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1. Introduction 

In the first hair* of this course, Michael Green Bet out the historical background 
of string theory and the basic principles of string mechanics. He described the 
various consistent string theories and displayed the spectrum of particles which 
they produce. These always include candidates for gravitons and gauge bosons; 
in the case of fiupersymmetric strings, one also finds candidates for approximately 
massless quarks and leptons. Thus, string theories provide a new basis for un­
derstanding the fundamental interactions, a generalized mechanics from -which 
the dynamics of gauge-invariant fields can be derived as a low-energy limit-

Finding the correct particle spectrum is, of course, only the first step toward 
unravelling the full structure of this grand theory. One would like to understand 
the origin of the symmetries of the theory, and to realize solutions of the theory 
which display the observed interactions of particle physics. These deeper levels 
of analysis of the string theory are still not completed; indeed, they constitute 
one of the most exciting areas of research in mathematical physics, In this set of 
lectures I will continue the elucidation of string theories, in a direction that will 
shed some light on these large issues. The main topic of these lectures -will be 
the formulation of manifestly Lorentz-covariant methods of calculation for string 
scattering amplitudes. We will find, though, that this study leads us directly to 
consideration of the gauge inv&rianves of string theory, and to some toots which 
illuminate the construction of schemes or compact i fie at ion. 

The plan of these lectures is the following: In order to progress in understand­
ing string theory, we must first retrace our steps a bit and review some elements 
of the quantum theory of m&ssless fields in 2 dimensions. The string world 
Eheet is, of course, a 2-dimensional surface, and the displacements of the string 
in space-time can well be viewed as (massless) fields on this Burfture. We 'nave 
seen in Michael Green's lectures that the conformal invariance of 2-dimensionsal 
massless fields gives rise to important simplifications in the calculations of string 
amplitudes. In this second half of the course, I would like to elevate conformal 
invariance to a guiding principle for the construction of string theories. It will 
then be very useful to formulate 2-dimensional massless field theories in such a 
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way that their conformal in variance is manifest. This was done in & very beau­
tiful way by Belavin, PolyaJcov, and Zamolodchikov! ' In Section 2,1 will review 
the formalism which these authors have presented; this formalism will provide 
the basic language for our later arguments. Our use of conformal field theory 
methods in application to string theory follows the work of Friedan, Martinec, 
and Shenker;1'*3' Our general development, and especially our treatment of the 
critical dimensions and the formalism for the scattering amplitudes of strings and ,_, 
superstrings, follows their approach closely. 

The discussion of string theory proper will begin in Section 3. Here, I will use 
conformal im-ariance to rederive the basic results on the embedding dimension-
ality for bosonic and fermionic strings. Section 4 will discuss the spectrum of the 
bosonic string and the computation of scattering amplitudes. In Section 5, I will 
extend this formalism to clarify the origin of Yang-Mills gauge invariance in the 
open bosonic string theory. Section 6 will address the question of the general-
coordinate gauge invariance of string theory, presenting two disparate points of 
view on this question. 

In Section 7, I will analyze the superstring theory from the viewpoint of 2-
dimensional conformal invariance. I will rederive the basic results on the particle 
spectrum and present methods for the covariant calculation of fcuperstring scat­
tering amplitudes. In Section 8, I will discuss the 1-loop amplitudes of bosonic 
and supersymmetric string theories. 

The last two sections will give a brief introduction to some of the deeper 
questions of the theory, especially the question of the reduction from the idealized 
string theory in 10 extended dimensions to more realistic solutions in which all but 
4 of these dimensions are compactified. In Section 9, I will outline briefly what is 
known about the space-time supersymmetry of the superstring from the covariant 
viewpoint. 1 will then present a precis of the approach advanced by Candelas, 
Horowitz, Strominger, and Witten for identifying possible 6-dimensional spaces 
which might represent the form of the compact dimensions. Section 10 will give a 
somewhat more detailed presentation of the orbifold scheme uf compactification 

15) suggested by Dixon, Harvey, Vafa, and Witten. This scheme has the advantage 
of allowing explicit calculations of many aspects o f the conpactified theory, and 
we will 6nd it illuminating to carry through a part of this analysis. 

This full course of lectures is still far from comprising a complete summary 
of knowledge on string theory.* This set of lectures will certainly raise as many 
questions as it answers. I hope that you, the reader, will be intrigued to seek the 

* A different, and more exlcnc.ve, •election of topic* ii given in the new book of Green, 
S c h w m , »nd Wjt t t n. | e | 
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answers to these questions, and thus to join the quest for understanding of this 
most promising and mysterious branch of fundamental theory. 

2. Conformal Field Theory 

The main ^oa! of this set of lectures will be to reconstruct the spectrum 
and interactions for bosonic and supersymrnetric strings using as our primary 
tool the conform?.] symmetry of the dynamics on the string world sheet. It is 
iherrfore appropriate that we begin our discussion by setting out the formalism 
of 2-dimension a! conformal invariance. Conformal symmetry is, exactly as it 
impli-.'s, the symmetry of conformal mappings of the 2-dimensional plane. One 
should then naturally expect that a conformally invariant theory will involve 
fields which are analytic functions of the 2-dimensional coordinates treated as 
a complex variable. Recently, Belavin, Polyakov, and Zamolodchikov, '{BPZ), 

[7-0] 
buiiding on results from the early period of string theories, have shown how 
to wntp conformally invariant theories explicitly in terms of analytic fields. In 
this section, I will review this beautiful formalism, which will provide a natural 
language for our subsequent exploration of string theory. 

2 1 ' ' J.*:F~RMAL COORDINATES 

To begin our study, we must define the basic coordinates. Throughout these 
lectures, I will describe both the string world surface and the spacetime in which 
it b embedded by their Euclidean continuations. On the string world surface, 
this continuation corresponds to 

[r±a) — -i (r ± iff) . (2.1) 

Let \is then define 

vt = r + ia , w = T — iff . (2.2) 

The decomposition of a string stat'.- into running waves moving to the left or to 
the right around the string becomes, after this continuation, a decomposition into 
analytic and anti-analytic functions on the 2-dimensional Euclidean surface. The 
Euclidean Btring covers only a finite interval of a and therefore only a atrip of the 
2-dimensional plane, shown in Fig. 1(a). However, if we anticipate that the theory 
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Figure 1. The airing woild sheet considered as a region of the coit:p':ei 

plane (a) in the original variables r and a, (b) in the variable i -- exp(r •(- la) 

we will constn*:t will have complete symmetry under conforma! transformations, 
we can map this region Into the whole complex plane by the mapping 

z = exp(r -f ia) . (2.3) 

The form of this mapping is shown in Fig. 1(b). Lines of constant r are mapped 
into circles on the z plane; the operation of time translation, r —• r + a, becomes 
the dilatation, 

2 — e"z . (2.4) 

The string coordinates -Sffr.a), separated into left- and right-moving exci­
tations, correspond to analytic and anti-analytic fields in this complex z plane. 
We must address the question of whether a sensible Euclidean quantum theory of 
analytic fields can be defined. A part of this definition must include the identifi­
cation of operators which implement conforms! mappings of the z plane. Within 
the family of such operators, we should identify the generator of dilatations (2.4) 
with the Hamiltonian of the original string theory. Such a procedure of identify­
ing dilatations with the Hamikonian and circles about the origin with equal-time 
surfaces is called radial quantization. 

C O • 
T 

( 0 ) 

6 



Let us begin to piece together this formalism. To begin, assume that the 
2 plane is a Sat Euclidean space, so that its metric is gap = 6ap. In complex 
coordinates, 

9M* = j t Bi, = ffn = ° • ( 2 - 5 ) 

Assume thai we can at least construct a theory on this plane which is scale 
invariant. Let us work out the consequences of this statement. Since the energy-
momentum tensor Tap generates local translations and a dilatation corresponds 
to a local motion x a —> za + SX • xa, the dilatation current should be just 

Da -- Taf!x0 . (2.6) 

Since the energy-rnomemlum tensor is conserved, the statement of scale invari-
ancc 

daDa = 0 implies Ta

a = 0 . (2.7) 

Up to this point, these statements are true in any dimension. In 2 dimensions, 
however, when we use complex coordinates, (2.7) takes the following form: 

T.i = 0 . (2.8) 

But then we can use the equation of energy-momentum conservation 

d%T„ + dtT*B = 0 (2.9) 

to prove that 

a ¥ r „ = o . (2.10) 

Thus, the Geld Tu, = T is an analytic function of *• Similarly, Tfz = T is depends 
only on 1 and BO is an anti-analytic field. 

2 .2 . CONFORMAL TRANSFORMATIONS 

It is not unreasonable to expect T and T , as the remnants of the energy mo­
mentum tensor in these complex coordinates, to generate local conformal trans­
formations. Let us try to formulate thus conjecture more precisely. A natural 
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form for the operator which generates the infinitesimal conformal mapping 

2 -> z + t'(z) (2.11) 

would be / dzi*(z) TtJ(z); the integral should be taken over an equal-time sur­
face, that is, one of the circles shown in Fig. 1(b). Let us, then, define 

Tt = / Wit{z) T { i ) ' { 2 1 2 ) 

where the path of integration is a ciide about the origin. Note that, since the 
integrand is an analytic function, we may move the integral from any such circle 
to any other by a contour deformation without changing its value; thus, T, is 
a conserved charge. We would expect that the transformation (2.11) would be 
implemented in a quantum theory in the form of the commutators of local fields 
with (2.12). 

We can easily check this conjecture for the simple case of a free masslcss 
scalar field- Write the action for such a field as 

Th« pTopagatoT of this field is the Green's function for the Laplace equation 
in 2 dimensions: (X[zi)X(z2)) = - 2 l o g ^ i - z a | . Split tnii into the pieces 
corresponding to the analytic and anti-analytic components- The propagator of 
the analytic field is then 

( J f ( r , ) J f ( z , ) ) =- - l o g f > , - z 3 ) . (2 .14) 

The analytic part of the energy-momentum tensor for this field is given by 

T„ = -^-.[dtX? : . (2.15) 

Henceforth, unless a different convention is indicated explicitly, I will always 
consider products of analytic fields at the same point to be normal-ordered. 

Now we are ready to compute the commutator of the operator (2.12) con­
structed from (2.IS) with some local field operator 0[z). X{z) is actually not 
a good first choice, since this field can have logarithmic branch cuts (as seen in 
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(2.14)). so I will choose instead to compute \T<,d,X(z)\. The contour defining 7, 
may be taken to be the equal-time circle containing *. We may make use of the 
analytic properties of T{z) and d,X{z) to evaluate this commutator by relating 
it to expectation values on the plane. Consider, then, the correlation function 
defined by functional integration: 

(r.a.A'(z)) = ! / P * < ~ 5 T<a*xW (2.16) 

The functional integral defines the operator product by setting the operators in 
time order. We may define the equal-time commutator of two operators, then, 
as the difference of two correlation functions of the form (2.16) in which the 
operator Tt has been dbplaced slightly forward and backward in time (that is, 
in radial distance from the origin) with respect to the point i. Thus, we write 

(17; , d,X(z)\) 

(r,(r- |«| + *)fl,x(«) - Tt[r = \z\-6)BAX{z)), 
(2.17) 

0 
a-ar •THAI 

Figurt 2. Computation of a commutator in 
liticm functions. 

of tie H COlM 
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The construction is illustrated in Fig. 2. As the figure indicates, T« is defined as 
a contour integral; since the integrand is analytic, we may deform the contour 
except where we encounter a singularity. Thus, by the cancellation shown, the 
commutator depends only on the singularity of the correlation function of T[z') 
and dMX(z) in the limit z' — z. This is easy to work out; letting (X[z')X{e)) 
denote the Wick contraction (2.14), we can compute 

T(z') d,X[s) - -\d,Xd*X{z') dtX{z) 

- -l&,X(dBX{z')awX(8))'2 + (nonsingular) (2.18) 

— 6MX[z') — - (nonsingular) . 

Taylor-expanding the field about z' - z produces 

T{z>)d.X(*) ~ JgT^^[z) + _ J - j 6 * X ( * ) + - (2.19) 

This imples 

<|r„a.xwi) = / £.*M1 [ ( A^.xw + prr^S'M + *] * 

= dMt • d.X + (- d\X . 
(2.20) 

Is this a sensible result? Under the transformation * -» * + f (*), we should 
expect 

X(z) - X{z) + td.X[z) , 
(2.21) 

d.X(z) -* d,X{z) + d.td,X(z) +tdlX{*)-

We may explain the extra term in the second line by noting that daX is a tensor, 
of rank (-1). In general, a tensor transforms under reparametrizations according 
to 

IT we speciatiz* this equation to co»furmal transformations in 2 dimensions, and 
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consider tensors with r analytic indices only, this transformation law becomes 

«-"(*) - ( 3 ) V- [JM) • ("3) 

For an infinitesimal transformation, l — t + e(*)» 

6t i-- - r 3 x ( - t + e-d,( ; (2.24) 

this properly reproduce* (2.21) and (2.20) for r = - 1 . 

Under a dilatation i • A*, (2.23) takes the form 

( - Ap((A-'i) , (2.25) 

so that the rank of an Analytic tansor is also its sealing dimension. Normally 
in particle physics, we quote the dimension in mass units; thus we should write 
d = -r. Assembling the pieces of our analysis, we find that the commutator 
of the generator of a conformal transformation Tt with a local tensor field of 
dimension dt should be 

ir t tt(*)l = * • a,« • fl.t(x) + * - a M » ) . (2.26) 

This commutator follows, by the manipulations described above, from the oper­
ator product expansion 

* » « ( « ) - („, - , ) l '<*) + S T T ^ ' W + (nonsingular) . (2.27) 

This operator product formula encodes the conforma) transformation properties 
of fields in a way which will prove very convenient for mathematical analysis. 

To gain a better understanding of the formula (2.27), it will be helpful to 
work through one mere example. Consider the operator e**'*^) formed as the 
exponential of the free field. Let us compute the operator product of the free-field 

11 
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T[vr) with this field: 

-!(*«,,*»)%«*<•> - -I(<d„X(ur),«.*{,)))V-*l»> 

- | * 2 dwX ({dwX{w) t o . X{z))) «*• * W 

(ui — z)* — ""' VI - Z 

so that 
(2.28) 

2 (u; - * j 3 tu — * \ / 

Thus, e*" xl*> is a conformal tensor or dimension o'/2, This same scaling di­
mension can be read from the correlation function 

^ x [ i ^ e - . a x ( i ) \ , e x p j _ a » l o g ( w .. ,)] . ( u r - z ) " 9 ' . (2.30) 

Not all fields are lensors. Derivatives of tensors, for example, have more 
complicated transformation laws. BPZ refer to fields with the above transfor­
mation laws as primary fields; their successive derivatives arc called secondary 
fields. In general, the operator product of secondary fields with T(z) has higher 
singularities than the double pole seen in (2.27). 

In addition to analytic fields t(z), transformed by the action of T„ , a cem-
formal field theory will have anti-analytic fields £(S)» transforowd by the action 
of Tfi- The simplest of these fields will be tensors with F anti*analytic indices; 
these are the primary anti-analytic fields of dimension d\ - - r . The theory of 
these tensors and their transformations can be developed precisely in parallel to 
the discussion of analytic tensors which we have just completed. More generally, 
we should expect that some primary fields will transform with both analytic and 
anti-analytic indices; these will be characterized as tensors of dimension [dt,dt). 
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2.3. THE CONFDRMAL ALGEBRA 

The elementary infinitesimal conformal transformations corresponding to 
f [t) •• t n t t are generated by the Fourier components of T[z) on the circle: 

i n = / ^ « * + l r M . (2-31) 

From Michael Green's lectures, you might expect that the Ln are the Virasoro 
operators. To verify this, let us compute their algebra: 

^•\fnf&-fnf&]*"ro z) wm+iT{w) . (2.32) 

Th** ehanjjti in the order of the z and w integrations represents a small displace­
ment of the i contour outside and the-i inside the w contour, implementing the 
functional definition of the commutator that I have described earlier. 

The difference of Integrals is nonzero only by virtue of the singularity of the 
operator product as z -* w, In the free boson field theory, we can. readily compute 
this singularity: 

T[M)Tiw) - (-1-)'-'l-l(dtXdwX))a + 

+ [-h3'< ' d.X (8,XdwX) dwX + (nonsingular) 

U -1 V 
2 V(*-tv)V 

_1 
+ &aX y—— ITS dwX + 

(» - tt>) ! 

1 
2 ( * - w ) < 

2 [-I*"1*] + (Ĵ ) «• R^'] + ... 
(2.33) 

The Jast two terms are precisely what would be required for T to transform itself 
as a tensor of dimension 2 under conform*! transfortnatione. (Note that the !ist 
term fixes the normalisation of T(z),) The first term is an extra c-number— 
fenerated eus a purely quantum mechanical effect. The form of this term is 
determined by scale transformation properties: Since T has mass dimension 2, 
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this term must be % pure power {*-»)"*• Howmr, the overall coefficient el thi» 
term is not fixed and can vary from system to system. In a genera) conformal 
field theory, then, we expect theT -Toperator product to take the form 

T[z)T{*>) - 7 - ^ f c + j - i r ; ^ ) + 7 — ~ 9 ^ T + - - (2.34) 

where e is a fixed number. 
Wc c^n row find the general form of the eomtfiulalor of two Ln operators by 

inserting (2.34) into (2.32), and drawing the z contour tightly about the point 
w. This gives 

+ (e/2)-^(n+l)»(n-l )J 

= / — j(2n + 2)u>" + m + 1 r (w) - (m + n + 2 ) w n + m + , 3 » 

+ ~»(n + 0(«- l )w m + " i 
(2.35) 

This is just 

^ n(n +1)(« - 1) $(m + n) , (2.36) 

which is indeed the Vxrasoro algebra. The constant« b called the central cAeree 
of the the Virasoro algebra; this takes the value c = 1 foe one m&ssleas ecalar 
field. 
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We can see from (2.34) that the constant c appears In the vacuum expectation 
value of the square of the operator Ttf. It can he argued on this basis that e 
must be positive if the underlying Htlbert space has a positive metric!"1 We 
may derive this result more explicitly as follows: In the next few sections, we will 
construct a state |0), such that Ln |0) s= 0 for n > 0, and an inner product such 
that Lj, s £_„. Using these ingredients, we may write: 

\c = (0|tla,L- a]|0) = (0\l,3L\\0} > 0 . (2.37) 

The most Important of the L„ is L 0 l the generator of dilatations. It should 
be noted, though, that the central charge term in (2.36) actually vanishes for the 
set of thrw generators L_j t .Co. L\. These operators generate the infinitesimal 
transformations 

6z = a •+ &z + iz2 (2.38) 

From (2.36), wi> see that these generators form a closed subalgebra. The subgroup 
of conform*! transformations generated by this algebra is the group of fractional 
linear transformations 

(2.39) 

(Expanding (2,39) about a = rf=l,6 = c = 0 reproduces (2.3B).) 
The complementary algebra of anti-analytic transformations is generated by 

a second set of Virasoro operators 

J -2xi T(57) . (2.40) 

Just analogously, these generators possess a closed subalgebra generated by 
( I - I , I O I I L ) with vanishing central charge. Together, the two sets of opera­
tors generate infinitesimal transformations of the form 

bz « ft + 0s + I B 2 , fj = a + /fe + 'jf*2 , (2.41) 

acting on all of the operators of the conformal field theory. This tian&form&tion 
U the infinitesimal form of a fractional linear transformation (2.39) with general 
complex coefficients, 

is 



When one composes two mappings of the form (2.39), the parameters of the 
product mapping are obtained by matrix multiplication ol the original param­
eters. In particular, the determinants (ad - be) simply multiply. Since one of 
the four parameter of (2.39) is redundant, we may fix {ad - 6e) = 1, Then the 
set of mappings (2.39) with complex coefficients, considered as a group under 
composition, is isomorphic to the group of 2 x 1 matrices with unit determinant, 
5L(2,C). This subgroup of the full confornal group plays an important role in 
string theory, as we will see in Sections A and S. 

The definition of the i f t may be considered as a Fourier analysis of T{z). It 
will be convenient to introduce a set of conventions for Fourier-analyzing a more 
general tensor field t(z), of dimension dt. Let us define 

^ z » + * - ' ( ( , ) , i(z) = £ ( „ • - ' * . (2,12) 
n s - o e 

To see the utility of this definition, compute the commutator of the Fourier 
component : n , denned in this way, with LQ. We find 

^ ' • I - [ / S ? / S - / K / K - ] - I - W * * - ' « W 

= / ^ z - ^ 1 \dlt(z) + zdEt{z)\ 
J iTVl 

J 2ni W 

Thus, 
[W..1 = -«*»; (2-44) 

that is, ta lowers L0 by n units. In string theory, we will interpret the dilatation 
generator LQ as the Hamiltonian of the single-string dynamics. Fourier compo­
nents t„ will be annihilation operators for n > 0 and creation operators for n < 0. 
Ladder operators of anti-analytic tensors may be defined in an analogous way. 

tn = f 

16 



3. Critical Dimensions 

In order to connect the conformal field theory on the complex plane defined 
in the previous section to the dynamics of coordinates A^fr^o) on a string, one 
further condition must be satisfied. The program displayed in Fig. 1 requires that 
we replace functional integrals over fields on the string surface with functional 
integrals over fields on the plane. If the field theory of two-dimensional fields on 
the string is conformally invariant, it would seem that we could freely make this 
replacement. However, there is a subtlety which we must recognize and deal with. 
The usual criterion for conformal invariance is that expectation values of (scalar) 
operators are unchanged by conformal transformations. This leaves over the 
possibility that the functional integral ovei fields could change its normalization 
by a c-number factor when we make a conformal transformation. This factor 
would disappear when one computes a correlation function. However, in Btring 
theory, the string scattering amplitudes will be identified with the functional 
integrals themselves, and these possible c-number factors wil! appear explcitly 
as violations of conformal symmetry- We can take the transformation shown in 
Fig. 1 absolutely literally, then, only if we can identify and cancel this extra 
c-number term. In this section, I will discuss that cancellation, which, as we will 
see, implies that the string must live in a specific critical embedding dimension. 

3 . 1 . CONFORMAL TRANSFORMATIONS AND CONFORMAL G H O S T S 

We should begin by reviewing the route from a geometrically invariant for­
mulation of the string dynamics to expressions of the form of eq. (2 13) in a fixed 
background metric. A geometrically invariant expression of the dynamics of the 

112) 
string coordinate field is given by writing 

Z = f DXDge~S£ , (3.1) 

where 

and the functional integral is taken over both the fields X>*[£) and the metric 
SafiiO on the world surface. Since the action (3.2) is reporametmation invariant, 
we are free to change coordinates to simplify the form of the metric. On the plane, 
or on a region such as the strip of Fig. 1 with the topology of a plane, we may 
use 2-dimensional reparametrizations to remove two degrees of freedom from gap 
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and convert it to the form 

gap = e * l « . * f t f l . (3.3) 

The special case of (3.3) with ^({) = 0 is exactly the flat metric, eq. (2-5), used 
in the previous section. 

If we insert (3.3) into the action (3.2), #(£) cancels out. This is exactly 
the statement that (3.2) is classically conformally invariant. If the metric has 
the form (3.3) in one coordinate system, a conformal transformation z —» z[z) 
carries 

9 « dz (3.4) 

so this tranformation causes simply a shift of 4>{i)- If 4>{£) >s irrelevant, then, we 
can move freely between different conformally related coordinate systems. This is 
•-vhat we need to view the strip and the plane shown in Fig. 1 as being completely 
equivalent. 

If indeed the integrand of (3.1) is independent of 4>[£), we can treat this 
variable as a gauge parameter and fix it as the same time that we fix the 
reparametriiation freedom. In this case, the functional integral of eq. (3.1) 
should more properly be written as 

Z = 1 — i [DXDge-ft , (3.5) 

where the two prefactors represent the volumes of the reparametriiation and 
conformal groups. This expression may be evaluated by using the Fadde'ev-
Popov procedure. If we gauge-fix to the coordinate system (2.5), shifting the 
conformal factor 4>{£) simply shifts the diagonal component of the metric; this 
leadB to a trivial Fadde'ev-Popov determinant. The off-diagonal terms in the 
metric are induced by reparametrizations 

6g„ = MHJ) ; (3.6) 

setting these components equal to zero as a gauge condition leads to a nontrivial 
determinant 

A = det(9,) • det(6V) , (3.7) 

which may be represented by a functional integral over ghost fields. In all, we 
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find that the gauge-fixing replaces 

' rep* z&nf J J 
(3.8) 

where &, c, 5, "c are anticommuting fields. I have assigned the ghosts c, 1 the 
transformation properties of reparamctriiations Si*, 6£ ; the aniighosts have the 
t/anformation laws needed to make the action of (3.8) geometrically invariant. 

Unfortunately, the formal property that the integrand of (3.1) docs not de­
pend on <f>{() is true only classically and (generally) disappears in the quan-

[12] 
turn theory. Polyakov 'discovered that the regulation of the functional in­
tegral over X''(£) breaks the conformal symmetry and leads to a multiplica­
tive c-number dependence on 4>- Under a shift from <j> — 0 to a nonzero 4>{t), 
Zx = f DXexj>[~ / £) tranfonns according to 

Zx — Zx- exp -£;J*w-*m3 (3.9) 

where D is the number of coordinate fields, or, equivalently, the dimension of the 
space-time in which the string is embedded. This violation of conformal invaxi-
ance can be understood as a consequence of some considerations of the previous 
section. Since a nonzero <f>{£) can be generated by a conformal transformation, 
let us look more closely at the algebra of conformal transformations derived there. 
In particular, let UH apply dj to eq. (2.34). Using 

2djdt\og\z - w\ = dT * = n6W{z-w) , (3.10) 

we find 

^T„(z)Tww(w) = - e.2LaJ *<»>(*-«,) +. . . (3.11) 

Thus, the existence of the central charge implies that T„ is not completely an­
alytic. By the logic of eq. (2.10), this implies that the system is not completely 
scale-invariant. Let us manipulate this relation further by applying 3^ and using 
(2.9) to exchange T „ for Ttl. Then 

r r t(«) 7UrM = e-1-a.a^wtz -«,) + ••• (3.12) 

An infinitesimal shift of 4> is brings down from the exponent of the functional 
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integral the term 

Thus, eq. (3.12) implies that a shift of 4> produces a multiplicative e-nunibcr 
factor of juet the form of (3.9), with coefficient proportional to the central charge 

|13] 
c of the Virasoro algebra. 

In many contexts, the conformal transformation law (3.9) is perfectly accept­
able. In a few cases, it is actually physically relevant; for example, in a statisticiil 
mechanical system on a strip of finite width, mapping the strip to the full plane 
and applying (3.9) gives the correct dependence of the free energy on the finiU* 
sue of the strip. ' 1 "' 1 S ! We have already remarked, however, that the standn*d 
formulation of string theory requires that the conformal motion be a gaugr syrti-
metry of (3.1). The extra term in (3.9) is unacceptable. This higlntr criterion u\ 
conformal invariance imposes an additional stringent constraint on ;i cunforn-u! 
field theory: The central charge c of the Virasoro algebra must vanish identically. 
This criterion is made especially difficult to fuliill by two observations made in 
the previous section: First, the coordinate fields X M each contribute one un '. t<> 
c, for a total of c — D. Si.cond, an additional field on the world sheet c.av\ give a 
negative, cancelling, contribution to c only if it creates states of negative metric 

Polyakov realized that this apparent dilemma has a very natural resolution 
The reparametrization ghosts introduced in (3.8) create negative-metric {--tufts 
and must, in any case, be included in any analysis of the confor inal transformation 
properties of the string functional integral. Let us, then, set up the cunformiil 
field theory for these ghost fields and compute their contribution to c. 

The fields c' and bIX obey the clr.ssira) equation of motion 

r V = d-tb„ - 0 . (3.14) 

Quantum mechanically, the action given in ^3.8) implies the propagator 

We may then treat c* and fe„ as analytic te^soi fields. Since the Faddfs'ev-Pfcpitv 
procedure assigns to c1 the conformal properties of the displacement (*, this fit Id 
should transform as a conforma! tensor of dimension (—1). The complementary 
antighost bxt acquires dimension 2. The ghost and antighist associated with £', 
c* and frj7, tra;*sform as anti-analytic lensors with dimensions (-1) and 2. Vrorn 
here on, 1 will drop the tensor indices and refer to these fields as c[z), ('(a), Z(5), 
and b{z). 
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The energy-momentum tensor for c and b can be reconstructed from the 
requirement thai it reproduce the operator product (2.27) with each of c and fc, 
assigning these Field the correct dimensions. The result is 

T(*) = -26£>,c - 6,hc . (3.16) 

One may check that the single and double pole terms In the operator product 
of this T[z) with itself are given in accordance with (2.33). Mote generally, we 
might imagine a system with anticommuting analytic tensor fields 

b , dimension {/) ; c , dimension (1 — j) t (3-1?) 

always with the propagator (3.15). This system w described by 

T{z) = -jbd.c + (l-j'Jo'.Jc, (3.18) 

i i» r,al diflicjlt to work out the central ch&rge of the 6, i system for a general 
vtlue of j , We must simply compute the e-number term in the operator product 
of (3.18) with itself: 

T[t)T[u>) -• j 1 {b{z)dwc) (dMcb(w)) + (j - 1)' (d.ll{»)) (H*)9J) 

+ j(j'-i){(fi(»)*{«'))(M*)3J) + (M(i)flwa)(ii«)SH)} 

-'(^•"-"•(l^W) 

m ( 6 j a - 6 j + l) 
( * - • ) « ' 

(3.19) 
Thus, we find for the central charge of anticomfflUting tensor fields: 

c = -2Cj s - 2 - [Bj[j - 1) + 1) . (3.20) 

If b and £ had been commuting fields, the propagator (3.15) would have implied 

and the change of sign in this equation would have induced a change of sign in 
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the final answer. Thus, for commuting tensor fields 

t •= +ZC. t (3,22) 

where C3 is just as given in (3.20). 
Setting j — 2 in (3.20), we find that thv -ystem of reparametrizatton ghosts 

bes c = -26. This cancels the contributions from X*(z) only if the «trtng is 
embedded in a space of 26 dimensions. In that case, however, the cnnformal field 
theory on the string is c^nformatly invariant in the strong sense described <u the 
beginning of this section; The complete Functional integral is unchanged, eves 
by overall multiplicative factors, under a conformal transformation. 

3.2. SPWORS AND GHOSTS OF THE SVPERSTRINC 

From the formalism we have developed, it is not difficult to give a parallel 
discussion of the embedd g dimension or the superstring. The superstring is 
obtained from the ordinal y string by extending the geometrical invariance on 
the world sheet from local rcparametrization invariance to local Bupersymmctry 
and replacing each coordinate field X* by a supermultiplet [X^^**), where W 
is a Major an a ferraion. Let us Erst discuss this new matter field, then turn to 
the new ghosts. A Major ana fermion in 2 dimensions has the action 

\ L - ~ | d 9 * * v 3# , (3.23) 

where, because of the Majorana nature of * , * s- *T*y°, If we introduce the 
explicit representation of Euclidean Dirac matrices 

this takes the form 

£ = 2- jd2z [tdrf + *d,?] . (3.25) 

The dynamics of the field if> in almost exactly that of a o, e system. We can make 
the connection explicit by combining two species of M&jorana fermions to form 

e = +*+iy, e =ii>1 ~ i&. (3.26) 

The new fields are j'-st the positive-chirality part of a Dirac fermion and its 
complex conjugate. (The negative-chirality part of the Dirac field is antl-analytlc 
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and may be built from ^ , ip .) These fields have an action proportional to / bdji 
and thus a propagator of the form jf (3.15). Since a fermion field in 2 dimensions 
has dimension i , two Majorana fermions form a b, e system with j = | (plus the 
corresponding anti-analytic system). This system of two Majorana fermions has 
e = 1. We might have guessed this result from the well-known property that a 
Dirac fermion in 2 dimensions can be bosonized, that la, replaced by a equivalent, 
system containing one real scalar field. Bosonization will come to play a major 
role in our analysis, beginning in the next section. 

In addition to the new matter fields, we find that the superstring has new 
ghosts corresponding to the gauge-fixing of the new geometrical invariances of this 
theory. Without unravelling the whole structure of these new transformations, 
"•e can easily guess that they will correspond, in conformal coordinates, to the 
transformation of the world-sheet gravitino field by a spinor parameter: 

6Xn = &rf •, (3.17) 

and the corresponding transformation with an analytic derivative. In (3.27), the 
(lowered) i dices c, f denote 2-dimensionaI spinor indices corresponding to the 
upper and lower components of (3.24). Since TJ is an anticommuting parameter, 
it must be replaced by a commuting ghost field 7*; this field transforms as a 
conformal tensor of dimension (—5)- This field will have the action 

J C - ~ f d2z f},sdn< , (3.28) 

where I have introduced an antighost @I(, also a commuting field, of dimension 
| . These two fields, which I will refer to henceforth as -7(2) and P[z), form a 
system of commuting fields with j — §. Thus, they contribute 

c = +2C J = , = 11 . (3.Z9) 

These fields have anti-analytic counterparts ^(z), ft{z) which contribute to the 
central charge of the Virasoro operators L„-

Adding the contributions to c from all of the fields on the wor^d sheet of 
the superstring—coordinates X1", fermions ip* (taken in pairs), anticommuting 
ghosts bt c, and commuting ghosts 0, 7—we find 

c = D + ~D - 26 + 11 = | (£> - 10) . (3.30) 

The superstring is then conformally invariant in the strong EenBe required for 
string theory when it is embedded in a space of 10 dimensions. 
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The restriction of string theories to a particular space-time dimension is a 
striking requirement, unusual in the formulation of a physical theory. Much 
effort has been spent trying to answer the qi jstion of whether string theories 
are well-defined outside of this critical dimension, with Tesults which are so far 
inconclusive. For the remainder of this set of lectures, I will restrict myself to 
working in the critical dimension. We will see that the peculiar choices of d — 2(j 
and d = 10 actually work miraculous simplifications in many aspects of the 
physics of strings. 

4. Vertex Operators and Tree Amplitudes 

Now that we have set up the dynamics of fields on the string world surface in 
terms of conforma! field theory, we are ready to construct the spectrum o f ' ' 
of the string and the interactions between these states predicted by thi- ': • 
We will find that both of these features of string dynamics may be jireseni<y: n 
a most natural way in the language of conforuial field theory. 

4 . 1 . THE BrU'T CHAROE 

Before beginning this discussion, however, we need one more piecp of lechn;' ,i! 
apparatus. In the previous section, we introduced into the string world sh".-' '!,<• 
ghost fields b(z\, c(z), noting as we did this that these fields belong to a q^ar.t..:vi 
theory with negative metric. The excitations of the ghost field will nsitnraiiv 
become a part of the spectrum of states of the string. It is important, thoiif.N, 
that we should not find negative metric states propagating on the world SJ. <.•*.• t 
as a result of a physical scattering process. Actually, negative metric states can 
arise not only from the ghost excitations but also also from the longitudinal 
and timelike excitations of Xu(z). These modes of excitation were explicitly 
eliminated in the light-cone gauge treatment of the string dynamics presented v, 
Michael Green's lectures, but they are still present in the covariant form-ili; n 
that I have been constructing. In order to disentangle these dangerous state-., 
we will need Gome mathematical tool which will enable us to distinguish physical 
from unphysicil modes of excitation. 

The standard tool for identifying and controlling the unphysical states of a 
covariantly quantized field theory is the ghost charge of Becchi, Rouet, Sto:a, 

|17| 
and Tyupin (BRST). This is a nilpotent charge— 

Q2 = 0 (4.1) 

—which is Heimitian, commutes with the Hamiltonian, raises the ghost num­
ber by one unit, and annihilates all ghost-free, pauge invariant states. Such a 
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charge can be constructed in any covariant field theory quantized in a way which 
introduces ghosts. 

Once the BRST charge Q has been constructed, it can be applied in the 
following way: The relation (4.1) implies that every eigenetate of the HamiHonian 
is acted on by Q as a member of one of the following types of multiplets: 

singlet: Q |&>) = 0 ; 
(4.2) 

doublet: Q\^) = |fo) Q tya) = 0 . 

Since Q is Hermitian, |V»s) has zero norm: {falfa) = {$i\Q7\ipi) = 0. The gauge-
invariant, ghost-free states should be 6RST singlets; it is necessary to check in 
detail for each theory that the only 1-particle states which are BRST singlets are 
of this form, and that all such states have positive norm. Let us assume that this 
is true. Then the initial state in any scattering process will satisfy Q \$in) = 0. 
But then, since \Q, H) = 0, any state obtained by time-evolving this state will 
also be annihilated by Q. Thus, the final state of a scattering process must be 
linear combination of BRST singlets and zero-norm states. If we take a matrix 
element of this state to compute the S-matrix, the zero-norm pieces disappear, 
and we find 

m s m = ttv,o| S |fc,0) , (4.3) 

where the states on the right-hand aide are projected onto BRST singlets. Thus, 
the properties of Q allow one to prove that, if 5 is unitary on the full Hilbert 
space, as is guarranteed by Hamiltonian evolution, it is also unitary when re­
stricted to BRST singlets. No probability disappears into ghostly states whfch 
transform nontrivially under Q. 

Now that I have discussed the use of Q, I would like to describe roughly how 
to define Q in any given theory. This discussion abstracts a general construction 
due to Fradkin and VUlsoviskii! Consider a theory with gauge invariances 
generated by charges <?j. Let &,-, c* represent ghost and antighost Gelds satisfying 
{&,, <?} — V . Then we can begin the construction of Q by writing Q = e'G.-K..; 
This expression annihilates gauge-invariant states and otherwise has the form of a 
gauge transformation with gauge parameter c". Now we need only complete this 
expression to form a nilpotent charge by adding a piece which will act nontrivially 

* A beautiful uid detailed review of the BUST charge and its uses in field theory Lu been 
given by Kugo and Ojima.'1*' 
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on states with ghosts. A suitable choice is given by writing 

Q = c'Gi + \lift*t% , (4.4) 

where the /,y* are the structure constants of the algebra of the charges G,. We 
may compute 

= \^UikGk + \Uikt>Mk + J / 1 / / « . m e ' c ' c X (4.5) 

The remaining term vanishes by the Jacobi identity. 

To make this construction more concrete, one must, in any specific system, 
assign appropriate values to the charges and ghost operators given above. In 
string theory, we clearly would like to identify the d with the conformal gener­
ators Ln and the ghost operators with the Fourier components of b(z) and e(r). 
This program is complicated by two features, the fact that the gauge algebra, 
first, is infinite-dimensional, and, second, may contain a central charge. Howuvur, 
let us overlook these issues for the moment and try to construct a Q of the form 
Q — YlcnLn, + — A suitable completion is given by interpreting the structure 
constants which appear in (4,4) as arising from the action of 7*„ on the the gliosis 
themselves. Thus, for the bosonic string, we write 

Q " f w i 1 e W ' r W W + \Ttb*H*)\ : . (4-6) 

where T^-^ is given by (3,16), The anti-analytic fields give a second BRST 
charge 

Q = f * , : l{z)[TW(z) + ^ ( I H : (<-7> 

built using the anti-analytic components of the ghost fields. 
To check the nilpotency of this Q, we represent Q a « ± {<?,<?} as the dif­

ference of correlation functions in which one contour lies just outside, then just 
inside, the other. This reduces the computation to the analysis of singularities 
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in the operator product of the two integrands. Using the explicit form of J"(*'*l 
and the general expansion (2.34), it is not hard to show that the anticommutator 
vanishes if the combined system of X,b,c has total c = 0. (An analogous argu-

-j 
merit implies that Q = 0.) Here again, the choice of the critical dimensionality 
plays an important role in simplifying the formalism. 

4.2. BOSONIZATION OF THE GHOSTS 

Certain aspects of the BRST formalism for the string are made clearer if 
one introduces an alternative representation of the 6, e system in terms of boson 
operators. This bosonization of fermions is a familiar feature of the physics of 
2-dimensional systems. ' It will soon be dear that the boson-fermion corre­
spondences are clarified, and new generalizations are suggested, by the notation 
of conforroal field theory. Let me now review the conventional bosonization in 
this language, and then generalize to the bosonization of the reparametrization 
ghosts. 

In the previous section, I noted that a roassless complex fcrmion (or two 
Majorana fermions) in 2 dimensions gave the same central charge c = 1 as a real 
boson field. I will now argue that these theories also give identical results for 
correlation functions, if we make the correspondence 

1&1 + %$* ~ v/Se^W , V 1 - »^ 3 ~ v^e"** 1*' . (4.8) 

If 4> is taken to be an ordinary free boson field, (2.29) implies that both of the 
exponentials of this 6eid written in (4.8) have dimension \. This observation 
and the fact that the ^ system has c = 1 imply that, in correlation functions 
of ferm'ion operators with factors of T[z), the singularities as operators T(z) 
approach fermion operators or one another are matched if we replace operators 
built from \fr', ^ with the corresponding operator built from 4>- Using (2.30), 
we can compute the singularity as two of the exponentials of 4> approach one 
another: 

(z tti) 

this properly reproduces the singularity of the corresponding product of fermions. 
Thus, these correlation functions are analytic functions with the eame singulari­
ties and so must be identical. The system of two fermions is therefore physically 
equivalent to the bosonic theory built from $. This is the free-5eld limit of the 
conventional bosonization of fermions in 2 dimensiona. 

rt 
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Describing the rcpararoetriiat u ghost system by bosons is obviously more 
of a challenge, since this Eystem has c = -26 . I will show, however, that this 
system is equivalent to a theory containing one real boson field d. HVIB follow 
the argument just given, we must find elements of the a theory which allow us 
to match the central charge, the dimensions of b and e, and the singularity of the 
b-c propagator. Begin with the central charge. Let us choose as a trial form for 
T{z) the somewhat more general dimension 2 operator 

T(z) = -\{dM<,)> + Ad\a , 

where A is a constant to be determined. This gives 

(4.10) 

T{w)T{z) -,{-^{{duiad^)).2 + A* {dlodlc) 

+ (less s ingular) 

1 .-, 2 - 3 
2 (u, - z)* + A1 

{w - zY 

(4.11) 

Thus, we require \2A2 + 1 — —26, or A2 = - 9 / 4 . We can rectify the sign in this 
relation by changing the sign of the kinetic energy term in the c action and in 
T[z). This gives a the wrong metric, but that is only to be expected of a field 
which describes a ghost. The a propagator then takes the form 

{c(z)a{w)) - + log(2 -u>) (4.12) 

With this choice, 

TC*>(Z) = +\{dtoy + \a\« (4.13) 

satisfies (2.34) with c = - 2 6 . 
By analogy to (4.8), we might seek correspondents for b and c which are 

exponentials of cr. Let us first compute 

T{w) ea"W \{(d„o{w) aa(z)))2 + \(dlo{u>) ac{z)) 'W 

2 2 J ( I D - Z)> 
e o t r ( « ) _(____ 

(4.14) 
This implies that ea"^ is a conformal tensor of dimension ^a(a — 3). Thus, we 
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are motivated to identify 

6(z) « e"ff<*> , e(z) ~ **'"> , (4.15) 

since the two exponentials have dimension 2, (-1), respectively. These operators 
also reproduce the b-c operator product 

«-'<«> e" ( , u ) - exp(-log£*-w)) = —^—. (4.16) 

Thus, we may reproduce any correlation function of 6, c, and r(*pC' by operators 
built from a. 

I would now like to rewrite the BRST charge in this bosonteed language. 
This requires some care in the definition of operator products. Thoughout my 
discussion, I have been assuming that all products of operators at the same point 
are normal-ordered. The normal-ordering of b and e operators, however, is not 
the same as the normal-ordering of the corresponding o operators, and so we must 
be careful when we convert complex operators from one picture to the other. Let 
me, then, give the explicit definition of the 3-ghost operator which appears in 
(4.6); 

: c{z) r<6-c>(*) : = lim [{: *(*) : : T^w) :} 

1 2 l 
+ (7 « * M + 7 7^w«) * 

* ( * - w ) 3 (* — ltf} 'J 

The last two terms cancel the singular terms resulting lrom contraction of e(z) 
with the factors of 6(tv) in r^'*; only then is the indicated limit smooth. If we 
bosonize each operator on the right-hand side of (4.17), wc obtain 
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= lim [ : e »I*>{-_J- - - ^ - ^ o 
«—ui L I [z - w)* (z - w) 

^ ( z - w ) 3 ( * - u > ) J 

= lim I: { - — - T r d^a 

- f t * . * ) ' " i * i c r + \(dwoy + \dlo) . ' ! -> : 

= «'(*'{-(a.»)'+«M 
= «*<*> {(d„») 2 + »i») - a»ffdw(e*). 

(4.18) 
Since Q involves the integral of this expression, we may integrate the last term 
by parts; then the integral of (4.18) falls into the form 2-jdw: t°^T^{w) :. 
The factor 2 is just what we need to convert (4.6) to 

/ | j£ . e*(»> T ^ ' M :, with rut = r<x> + r<»>. <4.i&) 

From this expression it is e'en more etraightfor'"-'' to apply the trick described 
below (4.6) and show that Q 2 = 0 if r('<"> has zero central charge. 
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4 . 3 . STRING SCATTERING AMPLITUDES 

We are now ready to construct the amplitude for scattering of strings. To 
do this, we will pursue the following strategy: We will first identify asymptotic 
single-particle states of string which can represent the initial and final states of a 
scattering process. To avoid the propagation of unphy&ical modes, we will insist 
that these states are BRST invariant. Then we will cast these states into the 
form of excitations on the world sheet, and allow those excitations to propagate 
and eventually overlap with one another. The overlap of the time-evolved initial 
and final states defines the scattering amplitude. 

To define asymptotic states, we apply in a powerful way the conformal in-
variance of the theory. Using the conformal mapping 

2 - *o = « (4.20) 

Li ana 
67 2BA3 3-B7 

* 
0 

Figure 3. Identification of an asymptotic region of the clewed itritig with 
the neighborhood of a point i 0 on the conform a] plane. 

according to the construction (2.3), we can map the asymptotic region of an 
infinitely extended closed-string world surface into the neighborhood of the point 
z = zo- This transformation is shown in Fig. 3. In the discussion to follow, 
I will assume for simplicity that ZQ = 0. This entails no loss of generality; the 
Hamiltonian evolution described in Section 2, denned by dil&tationH outward 
from z — 0, could equally well have been Bet up about any other point. 
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If we put no operator at the end of the cylinder shown in Fig. 3, what 
propagates in from infinity is the ground state of the string in the sector with 
vacuum quantum numbers. Mapping this situation conformally to the z plane, 
the observation reads as follows: If we put no operator at z = 201 this defines a 
particular state with vacuum quantum numbers as the initial state in the time 
evolution of radial quantization. Let us refer to this state as |0). 

To define any other asymptotic state, we would apply some operator asymp­
totically on the string, or, equivalently, at z — z$. The set of operators which 
might be used in this construction is most simply discussed in terms of the Fourier 
components of conformai fields, evaluated on a circle about z0. If we translate 
to 2Q = 0, the definition of the Fourier components is that given in (2.42). Let 
us loot more closely at the first part of this definition. UsinE this equation and 
the correspondence between operators and correlation functions, we may write 

where the contour is a small circle about z — 0. The operator ordering on the 
left-hand side gives the radial time ordering for the right-hand side; thus, if ln 

is applied directly to the vacuum on the left, there should be no other operator 
inside the contour on the Tight. But then, if n -f dt — 1 > 0, we can contract this 
contour to z = O and find zero. This implies 

l„|0) = 0 for n > 1 - dt . {4.22) 

The moments of t(z) which do not satisfy this condition may be evaluated by 
contour integration; one Ends simply t(0) and the successive derivatives of t 
evaluated at 0. We may view these as the creation operators for string excitations. 

As an example, consider the moments of d .X ' ' , which are conventionally 
denoted by 

a» = +i I ~ 2ndtX» . (4.23) 

For n > 0, Q{J is an LQ lowering operator. All of these operators, and also <*£. 
annihilate )0). It is natural to interpret the a£ as lowering operators for thi> 
string normal-mode osciallatic.no. Their counterparts o / n would be the corre­
sponding raising operators. These operators may be equivalently represented as 
the derivatives of d , X " evaluated at 0; for example, a"_ j = d,X(0). We can 
confirm this identification of raising and lowering operators by computing the 
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commutator of two a£, using the functional method which by now should be 
quite familiar: 

/ 2JT« / 2TM (Z - w ) J 

J 2iri l ' 
(4.24) 

so that, 
| o S , n ^ ] = ^ ( n + m ) ^ . (4.25) 

The Fourier component a£ is naturally interpreted the ccnter-of-mass mo­
mentum operator of the string. With this interpretation, a^ annihilates |0) 
because this state has zero momentum. To obtain a state of finite momentum, 
we can inject momentum into the string by app ying the operator e x p x at ZQ. 
We can check all of these identifications by competing 

atfp-xm | 0 ) = +il~ z«dtx»(z) «<p-x(°) 
J 27TI 

• +i f £ *" { (=£) ''"m + «—V)} (4.26) 

( 0 n > 0 

p^ (0) n = 0 
Indeed, the exponential shifts the center-of-mass momentum of the string while 
allowing all of the nonzero-frequency oscillators to remain in their ground states. 
We have now found that the state 

t{f * W |0) (4.27) 

represents the asymptotic state of a ground-state otring at momentum ;>". Ex­
cited state of the string are represented by composite operators 

a,JTV>- x<°> , d.XiidMXl'*i>xW , dlXr^xW , etc. (4.28) 

Operators such as those shown in (4.28) which are used to define asymptotic 
states of string are called vertex operators. 
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All of the excitations shown eq. (4.28) are created by analytic derivatives or 
A''1; these represent left-moving excitations on a closed string. We could equally 
well have used anti-analytic derivatives of XM—d^X^lO) and higher derivatives. 
It follows from the generalization of the above argument to the anti-analytic 
sector that these operators create right-moving excitations in the asymptotic 
string states. In addition, it is straightforward to describe the analytic and anti-
analytic ghost excitations as being created and destroyed by ladder operators., 
or, equivalently, by local vertex operators. By applying the manipulations of eq. 
(4.24), it is straightforward to show that the operator product 

biz) clw) ~ (4.29) 
z — w 

implies that the Fourier components satisfy the anticommutation relations of 
ladder operators. 

{bn,cm} - % 4 m) . (4.30) 

According to (4.22), bn and c m annihilate |0) unless n < 1, m < - 2 . Comparing 
with (2.42), we see that the fcn, e m which do not annihilate |0) are precisely those 
which can be incorporated into vertex operators as the values of b and c. and their 
successive derivatives at z = 0. 

Once we have formulated a vertex operator 0(0), -ve must decide whether 
the corrc ponding asymptotic state is BRST invariant. The state )0) is a BRST 
invariant state, since Q is defined as a contour integral, and this contour can be 
deformed to zero if it encloses no other operators. The operation Q 0{z0) |0) is 
defined functionally by drawing the BRST contour about the operator 0 placed 
at 2Q. Let us check whether this quantity vanishes. 

QO(zo) = lp-taT{w)0[zQ). (4.31) 
J 2)Tt 

To compute the operator product which gives the singularity of the integrand, 
assume that 0(z0) contains no ghost operators (as is true for the operators (4.28)) 
and that 0{*c) is a primary conformal field. Then (4-31) becomes 

(4.32) *• ' J 2JTI [{w - zo)2 (w - *o) 

= [do[d,n-0 + t°-d,0){za) . 

This result apparently can never vanish. However, if do = 1, the final result is a 
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total derivative, BO that 

Q dz 0(z) = / dz d,{t"0) = 0 . (4.33) 

The integral of a primary conformal field of dimension 1 thus gives a representa­
tion on the complex plane of a BRST invariant asymptotic state-

How should we properly interpret this result? Up to this point, all of the 
intuition we have used to motivate this construction has come from the consid­
eration of closed strings. Closed strings have a local symmetry under the action 
both of the Ln

 a nd the L„; thus physical states should be invariant to both Q 
and Q. In the closed-string theory, then, asymptotic states should be associated 
with operator insertions of the form 

I dzdz 0(2,1) , (4.34) 

where 0 is primary and has dimension 1 relative to T(z) and also with respect 
to 7"(J) . For the simplest vertex operator 

0 = «•>*<•.«) , (4.35) 

the restriction on the dimensionality implies that 

P ! = Z , (4.36) 

ihat is, the asymptotic state must be an on-shell state of a particle of mass 
m 2 =. -2." Tliis state is a tachyon, and that (unfortunately) is the correct result 
for the ground state of the closed string. 

The construction in (4.33) has, however, another interpretation. We might 
recognize that (4.25), by itself, is precisely the algebra of mode creation and 
annihilation operators for the open string. This should tempt us to interpret 
the analytic sector of the system we have constructed as describing the open 
string. Mapping back to the cylinder according to (2.3), then dicing the cylinder 
into two semicircular pieces, we can see that, in this interpretation, the real 
axis of the z plane should be identified with the boundary of the open string. 
The open siring boundary condition that d^X*1 = 0 at the endpoint may be 

» In Michtel Green's convention*, this would re»d: m* = —8. 
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given the following interpretation: Let left-moving excitations on the open string 
be represented by analytic functions in the upper half-plane and right-moving 
excitations by analytic functions in the lower half-plane. Then the open string 
boundary condition is simply the requirement that these functions be continuous 
across the real axis. 

This interpretation of the analytic sector of the world sheet dynamics suggests 
a new interpretation of the integral of a vertex operator: The integral /dzb[z ) 
Along the real axis of the *-plane represents a BR ST-in variant open string asymp­
totic state which couples to another open string at its boundary. The simplest 
such state is the one associated with the vertex operator 0 — e , p x . The require­
ment that do = 1 again implies p1 = 2, so this state is again a tachyon. This is, 
of course, a familiar property of the ground state of the open string. 

These two constructions lead to formulae for the scattering amplitudes or 
open and closed strings, since the transition amplitude from a set of initial to a 
set of final string states can be computed as the joint correlation function of thr 
corresponding vertex operators. 

-©-
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Figure 4. Condi t ion funcliono of vertex oper; tuts which give the mat­
tering amplitudes of the {*) open mid (b) closed ntr tig theories. 

The oper1 and closed string versions of this construction are illustrated in Fig. 
4. We can then check OUT formalism by computing the scattering amplitude for 
four tachyons explicitly in each theory. 

Begin with the scattering amplitude for open-string tachyons. This is given 
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by a correlation function of four vertex operators integrated along the real axis: 

A = / J dzidz2dz3dz< e<pi-*(«.)eip»"X(«i> e»'P»-*(«») e V4-x(«.)\ . (4.37) 

As Michael Green has discussed, open strings may be given flavor quantum num­
bers by assigning a group theory factor (called the Chan-Paton factor) to each 
cyclic ordering of the operators. This factor gives the amplitude that the quan­
tum numbers created on the string boundary by each vertex operator can be 
annihilated by the next operator along the line. I will ignore this factor in my 
discussion here, though I will assume that the cyclic order of the vertex operators 
is fixed. Evaluating the correlation function, we find 

A = / dzidztftzsdzi JJ exp(p(-pylogfa,-- z,)) . (4.38) 
• < j 

The expression (4.38) is, unfortunately, not yet well defined. The problem is 
one that should be familiar already from Michael Green's discussion of the string 
scattering amplitude: The integrand of (4.38) has a group of invariances which 
forces the integral to diverge. A part of this divergence comes from the fact 
that the integrand is translation invariant. The full symmetry is the unbounded 
three-parameter group of fractional linear transformations with real coefficients 

(az + b\ 
\7z~Td) ' (4.39) 

exactly the group of eq. 12.39), specialized to real coefficients—SL(2 tR), This 15 
in fact the group of conformal transformations which map the upper half plane 
onto itself 1-to-l. It is straightforward to check that the change of variables 
(4.39) leaves the integrand unchanged as long as each pj = 2. A natural way to 
cure this problem is to divide (4.36) by the group volume of SL{2,R). Using the 
infinitesimal form of an SL{2, R) transformation given in (2.41), we can find the 
Jacobian for the change of variables from any three of the (real) £,- to the (real) 
parameters a, 0, 7: 

3fe,*j,gfc) 

Making this change of variables using zi, z\, z«, and then cancelling the integral 
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over group parameters, we find the final result for A: 

A = I dz3 (z, - z 2)(2i - z4){z2 - 2«) J | «xp(P i • P} log(z, - z,)) , (4,41) 

This result should be independent of the choice of *i, 2 S l z 4 , as long as the four 
points ore in the correct cyclic order. If we assign z\ —* oo, zj = 1, £« n> 0, 
always using p\ = 2 and momentum conservation, (4.41) simplifies to the form 

l 

A = J dz (1 - z ) p " " zpl p* . (4.42) 
o 

122] 
This is the famous amplitude of Venesiano which was in fact tho first result 
in string theory. 

The scattering amplitude of the closed string theory may be computed by 
following an analogous set of steps. One begins from the expression 

A = H fz^ttPziPzi e v . * ^ " " *(-«>«•>*•*(*•> e ' P<*( '«A , (4,43) 

where the integrals now run over the whole complex plane. The correlation 
function may be evaluated as in (4.38). The resulting expression is invariant 
to transformations of the form (4.39) with general complex coefficients; this is 
the full group 51,(2, C). This group is in fact the group of all 1-to-1 conformal 
mappings of the whole z plane onto itself. The amplitude (4.43) can be made 
well-defined by dividing by the volume of this group. The Jacobian needed in 
this construction is the absolute square of (4.40). The result is 

J •<> 

Assigning *i , Z2, z« to oo, 1, 0, we find 

A = I d2z\l - z\2»» \zf»-" , (4,45) 

the Virasoro-Shapiro ' closed string amplitude. 
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To conclude this discussion of string scattering amplitudes, I would Hke to 
discuss briefly the problem of constructing BRST invariant vertex operators for 
higher states of the string spectrum. The open-string vector states it>(ttl JO) are 
created by vertex operators 

0%{z) = e "a ,X" (z}e* ' ' X W - (4.46) 

We must check not only that this operator has tht correct dimension but also 
that it in a primary conformal Geld. To do this, compute its operator product 
expansion with T{z)i 

r (») f l , ( i ) - -l{dvXt,ip'X(*)){dmX>,s''d9Xv}tirxM-2 

- \ {{BuX» ip • X{z)}) V * « * " e * * M 
(4.47) 

- ^X" (dwX" iv$,X") t^x^ -2 + ... 

-, <LtjrXM + pl±lvatXJ?XM + ... 
(tU - Jff)3 (in - j t ) i 

The operator 0f has dimension 1 if p 3 =* 0, that is, if the vector particles created 
by this operator are massless. However, (4.47) informs us that we must impose an 
additional constraint in order that 0 f be primary. This is the condition f • p = 0, 
the familiar physical requirement of transversality. In a similar way, we may find 
that the tensor vertex operator 

* i U 'd,X* , d«.X'V*- J f (4.48) 

has dimension 1 if p* = ~2, corresponding to m a = 2, but it is primary only if 
we satisfy as well the physical state conditions on the polarization tensor 

p H f } ^ = 0 =: „ * „ . (4.49) 

In general, for string modes with spin, the requirement of BRST invariance im­
plies not only that the particle should be on its mass shell but also that the 
polarization should have a physically correct orientation. This is the first hint 
of the deep connection between BRST mvariance on the world sheet and gauge 
invariancc in space-time which we will explore in the next section. 

3a 



i .. i a . ,1 i 1 It .. ik 

5, Gauge Invariances of the Bosook String 

In the previous section, we formulated a set of rules for computing string 
scattering amplitudes at the tree level. The basic assumption of this construction 
was that the string scattering amplitude should involve propagation on the world 
sheet of physical (that is, BRST invariant) excitations. We found, however, that 
this condition implies that the external particles of string must also be physical 
propagating states on space-time. This correspondence between world-sheet and 
space-time properties is already remarkable in itself, but it is worth pushing the 
argument one step further. Our experience with local field theories with spin 
tells us that such theories cannot be formulated covariantly and still naturally 
project out unphyskal polarizations unless they possess an underlying gauge 
invariance. We have seen also that the open string theory contains massless 
vector states; it would be most attractive if these were the gauge bosons of some 
explicit local invariance of the string theory'- In this section, I will exhibit the 
local gauge invariances of the free string theory and clarify the relation between 
these invariances and the world-sheet dynamics. 

5 . 1 . M O R E CONFORMAL FIELD T H E O S Y 

To carry out this analysis, we will need some additional tools from conformal 
field theory. In the previous section, I introduced the vacuum state |0), defined 
by putting no operator at the point x ~ 0, which forms the asymptotic past in 
radial quantization. To continue our discussion, it will be useful to define {0|, 
and, more generally, a notion of operator adjoints and inner product appropriate 
to conformal field theory. All of the necessary concepts are provided in the woTk 
of BPZ. 

The obvious definition of (0| is to put nothing at the point z — oo which 
forms the asymptotic future of radial quantization. Just as contour integrals 
which can be deformed to 0 represent operators which annihiliate |0), operators 
will annihilate this {0[ when the corresponding contour integrals can be pushed 
to co. Conformal invariance allows us to discuss both situations at the same 
time, because a conforraa.1 transformation 

z —• z = — (5.1) 

interchanges past and future. BPZ proposed that this conform&l transformation 
could in fact be taken to be the definition of the adjoint of an operator or state. 
This definition has the virtue that it does not interchange the analytic and anti-
analytic sectors. We can check the definition by applying it to a general Fourier 
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component t n : 

= ( - i ) * + " i . „ . 

(A factor of (-1) disappears in the second step because both the z and the i 
contours are taken to run counterclockwise around the unit circle.) The transfor­
mation (5.1) thus does interchan&e fn and t-n. We find as well the equivalence 

tn\0) = 0 ~ {0|1_„ = 0 . (5.3) 

According to (4.22), these statements apply when n > 1 — d[. 

The Ln annihilate |0) for n > ( -1) . Reciprocally, (0|X,v = 0 for n < 1. Thus, 
the three operators L~\t Lo, Z#i, and their anti-analytic counterparts L-i, -Lo, 
L\, annihilate both |0) and (0|. This makes these operators true symmetries of 
conformal field theory: If V is a transformation generated by these operators— 
that is, if U G SL{2, C}— 

<0[*(*i)*Ua)-"|0) = <0 | (£ /^(* 1 ) [ / - , ) (17*(* 2 )U- , ) . . . |0 ) (5.4} 

Thus, all conformal 6eld theory matrix elements are invariant to 51.(2, C) trans­
formations. This is the origin of the conformal invariances of the four-tachyon 
scattering amplitudes discussed at the end of the last Bection. Because of this 
property, the state |0) is often referred to as the 5L(2, C) invariant vacuum. 

The antighost field b(z) has the same dimension as T(z}, and therefore, in 
parallel to the above discussion, fr_j, t 0 i and 6j annihilate both JO) and (0|. But 
then the identity following from the commutation relation (4.30) of the ghost 
ladder operators 

{&», *-»} |0) = |0> f 0 ; (5.5) 

implies that the three operators c_ i, cc t \ annihilate neither |0) nor (0|, All other 
cn and bn ladder operators annihilate either |0) or (0|. This set of statements 

Ta.2) 
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implies that the basic nonzero expectation value in the theory is 

(0| c _ i e 0 c i |0) ? 0 . (5.6) 

Apparently, the adjoint operation of BPZ does not preserve ghost number; indeed, 
it insists that ghost number is violated by 3 units in conformal field theory 
calculations on the plane. 

To properly understand this ghost number nonconservation, it is necessary 
to develop in some detail the geometrically invariant formulation of the string 
dynamics. Since this would take us too far afield, I will simply sketch the logic 
of the required argument. The ghost number current j z — be \s the fermion num­
ber current of a set of chiral fermions (of unconventional spin) in 2 dimensions. 
Therefore, we should expect that this current has a gravitational anomaly. Its 
conservation law is, in fact, 

3 5 j , = ~ * , (5-7) 

where my conventions correspond to / d2z^/gR = STT for a sphere. Considered 
for more general 2-dimensional manifolds, thif integral is a topological invariant, 
the Euler characteristic x; its value is 

- 1 fd2z^gR = - 2 ( g ~ l ) , (5.8) 
4TT J 

where g is the gcnui of the surface, the number of handles. For surfaces of 
the topology of a sphere, g = 0 and we expect ( — 3) units of ghost number 
nonconservation. Since the complex plane, including the point at infinity, has this 
topology, we thus obtain the nonconservation law displayed in (5.6). For surfaces 
with handles, ghost number 3(g - 1) should be swallowed by the conformal field 
theory matrix element. 

When one encounters fermion number nonconservation due to the coherent 
effects of anomalies, the nonconservation is normally manifested in the appear­
ance of ZZTQ modtB of the fermion field. Theis are modes of the fermion field 
which are localized solutions to the equations of motion. If one defines the func­
tional integral over the fermion field by decomposing in eigenmodes of the fermion 
action 

1/-0O = X>"<M*) . (5-9) 
n 

the zero modes <pa{x) are annihilated by the Dirac operator, and so the com­
ponents xjiQ which multiply these solutions do not appear in the action. The 
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fermion integral over each of these components then gives 0 unless a (actor of ifo 
a supplied by an extra fermioo operator wider the functional integral: 

(») o. 
(5.10) 

M*) 
For the anticommuting ghosts, eq. (5.S) implies that we should find 3 sen> modea 
of c{s) on the sphere, no zero modes on the torus (actttatty, one finds owe each 
for c[z) end K*))» *»d S(p - l) zero modes of ft on surfaces of higher genus. 

The zero modes of e responsible for the result ($.€) are Actually easy to 
identify: Since the equation of motion for e is 6V =• 0, the icro modes are analytic 
functions regular on the plane which satisfy the correct boundary conditions at 
infinity. These boundary conditions should be the ones appropriate for treating 
the t plane u a sphere: Choose a metric which makes the plane a compact space 
of constant positive curvature; 

0«i 
1 

(1 + A»|i|»)» 9.. - ffn = 0 (5.11) 

(Sending A -* 0 makes the neighborhood of the origin as flat as one wishes.) 
Then an eigenmode of c is normaliiable If 

11 c 11' = / ^ c' W = J * . i t + #m< k'l3 (5-12) 

is finite. There are three entire functions which satisfy thus criterion: c{z) ~ 
1,*,*'. It is pleasing that these are exactly the coefficients of c,, c 0 l e_ x in the 
Fourier decomposition of c{i) given by ibo right-hand side of [2.42). 

If we normalize (5.6) to {Oj e.jeoCi |0) =« 1 and apply this Fourier decompo­
sition, we find that 

<&;c(JiM*3M*s)|0) 
1 1 1 

*3 *3 *l 

4 *i *? 
This formula also follows from the bosonixed expression 

<*l - *a)(*i - *3)(«a - **) - (5.13) 

<0|e(*0e{*j)«{^)|0) - f><*«>e»<*»)e*<*.)) (5.14) 

The result ($.13) is reminiscent of eq. (4.40). This is, in fact, the fint sign of 
a general relation, between (he treatment of ghost f*ro modes and the measure 
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for the integrations involved computing in string scattering amplitudes. I will 
explain the relevance of this formula later in this section; we will discuss the 
more general situation in Section 8. 

5.2. GHOST CONTRIBUTIONS TO THE STRING SPECTRUM 

One of the results of the analysis just given Is thai the £» lowering operator 
c, does not annihilate the SL{2, C) invariant vacuum JO), This means that there 
exists another otate of the open string Hilbert space which has a lower Lb than 
10); this is 

|fl> - ct |0) , (5.15) 
Since all other lowering operators annihilate |0) and (fit)3 • 0, this is actually 
the state of minimum £ 0 , This new vacuum satisfies 

<n|*o|n) - {0|c_,e0ei|0) •= Is (5.16) 

then {fi[fl) = 0, since this quantity has the wrong ghost number. Wo have found 
that the true vacuum of the open string theory is a peculiar ghostly stale of zero 
norm. Nevertheless, as we will see In a moment, this observation will allow \a lo 
considerably refine our understanding of the spectrum of string atatua. 

Since |fi) is the true open string vacuum, we should consider rebuilding the 
spectrum of physical string excited states by applying the creation operators for 
coordinate excitations o £ n to |fl); this produces states of the form 

I t W ^ ^ a ^ V : , , . . - ! * ) , where [ p ) W * i n ) . (5.17) 

We may denote such states, equally well, by |0) « e(0)V(0) |0), where V(0) is H 
vertex operator built of Xu and its derivatives. These states are not necessarily 
BRST invariant. In fact, |"|) itself in not BRST invariant! If we apply the contour 
integral formulae (4.6) or (4.19) to the representation 

in) - c(0) |0) = <'t°l |0) (5.1B) 

and evaluate operator products, we find 

Ql f l ) * (-l)-«o)fi) . (M*) 
On a state of the more genera! form (5.17), 

I*) , 
(5.20) 

where the L L X > are the Fourier components of rt*>. Since for « > 0, e„ Ifl) = 0, 
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half of the conditions for BRST invaiiance implied by (5.20) are trivially satisfied. 
We see, then, that |^) mil be BRST invariant If 

(5.21) 
(4* 3-i)jtf) = o. 

These are exactly the physical state condition* presented, from a very different 
viewpoint, by Michael Creen. The second condition states that the operator V 
which creates \i/>) from |fi) must be of dimension 1- This is exactly the mass-shell 
condition derived in the previous section. The first condition is equivalent to the 
statement that V must be & primary conform*! field, since the contour integral 

4*V[D) fn> = jf ^ t«+*T[z) V(0) \(l) , (5.22) 

for n > i, will pick up any higher terms in the operator product expansion of 
T with V. We have seen that this statement requires |0) to have a physical 
polarization. 

An observation equivalent to that just presented is that operators 

e(0)V(0) = t'WV{Q)i (5,23) 

where V(z) satisfies the conditions of the previous paragraph, are the BRST 
invariant vertex operators which we sought but failed to find in the previous 
section. Let us check this directly: If V is a primary conformal field built from 

Qt{0)V{0) = f ~ :e*{*> [rW(«) + r^(*) ] = : t'(a)V(0): 

(5.24) 
This vanishes if V has dimension 1; that is, if e • V has dimension 0. 
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We can apply this observation immediately to our calculation of the 4-tachyon 
scattering amplitude. The amplitude constructed tn eq. (4.37) remains BRST 
invariant if we replace factors of fdzV(z) by e(2o)V(«o) where ZQ is any fixed 
point on the real axis. In fact, we are required to make 3 such replacements in 
order to satisfy the law that conformat field theory amplitudes annihilate 3 units 
of ghost number. This gives the formula: 

A = /[c(*,)e*'*<">] [«(«»)•*•*«*•>] fdza «**<'•> [C(*4)e'>*<»«>]\ . 

(5.25) 
When we evaluate this formula by using (5.14) to compute the ghost correlation 
function, we find again the result (4.41). Eq. (5.25) can be made to look more 
symmetric by replacing 

et>*{.»> b y i^-.b{w)e{z3)e^xl") (5.26) 

® © « & ( ® ) ® ®" 
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Figure 5. Form of the f-tcchyon Mattering amplitude in a formalism in 
which the vertex operator* eonttjn ghoot factors c(<). 

This gives an alternative picture of the multi-string scattering amplitude which 
is shown in Fig. 5. Because the assignment of e(z) factors serves only to Ex 
the SL{2tR) symmetry, it does not matter which of the 2* are surrounded by 
a b{w) contour. Giddtngs and Martinet' ' have recently shown that one can 
systematically derive a formula of this last form from a Bet of Peynman rules for 
the open string dynamics. 
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5,3. GAUGE TRANSFORMATIONS OF THE STRING STATES 

Let us turn now to a study of the string states which do not satisfy the first 
of the physical state conditions (5.21). The Virasoro commutation relation (2.36) 
for ILn.X-.-n! implies that (unless the state has a particular exceptional value of 
of Lfi) any state which is not annihilated by some Ln car. be written as a linear 
combination of states of the form 

L ( * n V> ( « > 0 ) . (5.27) 

It is instructive to write out the simplest of the states (5.27) explicitly. To do 
this, rewrite 

£=-oo 

*nd apply this operator to states Wilt upon \p) =. e1? x ]ft). Because a{J |p) = 0 
for n > 0, only a finite number of terms of the scries (5.28) contribute; further, 
we may simplify by using &% \p) — p1* \p). Then we find 

L-i \p) = Q„I -OO \p) = P - a - i \p) • (5.29) 

Similarly, 

L-i A-a_i|p) = p - a - i A-cr_j |p) + A • a_ 3 |p) 
j (5-30) 

L_j |j>> = a_2-pjp) + - a - j - a - t l p ) . 

1/ we view the states which appear on the right-hand sides of (S.29) and (5.30) 
as components of the string states fati \p}> ri^at^^j \p), we see that these 
are exactly the unphvsical polarization states, the tiraclike and trace parts of the 
polarization, which cannot be associated with propagating states. 

I would like to give this observation a deeper interpretation^ as follows: Let 
me introduce a string fields a functional of the instantaneous position of the etring 
in space-time: 

•I**M1 (5.31) 
The cigenstates of the single-string Hamiltonian, viewed as Schrodinger wavefunc-
tions, are functional of A''1 (a) and, in fact provide us a basis of such funttlonals. 
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Let us expand a general functional *(X' J ] in this basts. The coefficients in this 
expansion must carry Lorentz indices to match those of the mode creation op* 
erators for the corresponding slate- It is convenient to include the dependence 
of 4,(X*1j on the center-of-rnass position z M of the string as an z^-depondence of 
the coefficient functions- The general form of the expansion is then 

*\X"(a)\ = [#(x) - ii4"(*)o|i. - i * " ( * K I a » r i y ' W « ! : ] H . . . ] |n ) . 
(5,31) 

1 have assigned arbitary names to the coefficient functions; the factors of i insure 
that all of these functions, and $\X\ itself, are real-valued. Notice that the 
coefficient functions take the form of local fields of increasing spin. Each particle 
in the single-string spectrum is assigned its appropriate local field. 

Now let ^jijjA -], *{?j[X] be two new string fields, with coefficient fields 
4>(i){z),,.. and ^ ( 2 ) ( J : ) respectively. Using the results (5,2&) and (5.30), 
we may compute 

-iA^aU -r . . . ] | f . ) (5.33) 

L-3*w\x{c)\ = [- l i - S " " ^ ^ ^ - , - id"4Wo% + . . . ] | n ) . 

Now compare the two lines of (5.33) to (5.32) term by term. The coefficients 
of string eigenstates in (5.33), viewed as local fields, are of exactly the right 
form to be the variations of the fields of (5.32) under (Abelian) local gauge 
transformations: 

<5,4" = 3 " * ( 1 ) , 

W = [a'AX^-rd'A^] - J""^, , (5.34) 

It is natural to hope that the string theory is indeed a gauge theory, with precisely 
these transformations as its gauge in variances. 

The higher terms in the formulae (5.33), together with terms from the action 
of higher £ - „ operators on new string fields, produce possible gauge variations 
for tne higher mass fields in the expansion (5.32). At first Bight, this looks like 
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a frightening expansion of the gauge symmetry group. However, this enormous 
expansion of the gauge group is clearly necessary: The higher mass levels of the 
String theory contain increasing numbers of field with spin. These high-spin fields 
must obey consistent field equations which allow them to propagate and interact 
withoat producing their unphysical polarization states. It is likely that this is 
only possible if each of these fields possesses its own local gauge invariance. 

The enormous gauge symmetry suggested by this analysis can be written in 
i •• i , r I10-J8) 

a relatively compact form 

W[X(o)] = l-n${n)\X(a)} (5.35) 

by invoking gauge parameters * { n > M which are functional of X*{a). In ordi­
nary physics, we speak of global gauge symmetries, in which the gauge parameters 
are constant, and local gauge symmetries, in which the gauge parameters are lo­
cal functions of X, Here we have the next step in this hierarchy, chordal gauge 
transformations, in which the gauge parameters are functional on the space of 
strings. 

5.4. A GAUGE-INVARIANT ACTION 

In the last section, we have made considerable progress toward a gauge-
invariant formulation of the open string theory. To complete this analysis, at 
kast at the level of free strings, we need only construct an action principle with 
ths gauge invariance (5.35). H seems, however, that something >s missing. Tht 
ghosts, which played so important a role in the formulation of the string spectrum, 
played no role at all in the considerations which we have just completed. Before 
we attempt to construct a gauge-invariant action, then, I would like to discuss 
the ghost generalization of the string field formalism presented above. 

Let us, then, extend the string field <> to a functional of Jiffa) , f>{a), and c(<r). 
The Hilbert space of string eigenmodes will then be larger, and more terms will 
appear in a normal-mode expansion such as (5.32). Explicitly, we find, through 
the second excited level: 

* [ * , M = \4{x) - iA'ix)^ - ib(i)fc_, - ie(z)c_, 

- i n ^ V - ! - »V(x)-a-a - i£(*)6-a - «(*}*-» 

- b»(x)A-i«^ l - £" (x )e_ ie i , - « ( x ) t _ , « , 1 + , . . ] i n ) 
(5.36) 

The new local fields appear in quite a remarkable pattern. At tee first excited 
level, corresponding to m 2 = 0 states, we find the familiar vector field A^x), 
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plus two new Gelds b ( z ) t c(z). Since * is a real-valued functional, while b.. j 
and c_] are G;assmann-valued, the coefficient fields b( i ) and c{z) must be an-
ticommuting fields. They are exactly the ghost and antighost required for the 
standard Fadde'ev-Popov quantization of / 1 M ! At the next level, we have the 
vector and scalar gauge parameters -A?,, and 4>^ of eq. (5.34), BO we expect, 
and find, vector and scalar ghosts c", c and their corresponding antighasts. This 
amazing phenf enon was discovired by Siege), and it was this discovery that 
aei in motion i unravelling of the string gauge invariances. 

I would likf to use this extended string functional as my starting point in 
a search' for a i.uge-invariant action. Let us abstract the expansion (5.36) to 
the form 4>[A", t :| — ^I^i(x) l&')- ^ w e F ° u r ' e r transform with respect to x, we 
can rewrite the (.ring field as a sum over coefficient functions for string stales of 
definite momen tra: 

$ = j\dP] UP)\MP)) . (s-3") 

where |ii»,(p)) V. i string state built by applying mode creation operaiors to \p). 
It is natural to ok for a free-string action of the form 

where K b an orator which acts on the single-string Hilbert space. We must 
find a JC who&t iction oft string eigenslates can reproduce the space-time La-
grangians or tb< component fields. 

Since \4{p}) ncludes the ghost vacuum contribution and, possibly also, ghost 
excitations, it i Tiost naturally constructed as a state in conformal field theory. 
Let us, in fac- reinterpret the matrix element which appears in (5.S&) as a 
conformal fieh. ieory expectation value involving the vertex operators which 
create |vW) ano ^j) and a third operator which represents K. Wc can write 
these elements < ncretely for the case in which both externa] states are tachyons: 
The state \ipj(p - \p) is represented by the vertex operator c(0)cipXioh The 
state {^j(p)| = ,p\ is represented by the adjoint of this operator, that is, its 
conformal trans >rin under z —* — l / z . We might regularize this operation by 
setting the original vertex operator at z = c, then the adjoint operation, carried 
out according to the transformation law (2.23), yields 

e( t) «»>*(') - (lY 3 ~ \ c ( - l ) «•>*(-»/«). (5.39) 

Each of the two vertex operators has ghost number 1. In order to satisfy 
the ghost number conservation law of conformal field theory matrix elements, 

S = (* I*) --, |<i 2 ( W,(-j>)U,(-p) | 
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the operator we choose for K must also have ghost number 1. The "obvious™ 
candidate is the BRST charge Q. Indeed, using (5.20) we may compute 

(-P\Q\P) = ((Ji) 'cl-I)*"--*<-'/«> • Q .c(0)e'>A'(°»\ 

(5.40) 
the complicated dependence on e cancels completely, and what remains ie 

< - P I C I P ) = \(p' - 2 ) . (5.4i) 

Since the tachyon has mass m 3 = - 2 , this gives exactly the correct free La-
grangian For the tachyon field: 

S = / 4(~p) I (P2 + m") *(rt + ... . (5.42) 

We shall now check the form of the Lagrangian at higher mass levels. Let 
us concentrate for the moment on the terms involving string states with physical 
polarizations. These states are created by vertex operators which are primary 
con formal fields. For such states, eq. (5.20) implies 

(M~P)\ Q IIMP)) = « * ( - P ) | *o{Lix) - 1) I*/(P)> • (5-43) 

If the state }il>}(p)) contains n units of oscillator excitation, then, acting on this 
state, 

4 X ' - 1 = £ + n - 1 = \{v2 + m*). (5.44) 

The factor of c 0 in (5.43) is needed to make the diagonal matrix element in |ft) 
nonzero. We have thus shown that action (5.38) with the choice K = Q gives the 
correct free-field action for all physical components of the various Btnng fields. 
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This analysis makes it very plausible that the correct action for the open 
string free field theory is 1 ' 

5 = (*1Q|*) . (5.45) 

To complete a demonstration that this is indeed the correct action, it is only 
necessary to show that this expression has a group of gauge invariances sufficiently 
large that wc can remove all unphysical field components. Actually, it is very 
easy to identify the gauge invariances; since Q1 — 0, any transformation of the 
form 

*|*) - Q\E) , [5AC) 

where \E) is a new string functional, leaves (5.45) invariant. A subset of these 
transformations is obtained by specializing 

\E) = 6-„ |*( , , ) • (5.47) 

Acting on this with Q, we find 6\$) = £n|<I>(nj); thus our proposal above for tin? 
gauge group or the free string theory is contained as a subgroup of the transfor­
mations represented in (5.46). Since all physical states have the ghost number of 
[0), and the gauge ^variances (5.35) also correspond to definite ghost number, 
we can simplify the theory by restricting |4>) to states of ghost number 1. Since 
Q raises the ghost number by 1 unit, [£") will then be restricted to ghost number 

1321 
0. For this theory of definite ghost number, a careful analysis shows that the 
number of gauge invariances is precisely correct to allow all unphysical string 
states to be eliminated. 

It should be noted, however, that the restriction to definite ghost number 
I allows certain states to remain in the classical string theory which cannot be 
written as excitations of the coordinate oscillators. The first of these states 
appears at the second mass level, it is visible in (5.36)as the component field $(x) 
in the term 

4 = | . . . + J ( * ) 4 - . , C _ I -i ••• | |n) . (5.48) 

This field can be gauged away,but it does participate in the gauge algebra of the 
m 2 = 2 states. We will see a more important example of such a ghostly classical 
field in the next section. 

The covariant quantization of this system is not entirely straightforward. 
The gauge invariances we have defined have their own gauge-invariances: S[E) = 
Q\G), where jG) is a new functional of ghost number ( -1) , leave* the transfor­
mation law of J*) unchanged. This means that the Faddeev-Popov action for the 
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ghosts will have a gauge invariance, requiring ghosts of ghosts. Following this 
logic, 01,.. finds ghosts of ghosts of ghosts, etc.; each successive ghost involves 
states of ghost number 1 unit lower. The corresponding antighosts cover the 
set of positive ghost numbers. The final result of this procedure is a covariantly 
quantized theory containing all possible ghost number sectors: This theory in­
cludes the full content of the functional *[x(a), b[a), e{a)]. The gauge-fixed string 
field theory is thus exactly the field theory of the gauge-fixed string! 

It is possible to supplement the free field action 1 have described with a gauge-
invariant interaction. Many authors have offered proposals for this interaction; 

120 33 34l 
two of the most completely realized are those of Witten ' ' and Hata, Itoh, 
Kugo, Kunitomo, and Ogawa! ' Unfortunately, I do not have space here to 
review this work, which still seems to require a good deal of further clarification. 

6. Gravity from String Theory 
Now that «t have seen how the gauge invariances of the open string theory 

arise, lt;t us explore how these ideas generalize to the closed string- Michael 
Green explained that the graviton arises as a particular state of the closed string; 
thus the formulation of a gauge-invariant closed string action should lead us 
directly to general coordinate invariance and Einstein's equations. Unfortunately, 
many of the connections along this chain are not yet well understood. In this 
section, I will give three sets of arguments which give partial information about 
the nature oT gravity in string theory; I leave it to you to formulate a more unified 
understanding of the connection between strings and gravity. 

6.1. SCATTERING OF GRAVITONS 

First, let us generalize the formalism for string scattering amplitudes pre­
sented in the previous section to the closed string. To do this, we need only 
bring back into our discussion the anti-analytic section of the Hilbext space and 
construct vertex operators which create both analytic and antianafytic modes 
excitations. 

Let us denote the ladder operators of the anti-analytic sector (corresponding 
to right-moving excitation on the closed string) by Zt£; these obey the same 
algebra, as their counterparts in the analytic sector. Denote the new ghost ladder 
operators by bn and em. The vacuum of the theory is given by 

|fi) = c,Z, |0) . (6.1) 

This state is not BRST-invariant, but the states of nonzero momentum 

\p) = e ' - ' ^ e ^ l O ) (6.2) 
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are annihilated by Q and Q if p 1 = 2. Michael Green identified the graviton 
with the massless tensor state at^-i \p). This state is created by the vertex 
operator 

c{z)l(z) • rt

l'tf dMXlid7X''tir *<*'s> (6.3) 

(or simply by the coordinate part of this operator, integrated over fit). The 
operator (6.3) is annihilated by both Q and Q if p1 = 0 and if p"^" M nuupy = 0. 

Notice that the graviton state satisfies the condition LQ = L 0; it has equal 
amounts of excitation in the left- and right-moving sectors. ;hae! Green argued 
that this condition must be satisfied for all physical closed-string states. Let me 
explain how this condition arises from the conforms! field theory viewpoint. If 
I ignore the problem of fixing the SL{2,C) invariance (which contributes, in 
any event, only an infinite redundancy), a scattering amplitude is computed by 
integrating vertex operators over all points of the z plane. 

z 0 

& 3-87 5T28AC 

Figure f Typical «nfigut*tioiui of vertex operatott which conliibutt to 
a tcatteting Amplitude for cloned (tringi. 

The contribution in which a particular vertex operator is located at *o involves an 
integral over the locations of all other vertex operators; in particular, it includes 
an integral over rotations of the other vertex operators about the point ZQ, as 
shown in Fig. 6. Translate ZQ to 0. As we have seen from the discussion of 
SL(2,C) in section 2, the two operators LQ and Lo generate linear combinations 
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of dilatations and rotations. Explicitly, 

{LQ + To) generates z -» z 4- £A* , ~s -* "2 + £A2 , 

(Lo - Xo) generates z -* * + t£a* , I - * i » i t f a l . 

Since we integrate over all possible rotated configurations of sources, only states 
created at *o which are rotationally invariant will give a nonzero contribution 
to the amplitude. These are the states annihilated by (£o - LQ). The other 
possible states of the closed string theory simply disappear. This phenomenon, 
that states which are not invariant to geometrical transformations on the world 
sheet disappear from all transition amplitudes, is a novel and extremely important 
aspect of string theory. It wilt play a major role in our discussion in Sections 8. 

3«ft7 5728A7 

Figure ?. The ji»vitcn Warci identity tot en-iheU externa) »tti&», 

The vertex operator formalism allows us to check the on~sh«U graviton Ward 
identity shown in Fig. 7: Contracting the graviton vertex with p** should cause 
the graviton scattering amplitude to vanish. Indeed, we can see directly 

p" f «f»* 9,X*dgX"&* = - • / d*z a, [BjX" eifX) , (6.5) 

which integrates to 0. In principle, one might worry that nonzero contact con­
tributions might appear due to singularities as z approaches the location Zi of 
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some other vertex operator. However, all each contact terms are multiplied by 
factors \z — *i|*»'*\ evaluated as a -* zi* This factor Is properly defined by 
analytic continuation from the region p • fM > 0; hence, the contact terms are 
zero. This subtlety aside, the Ward identity for gravitons arises in a very nat­
ural way. This is easy to understand, because the graviton couples to the local 
energy-momentum density of the world sheet. 

6.2 . GAUGE INVARIANCES OF THE CLOSED STRING THEORY 

Let ws turn now to the generalization of the construction of gauge invariances 
and the gauge invariant actios to the closed string. My discussion of these is­
sues will be somewhat more pedestrian than that given in the previous section; 
hopefully, it will clarify the physical content of the construction presented there. 

Begin with a closed string field, a functional *[A'*1(a)] of the location of 
a closed string in space-time. The mode expansion of this field, restricted to 
components satisfying Lp = Zo» is 

•;jf(tf)l = [4(*J + t»yi*\«ixK.l +. . .JW . (6,6} 

We have been concentrating on the graviton, a symmetric tfinsor, but actually 
the Seld t*w is a tensor of arbitrary symmetry. It is useful to decompose it into 
its symmetric and antisymmetric pans: 

f*"[x) = ft'"'(x)+6'J''(x) . (0.7) 

The generalization of the gauge transformation law (S.35) to this system reads: 

£« * ! - „ • ( „ ) + I - » * W • (6-8) 

If we define the expansion coefficients 

(6.9) 
then (6.8) implies the gauge transformation laws 

Shf" = 1 ( 0 T -I B"V) + (P~v), 
(6.10) 

sir m ±{d»e - a"V) - {»+>*>) • 

If A"" is interpreted as the linearized gravitational field, the first line of (6,10} is 
just a linearized local coordinate transformation. 
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It is not difficult to write an action for h^v and frp" which is invariant to 
(6.10) even if one works in the restricted Hilbert space without ghost excitations. 
Note that, since \L\,L-\\ - 2L 0 , the operator / * = ( ! - L-t(2Lo)~1Li) satisfies 

P i - i * ( D L-i — L-\ — L_j 1 
2(L 0 + 1) u * ( l ) ~ i i i i l * ( i ) - (6-U) 

which has overlap only with states with two units of excitation in the ana­
lytic sector. This object thus acts on t'"'a.'21'a'ix |ft) as a projector onto gauge-
invariant components. This suggests that we write the action for $ in the form 
S - (* |K|*) , 

K = [ ( X o - l ) + ( L - l ) ] PP + ... , (6.12) 

and the additional terms annihilate the states of the graviton mass level. Using 
this ansatz, we can evaluate the matrix element of K explicitly and find 

S = • - • + / dx f" I - r » a * " * - a*aJ 

a* ]['--*£] t x" + ; (6.13) 

1 have used the fact that (£-o — 1) = jp* = — \d2 on this mass level. 

The piece of the action (6.13) which is antisymmetric m t n e indices of ( is 

= ~ f dx [d"^" - 3*6"* - d'b*"]2 . 
(6.14) 

In this expression, f " appears as an antisymmetric tensor gauge field with field 
strength #**"* = Sl*^"*); the action takes the gauge invariant form 5 — J E2. 

The part of (6.13) which Is symmetric in the tensor indices is more problem-
matical. This piece can be rearranged, by adding and subtracting a convenient 
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term, to form 

The first two lines of this expression are the terms quadratic in W which appear 
when one expands the Einstein action 

I dx VG R (6.16) 

according to GpW = 6MV + h^,,. In this same expansion, the curvature scalar is 
given by 

R = a"d"A M l , - a 3/>% , (6.17) 

so the last term is the linearization of J dx(—2) R (—d 2 )" 1 JZ. This interaction 
is nonlocal in space-time. To render it local, we must add to the theory a new 
scalar field &(x) which couples to curvature. The action 

= / 4>d24> - 24>R (6.18) 

is a local expression which reproduces the last term of (6.15) when 0 is integrated 
out. This new field 4>(x) is called the dilaton field. 

If we had begun in a formalism which included the ghost states of the closed 
string Hilbirt space and which insures gauge invariancc from the beginning by 
virtue of the identities Q7 = Q — 0, we would have found the action appearing 
directly in the form (6.18), with the extra field <f> identified as the coefficient of a 
ghostly state in the decomposition of the string field: 

* = [ . . . - * ( * ) { & _ , £ _ , + c _ , J - , ) -r . . . ] | n ) . (6.19) 

Note that the kinetic-energy term for d> in (6.18) has the wrong sign; this is a sig­
nal or the field's ghostly origin. In general, the system of gravitational and dilaton 
fields contains one propagating scalar particle, which is a linear combination of 
4> and h M

H . 
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6,3 . CONFORMAL CONSISTENCY CONDITIONS 

In the discussion just completed, we took a straightforward approach to the 
derivation of Einstein's equations, constructing the gauge-invariant action for the 
string gravitational field. We did in fact succeed in obtaining the correct equa­
tions, though only at the linearized level. Now I would like to present a. second, 
more indirect approach to the derivation of the field equations, by considering 
the dynamics of strings moving in macroscopic background gravitational fields. 

At the beginning of this section, I discussed the coupling of single gravitons 
and antisymmetric ttnsor particles to closed strings. This coupling was described 
by the insertion of vertex operators 

fpX(-SL [d2z{h>il'{v)^b^{pW c ^ X ^ X V * . (6.20) 

Since the insertion is of the same basic structure as the world sheet action 

d7z €»„ dtX^drX" , (6.21) = hi' 
it is natural to view (6.20) as the first term in the linearization of the geometrically 
invariant expression 

f PX e x P [ - ^ [<P* { C ^ ( X ) 6 , , X * 3 ¥ X 1 ' + B ^ X ^ . X ^ X " } ! (6.22) 

about the flat background metric which appears in (6.21). The coefficients 
G(.t/(X), B,iV[X) in (6.22) are functions of the string coordinate X't{z)\ thus, 
the wor\d-5heet dynamics described by (6.22) is nonlinear. In fact, (6.22) is pre­
cisely the action of a 2-dimensional nonlinear sigma model, in which the target 
space on which the nonlinear sigma model variables live has been identified with 
space-time. The B^u term, which is antisymmetric in world-sheet indices, may 
be interpreted as a Wess-Zumino term. 

At first sight, there seems to be no difficulty in quantizing the string in any 
genera! background geometry. However, we must recall that the quantization 
of the string depends crucially on conformal invariance, or, equivalently, on the 
existence of a BRST charge satisfying Q* = 0, We will see in a moment that this 
implies very stringent restrictions on the background geometry. These restric­
tions were first derived by Lovelace; Fradkin and Tseytlin, Callan, Friedan, 
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Martinet, an<i Pcrryj and Sen by studying the 0 functions of the nonlinear 
sigma model. In my discussion, I will follow Banks, Nemeschansky, and Sen 
(BNS) in approaching the problem from the viewpoint of the ghost dynamics and 
the BRST charge. 

Before beginning this analysis, we roust identify one piece which is missing 
from (6.22). This expression couples the string to background G M „ and B^ fields 
but does not yet include the dilaton. Since this field has, after all, a ghostly origin, 
BNS propose to include it as a nonlinear coupling to the world-sheet ghosts 

-t- 6«cV* + - btlc'dj4{X) + h.c. > . 

(6.22) 

This action is elas&ically BRST invariant, with 

Q ^ / i l ( W 3 ) # ( X ) c W [ -\G»vdtX»^,Xv - bd.c] 
J 2TTI * 2 

One can remove the Factor e 4 ^ 3 *(•*") by the transformation 

(6.24) 

e-*/3*c r 
, + •4/3* b , (6.25 

Unfortunately, this transformation is generated by the ghost number current 
j * = be, which wc already know may possess anomalies. In fact, the derivative 
of <t>{X) couples to this chiral current like an external gauge field. We thertfore 
expect to find an anomaly in the transformation (6.25); this generates a new term 
in Q proportional to d*<f>[X). The transformation (6.2IJ) then leaves us with the 
BRST charge 

where 

« = /^«Wl^ + ^ ) ] , 

f< x> = -1-G^(X)dtXtid1X" + [dl<t>{X) 

(6.26) 

(6.27) 

From the discussion of the BRST charge in Section 4, we know that (6.26) 
will satisfy Q"1 — 0 if the operator product of I * ( x ) with itself takes the standard 
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form 

(z - u>)* (tu - * ) 2 UJ - z 
(6.28) 

with e = 26. This result, however, is no longer so simple to obtain, because the 
operator product must be computed in a field theory with complicated nonlinear 
interactions. BNS expand the nonlinear sigma model about a flat target space 
metric by the standard technique of parametrizing the space in terms of Riemann 

|42l 
normal coordinates: 

G M „(X) = G H V ( i 0 ) ~ ±Rhavfi6X*{z)6Xfi(z) + . . . (6.29) 

Integrating over the field Quotations 6Xa(z) defines a perturbation theory in pow­
ers of the background curvature. Computing to 1-loop order in this expansion, 
they find 

f!*>(«,) f <*>(*) = (6.28) + .™ZM ' 2^ WW 

+ [VxHpS - 2{Vx<f,)Hlllr

x} I . 

The new singular structure appears because the interactions couple the analytic 
and anti-analytic sectors. (The brackets indicate the symmetric and antisym­
metric parts of this tensor.) In addition, one finds a shift of the central charge 

e = D + 6 a ' | - W + (V^)2 - \R + ^ t f W } ] • <6 31) 

where the string slope parameter a' absorbs the dimensions. To insure Q a = 0, 
the two terms in brackets in (6.30) must be set to zero, tuiu c must be kept equal 
to 26. 
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The second of the two conditions generated by (6.30) is the equation 

Vi//^ A = 2{V^)H^ , (6.32) 

which is a Maxwell equation for the B1"' Geld. The first condition can be rear­
ranged into an equation of the form 

Rpu ~ —GfAiffi = ' • ' ; ( 6 . 3 3 ) 
£ 

this is Einstein's equation for the background gravitational field. These two 
conditions are equivalent to the vanishing of the /3 functions for the nonlinear 
sigma model. The Bianchi identities can be used to show that, if these two 
conditions are satisfied, the quantity displayed in (6.31) satisfies V^c = 0; thus 
all that remains is to adjust the overall constant value of this quantity. The three 
conditions all follow consistently from the following variational principle; 

JdzVcr^lR + (v„*)a - ^ t f a }=° - (6.34) 

It is worth comparing this action principle with the results of our explicit ana-
ysis of the gauge-invariant string field action. The free-field Lagrangians (6.14), 
(6.16), and (6.1S), taken together, give exactly the linearization of (6.34). Pre­
sumably, this is no accident; the equations (6.30) and (6.31) are consistency 
conditions that should be automatically satisfied it the theory is properly for­
mulated. However, the generalization of our earlier analysis to the full nonlinear 
theory has not yet been done, and the precise relation between these two ap­
proaches is not at all understood. I can only recommend this as a problem for 
your attention. 

How do we solve the conformal consistency conditions? I will discuss only 
the simplest solutions here. The equations we have derived correspond to the 
results of leading-order perturbation theory in powers of the curvature; in higher 
orders, they receive corrections proportional to higher powers of curvature and 
field strength. To this order, however, they are solved by setting 4>[x) to a con­
stant value, H = 0, and R„u = 0. This last condition does not necessarily 
imply RpvXo = 0; among the additional allowed configurations are the Calabi-
Yau manifolds which we will discuss briefly in Section 9. Several authors 
have proposed solutions corresponding to group manifolds on which both of the 
symmetric tensors appearing in (6.30)and (6 .31)—R^ and H^\^Hv

Xa—take val­
ues proportional to G p v . When the condition (6.30) is satisfied, H^ acts as a 
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parallelizing torsion. From the nonlinear Bigma model viewpoint, this solution 
is just the fixed point found by Polyakov and Wiegman and Witten by 
the addition to the nonlinear sigma model of a Wess-Zumino term. However, 
the condition (6.3i) cannot be satisfied at the same time unless one shifts th; 
value of D away from its free-field value of 26. This is perfectly acceptable for 
the bosonic string, but in the case of the fermionic string such a shift may do 
violence to space-time supersymmetry. We will take up this issue, and other 
issues related to the compactification of space-time dimensions, again in Section 
9. 

7. T h e C o v a r i a n t S u p e r s t r i n g 

In order to introduce fermions into string theory, and to formulate consis­
tent and possibly realistic string models, one must generalize the simple bosonic 
string to a system with supersynunetric world-sheet dynamics. Michael Green 
has described to you the general outline of this method, and his own elegant 
light-cone formulation of the Bupersymmetric string. In this lecture, I will de­
velop this theory once again from a viewpoint which allows Lorentz-covariant 
calculations of string scattering amplitudes. As in earlier eectionsv my primary 
tool will be the use of con formal field theory. We will see that the calculational 
methods of conforma] field theory work together naturally with the constraints 
of BRST invariance to clarify the structure of this extension of the formalism of 
strings. 

7 .1 . SLTERCONFORMAL FIELD THEORY 

As a first step in developing the theory of the supersymmetric string, I would 
like to introduce the supersymmetric extension of the formulation of conformally-
invariant field theory given in Section 2. * This extension b surprisingly 
straightforward; all of the technical apparatus we require is already in place. 

In principle, I should begin from a locally supersymmetric 2 dimensional 
action, coupled to the supcrmultiplets ( J f , 4 " i ) which we described at the end 
of Section 3.* However, following the logic of Section 2, I will assume directly 
that we have chosen the metric to be of the form (2.5), and, further, that the 
corresponding gravitino field vanishes. In this fiat background, we can set up a 
superspace with bosonic coordinates z, ~£. For N = 1 (or (1,1)) supersymmetry 
in 2 dimensions, the supersymmetry generators form a 2<component spinor which 
»e can represent in the basis of eq. (3.24). The superspace thus should have two 
fermionic coordinates; we may represent these as Grassmann variables 8, $ which 

* A clear derivation of the ttring dynvnic* from this Hil l ing point cut be found ref. 40. 
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iransform as analytic and anti-analytic objects of conformal dimension - = . A 
scalar superfield on this space has the general structure 

X(z,z,8,6) = X + H + Ihj, + 88F . {7.1) 

We can see that this field indeed contains the analytic Bupermultiplet {X(z),\ti{z)) 
and its anti-analytic counterpart, as well as an auxiliary field F. For the rest of 
my discussion, I will attach a Larentz index to X and treat it as the string 
coordinate superSeld. 

The two supersymmetry generators can be represented as derivatives with 
respect to the anticommuting coordinates: 

Q = de - e&z , Q = d-e - 88j, (7.2) 

corresponding to the supersymmetry algebra 

{Q, Q} - - 2 3 , , {Q, Q} = -2dj. (7.3) 

Covariant derivatives which anticommute with Q and CJ are given by 

D = de + Odt , V = dg + 6dj (7.4) 

A natural guess for the free-field Lagrangian of X* is: £ = HX^DX*. Indeed, 
if we compute the derivatives of X* explicitly 

DX" = v + 6d,x» - eed^" + »F" 
DX» = tl>u 4 ediX* + 603^" - OF* 

(7.5) 

and define J d28 86 = 1, we can assemble 

~ [ d2zd29DX>iDX'1 

2TTJ 

= JL J d7z {wa.x* - fd^* - ? W + F2} . 
(7.6) 

This is indeed the supersymmetric action of massless free fields. The equations 
of motion which follow from this action imply that t//'' is an analytic field while 
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W1 is anti-analytic and F* « 0. This allows us to aimpfifjr (7.5) to 

DX» m e>» + 9dMX* , 1>X» = & + SBgX* - (7-7) 

Let us now explore the oymmmetriea of the analytic sector. The coordinate 
differences 

Z\2 a *1 — *J — ^1^2 013 — f 1 — fa (7-8) 

ate supersymmetric, in the sense that they are annihilated by (Qi - Qj). It is 
useful to note that 

D i m = D2tu - *ia , and P j • 3„ , D\ m &,t . (7.9) 

The inv&rlancc of *n suggests that the propagatora for the component fields 
of Jf(x,0) can be written in a unified way as a superspaee propagator 

<X M («» . f i )X l Wi)> - -«M"Jog(*i2) • (7.10) 

It is eaay to check this by Taylor-expanding the left- and right-hand sides of 
(7.10) in powers of 6\, 6j. The two nonvanlshlng terms do indeed give the correct 
component-field propagators: 

r ! 1 (7-11) 
-•if. [ (*"(*»)*"(•»)> = -^~^ j • 

The energy-momentum tensor of the (JC",^1') supermultiplct can aho be 
written bi auperfield form. A natural expression is 

T m -IDXT&X* - (7-12) 

This object ia actually fannionfc in character, and of dimension | . KB components 



in a expansion in 8 have the form 

T = Tr + 6TB • (7,13) 

TB is a hosomc tensor of dimension 2; this should be identified with the energy-
momentum tensor of the component description. Indeed, for the choke (7.12), 

TB = -\{d*X»)* + \rd.W \ (7.14) 

this is exactly th* energy-momentum tensor of the component fields AT**, tfr*1. The 
fer anionic component Tf has the form 

TV - -\^9,X»\ (7.15) 

this is the generator of local supersymmetry transformations. 
Apparently, the local conformal and supersymmetry motions come together 

into a. unified algebra. Using our functional representation of commutators, we 
can work out the algebra if we know the operator producti of the components 
of T[z,8) with one another. Since TB is the conformal generator introduced in 
Section 2, and 7> is a conformal tensor of dimension §, we can immediately write 
two of these relations: 

(7.16) 

TB{w) I > M ~ j ~ ^ I>( .) + j ~ ^ M i . 

In the first line, I have defined £ — | c , so that a scalar superacid X[z,0) will 
have e = 1. The two lines of eq. (7.16), may be recognised as components of the 
superfield relation 

" (7.17) 

+ ~ DT(ft,*») + ^ 5 . r ( « , ^ » ) . 

The leading component of eq. (7.17) gives the hut of the three operator product 
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expressions: 

r ' M *><*> ~ (^7F + \ Jj^T) ^W • <™s) 

If we now define conform al and euperconforma) generators by 

L» - / Is '^ftw • 
(7.19) 

we can apply thv contour integral methods of Section 1 to compute their com­
mutation relations. The result is 

\Ln)Lm) = ( n - m ) L „ + m + - n(n2 - l)S(n + m) 

iLn.Cfcl = (5 - 0 C?n + f c (7.20) 

{G 4 t G p } = 2 L k + p + i (fc2 - \)S(k + p) . 

This is the svpereonfcrmal, or Neveu-Schwarz-Ramond, algebra. It is a graded 
extension of the Virasoro algebra incorporating local supersymmetry. This al­
gebra will be the world-sheet gauge symmetry algebra of the supcrsynametric 
string. 

7.2. VERTEX OPERATORS FOR THE NEVEU-SCHWARZ SECTOR 

The HUbert space of states defined by the superconformal field theory or 
A"''(«,<) should contain just the spectrum of states found in the open superstring 
theory, in its tovariant (Neveu-Schwarz-Ramond) formulation. Let us work out 
that spectrum, and see what correspondence appears. 

It is most straightforward to break up the superfield XM into its component 
fields X^iz), ^(z). X>t(z) has exactly the action that I have already described 
in Section 3: Its Fourier components cetn act as ladder operators to create the 
excited oscillator modes of the string. The new information comes from 0'*(z). 
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Since this field is a conformal tensor of dimension £, its Fourier expansion should 
be written 

fc=-oo ' 

As we have seen in (2.44), this convention for the Fourier components implies 
that $£ lowers Lo by k units. In our previous examples, Jfc took integeral values; 
however, we see from (7.21) that ^ M (z) can be a single-valued function on the 
complex plane only if, in this equation, k takes half-integer values. Since, (4.22) 
implies that 

*f |0> = 0 for Jfc > 5 , ' (7.22) 

the components with k > 0 act as fermion annihilation operators, and the com­
ponents with k < 0 act as creation operators. The full Hilbert space is the space 
of states created from JO) by the action of atn, with n an integer, and jj'%, 
with k a half-integer. Comparing this result to Michael Green's development of 
the covariant superstring, we see that this reproduces exactly the Neveu-Schwari 
sector of the theory. 

At first sight, this result seems paradoxical: The Neveu-Schwarz sector of 
the string was defined by anti-periodic boundary conditions, while in the above 
discussion, I have insisted on the regularity of V^t*) and therefore on the pe­
riodicity of ^" around equal-time circles. This paradox dissolves when we look 
back to the transformation (2.3) which gives the relation between the original 
string variables r, o and z. If wc write w = r + to and carry out this conformal 
mapping of a tensor of dimension ^, we find 

*(«0 - ( j £ ) *(*(»)) = e-/V(*H) • (7-23) 

Going once aiound the string sends c—» c + 2w, or u? —»tu 4- 2iti. This produces 
a factor e*' = (-1) on the right-hand side of (7.23). Hence, in order for $* to 
be single-valued on the r plane, it must have been anti-periodic ((/»"(<? + 2JT) = 
-tt>>*(a)) on the original string. The result of this argument is that the states of 
the Neveu-Schwarz sector are very simply described on the z plane. The states 
of the Ramond sector require « more sophisticated construction, which will be 
presented later in this section. 

It is not difficult to construct the vertex operators which create the asymp­
totic states of the Neveu-Schwarz sector. It is important to note, however, that 
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because the reparametrization gauge group is larger for the superstring, the con­
straints of BPST in variance are stronger. To determine the new conditions, let 
us work out .he BRST charge. This appears naturally in the superspace for­
mulation just presented. If we group the repararoetmation and auperconformal 
ghosts into suptrmultiplets 

C = c + 87 , B = 0 + 8b , (7.24) 

we can obtain the actions of the (i,c) system and of the {P,l) system from the 
expression 

S = ~- J d2z J d26 B"DC . (7.25) 

Using as ingredients the superfields B and C and the supersymmetric covariant 
derivative D, it is not difficult to construct an energy-momentum superfield whose 
bosonic component reproduces the energy-momentum tensors of the component 
ghost systems, given by (3.18) with 3=2 for {b,c) and j = f for {0,~t)- The 
result is: 

T = -D7B-C + ^DBDC - \BD7C . (7.26) 

The fermionic component 7> of (7.26) may be though of as the generator of local 
supersymmtry on the ghost fields. 

It is naturally suggested that the BRST charge for the Buperstring theory 
should be constructed as a superspace contour integral of a ghost field with this 
energy-momentum superfield. More concretely, this prescription gives 

Q = -f—JdB : C(2,6) • [T™ + ^T^^) : 

(7.27) 
Indeed it is straightforward to verify that this quantity satisfies Q3 = 0 as long as 

satisfies the operator product relation (7.17) with e = 10. This insures that 
the full energy-momentum tensor (J*'*) + T^B,C^) satisfies the Neveu-Schwant-
Ramond algebra with zero central charge. If the background space-time is flat, 
this condition is just the requirement derived in Section 3 that this background 
be 10-dimensionaI. 

60 



It is reasonable to expect that vertex operators for the Neveu-Schwarz status 
will have the general form: 

Id: •V\X<t

t^) . (7.28) 

Let us apply (7.27) to this structure and see what conditions result. For this, it 
is useful to rewrite the BRST charge in the form 

Q =Yl C ' - L - X n ' 0 ) " 2 1 k ° ' k ' + ( 3 E^ost terms) (7.29) 
- o o 

The cn annihilate |0) only for n . 1, so all of the Ln for n > ( — 1) must give 
zero when applied to (7.28). Since (7.28) is translation-invariant, it is indeed 
annihilated by L-\. The conditions associated with Ln, n > 0, are just are those 
written in (5.21), with each Ln replaced by the total Virasoro operator for 
the combined system of X* and ^", The T* annihilate |0) only for k > | , s o 
Gjb for Jt > — ^ must also give zero acting on (7.28). G,. i may be identified as 
the global supersymmetry generator: Using the definition (7.19) together with 
(7.15), and representing an infinitesimal supersymmetry parameter by (, one can 
readily compute the commutators 

\iG_h,X»[z)} = i^(z) , \iG_k,^(z)\ = td.X^z) . (7.30) 

This is indeed a global supersymmctry transformation 

| i<7_ 4 , ** (* . ' ) ] = tQX»[t,9) - (7.31) 

If (7.28) is annhilated by G_k and by all of the L„ for n > 0, the second relation 
of (7.20) implies that all of the G* for it > 0 also annhilate this operator. Thus, 
for vertex operators of the form (7.28), the one new condition arising from the 
Buperconformal algebra is that the vertex operator be globally supersymmetric. 
It should be noted that (7.28) is not the most general form for a vertex operator 
in the Neveu-Schwaxz theory. I will present some more general operators, which 
involve the superconformal ghosts in a nontrivial way, later in this section. 

Continuing, however, with the operators of the simple form (7.28), let us 
write down the nimplest operators satisfying the requirements of the previous 
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paragraph. The most straightforward way to buntre that VlX*,^*! irill be «u-
persyms»etr»c b to write it as a supetspate integral: 

/dzv\x»>*») « f dz f d$y[x"{zM. {7J32) 

The simplest choice is 

Vt[k) - / f « e " * W > = ifc>i[>(z)tikXW . (7.33) 

This operator ii automatically primary, It has dimension 1 if k3/2 = | . This 
operator thus creates a scalar particle with m a — - 1 ; this value is negative, 
but half the normal quantum. The corresponding particle is the tachyon of the 
Neveu-Sehwarz theory. The next simplest choice for V is 

fVv[k) - /tffoJMf"•"'•*(•<•> = fM ( a , * * + i * - i W ) « r t J f M . (7.3-1) 

This is primary if f • k = 0 and dimension 1 if * 3 <- 0. Thb vertex thus creates 
the masiless vector particle of the Neveu-Sehwarz theory. The generalization to 
higher levels should be clear. One feature of this analysis seems strange, however. 
In the discussion of the Neveu-Schwari spectrum given below eq. (7.22), the 
tachyon and vector states appeared as 

|n) , v ^ |n) . (7.35) 

The vertex operators which create these states seem to contain an extra fermion 
field. In fact, these two arguments treat the same Btates in two different repre­
sentations. I will reconcile these two pictures at the end of this section. 

In cither of the pictures, it is unambiguous that the tachyon and vector 
particles are created by operators with opposite Grassmann properties. This 
looks very dangerous for the formulations of a string Geld theory describing the 
Neveu-Sehwarz states. If we insist that the Neveu-SthwarzBtring field isbosonic, 
then the expansion analogous to (5.37), 

• | *"(« ) .^W1 - j>p {*(p)V,(p) + A ^ O W W + . . . } | 0 ) , (7.36) 

implies that the coefficient A^{p) is a c-numbcr while 4>{p) is a Gra&smaan num­
ber. The latter result is inconsistent with the apm-at&tigtjce theorem, to formu­
late a consistent theory, we must remove ail terms with Grassmann coefficients. 
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This projection eliminates all states at UabMntftgeT mass kvefe. TbSs fe precisely 
the projection of Ghozzi. Scherk, and Ottrel"^ (GSO), which was motivated from 
another viewpoint in Michael Green's lectures* Not* that this projection ttttm 
the Neveu-Schwars string into a theory whkh Sa free of tachyons, 

7.3. SPIN OPERATORS 

Let us now turn our attention to the Ramond sector. We must understand 
how to express the Ramond states in conformal field theory, or, equivalent^ 
how to create these states by vertex operators, As we have already discussed, 
the states of the Ramond theory are states In which the fermions iip(r) are 
antipeiiodie on circles around the origin (or, more generally, circles around the 
point ZQ to which the asymptotic string is mapped), , 

Figure >• Analytic structure of the ftrmion Btld ^"(i) f°» Runond Meter 
m±tet. 

If we view the field ^(x) as an analytic function, we would say that it has a 
square-root branch point at ZQ. This structure to illustrated in Fig. 8. The vertex 
operators which create the Ramond states must, then, be operators whkh create 
this branch cut structure. I wit! refer to such operators as spin operators. 
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It is not difficult to build operators of this type by bosonizing the fennions 
il'"(z). 1 would now like to describe that construction. This formalism is inter­
esting from a more general point or view, because it provides a relatively simple 
example of the conformal field theory representation of a Kac-Moody algebra (a 
local current algebra). I will therefore feel free to generalize my discussion a bit 
from the analysis of 10-dimensional fermions to discuss a 2N-di mens ion al vector 
field v" transforming under an 0{2N) current algebra. 

We begin, then, with a system of 27V fermions with the operator products 

V>"(*} V'"H 

Let us relabel the fermions into pairs 

~ (*> + itf) - * ! , 
v'2 

etc. Then (7.37) becomes 

0 a (2 )0 ' (w) = - 6 a » - i — a , 6 = l , 2 , . . . J V . (7.39) 

This system of fermion fields has c = N, It is thus natural that it can he 
bosonized by replacing the ipa, \l>a by N boson fields according to the scheme 

0« ~ e'""--* , 0° ~ «-'*••* , (7.40) 

where cta' = £,' is a unit vector. For each pair t/>a, V»Fi taken separately, this 
construction reproduces (4.8) and thus will lead to identical correlation functions 
for the fermionic and bosonic theories. However, the operator assigned to il>a by 
(7.40) does not anticommute with the operator assigned to 0 6 if a ^ b. We may 
remedy this by assigning to the product of exponentials e" 1"'* <"*''* a canonical 
order, or by introducing extra operators c(a) (which are independent of z) to 
provide the correct signs when the order of these exponentials is changed. For 

= -6^ — 
{z ~ u>) ' 

(7.37) 

~ (03 - »V) - 0' , 
(7.38) 
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this problem, we need operators which obey the algebra 

c(a)c{b) = -c(b)c{a) . c 3(a) = 1 . (7,41) 

These z-independent operators arc called cocrjcUs. A more genera] discussion or 
their significance may be found in Rer. 51. Assembling these pieces, we have 

\}ia{z) = ic(a) e , a ° * (* J (7.42) 

as the complete form of the bosonization relation. 
It happens that the vector a0

l is also the weight vector which characterizes 
an element of the vector representation of 0{2N)* This is not a coincidence. We 
can make the connection between bosonization and representation theory more 
explicit by constructing the generators of 0{2N) in their boson'wed form. 

The generates of 0(2N) are antisymmetric tensors M^ catisfying the alge­
bra 

|Af"\ MXo) = M--6vX - A / " V - M^d^ + MvXS»° . (7.43) 

We can represent this algebra in terms of fermions by 

M»» = I ~ j^(z) , >*"(*) = - : W : . (7.44) 
J iJ f t 

The operator product (7.37) implies 

j^(z)jx'{w) - ^ ( z ) _ £ _ - V ' H - (Sperms.) + -r- ^ 

~ -r—? J ' ^ H - 7 T J*x ~ (>* ~ *) 
(t ~ w) (z - u>) 

£Mo-£"* _ $*>>&*"> 

(7.45) 
and it is easily checked from this relation that M»v defined by (7.44) indeed 
satisfies (7.43). The double poles in (7.45) drop out of the calculation of the 

* A brie/ but very clear explanation of the representation theory of Lie groups may be found 
in the book of Cih-n! ' 
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commutators of charges Mt>v. They have an effect, though, on the current alge­
bra: In equal-time commutators [ J ' " ' (O) , J ' , A (<T ' ) ] of operators local in the string 
coordinate a, they contribute Schwinger terms, c-number terms proportional to 

It is now straightforward to convert the indices ii,v of (7.4-i) to a,a and to 
bosonue this operator. For s / i , this procedure gives 

V = cMc[h) !•*'»-'•* , aaj = V + V -
(7.46) 

j f l b = c[a)c(b) e

i o . S < \ aj = V - h' • 

For j 0 Q , we must be somewhat more careful: 

j o S = lim /«•'*=•*(') e

_ i o * * { u , ) - (singular terms)) 

= lim { ; ti-.l*l*)-*M\ • l _ (singular terms)) ( 7 - 4 7 ) 
*—w { (z — w) > 

The N generators M 0 0 , which generate rotation- in N orthogonal planes, 
provide a Carton subalgebra of OI2N), a maximal set of mutually commuting 
generators. The representation theory of 0(27V), and, more generally, of any Lie 
algebra, involves in an essential way the eigenvalues of these generators acting 
on an element * of an irreducible representation: 

[MaZ, 0] = wa $ . (7.48) 

The set of eigenvalues u>' is called the weight vtetor of 4>. The representation 
(7.47) allows us to compute the weight vector of any operator which is the expo­
nential oT a boson field: The operator product 

ja°[z) e

iar4>l") ~ ^ a / ° e « ' * M , (7.49) 

which follows immediately from the form of j a 3 ( z ) , integrates tt the commutator 

[M"', eia>*W) = Q / ° e'«J*l«') . (7.50) 

Thus, the weight vector for this operator is exactly o;;'. The remaining generators 
of 0[2N) may be seen from (7.46) to raise and lower the weights of fields of the 
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exponential form by translating the weight vector a / by <*„&' or a ^ ' , the weights 
of the adjoint representation. This is exactly in accord with the representation 
theory ofO(2N). 

Let us now return to the question that motivated this whole analysis: How 
do we construct spin operators which create branch cuts for the ^°(s)? Notice 
that if we assign to an exponential of boson fields the weight vector 

o V = ( ± | . ± | , ± | , . . - ) . (7.51) 

we have the operator product 

(7.52) 

The singular term apparent in the second line is always (r - UJ)*4 , so the op­
erator with weight c«V induces exactly the desired singularity in ^ f l (^)- The 
group-theoretic apparatus that we have developed allows us to sec the remark­
able interpretation of this construction: a^* is the weight vector for a representa­
tion on which the angular momentum generators take half-integer eigenvalues—a 
spinor representation. The spin operators on the world sheet, and the Ramond 
theory states which these operators create, transform as spinors in 10-dimensional 
space-time. 

It is instructive to pursue the operator product relation between ^"(2) and 
the spin operator a bit further. To do this, it will be convenient to choose a 
convenient representation of the 0(2jV) Dirac algebra {-}**,-]"} — —25^". The 
0(2N) Dirac matrices are 2* x 2 N matrices, which may be thought of as acting 
on products of N 2-component spinors. In this basis, we may represent their 
algebra by writing 

- j 1 ' 2 = . V ' 5 ® ] j © 1 2 © . . . , 
(7.53) 

-,3-4 = o3 ©iff 1 ' 1 ® 1 2 ® . . . , 

etc., where o ' . c r 2 , ^ 3 are the Pauli sigraa. matrices and 1 2 is the 2 x 2 unit matrix. 
In the -y°, 1° basis, this representation takes the form 

V = v^2 tff+ © 1® 1® . . . V = V2 io~ & 1® 1® . . . 
(7.54) 

V = <T3 ® \/2 io+ © 1 ® . . . f 1 = c 3 © V2 t o " ® 1 ® . . . 
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The generalisation of -jl to this algebra is 

T = ^ V • •• l"* = ffa®<r3®<i3®... (7.55) 

A spinor state has r — ±1 according to whether the number of entries ( - | ) in 
its weight vector a A* is even or odd. 

Let us now define the spin operator corresponding to the apin-| representa­
tion of 0(2A') a bit more carefully. Write 

SA(z) = 4 4 ) *••*•«»>>' (7.56) 

e.[A) is a COCJCIR defined by applying factors c(o) to the cocycle c(A) associated 
wllh the highest-weight state aA' = ( j , £ , £ , , . . ) . If a V has components ( ~ | ) 
as its 6, e, d,... entries, for b < e < d < ..,, I will define 

e[A) = c(b)c[c)c{d)---e{A) . (7.57) 

With these definitions, one can show by explicit computation using the bosoiuzed 
form (7.42) that the singular term in the operator product of V1" with SA is given 
by 

*'(«) SA(V) ~ ± j-±-p (^)ABSBH , (7.58) 

wit-h the Dirac matrices in the representation (7.54). From this relation, we can 
build up 

This equation implies that the action of Mab on Sg is exactly that of %Eab = 
i l V i l ' l t just as the spinor transformation properties of Sg require. 
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7.4 . VERTEX OPERATORS FOR THE RAMOND SECTOR 

It is tempting to say that the spin operators SA[Z) are all that we require 
to create states of the Ramond sector. HoweveT, there is still something wrong 
with this choice. The operator SA[z) has dimension |aJ4|*/2 = N/S; for a 10-
dimensional string theory, this equals 5/8. Thus, SA(z) atone cannot satisfy 
the requirement on a BRST-invariant vertex operator that its dimension should 
be 1. The resolution of this problem was discovered by Friedan, Martinet, and 
Shenker and Knizhnik in the dynamics of the superconformal ghost sys­
tem. It is inconsistent with local supersymmetry to choose antiperiodic boundary 
conditions for ip^fz) unless we also choose antiperiodic boundary conditions for 
0{z) and i (e ) . Thus, the operators which create the Ramond states must also 
include spin operators which create branch cuts for these ghost Belds. This op­
erator provides the last ingredient needed to assemble BRST-invariant operators 
for the Ramond sector. 

Just as we did for the coordinate fermions, we can construct the spin oper­
ators for the supertonformal ghosts by bosonizatiori. Let me, then, present the 
bosonization formulae for the supereonformal ghost system, Since the logic of 
this development follows exactly thai of the bosonizatiori of ihe reparametnzation 
ghosts in Section 4, and the techniques necessary to follow this analysis should 
also be familiar to you, my discussion here will be brief. 

One comes ver. close to bosoniv.iiig the (0,i) system by denning a new scalar 
field 4>{z) (not to \>e confused with the fields 4'(z) which enter the bosoniiation 
of i/"*1) with energy-momentum tensor 

r<*) « i[a^ - d\4>. (7.60) 

This produces a system with e — 13; exponentials of the field $(z) have dimen­
sions given by: 

do = - i a ( a + 2 ) , for 0 = e ^ ' 1 . (7.61) 

This oystem differs from the {0,t) system, however, in three important ways: 
First, the value of the central charge is wrong, since the (0,i) system has c = 11. 
Second, the operators i~*, e* which we would like to associate with 0 and 1 
have the wrong dimensions. Third, these operators anticommute, whereas we 
would like to find a representation for 0 and 7 as commuting fields. This last 
problem may be expressed as the statement that, while we have much exper^nce 
bosonizing fermions, we need here a bosonization of bosons. 
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All of these problems are solved by adding a system of fcrmiorw (£,*?) with 
dimensions (0,1) and energy-momentum tensor 

r « ' " J = d,(-i]. (7.62) 

Tins system has c = - 2 , BO it is exaoly what we need to combine with the 4> 
system to give c = 11. In addition, we might note that evaluating (7.61) for 
a = ±1 gives values differing by 1 unit from the dimensions we require for Q and 
f. This difference can be made up by adding dimension 1 operators from the 
(ftf) system. The combinations 

0(z) -+ cU(z) *-*<*) , -,(*) - n(«)«*W f7.63) 

have the correct dimensions and the correct operator product with one another 
to reproduce thtt correlation functions of 0[z) and 7(2) with themselves and with 
T{z). 

This bosonization of the superconformal ghosts can be introduced into the 
BRST charge in the same way that we introduced the bosonized form of the 
reparametrization ghosts in Section 4. Let us, then, modify the formula for Q 
given in (7.27) by making the replacements (7.63) as well as (4.15). The energy-
momentum tensor of the ghosts is replaced according to 

j(fc,cT/9,-j) _^ j,(a) + j,[£) + y.(f,f,5 ^ (7-64) 

and the TF of the ghosts undergoes a similar (and somewhat more transparent) 
rearrangement. Inserting these new structures into (7.27) and taking care, as we 
did in (4.18), to correct the definition of normal-ordering appropriately, we find 
at last 

Q = f -~. (*> + $1 + 12) , (7.65) 

where 
qo — : e * ( r W + 7"W + T^ + T^ + r^* 1 ' )} : 

4 

Now at last we have all of the equipment we need to construct the vertex 
operator for states of the Ramond theory. The simplest candidate for a spin 
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operator for the superconformal ghosts is the exponential 

«-**<-> . (7.67) 

From eq. (7.61), we see that this operator has dimension 3/8, exactly what is 
needed to bring the coordinate spin operator SA(Z) up to dimension 1. Adding 
also a reparametrizaiion ghost factor c{z) - e " ^ , we can assemble a complete 
vertex operator with spinor quantum numbers', 

V_h{z) = uA(k)SA{z) e""* *<«> «»(*) «-i*(«) , (7.68) 

where u is a c-numbcr polarization spinor. This operator has total dimension 
fca/2. This must equal 0 for BRST invariance. In addition, BRST in variance 
requires that the field be primary. This implies that that fa(k) = 0 . V , (2) given 
by (7.6B) thus creates a massless Termion with proper on-shel! spin orientation. 
This is exactly the lowest-lying state in the Ramond sector-

7 .5 . PICTURES 

We now have a start on the formalism for covariant calculation of fermion 
emission amplitudes in superstring theories. However, we have left many unan­
swered questions along the way. Among these is the question of the relation of the 
Neveu-Schware vertex operators (7.33) and (7.34) to the corresponding states of 
the spectrum. Further puzzles come from the new ghost sector: The replacement 
of the (0,i) system by a boson plus a fermion pair has apparently led to some 
multiplication of the number of states. We would like to know whether (7,68) is 
the unique choice for a massless fermion vertex operator, or, if not, what other 
choices we are allowed, 

A peculiar property of the bosonization of the superconformal ghosts which I 
have just described is that the final system contains two ghost number currents. 
The first of these is obtained by generalizing the bosonization relation jf* , eJ = 
dMo(z) to the tj> system; this gives the current y(*' = dz<f> which assigns the charge 
n to exponentials « n * W. In addition, there is a fcrmion number for £ and rj. The 
ghost number of the fields /?,7 is a particular linear combination of these two 
charges. The orthogonal linear combination corresponds to a degree of freedom 
which was not at all obvious in the notation of 0 and -7. 

Friedan, Martinec, Shenker' 5 (FMS) interpret this, new degree ai freedom 
by relating it to a pathology of the original superconformal ghost action (3.2S). 
This action is first order in derivatives while involving boson rather than fermion 
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fields. Any such action leads to a spectrum which is not bounded below. In fact, 
it is not difficult to construct states of the (/?,Tf) theory of arbitrarily negative 
L0. From (4.22), we see that 71 JO) ^ 0. Because "u is a bosonic operator, we 
can apply il arbitrarily many times to |0), lowering Lo by ^ unit at each fllep. 

A more sensible vacuum state would be annihilated by 7 1 . To see how to 
construct this state, compute 

J 27M 
(7.69) 

This vanishes only if (A - § - n) > 0. The unique state of the class eft*<°) |0) 
which is ir.nihilaied by all -jt and 0k for fc > 0 is the state given by n = —1. The 
state annihilated by all X,o-lowering ghost operators is, then, 

|A) = c(0)e-^o) |0) . (7.70) 

According to (7.61), the exponential has dimension ~, so that the state \U) 
has LQ = — £, This is just the position of the tachyon in the Neveu-SthwaTz 
sector. We may identify (7.70) as the vacuum of the Neveu-Schwarz theory 
which properly includes all ghost contributions. 

The transformation from |0) to |ft) cannot be achieved by applying any finite 
number of *jt and Pk operators to the SjL(2,C)-invariant vacuum. The two states 
live in disjoint Hilbert spaces, within each of which the 7fc uid /?* operators act. 
FMS visualize this by imagining that the states of (3.28) contain a condensate 
of bosonic ghosts with indefinite 0,7 number—the Boee sea. They interpret the 
4> charge as the filling level of this Bose sea. 

There is no conceptual problem in working within a given Bose sea level. 
We can, in fact, describe processes with an arbitrary number of external Neveu-
Schwari particles without changing the Bose sea level by using vertex operators 
c>f the form (7.33), (7.34), etc. However, two features of the formalism force us 
to study the relation of the various Bose sea levels- The first of these IB the fact 
that the fcrmion vertex operator (7.68), and, moTe generally, any spin field for 
the superconformal ghosts, necessarily changes the Bose sea level. The Gecond is 
the fact that for the superconformal ghosts, as for the reparametrization ghosts, 
conforma! field theory matrix elements on the plane violate ghost number by a 
fixed amount. We derived in Section 5 the result that the ghost number of b 
and c is violated by 3 units in string tree diagram calculations, and that this 

I t z"*W |0) = 
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observation plays an important role in determining the structure of scattering 
amplitudes. The basic statement of this nonconservation was the expectation 
value (Ojc_iCoti |0) = 1, or, in bosoniied form, 

<0| e

 + 3p<°> |0> = I . {7.71) 

This statement has a twofold generalization to the bosonized superconformal 
ghosts: Both ghost number currents are anomalous. FMS argued that the deficits 
are (—2) and 1 unit for the tj> and (n,£) systems, respectively, corresponding to 
2 and 1 normatizable zero modes. Explicitly, 

(0| e -"<°> -0> = 1 , and <0| £(0) |0) = 1 . (7.72) 

These statements couple different Dose sea levels. Further, they rule out the 
use of vertex operators with predetermined exponentials of $ to describe arbi­
trary scattering processes. For example, except for processes involving exactly 4 
fermions, the changes in Bose sea level by [- \) unit produced by the insertion 
of successive vertex operators (7-68) will not add up properly to fulfill the first 
relation of (7.7? 1. 

To solve this problem, we need to Gnd alternative forms of the fettmon vertex 
operator, equivalent to (7.68), which change the Bose sea charge by a different 
number of units. This can be done, in an effective but very counterintuitive 
way, as follows: Because of the second relation of (7.72), the ^-independent 
Fourier component £o corresponds to a zero mode; thus, every nonvanishing 
matrix element of vertex operators must contain a factor £o t o saturate this 
zero mode. This zero mode does not appear anywhere else in our formalism; in 
particular, the bosonization formula* (7,63) depend only on d.£. Taking this 
into account, let us consider the transforming the fermicn vertex operator (7.68) 
according to 

Vk(z) = [Q, t(*)V_k{z)). (7.73) 

The commutator is defined, as usual, by taking the contour in the definition of 
Q to encircle the point z at which the vertex operator is inserted. If V_i is 
BRST-invariant, as is guaranteed by the on-shell conditions, the BRST contour 
passes through V_i and acts on £(z), eliminating the redundant factor £ 0 that 
could potentially appear. The result is a new vertex operator which is BRST-
invariant by virtue of the relation Q7 = 0. Technically, (7.73) is the second 
member of a BRST doublet. However, this is somewhat obscure, because the 
first member of the doublet contains &>, which is, in some sense, outside our 
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formalism. Evaluating (7.73) explicitly, we find 

Vj (7) = U*[k) L^id.X" + ijfc • W)T*BSB + ta*"nbSA\ • c - cik-x . 
(7.74) 

This is a sensible-looking vertex operator which creates a spm- | fermion Btate. 
If V_i is BRST invariant, this object is also. (It is not hard to check directly, 
using (7.61), that (7.74) has dimension 0 if Jt3 = 0.) Thus, (7.74) is a second 
vertex operator for the massless fermion state of the Ramond sector, differing 
from (7.68) in that it raises the Bose sea charge by £ unit. 

FMS refer to the transformation on vertex operators defined in the previous 
paragraph as the picture-changing operation: 

[VM] = [Q,€(*)V(*)). (7.75) 

They emphasize that X works quite generally as a method of transforming BRST-
invariant vertex operators to new operators carrying the same Bpace-time quan­
tum numbers but different Bose sea charge. Let me present two more examples 
of this relation: 

[<?, f • { i*" t f ( , e r t -V«- a *}] = t i k X • t°tT* 
(7.76) 

[<?. £ • {{"{diX- + ik • W ) e ' * - x e * e - a * } ] = ^ ^ " t i h x • e ' e"* . 

The operators (7.33) and (7.34) may thus be recognized as picture-changed ver­
sions of the vertex operators which create the most natural forms of the low-lying 
states of the Neveu-Schwarz theory; 

r i f c * in ) , ^ e i k * | t Y ) . (7.77) 

To complete our discussion or the picture-changing operator, I would like to 
argue that picture-changed versions of the same vertex operator are equivalent 
for the purpose of computing scattering amplitudes. To understand how to make 
this argument, let us recall the transformation 

c(z)V(z) - f~b[w)e(z)V(z) (7.78) 

which we introduced in eq. (5.26) to define the bosonic string scattering ampli­
tudes. This transformation, involving the contour integral of a ghost operator, is 
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Figure 9. How to move the picture-changing operator from on* on-shell 
vertex operator to another. 

similar in structure to the pictufe-changing operation. In our discussion of (5.26), 
we saw that the b contours could be freely moved from one vertex operator to 
any other vertex operator in the same correlation function. If the same is true of 
the picture-changing contour, we can move this contour onto or off of any given 
operator without changing the value of the scattering amplitude. 

The argument that we can move the picture-changing operator from a given ver­
tex operator V(zi) to r. second operator V(z a) is illustrated in Fig. 9. To begin, 
note that the amplitude, to be nonzero, must contain a factor £o- Since £o is z-
independent, wc can consider this operator to come from the Fourier expansion of 
i(z) placed at any desired point, say, z j . Now deform the BRST contour so that 
it winds around ^(asJV^zj). This contouT pasocs through all BRST-invariant 
vertex operators, but it sticks on the factor €( z i ) - Finally, replace the newly 
isolated £{z\) by &j. This argument proves that picture-changed versions of the 
same vertex operator are equivalent for the computation of on-shell scattering 
amplitudes. 

In our discussion of the reparamctrization ghosts, we saw that the structure 
of the BRST charge and the ghost Hilbert space fixed the structure of the theory 
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even off-shell, since these elements gave directly the form of the gauge-invariant 
action. This construction generalizes directly to allow one to contract a gauge-
invariant action for the Neveu-Schwarzsector in the picture with Boss sea charge 
(-1) which contains the state \fi). For the Ramond* theory, Witten' has shown 
how to combine these elements with the picture-changing operation to construct 
a gauge-invariant action for the Ramond theory in the picture with Bose sea 
charge ("-5). The role of states with other values of the Bose sea charge in the 
off-shell formalism remains obscure, and, more generally, the full structure of the 
gauge-invariant interacting theory is much in need of further investigation. 

8. One-Loop Amplitudes for Strings 

At several points in our argument, we have found that the string theory is 
naturally projected onto a subspace of the full Hilbert space of states on the 
world sheet. The projection onto the gho< free subspace is expected in any 
gauge-invariant theory, but two other projections which we made—the projection 
onto states with La = lo in the closed string theory and the GSO projection in 
the superslring theory—have no natural analogue in conventional Geld theory. It 
would be useful to explore these operations further. 

The origin of these physical state projections, and their relation to other 
intrinisically stringy aspects or the formalism, is made most clear through their 
role in the formulation of loop corrections to the string scattering amplitudes. In 
this section, I would like to illustrate this by computing the one-loop amplitudes 
for bosonic and fermionic strings. This computation is interesting in its own right 
because it reveals that the ultraviolet divergences of the string theory, even in a 
space-time or very high dimension, are much less severe than the divergences of 
a local field theory. But it will be most illuminating because of the role played in 
this analysis by the invariances of the world-sheet geometry. For various reasons, 
the analysis of loop amplitudes is simpler for closed strings, so I will consider 
only that case. ] will also restrict my discussion to the 0-point amplitude, the 
vacuum energy shift or cosmological constant renormalization. 

8.1 . MODULI 

Let us begin with the bosonic dosed string theory. Tree-level amplitudes in 
this theory correspond to integrals over conibrmally invariant Gelds on a plane, or, 
equivalent^, on a sphere, At the one*toop level, we must include a virtual closed 
string breaking off from the sphere and then reattaching. This gives the world 
sheet the topology of a torus. Using Joca) conforms! in variance, we may consider 
the world sheet to be precisely a torus. Our pro^'oH., &£», Is i s functionally 
integrate over the coordinate fields X^l*) on a base space which la a torus, 
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taking proper account of the geometric a! in variances of the string theory. This 
calculation was first done, in the formalism of dual models, by Shapiro; a 
very clear and complete modern treatment has been given by Polchinski! ' My 
discussion of this problem will clarify most of the issues of physics, but 1 will 
refer you to ref. 57 for a proper treatment of the reparametriz&tion ghosts. 

For the bosonic string theory at tree level, the O-point amplitude is trivial. At 
the one-loop level, however, a complication arises which gives even this amplitude 
an interesting structure. Although any surface with the topology of a torus can 
be converted to a fiat torus by making a conformal transformation, it is not true 
that any flat torus can be conformally tranformed into any other. 

3-87 S728A10 

Figure 10. A toru*, viewed u i ptraJJelogrMn with opposite lidet i<J«n-
tified. 

We may visualize a 2-dimensional torus as a parallelogram with opposite sides 
identified (Fig. 10]. By conforms! transformations, we can convert the metric 
on the space to the form ga$ = 6a$ and scale the length of the bottom edge to 
1. But this construction leaves the length and orientation of the left-hand edge 
undetermined. These two parameters may be summarized as a complex number 

T = n + tr» . (8.1) 

r parametrizes classes of tori which are confbrmally inequivalent. The conformal-
ly-invariant functional integral over X^fe) should then depend on r, and the full 
one-loop correction should contain an integral over all inequivalent values of this 
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parameter. In higher loops, where the base apace is a surface of higher genus, 
one finds more degrees of freedom in the world-sheet geometry which cannot be 
removed by conformal transformations. The parameters of conformal equivalence 
classes of 2-dirxien&ional surfaces are called moduli. 

The existence of moduli forces us to reconsider the procedure described in Sec­
tion 3 for replacing the integral over all metrics on the world-sheet by a Faddc'ev-
Popov integral over reparametmation ghosts. The result of that discussion must 
be changed to allow for the fact that those degrees of freedom in qap which do not 
correspond to gauge transformations of the theory—reparametrizations and con-
formal transformations—should not be eliminated by the Fadde'ev-Popov proce­
dure but should remain in the final answer. This means that eq. (3.8) should be 
replaced by 

1 j Dg = J DbOc e" /<"*+*«.*) . j J J rf»r* . det(J[r*]) , (8.2) 
* Ttp * CO 

where the r k are the moduli, J is an appropriate Jacobian, and, to be precise, the 
ghosts &(z) should be integrated only over their nonzero modes. It can be shown 
that the 2eio modes of b are in one-to-one correspondence with the moduli. This 
relation, combined with our discussion of the zero modes of b from eqs. (5.7) 
and (5.8) in Section 5, tells us that Z{g — l ) (complex) moduli will appear in the 
expression for the g-loop amplitudes. 

For the case of a torus, it is not hard to derive the Jacobian J explicitly. It 
is most convenient to begin by mapping the general torus fihowa in Fig. 10 into 
a fixed square: 0 < fi < I, 0 < fj < 1. In these coordinates, the line element 
becomes 

ds7 = Idfc + r<ffe|» = gaPdCd^ , (8.3) 

where 

The Jacobian J is obtained by differentiating with respect to T\ and r% the modes 
°f ffa£ orthogonal to reparametrizations and conform*! transformations. A plau-

« The formula (8.2) hu been derived and uialyied with exemplify clarity by Alvarez! [til 
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sible, properly invariant, formula for JT J is 

[JTJ).y = 9°' • (~g^) • g* • (-^96a) (8.5) 

Evaluating this expression, and taking the square root of its determinant, gives 

d e t 7 = 2\/2/rf . (8.6) 

The result (8.6) can actually be obtained from more genera] considerations, 
which also illuminate somewhat more the nature of the moduli. In our discussion 
of the origin of r, we considered only the possible equivalence of tori under 
infinitesimal reparametmations and conform&l transformations. However, the 
torus shown in Fig. 10 can be transformed into tori with different values of T 
by making discrete reparametrizations. For example, by rotating and scaling 
the Tighuhand edge of Fig. 10 onto the interval (0,1), we transform r -+ - 1 / t . 
By taking the upper right-hand corner instead of the upper left-hand corner to 
define r, we transform r —» r + J. These two transformations generate the modular 
group, the group of fractional linear transformations 

ar + b 
CT + d 

for which <i,b,c,d are inttgtrt satisfying ad - be = 1. 

The integrand of (8-2) should depend only on the intrinsic geometry of the 
world sheet, so it should be invariant to modular transforinations, This is auto­
matically true for the functional integral over the X**, as we will see in a moment. 
The Jacobian J must convert the integral d2r into a modular-invariant measure. 
For the value of J we have obtained in (B.6), this works out just right; it is easy 
to check that 

/>f.i (8-6) 
J Ti 

is explicitly invariant to (8.7). 

Since the integrand of (8.2) is modular-invariant, the integral over r which 
is indicated in this equation overcounts unless this integral includes only values 
r which are not equivalent by modular transformations. A suitable integration 
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-I -''2 0 1/2 I 

Figure 11. The furidimfriUf don -in for integration of modular.invariant 

region can be found as follows: Of the two transformations which generate the 
modular group 

t ~* T + 1 , r -» — , (8.9) 

the first carries the strip of the complex t plane -A < Rer < | into an adjacent 
strip, and the second carries the exterior of the unit circle in the r plane into the 
interior. 

The overlap of these two regions, shown in Fig. 11, is the largest region which 
contains no pairs of points carried one into another by either of these transfor­
mations. It is not hard to see that this conclusion still holds when more general 
modular transformations are considered. This region thus gives the correct do­
main for the d3T integration in the 1-loop amplitude. 

This whole discussion generalizes to the treatment of the moduli of higher-
genus surfaces. In our discussion earlier in this section, we stated that (8.2) 
must be integrated over a parameter apace of Z[g — 1) complex dimensions. If 
we consider all values of the parameters corresponding to surfaces inequivalent 
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with respect to infinitesimal reparametrizations and conforraal transformations, 
we find an unbounded parameter space called TeiehmulUr space. In general, 
though, this space must be divided up according to the action of the group of 
discrete reparametrizations, the mapping class group. The maximal subspace 
of Teichmuller space which contains only points inequivalent under this group 
represents the space of moduli. Like the region of Fig. 1] for the case of tori, 
taken with the measure (8.8), the moduli space of any higher genus is compact 
in its natural invariant measure.* 

8.2. CLOSED B O S O M C STRING 

Having now clarified the role of the moduli, let us return to the calculation 
of the one-loop bosonic string amplitude. The function of r which must be 
integrated over (8.8) is given by the functional integral over coordinate and ghost 
fields on the torus. I will compute the integral over coordinate fields X* explicitly; 
however, I will treat the ghosts only by assuming that they precisely cancel the 
contribution of two coordinate degrees of freedom, which one might imagine to 
be the longitudinal e.nd timelikc modes of oscillation. This result is justified in 
the paper of Polchinski, ref. 57. With this replacement, the one-loop amplitude 
of the bosonic string takes the form 

J Tj 

where 

Ax = JDXe-lJ*'*^*7** . (8.11) 

1 have reseated the field Jf* from my previous convention for convenience in this 
context. 

We can evaluate the integral Ax by making use of the connection between 
Euclidean functional integrals and HarniUonian evolution. Write the variable on 
the plane of Fig- 10 as z = x\ + i n . Then x% is a Euclidean time with periodicity 
T2. If Tj = 0 , this situation of a periodic Euclidean time gives precisely the 
functional representation of tr [exp(-T 3/f)j, where H is a Hamiltonian defined 
on a ring. To reintroduce TI, we define an operator T(t]) which twists the ring 

* The theory of higher-loop ftring amplitude! and higher-genus surfaces has recently been 
reviewed by Alwet-Gaume' and NeUon: ' 
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Fifcttit 12. Evaluation of the one-bop itrint kinpUlue* by relating it t» 
t quantum partition function. 

through an angle 2ffT|. Then 

Ax * tr [T(rO •-""] , (8.12) 

The relation between the geometry of the torus and the Harnlltonian Interpreta­
tion of Ax » illustrated la Fig. 12. 

To see what Hamiltonian to use in evaluating (8.12), fat us Fourier decompose 
Jf>(xi) at fixed i s : 

X[Xl) = Xo + 2 Xn «****•» - (8J3) 
«j60 

Introducing (8.13) into the exponent of (8.11), we find 

S = \fx{-*)X = jdU [\xl + £ I * „ J U + l2*n?XnX-n)} • 
(8.14) 

This is just & set of harmonic oscillators, on* for each normal mode on the ring. 
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Let us separate out the zero mode part of the dynamics by writing 

H m Bx + H2 , (B.15) 

where flj =* Jp,| and St is a sua of Hamiltonians for harmonic oscillators of 
frequency <*>« » 2irn. 

The portion of the expression (S.12) involving the zero modes b readily eval­
uated by using simple quantum mechanics! 

u e"* * / • - J" eOfo (Xo| e"» * / » |Ab) = / *Xo ~ = . (8.16) 

The contribution of the nonzero modes is the product of terms assoicated with 
the left- and right-moving normal modes. At r» = 0, this factor is 

t i [ t - , h * » ] - |tr «p[-rs'J^(2i-na*o» + «rn)]|* 

. le""" 1 2' J] £ e-"1"1*!' (8,i7) 

n>0 

In this equation, 2 is the sum of the aero-point energies of the oscillators. We 
may regularize this sum using the Riemann zeta function: 

»>o 

Reintroducing r| adds to each term a factor 

T(T,) = « a * « . (8.19) 

where JT is the momentum aiound the ring, equal to (+n) for each quantum of 
excitation of a left-moving mode and (-n) for each quantum of excitation of a 
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right-moving mode. This changes the second line of (8.17) according to 

- - f a Sirn* _ t Jt***% •«•* f—Tr%*nk = (3nVnt . f 8 20) 

this modification, in turn, changes (1V3) to r throughout the rest of the analysis. 

Assembling all the pieces (and ignoring the overall normalization), we find 

Ax = / d X o ~ ' e ^ ^ ' T K 1 - ' * " " ) " T - (a-2*) 

Finally, inserting this answer into (6.10), we End 
- 4 8 

(8.22) 

If we have computed correctly, this expression should be modular-invariant. 
To check this, we need only check the invariance of the integrand to the two 
transformations (6.9) which generate the modular group. The invariance under 
T -t r + 1 is obvious. The invariance under r -*• — 1/r Is not clear to the unaided 
eye. However, someone familiar with the theory of Jacobi theta functions will 
recognize immediately that (8.22) contains the Dcdekind n-function 

00 
n(r) = e* < r / i a n ( l - « 4 * * T , v ) . (8.23) 

This function has a very polite transformation law under modular transforma­
tions: 

»(r +1} « « " / » , , ( , ) , fl(_1/r) = (_,>)*„(,-) (8,24) 

These relations are, in fact, just what we need to prove the invariance of (8.22). 
The factor \y/r\~*B generated by the second transformation above is cancelled 
exactly by the modular transformation of the prefsxtor ( r a ) - " . 

As this example makes clear, a student of string theory will find it indispen­
sable to have some acqaintance with the Jacobi theta functions. I would therefore 
tike to digress and present some of the main properties of these functions. These 
properties and other are discussed very clearly in the textbook of Whittaker and 
Watson. (Please note, though, that my conventions differ slightly from those 
of Whittaker and Watson in order to follow the modern string literature.) 
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The Jacob! theta functions are a canonical set of natural analytic functions 
on the torus. Whiltaker and Watson define four basic functions, of which the 
simplest is 

M*\T) = S e ^ V * " " • (8.25) 

This function is analytic on the whole z plane. If z is translated by a period of 
the torus, t?3(z[r) transforms according to 

*B(* + HO = *3(*|r), »3(« + r|r) = e -" r e-»'"i? a (z|r) . (6.26) 

Thus, i?3 is periodic in z with period 1, but it is only quasi-periodic with period 
T. If this function had been periodic under z —» z + r, it would have been an 
analytic function without singularities on the torus and therefore a constant; 
thus, i?3 is as close as anything can come to being a nontrivial analytic function 
on the torus. The periodicity relations (8.26) can be used to count the number 
of zeros Nz of t?3: Talcing the contour around the boundary Df the parallelogram 
in Fig. 10, we may compute 

Nz » ldtmi X. (I.OT) 
2*t / tfaUM ' 

It is not hard to see that the zero is located at the center of the parallelogram, 

The other three theta functions are essentially translations of $2 with zeros 
at the other three half-periods. They may be characterized by 

*i(0|r) - 0 , fit[l\T) 

Series representation for the four 0*(*)r) are given in the appendix to this section. 
Modular transformations such as those shown in (8.9) relabel r and thus 

interchange the labels of the four half-periods. Thus, modular transformations 
interchange the various 0;. The transformations at * = 0 are especially useful; 

0 , 

0 . 
(8.28) 
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ict me, then, record them as follows: 

*{{0[r + 1) = e'W^( 0 |r) , *<(f)J - 1) = (~-ir)Uf(0|r) . 
*a(0|r + l) = e"/V 3 (0|r) , *,(0| - \) = (-.>)i^(0|r) . 
*.(0|r + l) = tf4(0|rj, ^ ( 0 | - i ) = (-.r)4»,(0|r). 
tf4(0|r + l) = tf,(0lr), *4 (0 | - i ) = (-iV)*rfj(0|r) . 

(8.29) 
Since 1S1 vanishes at z = 0,1 have quoted the result for its first derivative. 

In addition to series representations of the form of (8.25), all four theta 
functions possess infinite product representations, which are derived in Whittaker 
and Watson. For example, 

0i(j|r) = 2ei'T/*smxz- JJ (J ~ e3"'"") (l - e1"'"^1"*) (l - e3**"'*-3"*) . 
n=i 

(8.30) 
The product representations for all four t?i(2lr) are given in the appendix to this 
section. Eq. (6.30) implies immediately that 

tfftOjr) = 2xt)*{r) . (8.31) 

The modular transformation formulae for ij(r) quoted in (8.24} follow from (3.29) 
through this connection. 

Let us now return to the bosonic string one-loop amplitude (8.22) and note 
three important properties of this expression. First, once we have regulated 
the MTo-point energy by the prescription of eq. (8.18), this expression has no 
further ultraviolet divergences. In the case of the bosonic string, this subtraction 
is made on an ad hoc basis (though it is in fact necessary to maintain world-
sheet eonformal in variance), but for the superstring the corresponding zero-point 
energy term is automatically finite as the result of a cancellation between the 
bosonic and fermionic degrees of freedom on the world sheet. The expression 
(8-22) does contain a divergent integral, however, because the Integrand blows 
up exponentially as TS -t oo. To understand this divergence, let us look more 
closely at the form of the integrand in that limit. Setting r = 2nr3, we find 

' - h (S£) • ™ 
with m a = - 2 . The integrand of (8.22) is juBt the asymptotic form of the 
propagator of a Klein-Gordon particle in 26 dimensions. The mass which appears 
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is tachyonic precisely because the state of lowest mass in the spectrum of the 
bosonic string is a tachyon. We might have suspected from the beginning that 
the presence of a tachyon in the spectrum would lead to inconsistencies in the 
theory. It is now clear that this leads to an infrared divergence in the one-loop 
amplitude. In fact, this term and a similar, weaker singularity due to the dilaton 
are the only divergences in this quantity. 

A second feature of [8.22) is found in its general structure. The complicated 
part of the expression is the absolute square of an analytic function of the modulus 
r. This form arises for a simple reason: The string dynamics treats the left- and 
right-moving modes separately, and the functional Integrals over these modes 
are respectively analytic and anti-analytic in r, except for the factors explicitly 
associated with the zero modes X0. Belavin and Knizhnik have shown that 
this decomposition continues to higher loops; the bosonic string amplitude at all 
higher loops has the form 

A = J#Tkp{r''lT*)\F(Tk)\2

t (8.33) 

where the T* are the moduli and fi(Tk

tTk) is a trivial nonanalytic factor which can 
be determined directly. This observation has become the basis of a calculations! 
method for higher-loop amplitudes. This set of developments is reviewed in ref. 
59. 

Finally, let us note the significance of the dependence of the integrand of 
(8,22) on rj. This dependence comes only from exponentials of r o r r . If we 
expand the integrand of (8.22) in powers of e 3 * , r (an expansion clearly valid for 
Tj large), a typical term has the form 

(8.34) 

where Jfc„,Jtn are integers and d . ,Ct . are numerical constants. Setting r s 2iffj 
as above, this takes the form 

/ ^ r e - r ' I > * " + £ > * - > - [ dri c'*"'•<£***-£**"> . (8.35) 

The first exponent is the contribution of mode excitations to Lo+Lot &nd thereby 
to the mass of the string state. The second exponent contains LQ — Lo. The 
integral over r } is exactly the projector into LQ - Lo = 0. The projection which 
we found in Section 6 from the geometry of operator insertions in the world sheet 
is thus also imposed on all virtual particles that can appear in loop amplitudes. It 
appears precisely because we must sum over all possible world-sheet geometries. 
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s.3. CLOSED SUPERSTRINC 

Let us now generalize this calculation to the superstring. The computation 
of the O-point one-loop amplitude can be found as the product of two terms. The 
fijst of these vs the integral over coordinate fields X*1 and anticommuting ghosts 
on the torus. Except for a change in the number of total space-time dimensions, 
this factor is calculated exactly as in the previous section. The new ingredient is 
the functional integral over fermions and commuting ghosts. It is useful to group 
the fermions t{/'i in pairs; the contribution of the commuting ghosts cancels that 
of one of these pairs. The superetring one-loop amplitude then takes the form 

* - /^W|Nf' (8-36) 

where Ax is given by (8.11) and 

A+ = j Dfrpfrt-J***&**+*****>)+> . (8.37) 

Notice that the exponent or (8.37) is the action of an analytic fermion field. We 
must square this quantity, as is indicated in (8.36), to account for both left- and 
right-moving fermion modes. 

Just as we did for Axi we can calculate &$ by rewriting it in Hamiltoni&n 
form: 

A* - tr [T(fi) K~**H] . (8.36) 

Alvaiei-G&ume, Moore, and Vafâ  ' have noted that it involves no extra trouble 
to assign to the fermions arbitrarily twisted periodic boundary conditions: 

(8.39) 
0i(t + l) = -t+Ui6M*) i tfi(*+0 = -«- a"«"^(») . 

These boundary conditions are the most general consistent with the requirement 
that the action in (8.S7) be periodic. The factor (-1) in the boundary condi­
tions in time appears automatically from the operator expression tr fe~^H)i aa in 
finite-temperature perturbation theory. The corresponding minus sign in the 0 
boundary condition b included for convenience. 
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The Hamiltonian corresponding to (8.37) is a sum of fcrmicuiic oscillators 
(that ie, two-level systems) corresponding to the Fourier components of V'i(si), 
^M^i)- The Fourier components of il>% have wavenumber 2jr(n — 0 + 4); they 
are creation or annihilation operators for the ferm ionic oscillators according to 
whether this quantity is negative or positive. The corresponding annihilation or 
creation operators are the Fourier components of fa. The excitation energy for 
each oscillator is \n — 9 + ~\. With this information, we may easily evaluate A$ 
for ri = 0, $ = 0: 

/ 0 ( n = 0,^ = 0) = tr [C-T'H] 

rta] 

[B.40) 
The sums run over the ground state and the one excited state of each fermion 
oscillator. The quantity Z{8) is the 0-dependent zero-point energy, which is given 
by 

Z(S) = JL\tn-*+h- (8-41) 
n=0 

With a suitable regularization, this should satisfy the functional relation Z{9) = 
Z[0 + 1) + *{± + 0) and should reduce to the result Z of eq. (8.18) for 6 = £. 
The unique function satisfying these properties is 

20) = |cH0 + JlJ-*") = 5(5-5**). M 

Now fi may be reintroduced by the prescription of eq, (8,19), TH* phase 4 
associated with a timelike circuit of the torus has a similar effect: It requires 
each state created by a component of V"i to be rotated by e~ s"*, and each state 
created by a component of tl>j to suffer the opposite rotation. Assembling the 
pieces, we find at last 

CO 

(8.43) 

Let us now apply this calculation to the superstring one-loop amplitude. To 
treat the Neveu-Schware and Ramon d sections, we most take 0 = 0 and 9 = %, 
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respectively. It is clearly inconsistent with the geometrical invariances of the 
problem, however, to allow periodic or antiperiodic boundary conditions around 
one cycle of the torus without allowing the same choice of boundary conditions 
around the other cycle. The operation of summing over periodic and antiperiodie 
boundary conditions in time, however, has a very direct physical interpretation: 

A* = ITI(1 + {-1)F)T{TI)C-T>»] (8.44) 

where F is the total number of fermions in the state. This is exactly the GSO 
projection. Once we have insisted that our string theory contain both bosons 
and fermions (that is, both Neveu-Schwarz and Ramond particles), the GSO 
projection follows from the sum over all possible world-sheet geometries. 

To define the superstring amplitude, then, we must sum over 0 = 0, | and 
independently over <f> = 0, ~. It is possible, and, as we will see, enlightening, to 
sum coherently over these sectors separately for the left- and right-moving degrees 
of freedom. To write the amplitude explicitly, we need compact expressions for 
A<JI>{9, <j>) a t the required values of its arguments. Fortunately, evaluating (8.43) at 
these four points produces exactly the product representations of the four theta 
functions: 

AA o) - ^ M 
(8.45) 

The analytic part of the fermion contribution to (8.36) then takes the form 

• 

\03[0\r)] 4 

+ ft?4(0|r)l 4 [*s(0|rj] 4 ' • 

\03[0\r)] 4 

+ ft?4(0|r)l 4 

I i(0 J 
4 ' 

(8.46) 

where 1 have supplied the relative signs so that the form of the expression is 
preserved as the theta functions transform under modular transformations ac­
cording to (8.29). Multiplying in the remaining pieces of (8.36), we find as our 
final expression: 

A = fd^Xof^r-^ ( - £ - ) " (*S(0|0 + *«0 | r ) - t?<(0|r)) 

(8.47) 
Using (8.24) and (8.29), it is straightforward to show that (8.47) is modular 
invariant. Notice that an expression of this form could not possibly have been 
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modular invariant if we had not included both sectors with 4> — 0 and sectors 
with <j> = i . 

Two properties of this expression are worth noting. First, let us consider the 
behavior of the integrand as rj -+ oo. Just as in the bosonic string, the factors 
of the tj function in the denominator lead to a divergence in this limit: 

| f? ( r ) | - 4 4 ~ * + * " . (8.48) 

To compare to eq. (8.32), we again set r = 2TTT, then this factor is associated 
with the appearance of a particle of mass m 2 = —1, the Neveu-Schwarz tachyon. 
However, tfj vanishes as r? —• oo and i?a and i?^ tend to the same value. Thus, 
the tachyon contribution to (8.36), and its associated divergence, cancels. This is 
of course the result of the GSO projection; alternatively, this cancellation follows 
directly from modular invariance. 

Actually, the formula (8.47) contains stronger cancellations. Among the thcta 
function identities proved in Whittaker and Watson is the following remarkable 
result of Jacobi ("acquatio idtnticc satis abstruse?): 

,5<(0|r) + *J(0 |0 - **(01T) = 0 ! (8.49) 

The entire expression vanishes. The vacuum energy of the superstring is not 
renormalized. This is clearly a sign of an underlying space-time supersymmetry 
in the theory, which requires all of the possible periodic and antiperiodic sectors 
for its implementation. I will display this supersymmetry more explicitly in the 
next section. 

8.4 . H E T E R O T I C STRING 

Since we have now derived all of the technology for computing one-loop am­
plitudes, I would like to complete my discussion by extending this analysis to the 
case of the heterotic string. This string is obtained by combining the right-moving 
degrees of freedom of the superstring with the left-moving degrees of freedom of 
the bosonic string. The spectrum of this theory has been discussed with some 
care by Michael Green- The massless states are those of 10-dimensional super-
gravity, together with the gauge bosons and gaugmos of an JSB * -KB or 0(3.2) 
gauge theory. 

The heterotic string theory contains 10 right-moving coordinate degrees of 
freedom X"{z) but 26 left-moving coordinates X*[j). It is easiest to understand 
how to deal with the 16 left-moving coordinates with no right-moving partners 
by fermionizing them. This gives a string with 10 ordinary coordinate fields 
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plus 32 left-moving fermions (in addition to the 10 right-moving fermions of the 
supcrstrinR and their associated commuting ghosts). The Es x £g version of the 
heterotic string theory is obtained by GSO projecting these 32 fermions in groups 
of 16, Using the expressions (8.45) for the fermion functional integrals, we can 
immediately evaluate the required integrals over each set of 8 pairs of fermions 
and gum these coherently. Multiplying together these two contributions and 
including the contributions of the remaining coordinates and the Tight-moving 
fcrmionp. we find for the value of the one-loop amplitude of the heterotic string 

(8.50) 
\_ U\{0\r) + 4*[0\T) - i?j(Q|r)\| 

This expression is indeed modular-invariant. Another modular-Invariant expres­
sion can be obtained from the same ingredients by CSO-projecting all 16 pairs 
of fermions together; this gives the one-loop amplitude of the 0(32) heterotic 
String, In either case, the amplitude vanishes by virtue of (8.49), that is, by 
virtue of the space-time supersyrametry of the theory. 

It is instructive to obtain the Tesult (8.50) in a different way, by treating the 
16 purely left-moving coordinates as bosonic coordinates compactined on a self-
dual lattice. It is easy to functionally integrate over such bosons by extending the 
results of our previous analysis. All that we need to do is to extend the Fourier 
decomposition (8,13) to allow for configurations of X* which are periodic in xx 

only up to translation by a lattice vector t : 

#(*>) = Xo + V5FT • (*, - * a ) + £ Xn e 3 " " ^ - " ) . (8.51) 

The nonzero modes give exactly the same result as before. The zero modes 
contribution, however, is replaced by a factor which sums the contributions to 
t~s from e&ch possible value of I . This gives for the full one-loop amplitude 

A - fd"X / ^ I J _ / F "i [03(010 + tfj(0|r) - W ) 1 
* " J * 7 4 (ra)< \Wr)'[ i*W J ' 

(8.52) 
where 

F = X ] e , > t li*T • ( 8 - 5 3 ) 
t 

The symmetry group £g x £ e is obtained fay taking each group of 8 left-moving 
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coordinates to be compacti6ed on the lattice generated by the root vectors of £g, 
This lattice, which gives the possible values for t , is: 

_ f ( n 2 , n j , . . . , n s ) , £ , n, = even integer 
I = \ (8.54) 

I (m + 5,"a+ | , . . . . n B + 5) , !Zi"i = e v e r > integer 

The condition that the components n, EUED. to an even integer can be implemented 
by summing over all values of the TX,- with the weight (1 + e'*2L n'). If we U8« 
this trick, we can write the contribution to F from the vectors in the first line of 
(8.54) as 

f [ £ < •"? ' . ( l + I p > n - ) = *5(0|r) + *!(0|r)i (6.55) 

I have recognized each term as the series representation of a theta function. 
Similarly, the vectors in the second line of (8.54) give the contribution 

J ] Yl e * ' C n - + i ) r - ( l + n e ' ' ( " , + * ) ) = ^l(0|7-) + *!(0|r) . (8,56) 
i n , i 

Inserting (8.55) and (8.56) into (8.52), we find again the result (8.50). Thii nicely 
checks the equivalence of the fermionic and bosonic forms of the theory. 

8.5. APPENDIX: REPRESENTATIONS OF JACOBI THETA FUNCTIONS 

In this appendix, I list for your reference the series and product represen­
tations of the four Jacobi theta functions which appear in the analysis of this 
section. These relations are all derived in the textbook of Whittaker &nd W&t-

[601 _ , 

son. The series representations are: 

« = — 0 0 

n = — 0 0 

(8.57) 
rf3(*IO = H e«--»V e3n»-

n = —00 
CO 
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The prodac* representations are: 

tfs(*|r) = 2e**r/* cos iri • U (l - e* f f'n r) f 1 + e*«*» V™'") f 1 + e7winre *"*) 

RBl 

rial 
(8.58) 

Many properties of the theta functions can be checked directly from these rela­
tions. For example, it is easy to see that iI{Z\T) is odd in z, while the other three 
functions are even. One c&n also check the relations 

W O - *i(i + J|f) 

it A 

* 4 ( i | 0 = -ie'* T/V"t)i(* + -|7-) 

which interconnect the four theta functions and imply the locations for their 
zeros given in (8,28). 
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9, Three Grand Questions 

I would now like to pause from my development of the formalism of super-
string theories to discuss three deep issues which are important to the physical 
interpretation of the theory. The first two of these concern the properties of the 
theory in the idealized settWg of a flat 10-dimensional background space. We 
would like to know whether the space-time snpersymmetry of which we saw a 
hint in *he previa- - B„cti0n 'IF manifested in scattering amplitude"; and whether 
this KupersymmeU, implies the finiteness of the theory to all orders of loops. The 
third issue concerns the transition from this idealized setting to a more realistic 
one, via the compactification of six of these spatial dimensions. 

The first of these three questions has a well-defined answer, but one which 
still leaves many puzzles. What we know about the second and third issues are 
mostly guesses. The problem or compaetifie&tion is a very deep one, however,so 
even our present very tentative knowledg ''is fueled the development, by Witten 
and others, of a very beautiful mathema. •;•; theory. To present this theory In 
detail would require another full course, so 1 ,1 content myself here with a brief 
description of the simplest scenario. The reai ' r seeking an introduction to the 
mathematics needed to analyze compaetiSeation schemes will find an accessible 
and quite elaborate presentation in the second volume of the book of Green, 
Schwarz, and Witten.1 

9 . 1 . SUPERSYMMETRY AND FlNITENESS 

Let UG first discuss the supersymmetry of the superstring theory, in the co-
variant formulation that we have studied in Section 7. To verify supersymmetry, 
we must identify a conserved charge which interchanges space-time bosons and 
fermions and satisfies the supersymmetry algebra, at least on shell. Once we 
have identified this object, 1 will use it to make some intuitive statements about 
the finiteness of the superstring theory. 

Since the supcrsymmetry charge changes bosons Into fermions and vice versa, 
it must carry the space-time spinor character and the branch cut on the world 
sheet characteristic of a vertex operator for a state in the Ramond sector. Like a 
vertex operator, the Bupersymmetry charge must be BRST invariant. The sim­
plest way to construct a supersynunetry charge is, then, to start with a Runond 
vertex operator at zero momentum. Taking (7.68) as a starting point, we would 
guess: 

It is not difficult to check directly (taking t to be a constant epinor supersymmetry 
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pa.ramet.f-) that 

|rQ, vi(k,*)] » n"u(A) (a.x" + •*• w ) c * x , (9.2) 

and thai commutation of cQ with V_i gives a picture-changed version of this 
relation. The right-hand side of (9.2) is just the vertex operator Vv[k) of eq. 
(7.34). Commuting one step further, 

I?Q, r V«(fc,*)] = j M f • 7, * • l])SSB*ik* . (9.3) 

T)i< result 3s just V_dk). The commutation relations (9.2), (9.3} have exactly 
the structure of the supersymmetry which links the massless g&ugmo and vector 
states of 10-dimcnsiona! Yang-Mills theory, except that the double commutation 
returns a picture-changed version of the original fermion vertex operator rather 
than that operator itself. 

The charge QA denned in the previous paragraph apparently is not a true 
supersymmetry except on shell, where we can identify picture-changed represen­
tations of the same state. The algebra of QA with itself has the same unsatis­
factory feature. To display this algebra most clearly, relabel Q^ as Q_ i A , and 
define its picture-changed counterpart Qi A from V. (fc). Then, we can compute 

J 2TT» 

(9.4) 
On shell, where we can identify Q . and Qi, thb is precisely the supersymmetry 
algebra 

[KQ.t'Ql - VfV-JV- (9.5) 

The restriction to mass shell, and thus to physical scattering amplitudes, b an 
awkward feature of this formalism. In scattering amplitudes, however, either Q • 
or any of its picture-changed variants do implement correctly the constraints of 
Bupersymmetry. 

The fact that the supersymmetry charge of the string theory appears as 
a contour integral on the world sheet suggests a general method for proving 
nonrenormalization theorems following from supersymmetry. 
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Figure 13. MeLhod for proving luperiymnwtry nonrcnomaliHtion th«»* 
reml. 

The technique is illustrated in Fig. 13. Let VB(z) be the vertex operator for 
some particular boson in the theory. If Vg{z) can be written as a supersymmetry 
variation of a. fermion vertex operator, we can write 

VB(z) = [Ot, MO] = j — q*(<0 MO . (9-6) 

If w- are computing a loop amplitude, the contour of tv is a closed path on a 
compact 2-diroensional surface. If we can push this contour to the opposite side 
of the surface and contract it to aero, the expectation value of Vg will vanish. 
Thus, we can potentially prove to all orders in string perturbation theory the 
vanishing of the tadpole diagram for the particle created by Vp, as well as the 
vertex of this particle with any other particles whose vertex operators commute 
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with Q/t- Martinet 1 has argued in this way that the tadpole of the dilaton, 
and, thus, the cosmological constant, vanishes to all orders in any background 
that preserves a apace-time Bupereymmetry. 

The Bubtlety in this argument is made clear in the figure: Aa we pull the 
operator q* (w) to the back side of the surface, this operator carries its branch 
cut with it. Thus, the boundary conditions are changed from periodic to an-
tiperiodic (or vice versa) around any closed loop through which q^(w) is moved. 
In the discussion of the one-loop ouperstring amplitude given in the previous 
section, we found supersymmetry and vanishing coamologica) constant only it 
we summed coherently over all possible sets of boundary conditions, indepen­
dently for the analytic and anti-analytic df^rees of freedom. Speaking loosely, 
the geometry of Fig. 13 rnal.^3 clear that the same prescription is necessary to 
guarantor that supersymmetry of higher-loop amplitudes. This is already quite 
.in interesting conclusion. However, the exact prescription for the relative phases 
and normalizations of the various sectors, and the invariance of the resulting sum 
of amplitudes under the higher-loop generalization of the modular group, has not 
yet been checked in detail. 

It is not difficult to imagine that the vanishing of the O-point function might 
be checked directly by a similar analysis, diagrammed in Fig. 14. Represent 
one propagator in the diagram as a sum over states in the theory. We know 
that—LTI shell—these states form boson-fermion pairs. If the same relation held 
off-shell, one could represent the fermion states as Dupersymmetry commutators 
with bosons, distort the contours as shown, relabel the boundary conditions, and 
show the explicit cancellation of bosonic and fermionic contributions. I would 
very murh like to know whether this argument is merely a heuristic, or whether 
it can be made into a rigorous proof of the nonrenormalization of the vacuum 
energy. 

9.2 . A PHILOSOPHICAL DIGRESSION 

After so much formal analysis, it may seem overdue that I begin at last to 
discuss the relevance of string theories to the observed world of particle phenom­
ena. If you think that this unseemly delay betrays my personal position on string 
theory, you are right. I ask you, the reader, for your indulgence as I digress to 
state that position in some detail. 

Over the past two years, string theory has been hailed aa the solution to 
all fundamental problems in physics and damned as "recreational mathemat­
ics". These extreme positions highlight a situation of great uncertainty about 

* A p u t of this tnilytii h u b « n pruentcd recently by Atick and Sen. 
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Figure 14. Method foi directly proving the vinuhing of the O-point func­
tion at higher loop* in t (upersymmettic itring theory, following Ref. 63. 

the eventual position of strings in fundamental theory. I believe that the situa­
tion in the recent history of particle physics which is most precisely analogous is 
that of Yang-Mills theory in the early 1960's. At that time, Yang-Mills theory 
was known to be & profound generalization of Quantum Electrodynamics. Some 
mathematical methods were known for computing in this theory, but they were 
quite incomplete. At the same time, the beauty of the theory was already unmis­
takable, and connections to the observed forces were strongly suggested. Glashow 
used the Yang-Mills Lagrangian to build a weak-interaction theory which was cor­
rect except for the embarrassment of having massless vector bosons. Saiuraj used 
the Yang-Mills Lagrangian as a model for the strong Interactions, and postulated 
the vector mesons p, w, 0. In both cases, the phenomenological application of the 
theory led to significant physical insight. But, on the other hand, the precise and 
eventually correct application of the principles of non-Abelian gauge symmetry 
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required another ten years and the development of further crucial mathematical 
methods—the Higgs mechanism, the Faddc'ev-Popov procedure, and the renor-
malization group. 

String theon nai now been developing for almost twenty years, but we still 
seem to be quite far from having a complete mathematical grasp on its formal­
ism. Because our calculational methods arc incomplete, it is difficult to assess 
how precisely strings will finally appear in our understanding of the fundamental 
forces. Considerably more work must be done to develop the foundations of the 
theory and to improve its calculational methods. In particular, we desperately 
need some methods for performing nonperturbative string computations, since 
many interesting properties of string theories are apparently determined only at 
the nonperturbative level- At the same time, it will certainly be useful to try 
to apply our present, incomplete, understanding of Btring theory to the roajor 
phenomenologicat questions of the day, the problem of the vanishing of the cos-
mological constant and the origin of quark and lepton generations and their mass 
spectra. In exploring the relevance of string theory for these problems, however, 
we should be aware that we might learn more about the mathematics of string 
theory than (directly) about how these problems are solved. I would therefore 
favor approaches which involve string computations which are as explicit as pos­
sible, even if the phcriomenologkal scenario does not seem sufficiently plausible 
in itself to justify such detailed anatyses. 

At the moment, the tosmologital constant problem looks as difficult to solve 
in string theory as it has in any supergTavity model. However, the most direct 
physical interpretations of the string theory have provided some interesting new 
approaches to the problem of quark and lepton generations. In the remainder of 
these lectures, I would like to concentrate on approaches to this question which 
use the string theory in an essentia! way. I do not know whether the analysis I will 
present is more important for what it teaches us about quarks and leptons or for 
what it teaches us about strings; in any event, I hope that these material somehow 
leadB us nearer the goal of Ending the role of strings in a unified understanding 
of Nature. 

9 . 3 . CALABI-YAU IDEOLOGY 

The case that the compatification of 10-dimensional string theory might pro­
duce the quarks and leptons directly as string eigenstates was made forcibly just 
after the discovery of consistent Ee x Eg string theories, in a remarkable pa­
per of Candelas, Horowitz, Strominger, and Witten 1 '(CHSW). These authors 
proposed an interpretation of string theory of great mathematical beauty which 
gives nontrivia] answers to many of the basic questions of phenomenology. No 
discussion of the physical interpretation of strings could be complete without a 
discussion of this program, so I will review it briefly here. However, because this 
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program allows relatively few explicit computations, and because it is reviewed 
in great detail in the book of Green, Schwarz, and Witten, I will limit myself to 
an outline of its contents. 

In Section 6, we derived conformal consistency equations for background 
gravitational fields which might interact with a bosonic string. To leading order 
in a perturbation theory in the curvature of the background geometry, we found 
as a criterion for this consistency that the Ricci tensor of the background space 
should vanish. If one applies this method of analysis to the heterotic string, one 
finds the same result at first order, but, in the next order of perturbation theory, 
there appears also a contribution from background Yang-Mills fields.'38-'40' For 
example, one finds 

c = (<(-26) + 6*'{-\R + . . . } + ( ^ { ^ M ^ - t f t ^ ) 3 ! . (9.7) 

CHSW suggested that one look for a solution to this condition and the other 
consistency equations with H^x = 0, <$> = 0, and vanishing Ricci tensor. For 
obvious reasons, they wanted to find a solution in which 6 dimensions were com­
pactified and 4 dimensions were left extended. They also wanted to insure that 
the compactified theory maintained a 4-dimenstonal oupersyminetry which might 
survive to energies well below the compactification scale. This requirement is 
satisfied if the compactified &-dimensiona] apace possesses a covariantly constant 
spinor Rj<(y); then the subgroup of 10-dimensional local supersymmetry gener­
ated by the 10-dimensionat spinor built up as a product of this object with a 
4-dirjoensional constant spinor 

remains a symmetry of the compactified theory. 

All of these requirements fit together neatly. The equation for the covariant 
constancy of 7,4(y) can be manipulated as follows: Begin with 

V„»7 = 0 => \V,.,Vr)ft = R^pX^"XV = 0, (9.9) 

where E ' A = \[lg, "rx\ is the generator of rotations cf epinors. Now contract 
this equation with ~i" and break up the resulting object into pieces symmetric 
and antisymmetric between v and p o? X. The completely antisymmetric piece 
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vanishes because of the Bianchi identity i f ^ ^ i ] = 0, The remaining pieces 
involve contractions of indices. Thus (9.9) implies 

J ^ T ' U = 0 . (9.10) 

This equation has a nontrivial solution only if R^p = 0. Once we have a covari-
antly constant spinor, this spinor may be viewed as a preferred direction in the 
tangent space of the 6-dimensional manifold. On any curved manifold, tangent 
vectors parallel-transported around closed loops suffer rotations from their orig­
inal orientations. The group of such rotations is called the tangent-space, group 
or the holonomy group. For a general 6-dimensional manifold, we would expect 
that these rotations would fill out the whole of SO(6). Let us recall, though, 
that SO(6) is isomorphic to SU{4), with the spinor of SO(6) identified with the 
4 of SU{4) and the vector of SO(6) with the antisymmetric tensor (6) of SU{4). 
Thus, a covariantly constant spinor may be though of as a preferred orientation in 
this SU[4) which is not changed by parallel translation. The holonomy group of 
the manifolds we seek should then be 5U(3). Under the decomposition 4 —* 1 + 3 , 
the antisymmetic combination of two 4's decomposes as 6 —* 3 + 3. This implies 
that the 6-dimensional coordinate y may be represented as complex conjugate 
triplets (y*,!/'),» = 1,2,3; that is, the manifold has a natural complex structure. 
This geometry of the curvature may be linked naturally to the geometry of gauge 
fields by identifying the SU[Z) holonomy group with an £17(3) subgroup of the 
gauge group and setting up gauge fields equal to the spin connection w^xa of the 
manifold: 

KT° = \^y^X" . °r F^T" = -R^x^' • (9.H) 

This identification causes the last term in (9.7) to vanish and also solves the re­
maining constraints on the appearance of a low-energy supersyrmnetry. Actually, 
it is now known that a manifold of the form chosen by CH5W dees not satisfy the 

(SSI 
conformal consistency conditions at the fourth order in perturbation theory; 
however, a small deformation of such a manifold is known to give a solution to 

- . , , |60,67! 
any finite order. 

The problem of finding compactification spaces for the heterotk string is thus 
reduced to that of constructing 6-dimensiona! complex manifolds with holonomy 
group 517(3). The existence of such manifolds is guarranteed by a general theo­
rem conjectured by Calabi and proved by Yau. Let W be a 6-dimensional 
complex manifold satisfying the additional condition that its metric is (locally) 
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the derivative of a potential 

' ^ ^ • ' F l - ( 9 1 2 ) 

Such a manifold is called a Kakltr manifold. A 6-dimensional complex manifold 
naturally has (7(3) holonomy. We may view the spin connection on M as a gauge 
field of V{3) = 517(3) X U{1). Let the U[l) part of this gauge field have trivial 
topology, in the sense that the associated field strength, the projection onto 
this U(l) of ^flpwApE1", Has zero flux through closed surfaces. The theorem 
then states that the metric on M may be continuously deformed into a metric 
with SU[i) holonomy. It should be noted that this result falls far short of an 
actual construction of the metric for a space of SU{3) holonomy, even when the 
geometry of the original manifold M is understood in detail. Manifolds of SU(3) 
holonomy generally have no isometries, and, in fact, no metrics for such manifolds 
are known explicitly. 

However, the geometry of the original manifold M in the argument of Calabi 
and Yau can be used to compute the topological invariants of the manifold with 
5£7(3) holonomy, and these give a certain amount of definite information about 
the effective theory resulting from compactification. If the fundamental theory 
contains chiral fermions in a complex representation of the gauge 517(3), an 
index theorem will relate the number of fermion 2ero modes to the topology of 
this gauge field, and so, after the identification of eq. (9.11), to the topology of the 
manifold itself. Let us take the fundamental theory to be the Ee x Ee heterotic 
string theory and identify the S(/(3) gauge field as that of a factor of the maximal 
subgroup E$ x SU[3) of one E9. Decomposing the adjoint representation of Eg 
onto £T6 * 51/(3), we find 

248 -» (78,1) + (27,3) + (27,3) + (1,8) . (9.13) 

Then for each zero mode of a 3 of SU[3), we find a 27 of E$ surviving to low 
energies. Evaluating the indices, one finds that the number of 27's and the 
number of 27's are determined topologically, the net number of generations is 
given by the remarkable formula 

H{¥t) - M(2f) = - X , (9-14) 

where x is the Euler characteristic of the 6-dimensional compact space. 
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As an example, CHSW considered the submanifold of CP* specified as the 
solution to 

£ 2? = 0 . (9.15) 
i = i 

'' ..-This space satisfies Calabi's condition and BO can be deformed into a manifold 
with 5(/(3) holonomy. This manifold has x = -200, However, the manifold 
has an isometry group Z 6 X Z s ; identifying pointa carried into one another by 

: this group gives a multiply-connected manifold with x = — 8 . Compactification 
on this manifold produces 4 generations of quarks and leptons at low energy. 
One could envision breaking the grand unification symmetry £ B to a smaller 

"grb'up by adding to the multiply-connected manifold Ea gauge fields with zero 
: . ,field strength but nonzero values for the Bohm-Aharonov loop integrals / dx- A. 

Note that v.* can decrease the rank of the original E e only by identifying the 
generators of the two Zj's with two mutually noncommuting values of the loop 
integral. Thus, this class of models generally leads to low-energy gauge groups 
of rank 5 or 6, that is, with at least an extra £/(l) gauge boson in addition to 
the standard model SU{3) x SV(2) x l / ( l ) . 

A noteworthy, and disturbing, property of the CHSW scheme, is that the 
solution to the consistency equations exists independently of the value of the 
radius of the compactified space. This radius is one of a number of parameters of 
the compactification scheme which are apparently not determined at all by the 
consistency equations, A second such parameter is the expectation value of the 
dilaton field <£(x). This apparently obscure field has great physical importance: 
Because the dilaton field appears in an overall prefactor in the effective action 
(eg., eq. (6.34)) 

S«ff = JdxVGc-2*{R + ...} , (9-18) 

it can be absorbed into the effective gauge and gravitational couplings. Thuk, 
it is the dilaton vacuum expectation value which determines dynamically the 
values of these couplings. Unfortunately, Pine and Seiberg nave argued that, 
if these two parameters are not determined at the string tree level, they are 
not determined to any finite order in string perturbation theory. Even more 
unfortunately, the failure of our present calculational methods to determine the*e 
parameters eeerrw to apply not only to this particular scheme of compactification 
but to more general schemes as well. Apparently, though some consequences 
of string compactification are readily computed, othere will be understood only 
with a major improvement of our mathematical methods. 
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10. Orbifolds 

In the previous section, we discussed the scheme of Candelas, Horowitz, Stro-
mingcr, and Witten for cornpactifying string theory from 10 to 4 dimensions. I 
sketched the elegant mathematical arguments offered by these authors, which led 
to the suggestion that the compact spatial dimensions form a Calabi-Yau mani­
fold, a complex manifold with SU(S) holonoray. However, this conclusion was in 
some sense disappointing. The geometries of the Calabi-Yau manifold* are not 
known explicitly, and the problem of Eolving a nonlinear sigma model with uni-
of these manifolds as the target space seems extremely difficult, even if the exact 
conformal invariance of the system allows some simplifications. How could we 
improve this situation? 

One response is to start from the other extreme position by exploring com-
pactifk&tion schemes wl.'.rh arc known to be tractable and adding complication 
until they become as realistic as possible. The simplest compactificalion which 
is not completely trivial is given by taking the compact space to be a torus, As 
we saw in the discussion of the heterotic string, the problem of a string moving 
on a torus is not appreciably more difficult than that of a string in extended 
space. The nonzero frequency modes of the string have the same spectrum in 
these two cases. The centcr-of-mass coordinate is modified in two ways: First, 
the momentum is quantized in the compactified directions, Second, the string 
may have additional soltton states which wind around the torus, corresponding 
to the boundary conditions 

z{a = 0) = x0 , i ( c r= 1) - i 0 + 7 , (10.1) 

where I is a displacement by periods of the torus which is identified with 0. The 
set of displacements I identified with 0 in this compactincation forms a lattice 

L = { J > < 7 i , T K G Z } , (10.2) 
i 

and we may alternatively describe the torus as the coset space of Euclidean 
space divided by this lattice: TJ = Rd/£, This scheme of compactification is 
excessively simple; in particular, it cannot break the original gauge symmetry, 
since all of the zero-mass bosons of the uncompactified theory are still present as 
states in the 1=0 sector. Worse, the solition sectors can sometimes contribute 
additional zero-mass particles. This is, after ali, the way most of the £g x £' e 

bosons arise in the heterotic string theory. 
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In order to break E% x £ 6 t and in order to break 10-dimensionaI oupersym-
metry down to 4-dimenslonal eupersymmetry, we must deform the torus in a 
way that wilt eliminate some of these tnassless states. Dixon, Harvey, Vafa, and 
Witten' '(DHVW) introduced an elegant method for accomplishing this: They 
proposed that one identify points on the torus which are taken into one another 
by a gTOup T of discrete symmetries of the lattice £. The resulting space may 
be though of as the eoset space Td/T, or, eejuivalently, the quotient of R d by the 
crystallography group of translations by elements of £ plus rotations and reflec­
tions in T. In general, some points of the torus will be fixed under the action 
of r. The identifications will then tie up the neighborhoods of these points into 
complicated singularities. Thus, this space is not a manifold; DHVW refer to it 
as an orbifold. 

DHVW show, quite remarkably, that the singularities of the oibifold can 
simulate many aspects of string propagation in curved background spaces while 
retaining most of the simplifying features of string dynamics on a torus. In this 
sense, coiopactification on an orbifold represents an ideal compromise between 
calculability and realism. These compactification schemes are therefore worthy 
of our close attention. In this section, I would like to present a simple example 
of an orbifold and to compute the low-energy modes of local fields and of strings 
arising from this compactification. 

10 .1 . ORBIFOLD GEOMETRY 

To compactify the heterotic string, we need a 6-dimensional orbifold* Let me 
begin, however, by discussing the geometry of a simple 2-dimensional orbifold. 
By taking 3 copies of this space, we will find a 6-dimensional space which will 
serve as my main illustrative example. 

Begin, then, with the torus obtained by identifying points in the plane con­
nected by the translations of a 2-dimensional triangular lattice. This torus may 
be pictured as the space obtained by identifying opposite edges of the equilateral 
parallelogram, with internal angles 60° and 120°, as shown in Fig. 15. Now re­
duce this space by making a further identification of points related by the group 
T of 120° rotations about the origin. This prescription identifies, for example, the 
left-hand edge and the bottom edge of the parallelogram, as shown. The origin 
is a fixed point under the rotation. As a consequence of this, the origin becomes 
a conical singularity of the orbifold, since lines through the origin at 120° to one 
another are glued together by the identification. 

• More general Kheme* of which ifcire th« advantage) of orbifold eompxctifiealion have 
f ecently been pteiented in reft, 71-74. 
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Identify 

i-et, SC39A1J 

Figure 15. A umpl* 3-dim<niion*l crbifold. 

VBf, 5639A13 

Figure 16 Three fijied poinLi of th« oibilold or Fig. IS. 

Fig. 16 shows that the points 

xx+ix7 = V3 t • x • a 1 
y/Z 

(10.3) 

on the long diagonal are also fixed under the combined action of rotations and 
lattice translations. These two points also become conical singularities of the 
orbifold. 

It is not difficult to solve the field equations of scalar fields on the torus subject 
to the identification of points connected by the group T. The treatment of local 
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fields with spin, however, is more subtle, since the identification subjects such 
fields to nontriviat boundary conditions. When we identify the left and bottom 
edges of the parallelogram in Fig. IS, we also identify the vectors tangent to 
these edges. Thus, at a point P on the bottom edge identified with a point P' 
on the left edge, a vector field V (z) must obey the boundary condition 

V(P' ) = »(120') - V(P) , (10.4) 

where 38(120°) denotes a rotation through 120°. Spinor fields, and field of more 
general spin, obey a similar boundary condition with the rotation matrix in the 
appropriate representation of the rotation group. 

In string theory, the situation becomes even more involved. 

( 0 ) 

<M 

Figure 17. Three posiible confiffur»tionj for doted ttrlnga on an orblfeld: 
(a) trivial; (b) winding; (c) twisted. 
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A closed string may describe a configuration of any of the three types shown in 
Fig. 17. The first two cases appear already in the dynamics of strings on a torus. 
The third case is new: A closed string may run from one point on the torus lo 
a second point identified with the first under T. Strings of this last type ere 
called twisted states. In general, the boundary conditions of twisted strings may 
be represented as a rotation about one of the fixed points. For the configuration 
shown in Fig. 17(c), if we represent the 2-dimensiona! variable as x — xl + iz1 

and call the fixed point XQ, the boundary condition is 

{x(o = ]) - x0) = c7"'* (*{* - 0) - x0) • (10.5) 

This condition implies the Fourier decomposition 

x(a) =. x0 + J ] x , e

2 " " . (10.6) 

where n is an integer. The twisted states thus differs from states of the other 
two types in having fractional-integer quantization of their nonzero modes. 

DHVW describe an orbifold as the singular limit of a manifold. However, it 
is worth noting some circumstances where is correspondence does no', literally 
hold. First of all, a manifold with highly concentrated curvature would have 
very large curvature tensor, and (in any reasonable coordinates) a singularity in 
its metric, at the point of concentration. This would produce a large nonlinear 
term in the sigma model constructed with the manifold as its target space. The 
orbifold string theory does not include this nonlinear term, and cannot, because 
this term would ruin the exact solubility of the model. This prescription seems 
to be a perfectly consistent one. 

The second subtlety comes in describing the topology of the orbifold. It is of­
ten straightforward to compute the Euler characteristic x o f t r i e smooth manifold 
which the orbifold apppToximates. For the example of Fig. 15, that computation 
goes as follows: One must recall from (5.8) that a torus has Euler characteristic 0 
and that (for an appropriate definition of the boundary contribution) a disc, be­
ing half a Bphere, has Euler characteristic 1. Beginning from the torus of Fig. 15, 
remove disks about each of the fixed points, indentify triples of points under T, 
and then restore disks at the fixed points which smooth the conical singularities. 
The Euler characteristic of the final surface is 

X = \ (0 " 3) + 3 = 2 ; (10.7) 

that is, the smoothed orbifold is topologically a sphere, Given this value of the 
Euler characteristic, one might be tempted to use an index theorem to predict 
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the number of zero modes of a massless fermion field on the orbifold. However, it 
is possible that some of these zero modes might shrink to zero tize and disappear 
in the singular orbifold limit. We will see an example of the disappearance and 
reappearance of zero modes later in this section. 

10.2 . FIELDS ON THE Z-ORBIFOLD 

To understand more concretely the mechanics of fields on orb if olds, let us 
solve explicitly, in a specific example, for the modes of local fields which corre­
spond to massless particles after compactification. A simple example to choose 
is a 6-dimcnsional Bpace called by DHVW the Z-orbifold. It is built from the 
direct product of three of the equilateral tori shown in Fig. 15. Call the complex 
coordinates on these three spaces (11,13,13), Identify points connected by the 
simultaneous rotation of all three tori; 

(*i,x»,* 8 ) - ( « 1 " / B * i , e 2 " / s x , , * * " ' / 3 z 3 ) . (10.8) 

Consider first the dynamics of a local field <i> with no gauge charges. Massless 
particles after compactification will correspond to solutions of the field equations 
which can consistently have zero momentum in the extended directions; these will 
be zero-mode solutions of the wave equation for that field on the 6-dimensional 
surface. Since the 6-dimensional space is a product of flat spaces, a zero mode 
solution will, quite generally for any spin, be a solution to 

dx<{> = 0 , or 6V£ = 0 (10.9) 

which is normalizabJe on the compact space. The only solution to these equations 
is given by taking 4> to be constant. 

If 4> represents a scalar field, the constant mode of ^ is a perfectly acceptable 
zero mode. However, if 4> has spin, we must impose the nontnvial boundary 
condition which arises from identifying tangent vectors as be identify points. For 
the case at hand, the boundary condition on <t> may be represented quite generally 
as 

tf(P') = K!(120°) .Sj(120°) -» 3 (120°) >4{F) , (10.10) 

where the three rotations are made in the planes of the three tort. This boundary 
condition is compatible wjth ^ being constant only if JR( • S 3 • 83 = 1. This 
condition has very few nontrivial solutions. Consider, for example, the case in 
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which <f> a a 10-dimensionaI vector field. Decompose 4>M as follows, chosing 
complex components for the compactificd dimensions; 

<t>M = (<*". * s + r t , tfs-'°. <t>7+i*. * 7 ~ r t . 4>*+il°, 4°-il°) • (10.11) 

The components $*, n = 1 , . . . , 4 , coorresponding to vector components which 
point into the uncompactified directions, are scalars with respect to the rotations 
S?i, 183,83. Thus each of these components will have a zero mode, and these four 
zero modes form a Lorentz 4-vector after compactification. On the other hand, 
the component ^ K + , a picks up a nontrivial phase S i = e 3 " / 3 , while 5?a = SR3 = 1 
on this component. Thus, this field has no 2ero mode. A similar conclusion holds 
for the remaining components of (10.11). 

A similar analysis may be carried through for a 10-dimensional epinor field. 
To do that, it will be useful to digress briefly and set up a bit of formalism for 
spinors in 10 dimensions. Let us choose a representation of the 10-dimensional 
(Minkowski) Dirac matrices similar to that displayed in (7.54): 

Tf") — r ^ j ® i ® i c s > i 

(10.12) 
tRo? = 1* ® °3 ® v ^ , < 7 ± ® l 

where f ,̂. are 4-dimensional Dirac matrices and ifB is the usual 4-dimensional 
chirality. The 10-dimensional ehirality is given by 

r = y - y 3 . . . - , 1 0 = is ® °* ® oz ® a 3 = r 4 r 6 . (10.13) 
In this basis, the 10-dimensional charge conjugation operator, which implements 
CtVjC- 1 = - ( 7

M ) r , i « 

C = - f V ® * 3 ® ^ ® * 2 - (10.14) 

Charge conjugation of a spin or is the operation 

* - ( * C ) T ; (10.15) 

this preserves T, so in 10 dimensions it is possible to define spinors which are 
simultaneously Majorana (self-charge-eonjugate) and Weyl (r = + 1). Note, 
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however, that (10.15) nips the parity of both T4 and T«. Thus, a 10-dimensional 
Majorana-Weyl spinor has the structure: 

•-(<*>') - r . — i r . - , . ( 1 0 1 6 ) 

where the components V1 are chirality-projected. This whole object ts determined 
by its T« = T e = +1 part. Thus, the modes of 4" which correspond to massless 
fermions in the extended 4-dimensional space may be built by attaching a con­
stant 4-dimension positive-chirality spinor to a Dirac zero mode with Fa = +1 
on the compact 6-ditnensional space to form the object 0 in (10.16). 

Let us now search for these Dirac zero modes on the orbifold specified by 
(10.8). In the basis we have chosen for the Dirac matrices, the three rotation 
operators in (10.10) take the form 

» i = 1 ® e" f f'/3 0 ! 3 ! 

S j = l © l ® e ' w , r , ' 3 ® l (10.17) 

JR3 = 1 ® 1 S> 1 ® eiw*'f8 . 

The boundary condition which must be satisfied is 

tl> = ( i l ) S i ' S ) ' S i ^ , (10.18) 

where the factor (± l ) reflects the usual ambiguity that we may choose periodic 
or antiperiodic boundary conditions for fermions. I would like to choose the sign 
( -1) , for reasons that will be made clear in a moment. There are four possible 
choices for Te = +1 spinors: 

( (a 3 ) i , (<T 3 ) 3 , ( f f ' ) 3 ) = (+1. + I.+1) « i » 3 » 3 = - 1 

= ( + 1 , - 1 , - 1 ) = e - " ' B 

(10.19) 
= ( - 1 . - 1 . + 1 ) = e - V * 

= ( - 1 , + 1 , - 1 ) = e " > / 3 . 

Oniy the first of these satisfies the boundary condition (10.18). 
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The zero mode that we have just identified is a covariantly constant spinor 
on the orbifold. Thus we should expect that, if we started with a supersym-
metric theory in 10 dimensions, compactification on this apace should yield a 
4-dimension effective theory with supersymmetry. To check this in the present 
example, begin with a 10-dimensional matter supermultiplet consisting of & vector 
and a Majorana-Weyl spinor (AM, * ) . We have seen that compactlfication on this 
ort'fold produces, as massless modes after compacitification, one 4-dimensional 
vector and one 4-dimensional Majorana spinor. This is exactly the content of a 
4-dimensional supermultiplet consisting of a gauge boson and a gaugino. 

Let us now alter this construction to mimic more features of the Calabi-Yau 
compactification discussed in the previous section. In particular, I would like to 
add to the space an SU(3) gauge field equal to the apin connection. The only 
aspect of the spin connection on the orbifold which is actually visible is its integral 
around a closed curve, the nontrivial rotation (10.10) which connects identified 
points. We may introduce a nontrivial gauge field by introducing a gauge rotation 
around the same closed curve. Let us assume that a 3 of St/(3) carried between 

identified points picks up a the Bohm-Aharonov phase «*J d z A = e ~ 2 * * / 3 . Then 
a field in a general representation of SV[2) will acquire the phase 

Q = ( e - J " ' / 3 ) < , (10.20) 

where t is the triality of the representat ion (( = 1 for 3 , t = — 1 for 3 , t = 0 for 
1 , 8 ) . With this addit ion, the boundary condit ions (10.X0), (10.18) should be 
generalized to 

<t> = ( - l J ' S c i . S B s - R a - ^ . ^ . (10.21) 

In this equat ion, the rotat ion matr ices depend on the spin of the part icle, the 
factor 5 depends on the SU(Z) propert ies , and F = 1 for a spinor field. It is 
actually this enhanced space t ha t DHVW define t o be the 2-orbifold. 

For fields in the 1 or 8 of SU{$), the analysis of zero modes we carried out 
earlier goes through unchanged. However, for fields in the 3 or 3 , there are inter­
est ing modifications. Consider first t h e case of spinor fields. Adding the phase 
Q t o t h e results of (10.13), we see tha t the cons tan t spinor solutions of the types 
(H ) , (—Y —), and ( h), for spinor fields in the S—out not the 3—satisfy 
(10.21) and thus give massless particles of the compactified theory. In addit ion, 
the components of a 10-dimenstonal vector ^ 5 + ' e , <j>r+,B, ^ 9 + , 1 ° corresponding to 
fields in the 3 now satisfy (10.21). These give massless scalar fields in 4 dimen­
sions. Zero modes for the 3 can be buil t from the remaining vector components 
a n d from negative-chirality spinors; these form the antiparticles or the scalars 
a n d ip inors from the S's. T h u s , a 10-dimensional supermul t ip le t ( A M , * ) in the 
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3 of SU(3) produces 3 4-dimensional Buperraultiplets, each of which contains a 
chiral spinor and a complex scalar (and their antipartides). 

If we use the Z-orbifold to compactity a 10-dimenalonal local field theory 
with Ee x E$ gauge symmetry, according to the program outlined in the pre­
vious section, we find chiral fermion generations and accompanying E& gauge 
fields. According to the decomposition (9.13) of the adjoint representation of 
EB, fermions in the 3 of the embedded Sl/(3) are 27'B of the accompanying Ee 
group. The zero modes we have identified correspond to a set of maastess parti­
cles arising from compactification which contain one supcrmultiplet each of gauge 
bosons and gauginos for the 78 of E§ and the 8 of 51/(3), plus 3 supermultiplets 
of spinors and Bcalars in the representation (27,3) of Ee, x SU[2). These latter 
multiplets give 9 generations of quarks and leptons. 

It is worth inquiring how this number compares to the Euler characteristic of 
the orbifold. Candclas, Horowitz, Strominger, and Wittcn 1 ' computed the Euler 
characteristic x °f 'he corresponding smooth manifold in the fallowing way: The 
original product of tori has x = 0. The Z-orbifold has 3 x 3 x 3 = 27 fixed points. 
Remove a small sphere about each of these fixed paints; this gives an object 
of \ = -27 . Divide by Z3, and then repair each hole by inserting an object 
with x = 3. The final surface has x = 72, by the analysis of CHSW, it should 
produce 36 generations. Unfortunately, we have only found 9 of these. The others 
must disappear from local field theory in the limit in which the smooth manifold 
becomes a singular orbifold. 

10.3 . STRINGS ON THE Z - O R B I F O L D 

The analysis of zero modes which I have presented for local fields on the Z-
orbifold can be repeated for strings on the Z-orbifold in the topological^ trivial 
sector of Fig. 17. The same set of zero-mass states is reproduced. However, 
in string theory, we have available also the nontrivial sectors shown in Fig. 17. 
These can give rise to additional zero modes which have no simple interpretation 
in local field theory. Particularly interesting are the twisted sectors, whose exis­
tence is unique to orbifold compactifications. As a final exercise for this course, 
then, I would like to explore the spectrum of the twisted sectors of string theory 
on the Z-orbifold, in order to identify any further masslcss states which arise 
there. 

For simplicity, I will perform this analysis in the light-cone gauge. The po­
sition of the ground state will be determined by the zero-point energy of the 
system of oscillators. The excited states will be raised above this ground state 
by ladder operators; as we have seen in eq. (10-6), these operators should have 
a fractional offset in their quantization. A crucial ingredient in this analysis will 
be the formula for the zero point energy of a set of such shifted oscillators given 
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by (8.42). We may rewrite this result as: 

n = " a o (10.22) 

The second term in the second line displays the shift of the zero-point energy from 
the situation of periodic boundary conditions on the string. The first term in this 
line displays the shift of the zero-point energy from the situation of antiperiodic 
boundary conditions. 

As a first step, let us recall the way in which the Ea x EB quantum numbers 
of the 10-dimensional hetcrotic string arise from a fermionic representation of 
the left-moving degrees of freedom. This analysis will give the massless states 
represented in the partition function of eq. (8.50). In a light-cone quantization, 
the left-moving sector of this string contains 8 bosonic and 32 fermionic fields. 
The fermions should be divided into two groups of 16 fields, each of which will 
produce the quantum numbers of one Eg. Let us refer to the two Eg groups 
as Eg and Eg, to indicate the groups which will be broken and unbroken after 
compactification. I will also label the corresponding feTmions as (lb*1)', (0 U ) ' -

In the uncompactified string theory, these fermions may have simple periodic 
or antiperiodic boundary conditions around the string- Taking each choice of 
boundary condition for each set of fermions, we find 4 sectors. The zero-point 
energy of each sector can be computed by summing values of Z(a) given in 
(10.22). (We must recall that fcrmionic oscillators give a negative contribution.) 
For example, in the sector in which the \l>k fcrmions have Neveu-Schwarz (here, 
antiperiodic) boundary conditions and the ^ u fermions have Ramond (periodic) 
boundary conditions, the total zero-point energy of 8 bosons and two sets of 16 
fermions is: 

«•( -£) + »•(+£> + 1 6 - ( - ;s) = °- ( 1 0-2 3 ) 

The zero-point energies of the four sectors are: 

(NS)b ® ( 7 V - S ) U — Z = - 1 

[R)h ® {NS)U - Z = 0 
(10.24) 

{NS)b ® {R)u - 2 = 0 

(Jc)b ® (i?) u - Z = +1 
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The last sector produces only massive states. The middle two sectors pro­
duce spectra which begin at the massless level. The ground state* are spinors 
of the 0(16) associated with the spin operator construction using the 16 pairs 
of fermions with Ramond boundary conditions. After the GSO projection, these 
become chiral spinors. These two sectors then contribute mass less states in the 
representation (128,1)+ (1,128) of 0(l6)xO(16). The first sector of (l0.24)pro-
duces a spectrum which begins at a tachyonic level. (There are no tachyons in 
the spectrum of the complete string because there are no tachyonic states in the 
right-moving sector to satisfy the condition LQ = LQ.) The massless states in 
this sector are of the states 

( ^ t ^ i n ) , mi^mi^n), (10.25) 
The states f ^ ) ' • ( 0 U ) 1 , [ty are removed by the separate GSO projections for b 
and u. The states of (10.25) form a (120,1) + (1,120) of 0( l6) x 0(16). Each 120 
assembles with the corresponding 128 to form the 246, the adjoint represetation, 
of an E8. The fight-moving sector endows these states with the ftpace-time 
quantum numbers or a 10-dimensional matter Bupermultiplet [AM, V). 

Now we can easily describe the generalization of this construction to a twisted 
sector of the heterotic string compactified on the Z-orbifold. We have already 
noted in eq. (10.6) that, in a twisted state oa this orbifold, the bosonic oscillators 
corresponding to compactified dimensions have their quantization shifted by | 
or | unit. We might describe this by saying that the 8 transverse coordinates 
X', which form an 8 of the transverse rotational symmetry 0(B)t break up into 
the representation (2,1) + (1,3) + (1,3) of the new transverse tangent-space 
group 0(2) x StT(3). We can represent the identification of the gauge connection 
with the spin connection by assigning 6 of the fennions {$*')* also to transform 
as a (3 + 3) under SU(3), and to be similarly offset in their quantization by 
i unit. ThiB assignment breaks the fermionie interchange symmetry 0(16) to 
O(10) x 51/(3). 

Let us now recompute the zero point energies of the four sectors. The result 
will differ from (10.24) only because of the shifts of the contributions from oscil­
lators with fractional offset. These can be read from eq. (10.22). For example, in 
the sector with Neveu-Schwarz boundary conditions for both b and u, the shift 
due to replacing 6 a = 0 bosons by a — i | bosons and replacing 6 a = 1 
fermions by a = £, | fermions is given by 

AZ = 6'̂  + 6 h> (10-26) 

so that the total zero-point energy is now ( - | ) . For the four possible lectors, we 
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find 

{NS)h ® (AT-S}» -» Z = - i 

(fl)* ® {NS)« -» Z - 0 
(10.27) 

(TVS)* ® (*)« -» Z = A 

(ft)* ® (*)" - Z = +1 

The two sectors with Z > 0 contain no massless states. The second sector 
listed has a spectrum which begins at zero mass; the massless states form a spinor 
of O(10), the 16. The first sector has states at the zero-mass level of the form 

( ^ ) * _ . | n > , Jt = i io 
(10.28) 

(^)°-i W Y _ L ( * * ) 1 I I") . "Ac = 1,2,3 ; 
• i t 

these form a (10 + 1) of O(l0). These three representations assemble into a 27 
of £6- The left-moving sector supplies for this multiplet the space-time quantum 
numbers of a 4-dimensionaI supermultiplet consisting of a spinor plus a scalar. 
Each twisted sector of the Z-orbifold compactification contains another EQ gen­
eration of quarks and leptons. 

Since there are 27 fixed points on the Z-orbifold, we 6nd 27 new generations. 
It is worth noting that this accounts precisely foT the difference noted earlier 
between the topological estimate of the number of quark and lepton generations 
and the number of such generations found as zero modes in the local field theory 
limit. Apparently, the elements of topology which shrink to points and become 
invisible as the manifold collapses to an orbifold are still visible to strings prop­
agating on the surface. DHVW argue that this correlation between the Euler 
characteristic of the smoothed manifold and the counting of generations in the 
string theory on the orbifold holds under m*'.L3 general conditions. 

Let me conclude with a few comments about the 3-point couplings of the 
massless particles we have constructed by compactifying strings on orbifolds. 
These couplings have a direct importance for phenomenology, since, if we can 
identify two of the massless scalars as the Higgs bosons and a set of the mass­
less fermions as the known quarks and leptons, these couplings are exactly the 
Yukawa couplings of the low-energy theory which are responsible for generating 
the fermion masses. In orbifold compactifications, it is possible to compute these 
couplings explicitly, at least as a perturbation expansion in string loops. 
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The analysis of these Yukawa couplings has been worked out in some detail 
for the case of the Z-orbifold. The couplings of the 9 multiplets in the 
trivial sector can be found directly from the corresponding local field theory, by 
inserting the explicit form of the zero-mode solutions into the standard gauge 
coupling 

/*Aio) " : Jd^zJM. (10.29) 

The couplings of multiplets in the twisted sector have no direct interpretation 
in terms of local fields, but they can be computed as the amplitude for a world-
sheet process in which three twisted strings join and disappear into the vacuum. 
Dixon, Friedan, Martinec, and Shenker have developed methods for evaluating 
these amplitudes explicitly by generalizing the technology used for computing 
expectation values of spin operators. 
Fig. 18 shows two qualitatively different processes which give rise to these 3-
point couplings. In Fig. 18(a), three twisted strings at the same fixed point 
join and contract in a classically allowed process which obviously has a large 
amplitude. In Fig. 18(b), three twisted strings at different fixed points join 
in a process which involves virtual string propagation across the orbifold. This 
process involves intermediate string configurations with dtX «- Rt where R is the 
physical size of the orbifold. Thus, the coupling arising from this process should 
be suppressed by a semiclassical factor 

e~* ~ c-'Rl'°' . (10.30) 

This result is noteworthy for two reasons. First, we have seen in Section 6 that 
a'/R7 is effectively the coupling constant of the 2-dimensional nonlinear sigma 
model which represents the string world-sheet dynamics. Apparently, orbifold 
calculations can represent effects nonperturbative in this coupling constant, and 
such effect may be qualitatively important U> the string physics. Second, and 
much more importantly, this effect offers a plausible mechanical interpretation 
for the magnitudes of Yukawa couplings. If R is at all large compared to the 
natural string scale, we find that these couplings form a natural hierarchy. 

What an unusual and bizarre, but also rich and wonderful, picture of the 
quark and lepton generations emerges from string compactification! Surely we 
have much to learn from our further exploration of this theory. 
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3-B7 
572BA 16 

Figure 18. Two world-sheet processes which giv* rj$e to 3-point couplings 
of twitted »til.« in «n orbifold compictificition. 
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