the instability calculation then 1g = 70 psec.

\ ]
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FIG. 8 A time sequence of temperature and density profiles generated
by a one-dimensional planar simulation of the laser driven
ablation of a 3 um carbon slab._ _The }aser irradiance,
incident from the right, was 1015W/cmé.

The applied perturbation7§, is made to be ihcompressible by
choosing it to have the form:

E = VxA, where R is a vector potential. (26)



The problem is done in Cartesian geometry with the‘unperturbed
target surface planes of y = constant, the laser is incident in the
x -direction from the right, and the acceleration is in the negative
x -direction. The form of A chosen is

A, = 0, Ay = 0

Az(x,y) = (go/ky)cos(kyy)sech[ky(x-xm)] . (27)

where k  is the wave number of the mode in y, the coordinate paraliel
to the Yurface and X, is the point of maximum density, which is
approximately the left edge of the ablation front and where the
density is almost discontinuous. For |k (x-xp)|>>1 Eq. (27) has

the standaTd form of the c¢lassic Taylor fode at a density dis=
continuity’ and is a smooth function of x at smaller |ky(x-xp)|.

Of the forms of Az that have been used, Eq. (27) appears to be the
most physical in the sense that for a given value of the initial
amplitude number, kyEo this form causes the least transient dis-
turbance immediately after initialization.

Figure 9 shows the triangular grid at t = 60 psec. after ini-
tialization of a perturbation of thﬁ form given by Eq. (27) with
kyEp = m/10 and ky = 2n/(2.5 x 1077 cm). The two-dimensional
computation is done in a region which is infinite in X and bounded by
rigid slip surfaces in y. These surfaces are separated in Y by
one half wavelength of the perturbation, i.e. by a distance
Ay = n/ky. :

Both in Fig. 9 and Fig. 10 discussed below we illustrate the
results by showing one and one half wavelengths which are obtained
by folding over (and thereby periodically reproducing) the com-
putational grid two more times in the ¥ direction to help visualize
the results. That the mode being considered is a typical mode of
interest can be seen from Figs. 9 and 10. The characteristic struc-
ture length of the mode is approximately equal to the shell thickness.
This mode might, therefore, be expected to be capable of causing shell
breakup, and moreover, at least to be in the range of the fastest
growing mode capablie of doing so. In fact the growth rates obtained
from this simulation and others with different k 's are in agreement
with planar steady flow stability calculations afd show this case
to have a growth rate near the maximum for all modes, i.e. for all k.
We 1illustrate this point below in Fig. 12. " This mode, being both
in the range of the fastest growing mode and of sufficiently long
wavelength to cause breakup is, therefore, one of the most interest-
ing cases to consider.

Figure 10 shows a sequence in time of grid plots from the simula-
tion done with both the initial conditions and boundary conditions
described above. In contrast with Fig. 9, only those grid lines
("i" 1ines in the DAISY calculation) are shown in Fig. 10 which
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were initially in the plane of the unperturbed slab target and
therefore, initially vertical. These lines show the distortion of
the slab and are made easier to follow, at the expense of omitting
some information, by omitting the other two families of grid lines.

Time =60 bsec
3.75 T/———F=

1

Y (um)
i
i mm“wmmwmmmmww

0.0+ . ki
-8.38 -3.91

X (pum)

FIG. 9 Mesh plot from the two-dimensional Lagrangian hydrodynamic/
heat-flow code DAISY. The mesh distortion illustrates the
k Eo = m/l0 mode initialized at the shell surface for a
2¥5 um wavelength disturbance at t = 60 psec. The simula-
tion involves approximately 4000 zones with a y-resolution
of 72 points per wavelength.

As the amplitude of the distortion increases,its form is seen
from Fig. 10 to resemble the bubble and spike structure seen in
two-dimensioga; incompressible simulations of the classic Taylor
instability.®»” The bubbles are relatively smoothly varying protru-
sions of the distorted shell to the left. The spikes are the
pointed protrusions to the right, toward the incident laser beam
and in.the direction of the effective gravity and the ablative
flow. In the nonlinear simulations of the classic instability, the
spikes are seen to extend to the right until the fluid in the
spike is essentially in free fall, and then continue to extend
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jndefinitely. Here we see a different behavior. The amplitude

of the shell distortion, and in particular, the length of the
spikes, does become of the order of kylor larger, certainly large
enough to cause concern about loss ofysymmetry of the final com-
pression of fuel in an implosion system. However, the spikes do
not grow indefinitely. Instead, it appears that when the spikes
have become sufficiently long and thin, heat flow ablates material
from the tips sufficiently rapidly to prevent them from any larger
growth. At the same time, as the amplitude increases, the rate of
growth of the bubble-like structure also appears to decrease.

3.75 Te =. 60 psec 3.75 Time = 80 psec
£
-8
o=

0.0 xeh. 0.0 ' :
_ -8.38 -3.91 -11.93 -7.46
Time =100 psec
3.75,

. ——— 3.75
:'f: - k\\\\\\\‘\\.'
M\g?\\\\:\

Y (um)

X (#m) X (um)

FIG. 10 Time evolution of the unstable 2.5 um wavelength case
(see Fig. 9) until burn through (t =130 psec.) from
the DAISY simulation. The amount of mass between each
line (i-line) is a constant throughout the calculation.

Some insight into the nonlinear development can be acquired from

the RMS (root mean square) deviation of (initially vertical) grid
lines (i-lines) shown in Fig. 10. This measure of distortion is
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defined as
x> = [ (x5 -< X; > )2 T, (28)

where 1 is the index of a grid 1ine and the averages are taken over -
the position of the mass points in the ith 1ine. Figure 11 shows

the time histories of these <aAx>j's. Only a group of lines are
shown which were near the ablation surface during the time of
interest. At t = 60 psec. the largest value of <Ax> is seen to be
10-1um which is the RMS amplitude of the maximum of the initial
perturbation described above. The 1ine on Fig. 11 passing through
10-'um and at t = 60 psec.is, therefore, the time history of the
grid line nearest the point of maximum density at this time. (Re-
call that the point of maximum perturbation, xy, was chosen to coin-
cide with the maximum density of the one-dimensional profile at
jnitialization time.) A1l other grid lines have smaller <ax>§

at this time. A dip is seen in the maximum <ax> between 60 and

70 psec.which is caused by a transient response to imperfections

in our assumed form of perturbation, Eq. (27). Introducing initial
perturbations of velocity as well as density would probably be more
nearly correct and reduce this transient effect, and will be tried
in future simulations. The behavior in which we are interested
begins at about 70 psec.

In Fig. 11 can be seen a locus of inflection points of the time
history curves, which has been shaded to call attention to it. Each
curve passes through this inflection as the grid 1ine to which it
corresponds passes through the ablation surface. This inflection,
or change in slope, occurs because the rate of change of <ax> is
greater on the downstream side of the ablation surface. This can be
understood from Fig. 10 where it is seen that the largest distortions
occur on the right of the ablation surface, particularly near the tip
of the spikes where the ablation rate is greatest. The large flow
velocity of the Tow density ablated material convects it rapidly
through this region of large and changing distortion and, therefore,
causes a larger rate of change of <ax> for a given i grid line than
that same i-1ine experiences on the higher density upstream side
of the ablation surface. All points on an i-line do not pass through
the ablation surface at the same time, but the times of passage, par-
ticularly in the tip region, are near enough to being simultaneous to
give the clear inflections that are seen. This locus of inflections
in Fig. 11 is, therefore, the history of the amplitude of distortion
of the ablation surface. In addition, the slope of the locus of
inflection points on this log-linear graph gives, therefore, the
growth rate of the instability. The curves below the ablation sur-
face locus at anytime after 70 psec. correspond to i-lines that are
interior to the dense shell material that has not yet been ablated.
The slopes of these curves are slightly greater than the slope of the
ablation surface locus, because the corresponding i-lines are being
convected toward the ablation surface where distortion is greater,
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as well as experiencing the local rate of growth of the mode. That
is, there is a convective as well as a local growth contribution
to the growth rate of <ax>j in the frame of a given i-line.

<AX> (um)

FIG. 11.

Figure 12 shows growth rates for different values of k
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Time history of th®RMS distortion (<ax>) for various
DAISY Langrangian markers (i-lines). Each curve shows

a change of slope (inflection) as the grid i-line to
which it corresponds passes through the ablation surface.
The locus of these inflection points corresponds to the
ablation surface time history. The decrease in the
growth rate due to saturation accounts for the change in
slope of the ablation surface line near t = 110 psec.

y obtained

from the slope of the ablation front locus from a set’of simula-
tion runs. These runs were done with a small initial amplitude,

k

' Ty£o= /50, so that the mode growth would be in the linear regime.
0

identify the case shown in Figs. 9 and 10 on this graph, recall
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that ky ofsthe_initia1 perturbation in that case is k a2n/(2.5x10'4cm)
=,25 X 10" cm '. For comparison with the simulation’growth
rates, linear growth rates calculated with the planar stationary
. ablative flow model are also shown for two values of Bp (= py/ps,

see section III); viz. 5P = 27 and Pp = 50. These values ofpthe
density ratio pp approximately bracket the values seen in the one-
dimensional simulation at the initialization time, t = 60 psec. The
agreement between the growth rates obtained these two different ways
has given us some confidence in both techniques. It is seen from
Fia. 12 that,_as stated above, the linear, growth rate of the mode
Ky ~ .25 x 10° em=1, from which the run shown in Fig. 10 was initial-
jzed, is near the maximum. From Fig. 12 and the one-dimensional burn
through time (Eq. (25)), tg = 70 psec, obtained above, it can also
- be seen that ytg = 3 for this mode.

At approximately 100 psec in Fig. 11 it can be seen that the
slope of the ablation surface begins to decrease and is almost
horizontal by 120 psec.: that.is, by 120 psec. the RMS distortion
of the shell near the ablation surface is no longer growing. This
behavior corresponds to the indications of saturation seen above in
Fig. 10. Of course, the mode cannot become completely stationary
because of ablative removal of mass from the shell. Similar satura-
tion behavior has been seen for other values of k, and ytg, including
larger values of both. - - Y

Conclusions

The quasi stationary form that the Taylor mode is seen to have
acquired in Fig. 10 discussed above is quite distorted and, there-
fore a potential source of disruption of the final fuel compres-
sion. However, at 120 psec. in Fig. 10, the side of the shell away
from the laser, which would correspond to the inside of a spherical
shell, is seen to be much less distorted than the outside. This only
moderately distorted inner surface, while not as desirable as a per-
fectly flat (or spherical) Sucﬁace.hmu]d probably not be mixed with
lower density fuel inside it and might give somewhat better final fuel
compression than would the inner surface of_a shell that had clearly
lost its integrity due to turbulent mixing.3 It appears plausible
that future successful high aspect ratio ICF implosion systems may,
therefore, be designed to operate with shell distortions of the
kind (and amplitude) like that illustrated in Fig. 10.
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FIG. 12 Growth rate as a function of wave number for small initial

amplitude (ky& = /50 ) modes where linear theory is ex-
pected to ho¥d. The D§§SY s%mu]ations used an absorbed
laser irradiance of 10*°W/cm“ on a carbon slab. Observed
simulation density profiles were approximately stationary
in time with an observed ratio of ablation surface density
to density at the isothermal sonic point of approximately
35. Note the agreement between the simulations and the
perturbation results from the two parameter stationary
ablative flow calculations which bracket our simulation
results in this linear regime. The “classical" growth
rate, y = v/ka, where the acceleration is determined from
the simulation, is given for reference.
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