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1. Introduction

In the first half of this course, Michael Green set out the historical background
of string theory and the basic principles of string mechanics, He described the
various consistent string theories and displayed the spectrum of particles which
they produce. These always include candidates for gravitons and gauge bosons,
in the case of supersymmetric strings, one also finds candidates for approximately
massless quarks and leptons. Tlus, strirg theories provide a new basis for un-
derstanding the fundamental interactions, & generzlized mechanics from which
the dynamics of gauge-invariant fields can be derived as a low-energy limit.

Finding the correct particle spectrum is, of eourse, only the first step toward
unravelling the full structure of this grand theory. One would like to understand
the origin of the symmetries of the theory, and to realize solutions of the theory
which display the observed interactions of particle physics, These deeper levels
of analysis of the string theory are still not completed; indeed, they constitute
one of the most exciting areas of research in mathematical physics, In this set of
lectures | will continue the elucidation of string theories, in a direction that will
shed some light on these large issues. The main topic of these lectures will be
the formulation of manifestly Lorentz-covariant methods of calculation for atring
scatlering amplitudes. We will find, though, that this study leads us directly to
consideration of the gauge invarian.es of string theory, and to some tools which
illuminate the construction of schemes of compactification.

The plan of these lectures is the following: In order to progress in understand-
ing string theory, we must first retrace our steps a bit and review some elements
of the quantumn theory of massless fields in 2 dimensions. The string world
sheet is, of course, a 2-dimensional surface, and the displacements of the atring
in space-time can well be viewed as (massless) fields on this surfuce. We have
seen in Micheel Green’s lectures that the conformal invarianee of 2-dimensionsal
massless fields gives tise to important simplifications in the calculations of string
amplitudes. In this second half of the course, I would like to elevate conformal
invariance to a guiding principle for the construction of string theories. It will
then be very usefu! to formulate 2-dimensional massless field theories in such a



way that their conformal invariance is manifest. This was done in & very beau-
tiful way by Belavin, Polyakov, and Za.molodchiko‘r!” In Section 2, I will review
the formalism which these authars have presented; this formalism will provide
the basic Janguage for our later arguinents. Qur use of conforma! field theory
methods in application to string theory follows the work of Friedan, Martinec,
and Shenker;lz'al Our general development, and especially our treatment of the

critical dimensions and the formalism for the scattering amplitudes of strings and
superstrings, follows their approach closely.

The discussion of string theory proper will begin in Section 3. Here, I will use
conformal invariance to rederive the basic results on the embedding dimension-
ality for bosanic and fermionic strings. Section 4 will discuss the spectrum of the
bosonic string and the computation of scattering amplitudes. In Section 5, [ will
extend this formalism to clarify the origin of Yang-Milla gauge invariance in the
open hosonic string theory. Section 6 will address the question of the general-

eoordinate gauge invariance of string theory, presenting two disparate points of
view on this question.

In Section 7, I will analyze the superstring theory from the viewpoint of 2-
dimensional conformal invariance. ] will rederive the basic results on the particle
spectrumn and present methods for the covariant calculation of superstring scat-

tering amplitudes. In Section 8, I will discuss the 1-loop amplitudes of besonic
and supersymmetric string theories.

The last two sections will give a brief introduction to some of the deeper
questions of the theory, especially the question of the reduction from the idealized
string theory in 10 extended dimensions to more realistie solutions in which all but
4 of these dimensions are compactified. In Section 9, I will outline briefly what is
known about the space-time supersymmetry of the superstring from the covariant
viewpoint. 1 will then present a precis of the approach advanced by Candelas,
Horowitz, Strominger, and Witten 14) for identifying possible 6-dimensional spaces
which might represent the form of the compact dimensions. Section 10 will give a
somewhat more detailed presentation of the orbifold scheme uf compactification
suggested by Dixon, Harvey, Vala, and Witl.en.151 This scheme has the advantage
of allowing explicit calculations of many aspects of the conpactified theory, and
we will find it illuminating to carry through a part of this analysis,

This full course of lectures is still far from comprising a complete summary
of knowledge on string theory. This set of lectures will certainly raise as many
questions as it answers. | hope that you, the reader, will be intrigued to seek the

» A diffetent, and more extenz.ve, selection of topica is given in the new book of Green,
Schwars, and Witten!®!
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answers {0 these questions, and thus to join the quesi for understanding of this
most promising and mysterious branch of fundamental theory.

2. Conformal Field Theory

The main goal of this set of lectures will be to reconstruct the spectrum
and interactions for bosonic and supersymmetric strings using as our primary
tool the conformal symmetry of the dynamics on the string world sheet. Tt is
therefore appropriate that we begin our discussion by setting out the formalism
of 2-dimensiona! conformal invariance, Conformal symimetry is, exactly as it
impliss, the symmetry of conformal mappings of the 2-dimensional plane. One
shouid then naturally expect that a conformally invariant theory will involve
fields which are anaiytic functions of the 2-dimensional coordinates treated as

a complex variable. Recently, Belavin, Polyakov, and Zmolodchikole]{BPZ],

buidding on results from the early period of string theories.[7-°] have shown how
te write conformally invariant theories explicitly in terms of analytic fields. In
this section, I will review this beautiful formalism, which will provide a natural
.anguage for our subsequent exploration of siring theory.

21 T uNF TRMAL CUORDINATES

To begin our study, we must define the basie coordinates, Throughout these
lectures, I will describe both the string world surface and the spacetime in which

it is embedded by their Euclidean continuations. On the string world surface,
this continuation corresponds to

(rto) — —i(rio). (2.1)

Let us then define

w = 7+i0, w=T1—10. (2.2)

The decomposition of a string stat: into running waves moving to the left or to
the right around the string becomes, after this continuation, a decomposition into
analytic and anti-analytic functions on the 2-dimensional Euclidean surface. The
Euclidean string covers enly e finite interval of o and therefcre only a strip of the
2-dimensional plane, shown in Fig. 1{a). However, if we anticipate that the theory
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Figure 1. The string world sheet considered as a region of the complex

plane (a) in the original variables r and o, {b) in the variable 2 = exp(r -t 10}

we will constrv <t will have complete symmetry under conformal transformations,
we can map this region into the whole complex plane by the mapping

z = exp{r +io). (2.3)

The form of this mapping is shown in Fig. 1{b). Lines of constant r are mappad
into circles on the 2 plane; the operation of time translation, r — r + a, becomes
the dilatation,

z — &%z, (2.4)

The string coordinates X#(r, o), separated into ieft- and right-moving exci-
tations, correspond to analytic and anti-analytic fields in this complex z plane.
We must address the question of whether a sensible Euclidean quantum theory of
analytic fields can be defined. A part of this definition must include the identifi-
cation of operators which implement conformal mappings of the z plane. Within
the family of such operators, we should identify the generator of dilatations (2.4)
with the Hamiltonian of the original string theory. Such a procedure of identify-
ing dilatations with the Hamil:onian and circles about the origin with equal-time
surfaces is called radial guantization.



Let us begin to piece together this formalism. To begin, sssume that the
z plane is a flat Euclidean space, so that its metric is gop = fap. In complex
coordinates,

1
743 = 5 fex = g7z = 0. (2.5)

Assume that we can at least construct a theory on this plane which is scale
invariant. Let us work out the consequences of this staternent. Since the energy-
momentum tensor T,p generates local translations and a dilatation corresponds
to a local motion £9 — 22 + 81 - 2, the dilatation current should be just

Da = Tapz?. (2.6)

Since the energy-momemtum tensor is conserved, the statement of scale invari-
ance

8., D* =0 implies Ta® = 0. (2.7)

Up to this peint, these statements are true in any dimension. In 2 dimensions,
however, when we use complex coordinates, {2.7) takes the following form:

T,;" = 0. (2-8)
But then we can use the equation of energy-momentum conservation
B:Tes + 0:Tsg = 0 (2.9)

to prove that
B;T,, = (0. (210)

Thus, the feld T., = T is an analytic function of z. Similarly, 75 = 7 is depends
only on Z and so is an anti-analytic field.

2.2. CONFORMAL TRANSFORMATIONS

It is not unreasonable to expect T and T, as the remnants of the energy mo-
mentum tensor in these complex coordinates, to generate local conformal trans-
formations. Let us try to formulate this conjecture more precisely, A natura)

-n |1 ' "Iy "M m 1y i ' L]



form for the operater which generates the infinitesimal conformal mapping

z = z+¢€"(2) (2.11)

would be fdz ¢*(z) T,,(z); the integral should be taken over an equal-time sur-
face, that is, one of the circles shown in Fig. 1(b). Let us, then, define

dz
T, = a7 ez} Tz}, {2.12)

where the path of integration is a citcle about the origin. Note that, since the
integrand is an analytic function, we may move the integral from any such circle
to any other by a contour deformation without changing its value; thus, T, is
a conserved charge. We would expect that the transformation (2.11) would be

implemented in a quantum theory in the form of the commutators of loral fields
with (2.12).

We can easily check this conjecture for the simmple case of a free tnassless
scalar field. Write the action for such a field as

/E - L /d’za,xa;x. (2.13)
2n

The propagator of this field is the Green's function for the Laplace equation
in 2 dimensions: {X{2;)X(2;)) = -2loglz; — zal. Split this into the picees
corresponding to the analytic and anti-analytic components. The propagator of
the analytic fieid is then

(X(21)X(zz)) == —log(zy — z3) . (2.14)

The mnalytic part of the energy-momentum tensor for this field is given by
1 7
Tee = ~5 (8. X} : . (2.15}

Hencefortk, unless a different convention is indicated explicitly, T will always
consider products of analytic felds 2t the same peint to be normal-ordered.

Now we are ready to compute the comrnutator of the operator (2.12) con-
structed from (2.15) with some lacal field operator O(z). X{z) is actually not
a good fi-st choice, since this field can have logarithmic branch cuts (as seen in



(2.14)). so I will chaose instead to compute |T,,3,X(z)]. The contour defining 7,
may be taken to be the equal-time circle containing . We may make use of the
analytic properties of T(z) and 8,X{z) to evaluate this commutator by relating

it to expectation values on the plane, Consider, then, the correlation function
defined by functional integration:

(T, 3:X(z)) = % / DX ¢S T, 3.X(2) . (2.16)

The functional integral defines the operator product by setting the operators in
time urder. We may define the equal-time commutator of two operators, then,
as the difference of iwo correlation functions of the form (2.18) in which the
operator T, has been displaced slightly forward and backward in time (that is,
in radial distance fram the origin) with respect to the point 2, Thus, we write

(iTe, 2:X(2)))

= %/va’ (Tulr = 2| + 8)3,X{2) — Te(r = 2| - 6} 8. X(2)).

(217)
. .

. ©
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Figure 2. Computation of » commutator in tanma of the poles of corre-
lation funciions.



The construction is illustrated in Fig. 2. As the figure indicates, T, is defined as
a contour inlegral: since the integrand Is analytic, we may deform the contour
except where we encounter a singularity. Thus, by the cancellation shown, the
commutator depends oniy on the singularity of the correlation function of T'(2')
and 3,X(z) in the limit 2/ — z. This is easy to work out; letting (X (2') X (z)}
denote the Wick contraction (2.14), we can compule

T(z') 3,X(2)

—%a.x 8. X(z) 3.X(2)

= —20.X(3.X(:") . X(s)}-2 + (novsingular)  (218)

= a,X(Z ') (—z—'-—__l--;ii

» (nonsingular) .

Taylor-expanding the field about =’ — 2 producss

T(¥) 8,X() ~ 1 ),a JX(2) 4 (z,’_z)azxm 40 (2.19)
This imples
1
(T 8X(N) = § 2 efx) [ ypoext) + mgo2xa + -] -

Det -3, X + €¢-33X .
(2.20)
Is this a sensible resuit? Under the transformation z — z -+ ¢(z), we should
expect
X(z) — X(z) + €¢8,X(z) ,

(2.21)
8:X(2) = 8:X(2) + 3,09,X(2) +¢31X(z) -

We may explain the extra term in the second line by noting that .X is a tensor,

of rank {—1). In general, » tencor transforms under reparametrizations according
to

“8-(z) — B2t (z(3). (2.22)

Il we specialize this equation to coufurmal transformations in 2 dimensions, and

10
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consider tensors with r analytic indices only, this transformation law becomes

£75°(8) — (%) "5 (2(2)) . (2.23)
For an infinitesimal transformation, £ = z 4 ¢(z).

bt = —rd,e-t 4 €-3t; (2.24)

this ptopetly reproducen (2.21) and (2.20) for r = —1.
Under s dilatation # = Az, (2.23) takes the form

t = Afg(ai), (2.25)

so that the rank of an analytic tunsor ls also its scaling dimension. Normally
in particle physics, we quote the dimension in muss units; thus we shonld write
d = -r. Assembling the plecey of our analysis, we find that the commuiator

of the generator of & conformal transformation T, with a local tensor field of
dimensicn d; should be

[To, t{e)] = dy- Byt 8yt(z) + - 93e(2) . (2.26)

This commutator follows, by the manipulations described above, from the oper-
ator producl expansion

T(w)t{z) ~ ), t(z) + ;—- 9,t(x) + (nonsingular) . (2.27)

This operator prodnet formule #ncodes the conforma) transformation properties
of fields in & way which will prove very convenient for mathematical analysis.

To gain & better understanding of the formula (2.27), it will be helpful to
work thronugh one mere exemple. Consider the aperator ¢*X(¥) formed as the
exponential of the free field. Let us compute the operator product of the free-field

un

“n lll I ] nl 'I I [] || . ' 4 oo \



T(w) with this field:
—%(BJ (w))* FoXs} —%((a,,xw) ia - X{z)})* i Xto)

- "li +28,X ({8 X{w) ia - X{z))) e X(2

~ 2 axtn i OX wxi)

(w — z)2 w-z
(2.28)
50 that
_1 2 ia X(x) ...121_2_ ia X(2) 1 fa X
S(0uX)% ¢ ek + w_za.(e ) + ... {2.29)

Thus, e’ X[*) is a conformal tensor of dimension a?/2. This same scaling di-
mension ¢an be read from the correletion function

(cinX[w" e-laXll]) = expl-allog{w ~ 1)) = (w-2)"°", (2.30)

Not all fields are Lensors. Derivatives of tensors, for example, have more
complicated transformation laws. BPZ refer to felds with the above transfor-
mation laws as primary fields; their successive derivatives are cailed secondary
fields. In general, the operator product of secondary fields with 7'(z) has higher
singularities than the double pole seen in (2.27).

In addition to analytic fields £(z), transformed by the action of T,,, 2 con-
formal field theory will have anti-analytic fields {(%), transformied by the action
of T3;. The simplest of these Selds will be tensors with F anti-analytic indices;
these are the primary anti-analytic fields of dimension &, = -r. The theory of
these tensors and their transformations ¢can be developed precisely in parallel to
the discussion of analytic tensors which we have just completed. More generally,
we should expect that some primary fields will transform with both analytic and
anti-znalytic indices; these will be characterized as tensors of dimension (d, dy).

2



2.3. THE CONFORMAL ALOCEBRA

The elernentary infinitesimal conformal transformations corresponding to
¢(z) - "' " are genzrated by ithe Fourler components of Tz} on the circle:

dw A4 g
bn = ¢ o T(w) . (2.31)

From Ml:hul Green's lectures, you might expect that the L, are the Virasoro
operators S S verily this, let us compute their algebra:

dw dz | .. m
erLml = [f 2," 27" - i-;r-;: fm] z +IT(Z) w '“T(w) . (2.32)

The change in the order of the z and w Integrations represents 2 small displace-
ment of the 2 contour outalde and the inside the w contour, implementing the
functional definition of the cemmutator that I have described earlier.

The difference of integrals is nonzero only by virtue of the singularity of the

operator product a3 z — w, In the free boson field theory, we can readily compute
this singularity:

T()T(w) = (-%)’-z-((a.xa.,xn' +

+ (=3)7+4-9,X (8,X8,X) 8 X + (nonsingular)

- %((T-iwﬁ)n + 8.X T--_)_,a WX 4 e
= % (2 —lw)*
+ i [-%(a,,,x)"] + oy o |30+

{2.33)
The last two terms are precisely what would be required for T to transform itself

28 a tensor of dimension 2 under conformal transformations. (Note that the iast
term fixes the normalization of T'(2).} The firet term is an extra c-number—
generated as 2 purely quantum mechenical effect. The form of this term is
determined by scale trancformation properties: Since T has mass dimension 2,

13



this lerm must be a pure powes (¢~ v}~ ¢, However, the overall coeficient of this
term is not fixed and can vary from system fo system. In o genera) conformal
field theory, then, we expect the T ~ T operator product to take the form

el2

TRT) - o oos + w)

= T{w) + ('_'_w) BT + --»  (2.34)

where ¢ is a fixed number,

We can now find the genera) form of the commutator of two L, operators by

inserting (2.34) into {2.32), and drawing the z contour tightly about the point
w. This gives

|LnyLm] = ;:_:’; TS ::; e
/2 2 1
x [(,_w)‘ * e T Y e a.,,rl
= % wM+1{(n+1]wn,2T(w) + wnd-lawr
+ (e/2) -w:e {n+1nn~- 1)}

= f:w {(2n+2)w"+"‘+‘1'(w) - (m+n+2ut7*T{w)

+ 5— nin+ 1){n = PJw™*"" l}

(2.35)
This is just

[ZaLm] = (B=m)Logm + ;’—211(:: +0(n=1)8m+n),  (2.36)

which is indeed the Virasoro algebra, The constant ¢ i called the central charge

of the the Virasoro algebra; this takes the value ¢ = 1 for ane massless acalar
field.

u



We can see from (2.34) that the constant ¢ appesrs in the vacuum expectation
value of the square of the operator T,,. It can be argued on this basis that ¢
must be positive if the underlying Hilbert space has o positive metric”"! we
may derive thie result more explicitly as follows: In the next few sections, we will
construct a state |0}, such that L, [0) = 0 for » 2 0, and an inner product such
that LY = L_,. Using these ingredients, we may write:

B e

¢ = {0{Ls, L_3]|0) = (O L0} > oO. {2.37)

The most important of the L, is Ly, the generator of dilatations. It should
be noted, though, that the central charge term in (2.36) actually vanishes for the
get of threo generators L, Lo, L. These operators generate the infinitesimal

transformations
bz = a + Bz + 2 (2.38)

From (2.36), we see that these generators form a closed subalgebra. The subgroup
of conformal translormations generated by this algebra is the group of fractional

linear transformations
z -z = (::::) . (2.39)

(Expanding (2.39) about a = d = 1, b = ¢ = 0 reproduces (2.38).)

The complementary algebra of anti-analytic transformations is generated by
a second set of Virasoro operators

In = f _d:'. g"+HiT (@) . (2.40)

Just analogously, these generators possess a closed subalgebra generated by
(I-hzo‘IL] with vanishing central charge, Together, the two sets of opera-
tors generate infinitesimal transformations of the form

bz = a+ Pz 422, 6T =1a+ PE + 7, (2.41)

acting on all of the operators of the conformal field theory. This tiansformation

is the infinitesimal form of a fractional linear transformation (2.39) with general
complex coefficients,

15



When one composes two mappings of the form (2.39), the parameters of the
product mapping are obtained by matrix multiplication of the original pararmn-
eters. In particular, the determinants (ad - be) simply multiply. Since one of
the four parameters of (2.39) is redundant, we may fix (ad = &) = 1, Then the
set of mappings (2.39) with complex coefficients, considered as a group under
composition, is isomorphic to the group of 2 x 2 matrices with unit determinant,
SL(2,C). This subgroup of the full conformal group plays an imporiant role in
string theory, as we will see in Sections 4 and 5.

The definition of the La may be considered as a Fourier analysis of T'{z). It
will be convenient to introduce a set of conventions for Fourier-analyzing a more
general tensor field t(z), of dimension dq. Let us define

t, = f;;:’_‘ zn+:t.-1!(2] . t1(z) = ﬂ;i;mt“,..n.-d. \ (2.42)

To see the utility of this definition, compute the commutater of the Fourjer
cormponent {,, defined in this way, with Ly, We find

_ —_ ﬂ"d‘-l
|Lo.ta) = [f 271 ) 2m er: f 27”} wT(w) 2 {2
Y O R A P 1
B fﬁ g 2m [(w - z)? Hz) + (w = z) Bt
(2.48)
- f_di 24l (z) + 28.1(2)]
2rs '
— E n+d, -1
= -—nf 25 2 t(z) .
Thus,
[LO:tﬂ} = =nlp; (2.44)

that is, £, lowers Lp by n units. In siring theory, we wi)) interpret the dilatation
generator Ly as the Hamiltonian of the single-string dynamics. Fourier compo-
nents t,, will be annihilation operatcrs for n > D and creation operators forn < O,
Ladder operators of anti-analytic tensors may be defined in an anaiogous way.

16



3. Critical Dimensions

In order to connect the conformal field theory on the complex plane defined
in the previous section to the dynamice of coordinates X*(r,0) on a string, one
further condition must be satisfied. The program displayed in Fig. 1 requires that
we replace functional integrals over fields on the string surface with functional
integrals over fields on the plane. If the field theory of two-dimensiona) fields on
the string is conformally invariant, it would seem that we could freely make this
replacement. However, there is a subtlety which we musi recognize and deal with.
The usual criterion for conformal invariance is that expectation values of (scalar)
operators are unchanged by conformal transformations. This leaves over the
possibility that the funetional integral over fields conld change its normalization
by & c-number factor when we make a conformal transformation. This factor
would disappear when one computes a correlation function. However, in string
theory, the string scattering amplitudes will be identified with the functional
integrals themselves, and these possible c-number factors will appear explcitly
as viclations of conformal symmetry. We can teke the transformation shown in
Fig. 1 absolutely literally, then, only if we can identify and cancel this extra
c-number term. In this section, [ will discuss that cancellation, which, as we will
see, implies that the string must live in a specific critical embedding dimension.

3.1. CONFORMAL TRANSFORMATIONS AND CONFORMAL GHOSTS

We should begin by reviewing the route from a geometrically invariant for-
mulation of the string dynamics to expressions of the form of eq. {2.13) in a fixed
background metric. A geometrically invariant expression of the dynamics of the
string coordinate field is given by writingm]

z = [DXDg e (3.1)

where
fﬂ = .81—17 fd*eﬁ,;“&,){ﬁ&ﬂﬂ (3.2)

and the functional integral is taken over both the fields X#(£) and the metric
gap(€) on the world surface. Since the action (3.2) is reparametrization invariant,
we are free to change coordinates to simplifv the form of the metric. On the plane,
or on & region such as the strip of Fig. 1 with the topology of a plane, we may
use 2-dimensional reparametrizations to remove two degrees of freedom from ga g

17



and convert it to the form

Gap = C¢(E)'6aﬂ . (3'3)

The special case of (3.3) with ¢(£) = 0 is exactly the flat metric, eq. (2.5), used
in the previous section.

If we insert {3.3) into the action (3.2}, ¢{£) cancels out. This is exactly
the statement that (3.2) is classically conformally invariant. If the metric has

the form (3.3) in one coordinate system, a conformal transformation z — 2(z)
carries

2
ez {3.4)

dz
dz

9z —

so this tranformation causes simply a shift of ¢(£). If ¢(£] is irrelevant, then, we
can move freely between different conformally related coordinate systems. This is

what we need to view the strip and the plane shown in Fig. 1 as being completely
equivalent.

If indeed the integrand of (3.1) is independent of ¢(£), we can treat this
variable as a gauge parameter and fix it as the same time that we fix the
reparametrization freedom. In this case, the functional integral of eq. (3.1}
should more properly be written as

- 1 -z )
Z = T /DXDge . (3.5)

where the two prefactors represent the volumes of the reparametrization and
conformal groups. This expression may be evaluated by using the Fadde'ev-
Popov procedure. If we gauge-fix to the coordinate system (2.5), shifting the
conformal factor ¢{£) simply shifts the diagonal component of the metric; this
leads to a trivial Fadde’ev-Popov determinant. The off-diagonal terms in the
metric are induced by reparametrizations

69z = al(J'EI]; (36]

setting these components equal Lo zero as a gauge condition leads to a nontrivial
deterininant

A = det(3d;) - det(d5) (2.7)

which may be represented by 2 functional integral over ghost fields. In all, we
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find that the gauge-fixing replaces
1 = [ {PanBrc” 458, 7
———ng=ijDcc J(bentzer 4820, (3.8)
Vr:p"rwn!

where b, ¢, 5, € are anticommuting fields, I have mssi_gned the ghosts ¢,  the
transformation properties of reparametrizations §£%, 6¢ ; the antighosts have the
t;anformation laws needed to make the action of (3.8) geometrically invariant.

Unfortunately, the formal property that the integrand of (3.1} does not de-
pend on &{£) is true only clussically and (generally) disappears in the quan-
tum theory. Polyakovm]discovered that the regulation of the functional in-
tegral over X*(€) breaks the conformal symroelry and leads to a multiplica-
tive c-nummber dependence on ¢: Under a shift from ¢ = 0 to a nonzero ¢(£),
Zx = [ DX exp(~ J L) tranforms according to

7 ~ zx-em|- 2 [ eeasio)] (3.9)

whete D is the number of coordinate fields, or, equivalently, the dimension of the
space-time in which the string is embedded. This violation of conformal invari-
ance can be understood as a consequence of some considerations of the previous
section. Since a nonzera ¢() can be generated by a conformal tramformation,
let us look more closely at the algebra of conformal transformations derived there.
In particular, let us apply 83 to eq. (2.34). Using

1

28:9,loglz —w| = Br(z —w)

= 26 (z-w), (3.10)
we find

OxTun(2) Tuu(w) = —¢- =836@ (2 —w) +:+- (3.11)
Thue, the existence of the central charge implies that T, is not completely an-
alytic. By the logic of eq. (2.10), this implies that the system is not completely

scale-invariant. Let us manipulate this relation further by applying 85 and using
{2.9} to exchange T, for T,z. Then

Tal?) Tus(w) = e 350,056z~ w) + - (3.12)

An infinitesimal ghift of ¢ is brings down from the exponent ¢f the functional
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integral the term
1 z C
- [ #esamate (5.12)

Thus, eq. (3.12) implies that a shift of ¢ produces a multiplicative c-number
factor of just the form of (3.9), with coefficient proportional to the central charge
¢ of the Virasoro a.lgebra.ln]

In many contexts, the conformal transfarmation law (3.9) is perfectly accept-
able. In a few cases, it is actually physically relevant; for example, in a statistical
mechanical system on a strip of finite width, mapping the strip to the full plane

and applying (3.9) gives the correct dependence of the free energy on the finite
size of the strip.I“"s}' We have already remarked, however, that the standard

formulation of string theory requires that the conformal motion be 2 gauge sy
metry of (3.1). The extra term in (3.9} is unacceptable. This higher criterion v!
conformal invariance imposes an additional stringent constraint on 4 cunlorn.u!
field theory: The central charge ¢ of the Virasoro algebra must vanish identically.
This criterion is made especially dificult to Tulfill by two observations made in
the previous section: First, the ccordinate fields X* each contribute one un * o
c, for a total of ¢ = D. Second, an additional field on the world shect can give
negative, cancelling, contribution to c only if it creates states uf negative metrir,

Polyakov realized that this apparent dilemms has a very natural resolutinn
The reparametrization ghosts introduced in (3.8) create negative-metric stutes
and must, in any case, be inciuded in any analysis of the conformal transformation
properties of the string finctional integral. Let us, then, set up the conformal
field theory for these ghost fields and compute their contribution to ¢,

The fields c¢* and b,, otey Lhe clessical equation of motion
i);{‘ = 5,—,6,, = 0. (314]
Quantum mechanically, the action given in (3.8) implies the propagater

(Seel2) ¥ (w)) = —— . (318

Z - w

We may then treat ¢ and b, as analytic tensor fields. Since the Fadde'ev-Pupon
procedure assigns to ¢* the conformal properties of the displacement 7, this feld
should transform as a conformal tensor of dimension (—1}. The complementary
antighost b,, acquires dimension 2. The ghost and antighost associated with £7,
¢* and by3, tra*sform as anti-analyLic tensors with dimensions {—1) and 2. }rom
here on, ] will drop the tensor indices and refer to these fields as ¢(z), L(2), (%),
and b{z).



The energy-momentum tensor for ¢ apd b can be reconstructed from the
requirement thal it reproduce the operator producet (2.27) with each of ¢ and b,
assigning these field the correct dimensions. The result is

T(z) = —258;# - a]h + (3.16)
One may check that the single and double pole terms in the operator product
of this T(z) with itse)l are given in accordance with (2.33). Mote generally, we
thight imagine a systemn with anticommuting anslytic tensor fields
b, dimension () ; ¢, dimension (1-j), {311
always with the propagator {3.15). This system is described by
T(z) = —jba.é + (1-5)8.b¢. (3.18)

¢ rot dificult 1o work out the central charge of the b, & system for a general

value of ¥, We must simply compute the e-number term in the operator product
of (3.18) with itseif:

T Tw) = 5% (B(2)8ue) (Butblw)) + (7 = 117 (Bube(w)) (&(10u8)
+ 3y~ 1){ <5(z)é{w)> (B,é(z)aws) + (3.5(:)8.,,,&) <é(z)5(w)> }

- (=) * 0= (55)

+ 2l - 1) [(,:i,)z] L_lu,]

a3 a
- (B87-6i%+1)

(z —wjt
(3.19)
Thus, we find for the central charge of anticommuting tensor fields:
e = -2C, = -2-{6§( -1} + 1). (3.20)
If b and ¢ kad been commuting fields, the propagater {3.15) would have implied
wy g 2 1
(82} b)) = -——. (3.21)

and the change of sign in this equation would have induced a change of sign in

21



the finai answer. Thus, lor commuting tensor fields

e = +2C; , (3.22)
where C, is just as given in (3.20).

Setting J = 2 in (3.20), we find that the .ystem of reparametrizaiion ghosts
hes ¢ = —26, This cancels the contributions from X*(z) only if the «tring is
embedded in a space of 26 dumensions. In that case, however, the canformai field
theory on the string is conformally invariant in the cirong sense describeil a. ihe
beginning of this section: The complete functional integral is unchanged, evea
by overall myltiplicative factors, under a conformal transformation.

3.2. SPINORS ARD GHOSTS OF THE SUPERSTRING
From the formalism we have developed, it is not difficult to give a paraliel
discussion of the embedd g dimension of the superstring. The superstring is
obtained from the ordinaiy string by extending the gecwetrica) invariance on
the world sheet from loca] reparametrization invariance to Jocal supersymmoetry
and replacing each coordinate field X¥ by a supermultiplet {X#, ¥4}, where W4

is a Majorana fermion. Let us Bret discuss this new rpatter field, then turn to
the new ghosts. A Majorana fermion in 2 dirnensions has the action

1 -
[; - ;-T-r[d"'z Vv 9v (3.23)

where, because of the Majorana nature of ¥, W ~ ¥7+°, If we introduce the
explicit representation of Euclidean Dirac matrices

= (c: ;) o= (g :“) . ¥ = (g) , (3.24)

this takes the form
L= f; f d’z [vas¥ + $a.9] . (3.25)

The dynamics of the field ¢ it almost exactlr that of a b, & system. We can make
the connection explicit by combining two species of Majorana fermions to form

b=wleigl, & =9'-igl. (3.26)

The new fields are just the positive-chirality part of a Dirac fermion and its
complex conjugtte. (The negative-chirality part of the Dirac feld is anti-analytic
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and may be built from al, E?) These fields have an action proportional to f 563,-6
and thus a propagator of the form Jf (3.15). Since a fermion feld in 2 dimensions
has dimension %, two Majorana fermions form a 5, £ system with 3y = % (plus the
corresponding anti-analytic system). This system of two Majorana fermions has
¢ = 1. We might have guessed this resnit from the well-Xnown property that a
Dirac fermion in 2 dimensions can be bosonized, that is, replaced by a equivalent
system containing one real scalar field. Bosonization will come to play a major
role in our analysis, beginning in the next section,

In addition Lo the new matter fields, we find that the superstring has new
ghosts corresponding to the pavge-fixing of the new geometrical invariances of this
theory. Without unravelling the whole structure of these new transformations,
«:¢ can easily guess that they will correspond, in conformal coordinates, to the
transformation of the world-sheet gravitino field by a spinor parameter:

gz = 3, (3.27)

and the corresponding transformation with an analytic derivative. In {3.27), the
(lowered) i dices ¢, § denote 2-dimensional spinor indices corresponding to the
upper and lower components of {3.24). Since n is an anticommuting parameter,
it must be replaced by a commuiing ghost field +%; this field transforms as a
conformal tensor of dimension (~1). This field will have the action

[c = %[dzz Ba; 37, (3.28)

where | have introduced an antighost B;, alsc a2 commuting field, of dimension
3. These two fields, which I will refer to henceforth as (z) and 8(z), form a

system of commuting fields with j = §. Thus, they contribute

c = +2C;

;=3 = 11, (3.29)

L7

These fields have anti-analytic counterparts F(Z), §(Z) which contribute to the
central charge of the Virasoro operators L,,.

Adding the contributions to ¢ from all of the fields on the wor'd sheet of
the superstring—coordinates X ¥, fermions ¥* (taken in pairs), anticommuting
ghosts &, ¢, and commuting ghosts 8, yv—we find

c=D+%D——26+11=§-(D-—10). (3.30)

The superstring is then ¢onformally invariant in the strong sense required for
string theory when it is embedded in = space of 10 dimensions.
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The restriction of string theories to a particular space-time dimension is a
striking requirement, unusual in the formulation of a physical theary. Much
effort has been spent trying te answer the qv :stion of whether string theories
are well-defined outside of this critical dimension, with results which are so far
inconclusive. For the remainder of this set of lectures, I will restrict myseli 1o
working in the critical dimension. We will see that the peculiar choicez of d -. 26

and d = 10 actvally work miraculous simplifications in many aspects of the
physics of strings.

4. Vertex Operators and Tree Amplitudes
Now that we have set up the dynamics of fields on the string world surface in
terms of conformal feld theory, we are ready to construct the spectrum of <
of the string and the interactions between these states predicted by the '
We will find that both of these features of string dynamics may be presentes

a2 most natural way in the language of conformal ficld theory.

4.1. THE BRYT CHARSE

Before beginning Lhis discussion, however, we need one more piece of techni-al

apparatus. In the previous section, we introduced into the siring world sh-+ *he
ghost felds (2], ¢{z), nating as we did this that these fields belong to 2 gquant.m:
theory with negative metric. The excitations of the ghost field will naturatiy

become a part of the spectrum of states of the string. It is impartant, thouel,
that we should not find negative metric states propagating on the world sieot
as a result of a physical scattering process. Actually, negative metric states can
arise not only from the ghost excitations but also also from the longitndinal
and timelike excitations of X#4({z). These modes of excitation were explicitiy
eliminated in the light-cone gauge treatment of the string dynamics presentsd i
Michael Green's lectures, but they are stil} present in the covariant form-i n
that I have been constructing. In order to disentangle these dangerous states,
we will need some mathematical teol which will enable us to distinguish physical
from unphysicil modes of excitation.

The standard tool for identifying and controlling the unphysical states qf a
covariantly quantized field theory is the ghost charge of Beechi, Rouet, Stora, e
and Tyupin“ﬂ (BRST). This is & nilpotent charge—

Q2 =0 (4.1)

—which is Hermitian, commutes with the Hamiltonian, raises the ghost num-
ber by one unit, and annihilates all ghost-free, gauge invariant states. Such a
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charge can be constructed in any covariant field theory quantized in a way which
introduces ghosts.

Once the BRST charge @ bas been constructed, it can be applied in the
following way: The relation (4.1) implies that every eigenstate of the Hamiltonian
is acted on by @ as a member of one of the following types of multiplets:

singlet : Q |¥s)
doublet : Q ¥}

0;

(4.2}
I¥2) Q l¢2) = 0.

Since Q is Hermitian, |4)2) has zero norm: {¥3|¢3) = {¥1(|Q@?}¢;) = 0. The gauge-
invariant, ghost-{ree states should be BRST singlets; it is necessary to check in
detai! for each theory that the on'y 1-particle states which are BRST singlets are
of this form, and that all such states have positive norm. Let us assume that this
is true. Then the initial state in any scattering process will satisfy Q |¢in) = 0.
But then, since |@Q, H] = 0, eny state obtained by time-evolving this state will
also be annihilated by @. Thus, the final state of a scattering process must be
linear combination of BRST singlets and zero-norm states. If we take a matrix

element of this state to compute the 8-matrix, the zero-norm pjieces disappear,
and we find

(WrlS ) = (Y0l S |¢io) (4.3)

where the states on the right-hand side are projected onto BRST singlets. Thus,
the properties of Q allow one to prove that, if § is urnitary on the full Hilbert
space, as is guarranteed by Hamiltonian evolution, it is also unitary when re-

stricted to BRST singlets. No probability disappears into ghostly states which
transform nontrivially under Q.

Now that I have discussed the use of @, I would like to describe roughly how
to define @ in any given theory. This discussion abstracts a general construction
due to Fradkin and Vilkoviskii’® Consider a theory with gauge invariances
generated by charges Gi. Let &;, ¢/ represent ghost and antighost fields satisfying
{8:,¢’} = &7. Then we can begin the construction of @ by writing @ = ¢*Gi+...;
This expression annihilates gauge-invariant states and otherwise has the formof a
gauge transformation with gauge parameter ¢*. Now we need only complete this
expression to form a nilpotent charge by adding a piece which will act nontrivially

» A beautiful and detailed review of the BRST charge and its uses in firld theory has hean
given by Kugo and Ojirnt..l"l
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on stiates with ghosts. A suitable choice is given by writing
’ 1 k_ 5.8
Q=G + Efijcﬂbk; (4.9)

where the f,;* are the structure constants of the algebra of the charges G,. We
may compute

) 1 . 1 -
Q% = ¢'dG,\G, + ifg,"‘c’c'{bg,cz}ﬁ?g + Ef,;kftm"{c-’c‘bk,c"’ctbn}
1. . 1 . 1 .
= Ec'c’fu"'ct + Ef.;'*c’ﬂ""k + ;!-'.v'"fu"'f:’C‘C‘bn (4.5)
1 .
= ] + Efi,','hfqg"(c’c‘ctbn) .

The remaining term vanishes by the Jacobi identity.

To make this construction more concrete, one must, in any specific system,
assign appropriate values to the charges and ghost operators given above. In
string theory, we clearly would like to identify the G; with the conformal gener-
ators L, and the ghost operators with the Fourier components of b(z) and ¢(z).
This program is complicated by two features, the fact that the gauge algebra,
first, is infinite-dimensienal, and, second, may contain a central charge. However,
let us overlook these issues for the moment and try to construct a @ of the form
Q= 3_eaLl.+.... Asuitable completion is given by interpreting the structure
constants which appear in (4.4) as arising from the action of T, on the the ghosts
themselves. Thus, for the bosonic string, we write

Q = f % : e(2)|[TH)(2) + %T“")(z}] ', (4.6}

where T} is given by (3.16). The anti-analytic fields give a second BRST
charge

Q= f % : ¥DT ) + %T‘m(i)] : (4.7)

built using the antj-analytic components of the ghost fields.

To check the nilpotency of this Q, we represent @Q* = 1{Q,Q} as the dif-
ference of correlation functions in which one contour lies just outside, then just
inside, the other. This reduces the computation to the analysis of singularities
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in the operator product of the two integrands. Using the explicit form of T(4:)
and the general expansion (2.34), it is not hard to show that the anticommutator
vanishes if the combined system of X,b,¢ has total ¢ = 0. (An analogous argu-

. =1 . . iee , . .
ment implies that Q@ = 0.) Here again, the choice of the eritical dimensionality
plays an important role in simplifying the formalism.

4.2, BOSONIZATION OF THE GHOSTS

Certain aspects of the BRST formalism for the string are made clearer if
one introduces an alternative representation of the d, ¢ system in terms of boson
operators. This bosonization of fermions is a familiar featute of the physics of

2-dimensional syst.erns.im‘nl It will scon be clear that the boson-fermion corre-
spondences are clarified, and new generalizations are auggested, by the notation
of conformal field theory. Let me now review the conventional bosonization in

this language, and then generalize to the bosonization of the reparametrization
ghosts,

In the previous section, I noted that a massless complex fermion (or two
Majorana fermions) in 2 dimensions gave the same central charge ¢ = 1 as a real
boson field. I will now argue that these theories also give identical results for
correlation functions, if we make the correspondence

Wl4ap? o V2400 L gl iR e VZem ) {4.8)

If ¢ is taken to be an ordinary free boson field, (2.29) implies that both of the
exponentials of this field written in (4.8) have dimension % This observation
and the fact that the ¢ system has ¢ = ] imply that, in correlation functions
of fermion operators with factors of T'(z), the singularities as operators T(z)
approach fermion operators or one another are matched if we replace operators
built from ¢!, 4% with the corresponding operator built frora ¢. Using (2.30),

we can compute the singularity as two of the exponentials of ¢ approach one
another:

V2ei#(5) /=) 2exp(—log(z - w)) = (sz) ; (4.9)

this properly reproduces the singularity of the corresponding product of fermions.
Thus, these correlation functions are analytic functions with the same singulari-
ties and s0 must be identical. The system of two fermions is therefore physically
equivalent to the bosonic theory built from ¢. This is the free-field limit of the
conventional bosonization of fermions in 2 dimensions.
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Describing the reparametrizat -n ghost system by bosons is obviously mote
of a challenge, since this system has ¢ = —26. 1 will show, however, that this
system i3 equivalent to a theory containing one real boson field 6. I we follow
the argument just given, we must find elements of the ¢ theory which allow us
to match the central charge, the dimensions of » and ¢, and the singularity of the
b—¢ propagator. Begin with the central charge. Let us choose as a trial form for
T{z} the somewhat more general dimension 2 operator

T(z) = —-21-(6.0)’ + Ado, (4.10)

where 4 is a constant to be determined. This gives

T{w) T(z) -v(_%)?((awaa,a)) -2 + A? {810 Rlg)

+ (less singular) (4.11)

11 , 23
2 (w— )4 A fw — z)4 +

-

Thus, we require 1242 +1 = —26, or A% = —9/4. We can rectify the sign in this
relation by changing the sign of the kinetic energy term in the ¢ action and in
T{z). This gives ¢ the wrong metric, but that is only to be expected of a field
which describes 2 ghost. The ¢ propagator then takes the form

(o{z}e(w)) = +log(z—w). {4.12)
With this choice,
TE2) = +%(a.o]’ + %850 {4.13)

satisfies (2.34) with ¢ = —26.

By analogy to {4.8), we might seek correspondents for & and ¢ which are
exponentials of 7. Let us first compute

3 o(w) aclz))| =) + ...
/

1 2 3 1 ao(s)
[ a a] __[w—z]’ [ + ...

T{w) 20 [%((awa(w) aa(z])): +

L AR

(4.14)
This implies that ¢2°{%) is a conformal tensor of dimension Ja(a — 2). Thus, we
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are motivated to identify

Bz) « e %), ¢(z) ~ o, (4.15)

since the two exponentials have dimension 2, (-1}, respectively. These operators
also reproduce the b-¢ operatar product

1
z-w

e~} () o exp(~ log{z — w)) = {4.16)

Thus, we may reproduce any correlation function of b, ¢, and T(¥¢) by operators
built from o.

I would now like to rewrite the BRST charge in this bosonized language.
This requires some care in the definition of operator products. Thoughout my
discussion, | have been assuming that all products of operators at the same point
are normal-ordered. The normal-ordering of & and ¢ operators, however, iz not
the same as the normal-ordering of the corresponding & operatsrs, and 5o we must
be careful when we convert complex operators from one picture to the other. Let

me, then, give the explicit definition of the 3-ghost operator which appears in
(4.6):

1e(2) T () : = Tim [{: ef2) 1 : T (w) 2}

) (4.17)

-+ ((z—_lw?d(w] + (3—_;’76.,:)] .

The last two terms cancel the singular terms resulting trom contraction of ¢(z)

with the factors of b(w) in 7(%°); only then is the indicated limit emooth. If we
bosonize each operator on the right-hand side of (4.17), we obtain
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o) TH(2) : = Jim {e’(‘)-(%(a.,,o)’ + 30%0)

+

1
o RIS N G f m awcv(w))]

- R a[’) _ l _ 1
}I—’ﬂn ‘e { (z—w)? (z—t.u)a'""ﬂr

1 2 , 3.4 1.
+ 3{0.0)° + 53‘”0}.

1 ew , 2

oy T-w)

B.,.c"(“'))]

= Jm, [‘{‘(z-lw)e - (sz)a“’"

3 1 1 3
- E(awa)’ - —2-63,0 + 5(3;»0)’ + 533}”} eur(m.r):

1__ o(w) 2
G-wp T W

+( o

= e?(“N (8.0} + 3lo}

= "9 {{3,6)? + 80} - Buodu(c”).

{4.18)
Since Q involves the integral of this expression, we may integrate the Jast term

by parts; then the integral of (4.18) falls into the form 2 - § dw : ”(WIT(?) (u) :.
The factor 2 is just what we need to convert (4.6) to

f %‘1. : (@) Pltot)(w) &, with T% = T(X) 4 T9) {4.19)
1

From this expression it is even more straightfor~~rd to apply the trick described
below (4.6) and show that Q2 = 0 it T(***) has zero central charge.
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4.3. STRING SCATTERING AMPLITUDES

We are now ready to consiruct the rmplitude for scattering of strings. To
do this, we will pursue the following strategy: We will first identify asymptotic
single-particle etates of string which can represent the initial and final statea of a
scattering process. To avoid the propagation of unphysical modes, we wil} insist
that these states are BRST invariant. Then we will cast these states into the
form «of excitations on the world sheet, and allow those excitations to propagate
and eventually overlap with one another. The overlap of the time-evolved initial
and fina! states defines the scattering amplitude.

To define asymptotic states, we apply in a powerful way the conformal in-
variance of the theery. Using the conformal mapping

z — zp = ¥, (4.20)

v
L) —

Oa

5728A3 3-87

Figure 3. Identification of an asymptatic region of the clozed string with
the neighborhood of a point 5p on the conformal plane.

according to the construction (2.3), we can map the asymptotic region of an
infinitely extended closed-string world surface into the neighborhood of the point
z = zp. This transformation is shown in Fig. 3. In the discussion to foilow,
I will assume for simplicity that zo = 0. This entails no loss of generality; the
Hamiltonian evolution described in Section 2, defined by dilatations outward
from z = 0, could equally well have been et up about any other point.
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If we put no operator at the end of the cylinder shown in Fig. 3, what
propagates in from infinity is the ground state of the string in the sector with
vacuum quantum numbers. Mapping this situation conformally to the z plane,
the observation reads as follows: If we put no operater at z = 2p, this defines a
particular state with vacuum quantum nurmbers ps the initial state in the time
evolution of radial quantization. Let ua refer to this state as {0).

To define any other asymptotic state, we would apply some operator asymp-
totically on the string, or, equivalently, at z = 2z9. The set of operators which
might be used in this construction is most simply discussed in terms of the Fourier
components of conforma; fields, evaluated on a circle about z5. If we transiate
to 2o = 0, the definition of the Fourier components is that given in (2.42). Let
us look more closely at the first part of this definition. Using this equation and
the correspondence between operators and correlation functions, we may write

tn [0} = < j{% ="+“'"’t(21> . (4.21)

where the contour i5 a small circle about z = 0. The operator ordering on the
left-hand side gives the radial time ordering for the right-hand side; thus, if t,
is applied directly to the vacuum on the left, there should be no other operator
inside the contour on the right. But then, if n+ di — 1 > 0, we can contract this
contour to z = 0 and find zero. This implies

t,10) = 0 for n>1-4d,. {4.22)

The moments of t{z) which do not satisfy this condition may be evaluated by
contour integration; one finds simply £(0) and the successive derivatives of ¢
evaluated at 0. We may view these as the creation operators for string excitations.

As an example, tonsider the moments of 3, X#, which are conventionally
denoted by

at = -Hf—d-z— 2"a, XY . (4.23)

2m

For n > 0, a® is an Lo lowering operator. All of these operators, and alse af.
annihilate |0}. It is natural to interpret the a¥% as lowering operators for the
string normal-mede osciallations. Their counterparts o | would be the corre-
sponding raising operators. These operators may be equivalently represented as
the derivatives of 8,X¥ evaluated at 0; for example, a”, = 3,X(0). We can
confirm this identification of raising and Jowering operators by computing the
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commutator of two a®, using the functional me hod which by now should be
quite familiar:

Hoa] n B o_m v
Iﬂnvam] - (+1) [f Dy 27[] fﬂﬂ" fzﬂ"] x a.x w awx
= dw m dz n uy
B Zm f2rrlz (z—w)3 ¢
= fi w™ . (n w" )8R,
2m { )
4,24
so that
ok, at] = né(n+m)isy . (4.25)

The Fourier component afj is naturally interpreted the center-of-mass mo-
mentum operator of the string. With this int«rpretation, af annihilates |0)
because this state has zero momentum. To obtain a atate of inite momentum,
we can inject momentum into the string by app ying the operator e % at z;.

We can check all of these identifications by comp iting

e XOP0) = 4i§ 2% 20, X0(z) e XO
fdz 1PN ipx(o) e
H P o— 2 {(——z ) e + (nonsingular) (4.26)

0 n>0
- {p"iﬁ) n=20

Indeed, the exponential shifts the center-of-mass mmomentum of the string while

allowing all of the nonzero-frequency oscillators tc temain in their ground states.
We have now found that the state

e' X% |0 (4.27)

represents the asymptotic state of a ground-state otring at momentum p*. Ex-
cited state of the string are represented by composite operators

A, XHPX0©) g xeg X¥PXO)  gixr X)) e, (4.28)

Operators such as those shown in {4.28) which are used to define asymptotic
states of string are called vertez operators.
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All of the excitations shown eq. (4.28) are created by analytic derivatives of
X#; these represent lefi-moving excitations on a closed string. We could equally
well have used anti-analytic derivatives of X*#—3; X #(0) and higher derivatives.
It follows from the generalization of the above argument to the anti-analytic
sector that these operstors create right-moving excitations in the asymptotic
string states. In addition, it is straightforward to describe the analytic and anti-
analytic ghost excitations as being created and destroyed by ladder operators,
or, equivalently, by local vertex operators. By applying the manipulations of eq.
(4.24), it is straightforward to show that the operator product

b(z) ¢(w) ~ —-— (4.29)

implies that the Fourier components satisfy the anticommutation relations of
ladder operators.

{bn, em} = &(n+ m). {(4.30)

According to {4.22), b, and ¢, annihilale |0} unless n < 1, m < -2, Comparing
with (2.42), we see that the b,, ¢,, which do not annihilate |0) are precisely those

which can be incorporated into vertex operatotrs as the values of b and ¢ and their
successive derivatives at z = 0.

Once we have formulated a vertex operator O{0), ‘ve must decide whether
the corre' ponding asymptotic state is BRST invariant. The state |0} is 2 BRST
invariant state, since Q is defined as a contour integral, and this contour can be
deformed to zero if it encloses no other operators. The operation @ O(2)|0) is
defined functionally by drawing the BRST contour about the operator O placed
at zg5. Let us check whether this quantity vanishes.

Q O(z) = }(;.;i‘ ¢ T(w) O(20) - (4.31)

To compute the operator product which gives the singularity of the integrand,
assume that O(zp) contains no ghost operators {as is true for the operators (4.28})
and that O{z) is a primary conformal field. Then (4.31) becomes

dw do 1
@ O(z0) 21 © [(w - 20)2 + (w = 2z0) a'] © (4.32)

[do(8:")- 0 + ¢ 8:0](20) -
This result apparently can never vanish. However, if do = 1, the final result is 2
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total derivative, so that

o / dz 0(z) = f dz 3,(°0) = 0. (4.33)

The integrai of a primary conformal field of dimension 1 thus gives a representa-
tion on the complex plane of a BRST invariant asymptotic state.

How should we properly interpret this result? Up to this point, all of the
intuition we have used to rmotivate this construction has come from the consid-
eration of closed strings._Closed strings have a local symmetry under the action

both of the Ln and the L.; thus physical atates should be invariant to bath Q

and Q. In the closed-string theory, then, asymptotic states should be associated
with operator insertions of the form

fdzd‘i 0(z,2) , (4.34)

where O is primary and has dimension 1 relative to T(z) and also with respect
to T(2). For the simplest vertex operator

0 = PrXlad) (4.35)

the restriction on the dimensionality implies that

PP =2, (4.36)

that is, the asymptotic stale must be an on-shell state of a particle of mass

m? = --2” This state is a tachyon, and that {unfortunately) is the correct result
for the ground state of the closed string.

The construction in (4.33) has, however, another interpretation. We might
recognize that (4.25), by itself, is precisely the algebra of mode creation and
annihilation operators for the open string. This should tempt us to interpret
the analytic sector of the system we have constructed as describing the open
string. Mapping back to the cylinder according to {2.3), then slicing the cylinder
into two semicircular pieces, we can see that, in this interpretation, the real
axis of the z plane should be identified with the boundary of the open string.
The open string boundary condition that 8,X#* = 0 at the endpoint may be

» In Michae) Grean’s conventions, Lhis would r2ad: m? = —8.
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given the following interpretation: Let left-moving excitations on the open string
be represented by analytic functions in the upper half-plane and right-moving
excitations by analytic functions in the lower hall-plane. Then the open string

boundary cendition is simply the requirement that these functions be continuous
across the real axis.

This interpretation of the analytic sector of the world sheet dynamics suggests
a new interpretation of the integrai of a vertex operator: The integral [ d:20(z)
along the real axis of the z-plane represents a BRST-invariant open string asymp-
totic state which couples to another open string at its boundary. The simplest
such state is the one associated with the vertex operator 0 = #7 ¥, The require-
ment that dp = 1 again implies p? = 2, so this state is again a tachyon. This is,
of course, a familiar property of the ground state of the open string.

These two constructions lead to formulae for the scattering amplitudes of
open and closed strings, since the transition amplitude from a set of initial to a
set of final string states can be computed as the joint correlation function of the
corresponding vertex operators.

3-87 (a) {b) 5728A4

Figure 4. Correlation funclions of vertex operiiors which give Lhe acat-

tering amplitudes of the (a) open and {b) closed strng theories.

The ope~ and closed string versions of this construction are illustrated in Fig.
4. We can then check our formalism by computing the scattering amplitude for
four tachyons explicitly in each theory.

Begin with tiie scattering amplitude for epen-string tachyons. This is given
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by a correlation function of four vertex operators integrated along the real axis:
A= (/dz;ngdz:dz.. P X(n} gipaX(ma) cips-X(n3) :"’"x("}> . {4.37)

As Michael Green has discussed, open strings may be given fiavor quantum num-
bers by assigning a group theory factor (called the Chan-Paton factor) to each
tyclic ordering of the operators, This factor gives the amplitude that the quan-
tum numbers created on the string boundary by each vertex operator can be
annihilated by the next operator along the line. I will ignore this factor in my
discussion here, though I will assume that the cyclic order of the vertex operators
is fixed. Evaluating the correlation function, we find

A = /d:;dzgdzadu H e.xp(p.- - pslog(z; — z,-)) . (4.38)
114

The expression (4.38) is, unfortunately, not yet well defined. The problem is
one that should be familiar already from Michael Green's discussion of the string
scattering amplitude: The integrand of (4.38) has a group of invariances which
forces the integral to diverge. A part of this divergence comes from the fact
that the integrand is translation invarjant. The full symmetry is the unbounded
three-parameter group of fractional linear transformations with real coefficients

az+b
= (cz+d) ’ (4.39)

exactly the group of eq. (2.39), specialized to real coefficients—SL(2, R). This is
in fact the group of conformal transformations which map the upper half plane
onto itself I-te-1. It is straightforward to check that the change of variables
(4.39) leaves the integrand unchanged as long as each p? = 2. A natural way te
cure this problem is to divide (4.38) by the group volume of S L{2, R). Using the
infinitesimal form of an SL(2, R) transformation given in (2.41), we can find the

Jacobian for the change of variables from any three of the (real} z to the {real}
parameters o, §, T

a(2;, z;, zx)

ap ) | = T ENE 2z - zi) (4.40)

Making this change of variables using 23, 22, 24, 2nd then cancelling the integral
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over group parameters, we find the final result for A:

A= jd?-a (zl - zz)(zl - 24)(32 - 2) HEXP(Pn P 108(‘- = 3)‘)) . (‘LH)

i<y

This result should be independent of the choice of 2|, 22, 24, as long 2s the foys
points are in the correct cyclic order. If we assign 2y — o0, 29 = 1, 24 = Q,
always using p? = 2 and momentum conservation, {4.41) simplifies to the form

1
A = [dz (1 - Z]PQ'P: 2Py P (4.42]
Q

This is the famous amplitude of Venezia.noln] which was in fact the first result
in string theory.

The scattering amplitude of the closed string theory may be computed by
following an analogous set of steps. One begins from the expression

A = </ d?2,d%2,d%22d%2¢ P X(2:) ptpa X(ma} ,ips-X(xa) ,ipa x(u)> , (4.48)

where the integrals now run over the whole complex plane. The correlation
function may be evaluated 25 in (4.38). The resulting expression is invariant
to transformations of the form (4.39) with general complex coefficients; this is
the full group SL(2,C). This group is in fact the group of all 1-to 1 conformal
mappings of the whole z plane onto itself. The amplitude (4.43) can be made
well-defined by dividing by the volume of this group. The Jacobian nceded in
this construction is the absolute square of {4.40). The result is

A = ]dzza Hzy — 22){21 — 24) (22 — za){? H exp(2p. - pjlog |z, — 5, |} . (4.44)
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Assigning 2y, zz, 24 t0 00, 1, 0, we find

A= /dzz [t — z|?P2Ps |z{2P2Pe | (4.45)

[23,24]

the Virasoro-Shapire closed string amptlitude.
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To conclude this discussion of string scattering amplitudes, I would like 4o
discuss briefly the problemn of constructing BRST invariant vertex cperators for
higher states of the string spectrum, The open-string vector states ¢#a” | |0} are
created by vertex operators

O;(z) = ¢Pa,XP(2)e? X0 (4.46)

We must check not only that this operator has the correct dimension but also
that it ix a primary conformal field. To do this, compute jts operator product
expansion with T{z}:

T{w) O;(#) ~ -% (BuX® ip- X(2)} (D X® ¢V0:X") P X(2) . g

2 .
- %((finﬁ ip. X{z}}) B XY eir X(x)

; (447}
- FOuwX* (BuXP ¢“8, X%y e» X2 4 |

o P ipxtey , PH2EY o s

(w_z)se +(w—z)2g AL + .
The operator O has dimension 1 il p? == 0, that is, if the vector particles created
Dy this operater are massless. However, {4.47) informs us that we must impose an
sdditional constraint in order that O, be primary. This is the condition ¢ p= 0,

the familiar physical requirement of transversality. In o similar way, we may find
that the tensor vertex aperator

Y 3, X138, XV X {4.48)

has dimension 1 if p* = ~2, corresponding to m? = 2, but it is primary only if
we satisfy as well the physical state conditions on the polarization tensor

pumtY = 0 = g%, {4.49)

In general, for gtring modes with spin, the requirement of BRST invariance im-
plies not only that the particle should be on its mass shell but also that the
polarization should have a physically correct orientation. This is the first hint
of the deep conneztion between BRST invariance on the world sheet and gauge
invariance in space-time which we will explore in the next section.
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5. Gauge Invariances of the Bosonic String

In the previcus section, we formulated a set of rules for computing string
scattering amplitudes st the tree level. The basic assumption of this construction
was that the string scattering amplitude should involve propagation on the world
sheet of physical (that is, BRST invariant) excitations. We found, however, that
this condition implies that the external particles of string must also he physical
propagating states on space-time. This correspondence between world-shest and
space-time properties is already rermarkable in itself, but it is worth pushing the
argument one step further. Our experience with local Held theories with spin
tells us that such theories cannot be formulated covariantly and still naturally
project out unphysical polarizations unless they possess an underlying gauge
invariance. We have seen also that the open string theory contains massless
vector states; it would be most attractive if these were the gauge bosons of some
explicit local invariance of the string theory. In this section, I will exhibit the
jocal gauge invariances of the free string theory and clarify the relation between
these invariances and the world-sheet dynamics.

$.1. MORE CONFORMAL FIELD THEORY

To carry out this analysis, we will need some additional tools from conformal
field theory. In the previous section, [ introduced the vacuurm state |0), defined
by putting no operator at the point z = 0, which forms the asymptoetic past in
radial quantization. To continue our discussion, it will be useful to define (0,
and, more generally, a notion of operator adjoints and inner product appropriate

to conformal feld theory. All of the necessary concepts are provided in the werk
of BPZ.

The obvious definition of (0] s to put nothing at the point z = oo which
forms the asymptotic future of radial quantization. Just as contour integrals
which can be deformed to D represent operators which annihiliate 0), operators
will annihilate this {0| when the corresponding contour integrals can be pushed
to co. Conformal invariance allows us to discuss both sitnations at the same
tirae, because a conformal transformation

N

l

N

ll

H
|

(5.1)

interchanges past and future. BPZ proposed that this conformal transformation
could in fact be taken to be the definition of the adjoint of an operator or state.
This definition has the virtue that it does not interchange the analytic and anti-
analytic sectors. We can check the definition by applying it to s general Fourier
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compotnent tn:

_— dz
L

dz _.,4_, (42 ol
-é?‘.z 4z '(Z)

= {2 Lyt @ a0e)

2ni ¢

e iggs)

= (-1)&¥ e,

(A factor of (—1) disappears in the second step because both the z and the 2
contours are taken to run counterclockwise around the unit circle.) The transfor-
mation (5.1) thus does interchange {, and t_,. We find as well the equivalence

thf0) =0 =  (O]t-n =0. (5.3)

According to (4.22), these statements apply when n > 1 — d;.

The L, annihilate |0} for n > (—1). Reciprocally, (0] Lp =0 forn < 1. Thlls.
-t_he three operators L_;, Lo, Ly, and their anti-analytic counterparts L_;, Lo,
Lj, annihilate both [0) and {0]. This makes these operators true symmetries of

conformal field theory: If U is a transformation generated by these operators—
that is, if U € SL(2,C)—

(Ol¢(z1) $lz2) .-+ 10) = (0}(U(z2)U~"}(Ub(22)U~") -+« |0) (5.4

Thus, all conformal Seld theory matrix elements are invariant to SL(2,C) trans-
formations. This is the origin of the conformal invariances of the four-tachyon
scattering amplitudes discussed at the end of the last section. Because of this
property, the state |0) is often referred to as the SL(2,C) invariant vacuum.

The antighost field b(z) has the same dimension as T'(z), and therefore, in
parallel to the above discuvssion, b_,, by, and b; annihilate both |0} and {(0]. But

then the identity following from the commutation relation {4.30) of the ghost
ladder operators

{bu,e_n} [0) = [0) # O ; (5.5)

implies that the three operators e..;, ¢, r, annihilate neither |0) nor (0. All other
¢n and b, ladder operators annihilate either [0} or (0|. This set of statements
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implies that the basic nonzero expectation value in the theory is

(O] e_1epey D) # O, {(5.6)

Apparently, the adjoint operation of BPZ does nol preserve ghost number; indeed,

it insists that ghost number is violated by 3 units in conformal feld theory
calculations on the plane.

To properly understand this ghost number nonconservation, it is necessary
to develop in some detail the geometrically invariant formulation of the string
dynamics. Since this would take us too far afield, I will simply sketch the logic
of the required argument. The ghost number current j; = be is the fermion num-
ber current of a set of chiral fermions (of unconventional spin) in 2 dimensions.

Therefore, we should expect that this current has a gravitational anoraaly. Its
conservation law is, in fact,

. 3
8532 = _ER‘ (5.7)
where my conventions correspond to fdzz\/ﬁR = Br for a sphere. Considered
for more general 2-dimensional manifolds, thic integral is a topological invariant,
the Euler characteristic x; its value is

%ﬂ/d’z\/ﬁ}z = -2(g~1), (5.8)

where g is the genus of the surface, the number of handles. For surfaces of
the topology of a sphere, g = 0 and we expect (~3) units of ghost number
nonconservation. Since the complex plane, including the point at infinity, has this
topology, we thus obtain the nonconservation law displayed in (5.6). For surfaces

with handles, ghost number 3(g ~ 1) should be swallowed by the conformal field
theory matrix element.

When one encounters fermion number nonconservation due to the coherent
effects of anomalies, the nontonservation is normally manifested in the appear-
ance of zero modes of the fermion field. Thesz are modes of the fermion field
which are localized solutions to the equations of motien. If one defincs the func-

tional integral over the fermion field by decomposing in eigenmodes of the fermion
action

¥(z) = D ¢aenla), (5.9)

the zero modes wo{z) are annihilated by the Dirac operator, and so the com-
ponents ¢fp which multiply these solutions do not appear in the action. The
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fermion integral over each of these components then gives 0 unlese a factor of ¢y
is supplied by an exira fermion operator under the functional integral:

) = jwe‘f‘l =0,
(5.10)
Wi = [ovef 2 o) = gote).

For the anticommuting ghosts, &q. (5.8) implies that we should find 3 zero modes
of ¢{z) on the sphere, no zero modes on the torus (actuslly, onc finds ope each
for e(z} and b{z)), and 8{g — 1) zero modes of b on surfaces of higher genus.

The zero modes of ¢ responsible for the result (§.6) are actually easy to
identify: Bince the equation of motion for ¢ is 8y¢ = 0, the 2ero modes are analytic
functions regular on the plane which satisfy the correct boundary conditions at
infinity. Thease boundary conditions should be the ones appropriate for treating

the 2 plane as a sphere: Choose a matric which makes the plane s compact space
of constant poaitive curvature:

fa = u—:ﬁg)—, gos = g5 =0. (5.11)

(Sending A — O makes the neighborhood of the origin as flat as one wishes )
Then an eigenmode of ¢ Is normalizable if

lel*= fd’:,,/i ol gee” = jﬁ: m]—‘ e} (5.12)

ia Rnite. There are three entire functions which eatisfy this criterion: ¢(z) ~
1,2,27. 1t is pleasing that these are exastly the coefficients of c;, €p, ¢—; in the
Fouriet decomposition of e{z} glven by the right-hana side of (2.42).

If we norinalize (5.6) to (0je—jcpe; [0) = 1 and apply this Fourier decompo-
sition, we find that

1 1 1
{0,¢{21)e{22)c(25)[0) = (23 22 2| = (2 — 2)(2; ~ 29}(zs — z3) . {5.13)
3 s 2
This formula also follows from the bosonized expression
QOle(zr)elza)e(za)i0) = (eotondertoarpatond) (514)

The result (5.13) is reminiscent of eq. (4.40). This is, in fact, the firef oign of°
s general relation between the treatment of ghost 2¢ero modes and the measure
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for the integrations involved computing in string scattering smplitudes. 1 will
explain the relevance of this formula Jater in this section; we will discuss the
more general situation in Section 8.

5.2. GHoOST CONTRIBUTIONS TO THE STRING SPECTRUM

Oune of the results of the analysis just given is that the Ly lowering operator

c; does not aunihilate the SL(2, C) invariant vacoum [0). This means that there

exists another state of the open string Hilbert space which has & lower Ly than
10); this in

LY ) (6.15)

Since all other lowering opcrators annihilate [0} and {,)? = 0, this is actually
the state of minimum Lg. This new vacuum satisfles

{Qleo|M) = (Dle-1c0e1i0) = 1 (5.18)

then (Q1[{1) = 0, eince this quantity has the wrong ghost number, We have found
that the true vacuum of the open atring theory is a peculiar ghostly state of zero
norm. Nevertheless, 23 we will see in & moment, this observation will allow ua 1o
considerably refine our understanding of the apecirum of string atates.

Since |2} is the true open string vacwum, we should consider rebuilding the
spectrum of physical string excited states by applying the creation operators for
coordinate excitations a¥_ to |{1); this produces states of the form

W) = o alialsal glp) o where [p) = @PXI0) . (57)

We may denote such states, equally well, by |} = ¢(0)V (D) |0}, where V(D) is &
vertex operator built of X¥ and its derivatives. ‘1 huse states are not necessarily
BRST invariant. In fact, |'7) itse!f I» not BRST invariant: If we apply the contour
integral formulae (4.6) or (4.19) to the representation

1) = ¢(0) o) = o) (6.18)
and evaluate operator products, we find
Qi = (~1) e i) . (5.19)

On a state of the more generai form (8.17),

QW) = 1% @[T+ 3TN ) = | 3 ealtlD - s...co] 9 .

(5.20)
where the LY} are the Fourier components of T1X). Since for n > 0, ¢a[?) =0,

“

T T—— e T




half of the conditions for BRST invarlance implied by {5.20) are trivially satisfied.
We see, then, that [¢) will be BRST invasiant if

¥ =0, a1,
(5.21)
(L -1 W) = 0.

These are exactly the physical state conditions presented, from a very different
viewpoint, by Michael Green. The second condition states that the operator V
which creates |¢) from [2) must be of dimension 1. This is exactly the mass-shell
condition derived in the previous section. The first condition is equivalent to the
statement that V must be a primary conformal field, since the contour intezral

LW ) In) = f zi:;, 21T (2) V(0) ) (5.22)

for n 2 i, will pick up any higher terms in the operater product expansion of

T with V. We have seen that this siatement requires |¢) to have a physical
polarization.

An observation equivalent to that just presented is that operators
e(O)V(o) = ¢c@y(n), (5.23)

where V(z) satisfies the conditions of the previous paragraph, are the BRST
invariant vertex operators which we sought but failed to find in the previous
seclion. Let vs check this directly: If V is a primary conformal field built from
x” ‘

Q c(O)V(0) = %;-_ ;W [Tz} 4 TON(3)) : : oWV (0) :
= %z': :el"')*’(o); W[{g(;}a(ﬂ})] [d\;;‘ 1 + .“] )

g2 ota)rolo), ,[1‘.‘::.1 + ] ,
2n4 &3

(5.24)
This vanishes if V has dimension 1; that is, if ¢ - V has dimension 0.
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We can apply this observation immediately to our calculation of the 4-tachyon
scattering amplitude. The amplitude constructed in eq. (4.37) remains BRST
invariant if we replace factors of [ dzV'(2) by e(20)V (2) where 2 & any fixed
point on the real axis. In fact, we are required to make 3 such replacements in
order to satisfy the law that conformal field theory amplitudes annihilate 3 units
of ghost number. This gives the formula:

A= ([c(zx)e""""""] [e(n]e"‘x“”] / dzy P X(n) [4:4):""“"’]) .

(5.25)
When we evaluate this formula by using (5.14) to compute the ghost correlation

function, we find again the result (4.41). Eq. (5.25) can be made to look more
symmetric by replacing

ePXin) by f %b(m) efzg)e’? X (=) (8.26)

e e
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Figure 5. Form of the f.tachyon scattering amplitude in a formalism in
which the vertex operators contain ghoot fuctors c(s).

This gives an alternative picture of the multi-string scattering amplitude which
is shown in Fig. 5. Because the assignment of c(2) factors serves only to Ex
the SL(2, R) symmetry, it does not matter which of the z; are surrounded by

a b{w) contour, Giddings and Mastinee *® have recently shown that one can
systematically derive a formula of this last form from a set of Feynman rules for
the open string dynamics.

46



5.3, GAUGE TRANSFORMATIONS OF THE STRING STATES

Let us turn now to a study of the string states which do not satisfy the first
of the physical state conditions (5.21). The Virasoro commutation relation (2.36)
for [Ln, L -n! implies that {unless the state has a particular exceptional value of

of Lo} any state which is not annihilated by some LY car be written as a inear
combination of states of the form

LX) yty n>0). (527

1t is instructive to write out the simplest of the states (5.27) explicitly. To do
this, rewrite

x dz 1 —
L(—n) = [“27‘ zn+lT(X)(z) =3 z : a{“_n_._ka':l: , {5.28)
k=-oo

and apply this operator {o states built upon ip) = 7 X M. Because o |p) =0

for n > 0, only 2 finite number of terms of the series (5.28) contribute; further,
we oay simplify by using &} |p) = p* |p). Then we find

Loy ip) = a-1-ag [p} = pra-s |p) . (5-29)

Similarly,

Loy ay|p) = prajdiaqlp) + A-ea |p)

(5.30)

a-z-pip) + la—l'a—llp) .

L_; |p) 5

If we view the states which appear on the right-hand sides of (5.28) and {5.30)
a3 romponents of the string states ¢#a”, |p}, n#¥a’ | &¥ | |p}, we see that these
are exactly the unphvsical polarization states, the timelike and trace parts of the
polarization, which cannotl be associated with propagating states.

1 would like to give this observation a deeper interpretation, as follows: Let

me introduce a string field, 2 functionz] of the instantaneons position of the etring
in space-time:

8| X*(o)| (5.31)

The cigenstates of the single-string Hamiltonian, viewed as Schradinger wavefunc-
tions, are functionals of 3'#{¢) and, in fact provide us a basis of such functionals.
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Let us expand a general functional ®[X¥] in this basis. The coefficients in this
expansion must carry Lorentz indices to match those of the mode creation op.
erators for the corresponding state. It is convenient to include the dependence
of [X¥| on the center-of-mass position z# of the string as an z*-dependence of
the coefficient functions. The general form of the expansion is then

BXH(o)| = [p(z) — ia*(z)at, - zh*(z)at,at = iV¥(a)at, + . ]IM) .

(5.32)
1 have assigned arbitary names to the coefficient functions; the factors of 1 insure
that all of these functions, and ®X| itself, are real-valued. Notice that the
coefficient functions take the form of local fields of increasing spin. Each partiele
in the single-string spectrum is assigned its appropriate local field.

Now let ®;{X], ®(2,|X] be two new string fields, with coefficient fieids

d(ylz),... and $(z){z),..., respectively. Using the results (5.29) and (5.30),
we may compute

L_1®[z(0)]

1
[—ia“:ﬁ.m-aﬁ! - 5{:?".4‘(’,, + B”A"‘,}]atla‘il
—iAf e, L)) (5.33)

L—?‘i’(z)lz(f’”

1 -
[- 5(~8*"@)al, aly —id*dpyat, + ..]i0) .

Now compare the two lines of (5.33) to {5.32) term by term. The coefficients
of string eigenstates in (3.33), viewed as local Bclds, are of exactly the right
form to be the variations of the fields of (5.32) under {Abelian) local gauge
transformations:

5.4” = a‘“¢(1] I
é}l"y = [aﬂAz‘l’ -+ a”A?l)l - 6’““¢iﬂ) ) (5-34)
§VF =

AE‘U + 6"'46“}.

It is natural to hope that the string theory is indeed a gauge theory, with precisely
these transformations as its gauge invariances.

The higher terms in the formulae (5.33), together with terms from the action
of higher L., operators on new string fields, produce possitle gauge variations
for tne higher mass fields in the expansion (5.32). At first sight, this Jooks like
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a frightening expansion of the gauge symmetry groep. However, this enormous
expansion of the gauge group is clearly necessary: The higher mass levels of the
siring theory contain increasing numbers of field with spin. These high-spin fields
musl cbey consistent field equations which allow them Yo propagate and interact
without producing their unphysical polarization states. It is Jikely that this is
enly possible if each of these fields possesses its own local gauge invariance.

The enormous gauge symmetry suggested by this analysis can be written in
a relatively compact f{}rmlm""?

EB[X(0)] = L_nm|X(0o)] (5.35)

by invoking gauge parameters @(,)[X] which are functionals of X*(0). In ordi-
nary physics, we speak of global gauge symmetries, in which the gauge parameters
are constant, and locel gauge symmetries, in which the gauge parameters are lo-
¢al functions of X. Herc we have the next step in this hierarchy, chordal gauge

transformations, in which the gauge parameters are functionals on the space of
strings.

5.4. A GaUGE-INVARIANT ACTION

in the last seclion, we have made considerable progress toward & gauge-
invariant formulation of the open string theory. To complete this analysis, at
nest at the level of free strings, we need only construct an action principle with
the gauge invariance (5.35). It seems, however, that something is missing. The
ghosts, which played so important a role in the formulation of the string spectrum,
played no role at all in the considerations which we have just completed. Before
we attempt to construct a gauge-invariant action, then, I would like to discuss
the ghost generalization of the string field formalism presented shove,

Let us, then, extend the string tield ¢ to a functional of X* (0}, b(c}, and ¢{o).
The Hilbert space of string eigenmodes will then be larger, and more terms wiil

appear in a normal-mode expansion such as (5.32). Explicitly, we find, through
the second excited level:

X, b,c] = [8(z) — 14" (x)a®, — ib{z)b_y — fe(z)eny
- %h“”a'jla‘_’_l - iV(z) oy — iB(z)bog — E(z)es
- EB(I)b--iaEz - E“(IIC”zﬂ:i - 3(3)5-;:,3 -+ ...l *ﬂ)
(5.36)

The new local fields appear in quite a remarkable pattern. At the first excited
level, corresponding to m? = 0 states, we find the familiar vector field A#{z),
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plus two new fielaz b{z], c(z). Since ¢ is a real-valued functional, while &,
and e are G:assmann-valued, the coefficient fieids b(z) and c{z) must be an-
ticommuting fields. They are exactly the ghost and antighost required for the
standard Fadde’ev-Popov quantization of A#! At the next level, we have the
vector and scaler geuge parameters A;‘l) and ¢(q) of eq. (5.34), s0 we expect,

and find, vector and scalar ghosts €4, € and their corresponding antighosts. This

amazing phen<
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to use this extended string functional as my starting noeint in
iuge-invariant action. Let us abstract the exvansion (5.36) to
;] = 3 ¢udz) |¢). I we Fourier transform with respect to z, we
tring field as a sum over coefficient functions for string states of
1313 M

¢ = [lasl o) wale) . an

1 string state built by applying mode creation operainss to |p).
ok for a {ree-siring action of the form

18 = [ @ e-n (wi-njK

\
7 (p)/ ¢;(p) , (5.38)
crator which acts on the single-string Hilbert space. We must

iction on string eigenstates can reproduce the space-time lLa-
componer.t fields.

acludes the ghost vatuum contribution and, possibly also, ghost

mnost naturally constructed as a state in conformal field theory.
reinterpret the matrix elernent which appears in (5.38) as a
1eory expectation value involving the vertex operators which
¥;) 2nd a third operator which represents K. We can write
ncretely for the case in which both external states are tachyons:
= |p) is represented by the vertex operator c{0)e'’P X%, The
p| is represented by the adjoint of this operator, that is, its
srm under z — —1/z. We might regvlarize this cperation by

setting the original vertex operator at z = ¢; then the adjoint operation, carried
out according to the transformation law (2.23), yields

Aja-1
c(t_]cip.x(.) — (_1_)? e (_1) P X(-1/q
€2 £

(5.39)

Each of the two vertex operators has ghost number 1. In order to satisfy
the ghost number conservation law of conformal field theory matrix elements,
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the operator we chnose for K must aleo have ghost number 1. The “obvious”
candidate is the BRST charge @. Indeed, using {5.20) we may compute

g1
<(E_1?) c(_%)cﬂ‘r X(=¥9 . @ .c(g)eip--\'(b)>
B2y
1 2 1 —p - p.z ip-
<(") (=P HH e (1) “"xw))

)7 () ) et .

(5.40)
the complicated dependence on ¢ cancels completely, and what remains is

(-ri@lp)

ll

I
|

~plQIp = 3(* - 2) - (5.41)

Since the tachyon has mass m? = -2, this gives exactly the correct free La-
grangian for the tachyon field:

s = [ot=p) J (0 m?) #fp) + ... (5.42)

We shall now check the form of the Lagrangian at higher mass levels. Let
us concentrate for the moment on the terms involving string states with physical
polarizations. These states are created by vertex operators which are primary
conformal felds. For such states, eq. (5.20) imnplies

(n(=p)l Q [s(p)) = (l-p) co(LE) — 1) W51p)) . (5.43)

If the state ¥, {p)} contains n units of oscillator excitation, then, acting on this
state,

2

Lgx),__1= 32—+n— 1= %(p2+m2). (5.44)
The factor of ¢g in (5.43) is needed to make the diagonal matrix element in |(2)
nonzero. We have thus shown that action (5.38) with the choice K = @ gives the
correct free-field action for all physical components of the various string fields.
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This analysis makes it very plausible that the correct action for the opun

string free field theory ig 17031

5 = (91Q19) . (5.45)

To complete a demonstration that this is indeed the correct action, it is only
necessary to show that this expression has a group of gauge invariances sufficiently
large that we can remove all unphysical field components. Actually, ic is very

easy to identify the gauge invariances; since Q% = 0, any transformation of the
form

6i2) = QIE) | (5.4)

where |E) is a new string functional, leaves {5.45) invariant. A subset of these
transformations is obtained by specializing

1E) = b_n|@(ny) - (5.47)

Acting on this with @, we find §[®) = L,]®,,); thus our proposal above fur the
gauge group of the free string theory is contained as a subgroup of the transfor-
mations represented in (5.46). Since all physical states have the ghost number of
(), and the gauge invariances {5.35) also correspond to definite ghost number,
we can simplify the theory by restricting |[$) to states of ghost number 1. Since
72 raises the ghost number by I unit, {E) will then be restricted to ghost number

0. For this theory of definite ghost number, a careful a.na.lysislnl shows that the

number of gauge invariances is precisely correct to allow all unphysical string
states to be eliminated,

It should be noted, however, that the restriction te definite ghost number
1 allows certain states to remain in the classical string theory which cannot be
written as excitations of the ccordinate oscillators. The first of these states

appears at the second mass level, it is visible in {5.36)as the component field s{z)
in the term

= [+ s(x)byey 4 -f ). (5.48)

This field can be gauged away, but it does participate in the gauge algebra of the

m? = 2 states. We will see a more important example of such a ghostly classical
feld in the next section.

The covariant quantization of this system is not entirefy straightforward.
The gauge invariances we have defined have their own gauge-invariances: §|E} =

Q\G), where |G) is a new functional of ghost number (-1}, leaves the transior-
mation law of |®) unchanged. This means that the Faddeev-FPopov action for the
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ghosts will have a gange invariance, requiring ghosts of ghosts. Following this
logic, ou. finds ghosts of ghosts of ghosts, etc.; each successive ghost involves
stales of ghost number 1 unit lower. The corresponding antighosts cover the
set of positive ghost numbers. The final result of this procedure is a covariantly
quantized theory containing all possible ghost number sectors: This theory in-
cludes the full content of the functional {z{0), b{2), ¢{@)]). The gavge-fixed string
field theory is thus exactly the field theory of the gauge-fixed string!

It is possible Lo supplement the free field action I have described with a gauge-
invariant interaction. Many authors have offered proposals for this interaction;

two of the most completely realized are those of Witten 120:33,34] 4nd Hata, Itoh,

Kugo, Kunitomo, and Ogawa!asl Unlortunately, | do not have space here to

review this work, which still seems to require a good deal of further clarification.

6. Gravity from String Theory

Now that we have seen how the gauge invarjances of the open string theory
arise, let us explore how these ideas generalize to the closed string. Michael
Green explained that the graviton arises as a particular state of the clesed string;
thus the formulation of a gauge-invariant closed string action should lead us
directly to general coordinate invariance and Einstein's equations. Unfortunately,
many of Lthe connections along this chain are not yet well understood. In this
section, I will give three sets of arguments which give partial information about
the nature of gravity in string theory; I leave it to you to formulate 3 more unified
understanding of the connection between strings and gravity.

6.1. SCATTERING OF GRAVITONS

First, let us generalize the formalism for string scattering amplitudes pre-
sented in the previcus section to the closed string. To do this, we need only
bring back into our discussion the anti-analytic section of the Hilbert space and

construct vertex operators which create both analytic and antianalytic modes
excitations.

Let us denote the ladder operators of the anti-analytic sector {(corresponding
io right-moving excitation on the closed siring) by &@%; these obey the same
algebra as the_ir counterparts in the analytic sector. Denote the new ghost ladder
operators by b, and €m. The vacuum of the theory is given by
This state is not BRST-invariant, but the states of nonzero momentvm

B = &P XOez, o (62



are annihilated by Q and @ if p? = 2. Michael Green identified the graviton

with the massless tensor state a” @Y, |[p). This state is created by the vertex
operator

e(2)E(Z) - n#¥ . X1 3z XV e'P X(23) (6.3)

(or simply by the coordinate part of this operator, integrated over d*2). The
operator (6.3) is annihilated by both @ and @ if p? = 8 and if p¥qh¥ = g¥vpv = 0.

Notice that the graviton state satisfies the condition Ly = Lg; it has equal
amounts of excitation in the left- and right-movingsectors.  :hasl Green argued
that this condition must be satisfied {or all physical closed-siring states. Let me
explain how this condition arises from the conformal feld theary viewpoint. If
[ ignore the problem of fixing the SL{2,C) invariance (which contributes, in
any event, only an infinite redundancy), a scattering amplitude is computed by
integrating vertex operators over all points of the z plane.

=]
®
/ .
® ,®
25 ® 0
e
®

3-87 572840

Figure ¢ Typical configurationa of vertex operators which contribute to
a scatteting amplitude for clooed strings.

The contribution in which a particular vertex operator is located at zp involvesan
integral over the locations of all other vertex operators; in particular, it includes
an integral over rotations of the other vertex operators about the point zp, as
shown in Fig. 6. Translate zp to 0. As we have seen from the discussion of
SL{2,C) in section 2, the two operators Lg and T, generate linear combinations
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of dilatations and rotations, Explicitly,

{Lo+Ly) gencrates 2 — z+4 83z, T —ZF + 8AZ,

(6.4)
(Lo—Lo) generates <z — z + ibaz, E — I ibfa¥.

Since we integrate over all possible rotated configurations of sources, only states
created at 2p which are rotationally invariant will give a nonzero contribution
to the amplitude. These are the states annihilated by (Lo — Tp). The other
possible states of the closed siring theory siroply disappear. This phenomenon,
that states which are not invariant (o geormetrical transformations on the world
sheet disappear from all sransition amplitudes, is a novel and extremely important
aspect of string theory, It will play » major role in our discussion in Sections 8.

&7 ST2BAT
Pigure 7. The graviton Ward identity for an-ahell external atates,

The vertex operator formalism allows us to check the an-shell graviton Ward
identity shown in Fig. 7: Contracting the graviton vertex with p* should cause
the graviton stattering ampiliude 1o vanish. Indeed, we can gee directiy

P [ Eraxeoxeer® = i [drafaxr ¥, (69)
which integretes to 0. In principle, one might worry that nonzero contact con-

tributions might appear due to singularities as » approaches the lozation #; of
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some other vartex operator, However, all such contact, terms are muitiplied by
factors jz — 2,1 P, evaluated as 2 — 2. This factor is properily defined by
analytic continyation from the region p-p: > 0; hence, the contact terms ave
zero. ‘This subtlety aside, the Ward identity for gravitons arises in & very nat-
ural way. This is easy to understand, because the graviton couples to the local
energy-momentum density of the world sheet.

6.2. GAUGE INVARIANCES OF THE CLOSED STRING THEORY

Let us turn now to the generalization of the construction of gange invariances
and the gauge invariant action to the closed etring. My discussion of these is-
sues will be somewhat more pedestrian than that given in the previous section;
hopefully, it will clarify the physical content of the gonstruction pregented there.

Begin with a closed string field, a functiona) &]X#{o)] of the location of
a closed string in space-time. The mode expansion of this field, restricted to
components satisfying Lo = Ko, is

BiX(a)] = [o(z) + t*(zlat,@L, + .. 1) . (6.6)
We have been concentrating on the graviton, & symnetric tensor, but actually

the Held t*V {5 a tensor of arbitrary symmetry. It is usefy] to decompose it into
its symmeiric and antisymmetric parns:

£(z) = ¥ (z) + B4¥(x) . (6.7)
The generalization of the gauge transformation Jaw {56.35) to this system rends:

6@ = Lon®iny+ L-nlim) - (6.8)
If we define the expansion coefficients

By = [rig(z)E, + o Jm, éq = [ =il (2el R,

{6.9)
then (6.8) implies the gauge transformation laws

s = %(ave" 4 3F) + (pr),
(6.10}
G = (@ - B - (b))

If k** is interpreted as the linearized gravitational field, the first line of (6.10}) is
just a linearized local coordinate transformation.
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It is not difficult to write an action for A#¥ and b which is invariant to
(6.10) even if one works in the restricted Hilbert space without ghost excitations,
Note that, since [Ly, L_y] = 2Ly, the operator P = (1 — L_;{2Lg)~'L,) satisfies

1

P L—ld’(i) = L_1 —L—l - Li] le

] ®ay ~ L?_iLl‘b(l) , (6.11)

which has overlap only with states with iwo unite of excitation in the ana-
lytic sector. This object thus acts on t**a™ &Y, |N) as a projector onto gauge-
invariant components. This suggests that we write the action for ® in the form
5 - (®]K12),

K = [(Lo-1)+(Z-1)] PP + ..., (6.12)

and the additional terms annihilate the states of the graviton mass level. Using
this ansatz, we can evaluate the matrix element of X explicitly and find

orar avae
S = -+ jd::t’“’ [-—9’ [6“*— ?] [6‘“’——35—” 7 4 ..o 5 (6.13)
1 bave used the fact that (Lo — 1) = 4p? = —137 on this mass level.

The piece of the action {6.13) which is antisymmetric in the indices of ¢ is

L[5,
Il

f dz b (—BT6RM6YT & 343647 + 9°@°6M) b
(6.14)

: / dz (8752 — 3 T — B

In this expression, ¥*¥ appears as an antisymmetric tensor gauge field with field
strength H#** = gl#p¥2l; the action takes the gauge invariant form § ~  H2,

The part of {6.13) which is symmetric in the tensor indices is more problem-
wmatical. This piete can be rearranged, by adding and aybtracting a convenient
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term, to form

B 5A v Qo
5 = %/dzhw{_a?(aﬂ*-aa‘z ) (5”—33‘3 ) + (A e 0
A oo A no
+ 20° (.5*"’— aaf ) (6""’— 33‘3 ) (6.15)
ITy-11) A ho
~- 28% (6uv - aaf ) (&lv - aa(z ) } hie

The first two lines of this expression are the terms quadratic in A** which appear
when one expands the Einstein action

jd: VG R (6.16)

according to G, = .. + h,,. In this same expansion, the curvature scalar is
given by

R = d"3%h,, — 8'h*,, (6.17)

so the last term is the linearization of [ dz(~2) R (-8%)~! R. This interaction
is nonlocal in space-time. To render it local, we must add to the theory a new
scalar field é(z} which couples to curvature. The action

s = f $3%¢ — 26R (6.18)

is a local expression which reproduces the last term of (6.15) when ¢ is integrated
out. This new field ¢(z) is called the dilaton field.

If we had begun in & formalistn which included the ghost states of the closed
string Hilbart space and which insures gauge invariance from the beginning by
virtue of the identities Q2 = 53 = 0, we would have found the action appearing

directly in the form (6.18}, with the extra field ¢ identified as the coefficient of a
ghostly state in the decomposition of the string field:

® = [~ —@(z){borE-1 +esbay) + -] ) . (6.19)

Note that the kinetic-energy term for ¢ in (6.18) has the wrong sign; this is a sig-
nal of the field’a ghostly origin. In general, the system of gravitational and dilaton

fields contains one propagating scalar particle, which is a linear combination of
¢ and A%,
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6.3. CONFORMAL CONSISTENCY CONDITIONS

In the discussion just completed, we took n straightforward approach to the
derivation of Einstein's equations, constructing the gauge-invariant action for the
string gravitational field. We did in fact succeed in obtaining the correct equa-
tions, though only at the linearized level. Now [ would like to present a second,
more indirect approach to the derivation of the field equations, hy considering
the dynamics of strings moving in macroscopic background gravitational fields.

At the beginning of this section, I discussed the coupling of single gravitons
and antisymmetric tensor particles to closed strings. This coupling was described
by the insertion of vertex operators

/ pxeJe [ / d?z (h*¥(p) + b%¥(p)) a,x#a;xvcfv-"] . (6.20)
Since the insertion is of the same basic structure as the world sheet action
L= ,;; / d*z §,, 3, X"3:X", (6.21)

itis natural to view (6.20) as the first term in the linearization of the geometrically
invariant expression

[ DX exp (-2_‘” [ 4Pz {G(X)3: X 3: X" + B,,.,(x}a,x#a;x“}] (6.22)

about the flat background metric which appears in (6.21). The coefficients
Guu(X), Bu(X) in (6.22) are functions of the string coordinate X*(z); thus,
the world-sheet dynamics described by {6.22) is nonlinear. In fact, (6.22) is pre-
cisely the action of a 2-dimensional nonlinear sigma model, in which the targe!
space on which the nonlinear sigma model variables live has been identified with
space-time. The B, . term, which is antisymmetric in worid-sheet indices, may

be interpreted as a Wess-Zumino ?.ermis""l

At first sight, there seems to be no difficulty in quantizing the string in any
general background geometry. However, we must recall that the quantization
of the string depends crucially on conformal invariance, or, equivalently, on the
existence of a BRST charge satisfying Q% = 0. We will see in 8 moment that this
implies very stringent restrictions on the background geometry, These restric-

tions were first derived by Lovela.ce,{a?] Fradkin and Tseyt!in,laﬂl Callan, Friedan,
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Martinec, ana Perry!ag] and Sen

ol by studying the § lunctions of the nonlinear
sigma model. In my discussion, I will follow Banks, Nemeschansky, and Sen 4]

(BNS) in approaching the problem from the viewpoint of the ghost dynamics and
the BRST charge.

Before beginning this analysis, we must identify one piece which is missing
from (6.22). This expression couples the siring to background Gy, ard B, fields
but does not yet include the dilaton. Since this field has, after all, a ghostly origin,
BNS propose to include it as a nonlinear coupling to the world-sheet ghosts

5 = 2_111: f ¢z {Gu»(X)G.X”B;X” + B {X)3:X"0: X"

(6.22)
4
+ [b:xa‘ic' + 5 b.uC’B#(X)] + kt} .
This action is elassically BRST invariant, with
4z (4/3)8(x) 1 v \ ..
Q = -— c(2){ -G8 XP0; XY — b, . (65.24)
2m L2 :
One can remove the factor e*/3¢(X) py the transformation
e — e 4%, b — e*4/3ep (6.23)

Unfortunately, this transformation is generated by the ghost number current
7% = bc, which we already know may passess anomalies. In fact, the derivative
of ¢{X) couples to this chiral current like an external gauge field. We therefore
expect 1o find an anomaly in the transformation (6.25); this generates a new term

in Q proportional 1o 824{X). The transformation (6.25) then leaves us with the
BRST charge

dz = 1 be
where

T = _16,,(X)2,x"0:x" + 303(X) . (6.27)

From the discussion of the BRST charge in Section 4, we know that (6.26)
will satisfy Q2 = 0 if the operator product of T{X} with itsclf takes the standard
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form

= -~ c/2 2 ~ 1 -
T w) TX)(z) ~ oyt oo TX)Nz) + w—_——za.rlxl + o,

(6.28)
with ¢ = 26. This result, however, is no longer so simple to obtain, because the
operator product must be computed in a field theory with complicated nonlinear
interactions. BNS expand the nonlinear sigma model about a flat target space
metric by the standard technique of parametrizing the space in terms of Riemann
normal coordinates:lu]

CuX) = Gpulzo) = 3 RuaupbX*(6X%(2) + ... (629)

[ntegrating over the field fuctations § X%(z) defines a perturbation theory in pow-

ers of the background curvature. Computing to 1-loop order in this expansion,
they find

FX)V(w) T (z) = (6.28) + (wi__—f}g , % 3, X1, X"

1
* {[pr - Z p.)m'Hvav + 2VPVV¢] (6.30)
+ [VaHu* - 2(V;¢)H,.v"]}-

The new singular structure appears because the interactions couple the analytic
and anti-analytic sectors. (The brackets indicate the symmetric and antisym-
metric parts of this tensor.) In nddition, one finds a shift of the central charge

¢ = [D + aa'{-v=¢ + (V) - %R + :—E(HM,A]’}] . (6.:31)

where the string slope parameter a’ absorbs the dimensions. To insure @% = 0,

the two terms in brackets in (6.30) must be set to zero, nuu ¢ inust be kept equal
to 26,
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The second of the two conditions generated by (6.30) is the equation

VJ.H,WA = 2(VA¢)H1,WA ' (6'32)

which is a Maxwell equation for the B#* field. The first condition can be rear-
ranged into an equation of the form

pr - %G”UR = =3 (5.33)

this is Einstein’s equation for the background gravitational field. These two
conditions are equivalent to the vanishing ol the § functions for the nonlinear
sigma model. The Bianchi identities can be used to show that, if these two
conditions are satisfied, the quantity displayed in (6.31) satisfies V ,c = 0; thus
all that remains is to adjust the overall canstant value of this quai.tity. The three
conditions all {ollow consistently from the {ollowing variational principle:

3 /dn/c”: c‘“{R + (V) - %H’} =0. (6.34)

It is worth comparing this actien principle with the results of our explicit ana-
ysis of the gauge-invariant string field action. The free-field Lagrangians (6.14],
(6.16), and (6.18), taken together, give exactly the linearization of (6.34). Pre-
sumably, this is no accident; the equations (6.30) and (6.31) are consistency
conditions that should be automatically satisfied it the theory is properly for-
mulated. However, the generalization of our earlier analysis to the full nonlinear
theory has not yet been done, and the precise relation between these two ap-
proaches is not at all understood. I can only recommend this as a problem for
your attention.

How do we solve the conformal consistency conditions? I will discuss only
the simplest solutions here. The equations we have derived correspond to the
results of leading-order perturbation theory in powers of the curvature; in higher
orders, they receive corrections proportional to higher powers of curvature and
field atrength. To this order, however, they are solved by setting ¢(z) to a con-
stant value, H = 0, and Ry, = 0. This last conditicn does not necessarily
imply R,.1» = 0; among the additional allowed configurations are the Calabi-
Yau manifolds which we will discuss briefly in Section 9. Several authorsm 44)
have proposed solutions corresponding to group manifolds on which both of the
symmetric tensors appearing in (6.30)and (6.31)—R,., and Hyae H,*?—take val-
ues proportional to Gy,. When the condition (6.30) is satisfied, Hyuao octs as a
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parallelizing torsion. From the nonlinear sigma model viewpoint, this solution

is just the fixed point found by Polyakov and Wiegman 1451 ynd Witten 1! by
the addition to the nonlinear sigma model of a Wess-Zumine term. However,
the condition {6.31) cannot be satisfied at the same time unless one shifts th:
value of D away from its free-field value of 26. This is perfectly acceptable for
the basonic string, but in the case of the fermionic atring such a shift may do
violence to space-time supersymmetry. We will take up this issue, and other

issues related to the compactification of space-time dimensions, again in Section
9.

7. The Covariant Superstring

In order to introduce fermions into string Ltheory, and to formulate consis-
tent and possibly realistic string models, one must generalize the simple bosonic
string to a system with supersymmetric world-sheet dynamics. Michael Green
has described to you the general cutline of this method, and his own elegant
light-cone formulation of the supersymmetric string. In this lecture, 1 will de-
velop this theory once again from a viewpoint which allows Lorentz-covariant
calculations of string scattering amplitudes. As in earlier sections, wy primary
too] will be the use of confermal field theory. We will see that the calculational
methods of conformal field theory work together naturally with the constraints

of BRST invariance to clarify the structure of this extension of the formalism of
strings.

7.1. SUPERCONFORMAL FIELD THEORY

As a first step in developing the theory of the supersymmetric string, I would
like to introduce the supersymmetric extension of the formulation of conformally-
invariant feld theory given in Section 2.“.“al This extension is surprisingly
straightforward; all of the technical apparatus we require is already in place.

In principle, I should begin from a locally supersymmetric 2 dimensional
action, coupled to the supermultiplets (X*, ¥#) which we described at the end
of Section 37 However, following the logic of Section 2, I will assume directly
that we have chosen the metric to be of the form (2.5), and, further, that the
corresponding gravitino field vanishes. In this flat background, we can set up a
superspace with bosonic coordinates z, Z. For N = 1 {or (1,1}) supersymmetry
in 2 dimensions, the supersymmetry generators form a 2-component spinor which
we can represent in the basis of eq. (3.24). The superspace thus should have two
fermionic coordinates; we may represent these as Grassmann variables 8, & which

» A clear derivation of the string dynamics from Lthis starling point can be found ref. 49.
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transform as analytic and anti-analytic objects of conformal dimension —-’2-. A
scalar superfield on this space has the general structure

X(2,7,8,8) = X + 0y + 6y + 08F . {7.1)

We can see that this field indeed contains the analytic supermultiplet {X(z), ¢(z))
and its anti-analytic counterpart, as well as an auxiliary field #. For the rest of
my discussion, I will attach a Lorentz index to X and treat it as the string
coordinate superfield.

The two supersymmetry generators can be represented as derivatives with
respect to the anticommuting coordinates:

Q=28 —#63:,, Q-=28; ~ 05, (7.2)
corresponding to the supersymmetry algebra

{(Q. Q) = -28,., {Q.Q} = -28:. (7.3)
Covariant derivatives which anticommute with Q and Q are given by

D=8 + 83,, D = 9; + 86z (7.4)

A natural guess for the free-field Lagrangian of X is: £ = DX*DX*. Indeed,
if we compute the derivatives of X* explicitly

DX* = ¢* + 88,X* — §03,9" + OF*
_ _ (7.5)
Dx* = ¢" 4+ 80:X* + G094 - OF*

and define [ d26 69 = 1, we can assemble

—l-fd?zd’e DX*DX*
27
= 2 [ g {Buxva.X — yromr - 0T + F1} .

2n
(7.6)
This is indeed the supersymmetric action of massless free fields. The equations
of motion which follow from this action imply that ¢* is an analytic field while
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" is anti-analytic and F# = 0, This allows us to simplify (7.5) to

DX* = ¢* 4+ 83, X%, DX* =9 + 0a;X". (1.7)

Let us now explore the symmmetriea of the analytic sector. The coordinate
differences
Za = -z — 910 012 = 8; -0, (7.8)

atre supersyrametric, in the sense that they are annihilated by (Q; — Q3)- It is
usefu] to note that

Dizia = Diryg = 443, and D} =28,, D} =20,. (19

The invariance of £;3 suggests that the propagators for the component fields
of X#(z,6) can be written in & unlfied way as a superspace propagator

(X*(28),0,)X"(x3,82)) = —6*"log(z12) . (7.10)

It is essy to check this by Taylor-expanding the left- and right-hand sides of
(7.10) in powers of §;, #2. The two nonvanlshing terms do indeed give the correct,
component-feld propagators:

(X*(21)X"(53)) = —6"" log(m — my)
(r.11)

-6,0; [ (W (s )p" (22)} = =6 ”i"] .

The energy-momentum tensor of the (X#,¢*) supermultiplet can slso be
written in superfeld form. A natural expression is

T = -;pxﬁmx- i (1.12)

Thie object is actually fermionic in character, and of dimension £. Its components




in a expansion in ¢ have the form

T =T + 0Tn. (7.19)

Tg is 2 bosonic tensor of dimension 2; this should be 1dentified with the energy-
momentum tensor of the component description. Indeed, for the choice {7.12),

T = ~3(B.X")? + J0P0.0% ; (7.14)

this is exactly the energy-momentum tensor of the component flelds X#, . The
fermicnic component Tr has the form

Tr w =344, X¥ (7.15)

this is the generator of local suparsymmetry transformations,

Apparently, the local conformal and supersymmetry motions come together
into 2 unified algebra. Usinz our functional representation of commutators, we
can work out the algebra if we know the operator products of the components
of T(z,8) with one another. Since T is the conformal generator introduced in

Section 2, and T is a conformal tensor of dimension ;, we can immediately write
two of these relations:

3i/4

Tolw) Tole) ~ ey + oagys Tol0) + oy 0475 »

(7.16)

Ty(w] Tp(z) ~ rﬂ% TF(:} + (?}‘35 2:Ts .

In the first line, I have defined & = %c, su that a scalar superfield X(z,0) will

have ¢ = 1. The two lines of eq. (7.16), may bs recognized as components of the
superfield relation

g 3 Ma
T(z1.6:) T(23,83) ~ éa 4 3% T{z2,65)
iz 2 (7.27)
+ 5 ;_ DT(22,02) + — ”’ , aT(52:03) -

The leading component of eq. (7.17) gives the last of the three operator product


file:///rd.W

expressions:

&/4 11
-z 2{w-:z

Tr(w) Tr(z) ~ w y Te(z) . (7.18)

If we now define conformal and superconformal generators by

d
L, = EEE M52 ,
(7.19)
Gy = 2 dz FHiTs(2),

2

we can apply the contour integral methods of Section 2 to compute their com-
mulation relations. The result is

ILm Lrn] = (ﬂ - m)Ln+m + -s' ﬂ(ﬂn - l)&(n -+ m)
|Ln,Gx| = (g - k) Gntk (7.20)
(Gr,Gp} = 2Lpap + -i-{k’-—%)&(k-\-p).

This is the superconformal, or Neveu-Schwarz-Ramond, algebra. It is a graded
extension of the Virasoro algebra incorporating local supersyrometry. This al-

gebra will be the world-sheet gauge symmetry algetra of the supersymmetric
string.

7.2. VERTEX OPERATORS FOR THE NEVEU.SCHWARZ SECTOR

The Hilbert space of states defined by the superconformal field theory of
X#(z,4) should contain just the spectrum of states found in the open superstring
theory, in its covariant (Neveu-Schwarz-Ramond) formulation. Let us work out
that spectrum, and see what correspondence appears.

It is most straightforward to break up the superfield X* into its component
fields X#(2), ¥#(z). X*#(z) has exactly the action that I have already described
in Section 3: Tts Fourier components &, act as ladder operators to create the
excited oscillator modes of the string. The new information comes from ¢#(z).
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Since this field is a conformal tensor of dimension %, its Fourier expansion should
be written

wi = Y e, g = 8 ety g

r 3
it ony

As we have seen in (2.44), this convention for the Fourier components implies
that ¢} lowers Lq by k units. In our previous examples, k took integeral values;
however, we see from (7.21) that % (z) can be a single-valued funclion on the

complex plane only if, in this equation, & takes half-integer values. Since, (4 22)
implies that

vilo) =0 for k23, (7.22)

)

the components with & > 0 act as fermien annihilation operators, and the com-
ponents with k < O act as creation operators. The {ull Hilbert space is the space
of states created from {0) by the action of a®,, with n an integer, and ¢*,
with k a hall-integer. Comparing this result to Michae! Green's develepment of

the covariant superstring, we see that this reproduces exactly the Neveu-Schwarz
sector of the theory.

At first sight, this result seems paradoxical: The Neveu-Schwarz sector of
the string was defined by anti-periodic boundary conditions, while in the above
discussion, I have insisted on the regularity of ¥#{z) and therefore on the pe-
riodicity of ¢* around equal-time circles. This paradox dissolves when we look
back to the transformation (2.3) which gives the relation between the original
string variables r, ¢ and z. If we write w = 1 + 10 and ¢arry out this conformal
mapping of a tensor of dimension 3, we find

N |
ww) = (2) v = P ulstw) (7.2

Going once around the siring sends ¢ — ¢ + 2, of w — w + 274, This produces
a factor £ = (—1) on the right-hand side of (7.23). Hence, in order for ¥* to
be single-valued on the z plane, it must have been anti-periedic (¥*{o + 27) =
—¢*{2)) on the original string. The result of this argument is that the states of
the Neveu-Schwarz sector are very simply described on the z plane. The states
of the Ramond sector require a more sophisticated construction, which will be
presented later in this section.

1t is not difficuli to construct the vertex operators which create the asymp-
totic states of the Neveu-Schwarz sector. It is important to note, however, that



because the reparametrization gauge group is larger for the superstring, the con-
straints of BRST invariance are stronger. To determine the new conditions, let
us work out .he BRST charge. This appears naturally in the superspace for-

mulation just presented. If we group the repararpetrization and superconformal
ghosts into supermultiplets

C = e+ 8v, B = f+8b, {7.24)

we can obtain the actions of the (4,¢) system and of the (3,4) system from the
expression

= X (a2 P
S = o dz/dGBDC. (7.25)

Using as ingredients the superfields B and C and the supersymmetric covariant
derivative I7, i1 15 not difficult to construct an energy-momentum superfield whose
bosonic component reproduces the energy-momentum tensors of the component

ghost systems, given by {3.18} with j = 2 for (b,¢) and 5 = % for (8,7). The
resull is:

T = -D*B-C + %DBDC‘ - %BD’C. (7.26)

The fermionic component T of (7.26) may be though of as the generator of local
supersymmiry on the ghost fields.

It is naturally suggested that the BRST charge for the superstring theory
should be constructed as a superspate contour integral of a ghost field with this
energy-momentum superfield. More concretely, this prescription gives

dz 1 .
S I Y ERUCURCE

dz X, | ST} X, 1 ..
= 2 {e@)- @5 4 STy ) () 4 Lpgesy)

(7.27)
Indeed it is straightforward to verify that this quantity satisfies Q3 = 0 as long as

TX) satisfies the operator product relation (7.17) with é = 10, This insures that
the full energy-momentum tensor (T1X) 4 T{B:C)) gatisfies the Neveu-Schwarz-
Ramond algebra with zero central charge, If the background space-time is flat,

this condition is just the requirement derived in Section 3 that this background
be 10-dimensional.
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It is reasonable to expect that vertex operators for the Neveu-Schwarz states
will have the general form:

/d: CVIXH PR (7.28)

Let us apply {7.27) to this structure and see what conditions result. For this, it
is useful to rewrite the BRST charge in the form

o
I, 1
0 = E: e LV 3 G-y : + (3 ghost terms) (7.29)
-0

‘The ¢, annihilate |0} only for n . 1, 50 all of the L, for n > {—1) must give
zero when applied 1o (7.28). Since {7.28) is translation-invarjant, it is indeed
annihilated by L_,. The conditions associated with L,, n > 0, are just are those
written in (5.21), with each L) replaced by the total Virasoro operator for
the combined system of X# and ¢'#. The ~, annihilate |0} only for k > %, S0
Gy for £ > —3 must also give zero acting on (7.28). G. y may be identified as

the global supersymmetry generator: Using the definition (7.19) together with
(7.15), and representing an infinitesimal supersymmetry parameter by ¢, one can
readily compute the commutators

[!G_%, XH(2)] = ev¥(z), [eG b v (z)] = 3.X*(z) . (7.30)
This is indeed 2 global supersymmetry transformation
[zG_%, X*(z,8)] = eQXP(z,8) . (7.31)

If (7.28) is annhilated by G_% and by all of the L, for n > 0, the second relation
of (7.20) implies that all of the Gx for k > O also annhilate this operater. Thus,
for vertex operators of the form (7.28}, the one new condition arising from the
superconformal algebra is that the vertex operator be globally supersymmetric.
It should be noted that (7.28) is not the most general form for a vertex operator
in the Neveu-Schwarz theory. 1 will present some more general operators, which
involve the superconformal ghosts in a nontrivial way, later in this section.

Continuing, however, with the operaters of the simple form (7.28), let us
write down the aimplest operators satisfying the requirements of the previous
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pasagraph. The most straightforward way to insure that V[X*,$*] will be su-
pessymmeiric is to write it a3 & superspace integral:

j dzViX* ¢¥] = f dy f 48 V| X*(z.0)] . (7.32)
The simplest cholce is
Vilk) = j a8 XN = k. lz) SFXDD (7.33)

This operator ls automatically primary, It has dimension 1 if A7/2 = 1. This
operator Lthus creates a scalar particle with m? = —1; this value is nepative,
but half the normal quantum. The corresponding particle is the tachyon of the
Neveu-Schwarz theory. The next simplest choice for V is

¢ Vu(k) = / df o, DXP %X = o (3 XP 4 ik-yYyB) FXD | (734)

This is primary if ¢+ k = 0 and dimension 1 if k* = 0. This vertex thus creates
the massless vector particle of the Neveu.8chwarz theory. The generalization to
higher levels should be clear. One feature of this analysis seems strange, however.
In the discussion of the Neveu-Schwars spectrum given below eq. (7.22), the
tachyon and vector states appeared as

I, 'bﬂ* ) . (7.25)

The vartex operators which create these states seem to contain an extre fermion
field. In fact, these two arguments treat the same states in two different repre-
sentatione. I will reconcile these twa pictures at the end of this section,

In either of the pictures, it Is unambiguous that the tachyon and vector
particles are created by operators with opposite Grassmann properties. This
looks very dangerous for the formulations of a atring field theory describing the
Neveu-Schwarz states, If we inaist that the Meveu-Schwarzstring feld is bosonic,
then the expansion analogous to (5.37),

&{X*(0), ¥*(0)]) = [ 4% {étp)Vt(P) + AupVP(p) + } o) . (7.38)

implies that the coefficient A,(p) is 3 c-number while ¢(p) is a Grassmann num-
ber. The iatter result is inconsistent with the spin-statistics theorem. To formm-
late a consistent theory, we must rernove all terms with Grassmonn coefficients.
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This projection eliminates all statcs at half-integer muss levels. This s precively
the projection of Gliozzi, Scherk, and Olive!™ (GSO), which wae motivated from

another viewpoint in Michael Green's lectures. Note that this projection torm
the Neveu-Schwarz string into & theory which ia free of tachyons,

7.3. SPIN OPERATORS

Let ua now turn our attention to the Ramond sector. We must undersiand
how to express the Ramond atates in conformal field theory, or, equivalently,
how to create these states by vertex operatcrs, As we have already discussed,
the states of the Ramond theory are states in which the fermione ¢#(z) are
antiperiodic on eireles around the origin (or, more generally, circles around the
point zg to which the asympiotic string is mapped). .

g2

-y (2)

3-a7 572BAR

Figure 8. Analytic structure of the fermion Geld ¢#(a) for Rumond secler
atates.

K we view the field ¢#(z) as an anslytic function, we would say that it has s
square-root branch point at zo. This structure is llustrated in Fig. 8. The vertex
operators which create the Ramond states must, then, be operators which create
this branch cut structure. { will sefes to such operators as apin operatora.
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It is not difficult to build operators of this type by bosonizing the fermions
¥*(z). 1 would now like to describe that construction. This formalism is inter-
esting from a more general paint ol view, because it provides a relatively simple
example of the conformal field theory representation of a Kac-Moody algebra {a
local current algebra). 1 will therefore feel free to generalize my discussion a bit
from the analysis of 10-dimensional fermions to discuss a 2/N-dimensional vector
field ¥ transforming under an O{2N} current algebra.

Ve begin, then, with a system of 2N fermions with the operator products

1

# v = _fBv
e v le) = - s (1:37)
Lel us relabel the fermions into pairs
Lot o, Aoyt
V2 ’ V2 ’
{7.38)
1 . 1 . 5
(WP i) o R 2w =it = ?
75 (67 + 09 Z Wi~y
etc. Then {7.37) becomes
0o (2) P (w) = —§9 ;_l—w a,6=1,2,...N . (7.39)

This system of fermion fields has ¢ = N, 1t is thus natural that it can be
bosonized by replacing the ¢, ¥® by N boson fields according to the scheme

¢a — E'I-Cl.-é' ‘ba — c—iﬁ.-¢' (7'40)

where a.' = &," is a unit vector. For each pair ¢9, ¥°, taken separately, this
construction reproduces (4.8) and thus will lead to identical correlation functions
for the fermionic and bosonic theories. However, the operator assigned to 1 by
(7.40) does not anticommute with the operator assigned to ¢® if a # 5. We may
remedy this by assigning to the product of exponentials £'®='¢ ¢'@5'¢ 4 canonical
order, or by introducing extra operators c(a) (which are independent of z) te
provide the correct signs when the arder of these exponentials is changed. For
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this problem, we need operators which obey the algebra
cla)e(b) = —c(b)ela) , ca)=1. (7.41)

These z-independent operators are called cocycles. A more general discussion of
their significance may be found in Rel. 51. Assembling these pieces, we have

Ye(z) = ic(a)e'®e?l2) {7.42)

as the complete form of the bosonization relation.

It happens that the vector a,' is also the weight vector which characterizes
an element of the vector representation of ¢{2N)" This is not a coincidence. We
czn make the connection between bosonization and representation theory more
explicit by constructing the generators of O{2N) in Lheir bosonized form.

The generators of O(2/N') are antisymmetric tensors M*¥ patisfying the alge-
bra

(Mpl—" Alia] — J\f’-vSVA _ Mp.\éva _ Mllﬂ&pf\ + Mw\ﬁpo . (7_43)
We can represent this algebra in terms of fermions by

dz

MP = § o), ) = - (7.44)

The operator product {7.37) implies

. . Y 375 6“06‘”\ ~ Eurgve
J“"(z)J'\a(‘”) ~ YH{z) G i = ¥ (w) — (3 perms) + - o)t

[ vo
(:f w) jpa{w) - (26_ W) j”'\ - ("‘Hy]

6””5""‘ _ 6“"\6”0
(z—w)s
{7.45)
and it is easily checked from this relation that M#* defined by (7.44) indeed
satisfies (7.43). The double poles in (7.45) drop out of the calculation of the

= A brief but very clear explanation of the representation theory of Lie groups may be found
in the book of Cahn!*’!
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commutators of charges M*¥. They have an effect, though, on the current alge-
bra: In equal-time commutators [j#¥(a),#*(¢")] of operators local in the string
coordinate o, they contribute Schwinger terms, e-number terms proportional to
&'(e — o).

It is now straightforward to convert the indices u, v of (7.44) to ¢,@ and to
bosonize this operator. For a # b, this procedure gives

il

I

ab cfﬂ)r(h] gioab . a,,:," 5,,‘ =+ 55" '

N (7.46)
it = e(a)e(b) o, aj = &' - & .
For y%2, we must be somewhat more careful:
9% = jl}l!}u {c‘“ﬂ'“‘) e~iea#lw)  _ (singular terms)}
= ‘h_r'rll‘" { : gfal# ()9 (w)] B _1 5 (singular terms)} (7.47)
= 18, 4° .

The N generaiors M°®, which generate rotation, in N orthogonal planes,
provide a Cartan subalgebra of O{2N), a maximal set of mutually commuting
generators. The representation theory of O(2/V), and, more generaliy, of any Lie
algebra, involves in an essential way the eigenvalues of these generators acting
on an element @ of an irreducible representation:

(M2, 8] = w . (7.48)

The set of eigenvalues w' is called the weight veetor of ®. The representation

(7.47) allows us to compute the weight vector of any operator which is the expo-
nentjal of a bason field: The operator product

jd'&'(z) cl'a;-¢(w) —

oy o (7.49)

which follows immediately from the form of 7°%(z), integrates t¢ the commutator
lMuE, cin,ﬂw)] = a;° eif.auﬂl.r.u') . (7_50)

Thus, the weight vector for this operator is exactly a;*. The remaining generators
of O{2N) may be seen from (7.46) to raise and lower the weights of fields of the
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exponential form by translating the weight vector a;' by aa;’ or a3, the weights

of the adjoint representation. This is exactly in accord with the representation
theory of O(2N).

Let us now return to the question that motivated this whole analysis: How
do we construct spin operators which create branch cuts for the ¢°(z)? Notice
that if we 2ssign to an exponential of boson fields the weight vector

i _ o b1
ax' = (:tz,ia,:ta,...), (7.51)

we have the operator product

ve{z) atoa elu) | ic(n) 280 Le) ina d(u)

(7.52)
~ (2 —w)%h 1defa) eflaataa) Hw)

The singular term apparent in the second line is always (z - w)t4, so the op-
erator with weight a4* induces exactly the desired singularity in ¢2(z). The
group-theoretic apparatus that we have developed allows us to see the remark-
able interpretation of this construction: a4* is the weight vector for a representa-
tion on which the angular momentum generators take hall-integer eigenvalues—a
spinor representalion. The spin operators on Lthe world sheet, and the Ramend
theory states which these operators create, transform as spinors in 10-dimensional
space-time.

It is instructive to pursue the operator product relation between $*(z) and
the spin operator a bit further. Te do this, it will be convenient to choose a
convenient representation of the O(2N) Dirac algebra {4#,4¥} = ~26**. The
O(2N) Dirac matrices are 2V x 2V matrices, which may be thought of as acting
on products of N 2-component spinors, In this basis, we may represent their
algebra by writing

= e 1,010...,
(7.53)

¥ = ¥Rt ®1:® ...,

etc., where g}, 0%, 0% are the Pauli sigma matrices and 15 is the 2 x 2 unit matrix.
In the 42, 4 basis, this representation takes the form

W= SieTelele... A = V2iec®191®...

(7.54)

A = P eV2icte19... = eVt R1le...
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The generalization of 4% to this algebra is
T = y'v* 9" = o @o*00%®... {7.55)

A spinor state bas T = =1 according to whether the number of entries (—1) in
its weight vector a.® is even or odd.

Let us now define the spin operator corresponding to the spin-3 representa-
tion of O(2N') a bit more carefully, Write

Salz) = elA)eraadin - (7.56)

¢(A} is a cocycle defined by applying factors c(a) to the cocycle ¢(A) associated
with the highest-weight state ;' = (},1,4,...). ¥ 24" has components (-1)
as its b,e,d,... entries, for b < e < d < ..., | will define

e(A) = e(b)e(c)e(d) - e(A) . (7.57)

With these definitions, one can show by explicit computation using the bosonized

form (7.42) that the singular term in the operator product of ¥* with S, is given
by

1 |
*(z) § ~ = ——— (%) 4p5B(¥) . 7.58
¥¥(z) Sa(w) 72 o)t (1) (pSa(w) {7.58)
with the Dirac matrices in the representation (7.54). From this relation, we can
build up
“ab 1 1 b
3%(2)5a(w) ~ 73=re) (Z[’f",’! Nap Salw) . (7.59)

This equation implies that the action of M°® on 53 is exactly that of 1L =
1(4%,4%}, just as the spinot transformation properties of Sp require.
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7.4. VERTEX OPERATORS FOR THE RAMOKD SECTOR

It is tempting to say that the spin operaicss S4(z) are all that we require
to create states of the Ramond sector. However, there is still something wrong
with this choice. The operator 5,(z) has dimension |a4)?/2 = N/8; for a 10-
dimensional string theory. this equals 5/8. Thus, S4(z) slone cannot satisfy
the requirement on 3 BRET-invariant vertex operator that its dimension should
be 1. The resolution of this problem was discovered by Friedan, Martinec, and

Shenker™™ and Knizhnik** in the dynamics of the superconformal ghost sys-
tem. It is inconsistent with local supersymmetry to choose antiperiodic boundary
conditions for ¥#{z) ualess we also choose antipericdic boundary conditions for
B{z) and ~4(z). Thus, the operators which create the Ramond states must also
include spin operators which create branch cuts for these ghost felds. This oj-

erator provides Lhe last ingredient needed to assemble BRST-invariant operators
for the Ramond sector.

Just as we did for the coerdinate fermions, we can construct the spin oper-
ators for the superconformal ghosts by bosonization. Let me, then, present the
bosonization farmulae for the superconformal ghost systern, Since the logic of
this development follows exactly thal of the bosonization of the reparametrization
ghosts in Section 4, and the techniques necessary to follow this analysis should
also be familiar to you, my discussion here will be brief,

One comes ver, close to bosonizing the (3,4) system by defining a new scalar
field ¢(z) (not to 'se confused with the fields ¢'(z) which enter the bosonization
of Y*] with energy-momentum tensor

T o %(a,w - 3. (7.60)

This produces a system with ¢ = 13; exponentials of the field ¢(z) have dimen-
sions given by:

do

it

—%a(a +2), for O = e*¥s), {7.61)

This system differs from the {#,~) system, however, in three important ways:
First, the value of the central charge is wrong, since the (8, ) system has ¢ = 11.
Second, the operators ¢=¢, e® which we would like to associate with f and
have the wrong dimensions. Third, these operators anticommute, whereas we
would like to find a representation for # and 7 as commuting fields. This last
problem may be expressed as the statement that, while we have much exper-ance
bosonizing fermions, we need here a bosonization ol bosons,
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All of these problems are solved by adding a system of fermions (£, 5) with
dimensions (0,1) and energy-momentum tensor

7€) = g.e.q. (7.62)

Thus system has ¢ = —2, 50 it is exac:ly what we need to combine with the ¢
system to give ¢ = 11. In addition, we might note that evaluating (7.61) for
a = +£1 gives values differing by 1 unit from the dimensions we require for # and
4. This difference can be made up by adding dimension 1 operators from the
{€,7) system. The combinalicns

B(2) — 3,&(z)e ¢, 1(z) = n(z)e?® 17.63)

have the correct dimensions and the correct operator product with one another
to reproduce the correlation functions of #(z) and ~(z) with themselves and with
T(z).

This bosonization of the superconformal ghosts can be introduced into the
BRST charge in the same way that we introducel the bosonized form of the
reparametrization ghosts in Section 4. Let us, then, modify the formula for Q

given in (7.27) by making the replacements {7.63) as well as (4.15). The energy-
momentum tensor of the ghosts is replaced according to

Thefn) , lo) o7 4 oplem (7.64)

and the Tr of the ghosts undergoes a similar {2.9d somewhat more transparent)
rearrangement. Inserting these new structures into (7.27) and taking care, as we

did in (4.18), to correct the definition of normal-ordering appropriately, we find
at last

Q= f:—:; (qo + o + qz) ) (7.65)

where

g0 = ;g"'(T(X) + T 4 7ie) 4 ie) + T(E,’J)):

q = %ne"\b-a.X:

{7.66)
1 -0 2¢
qr = :-Ze ndzne® .

Now at last we have all of the equipmant we need to conatruct the vertex
operator for states of the Ramond theory. The simplest candidate for a spin
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operatar for the superconformal ghasts is the exponential

e iela) (7.67)

From eq. (7.61), we see that this operator has dimension 3/8, exactly what is
needed to bring the coordinate spin operator S4(2) up to dimension 1. Adding
also a reparametrization ghost factor ¢z} = ¢°{*), we can assemble a complete
vertex operator with spinor quantum numbers:

V_y(2) = (k) Sa(z) o' X1 e71) - dol) {7.68)

where @ is 2 c-number polarization spiner. This operator has total dimension
k?/2. This must equal O for BRST invariance. In addition, BRST invariance
requires that the field be primary. This implies that that fulk) = 0. V_* (z) given
by (7.6B) thus creates a massiess fermion with proper on-shell spin orientation.
This is exactly the lowest-lying state in the Ramond sectar.

7.5. PICTURES

We now have a start on the formalism for covariant calculation of fermion
emission amplitudes in superstring theories. However, we have left many unan-
swered questions along the way. Among these is the questian of the relation of the
Neveu-Schwarz vertex operators (7.33) and (7.34} to the corresponding states of
the spectrum. Further puzzles come from the new ghost sector: The replacement
of the (A,~) system by a boson plus a fermion pair has apparently led to some
multiplication of the number of states. We would like to know whether (7.68) is

the unique choice for a2 massless fermion vertex operator, or, if not, what other
choices we are allowed.

A peculiar property of the bosonization of the superconformal ghests which 1
have just described is that the final system contains two ghost number currents.
The first of these is obtained by generalizing the bosonization relation 5} =
8.0(z) to the ¢ system; this gives the current 5{*) = 8, ¢ which assigns the charge
n to exponentials ¢"#(*), In addition, there is & fermion number for § and 7. The
ghost number of the felds 8, iz » particular linear combination of these two
charges. The orthogonal linear combination corresponds to a degree of freedom
which was not at all obvious in the notation of 8 and .

Friedan, Martinec, Shenker lashﬂFMS) interpret this new degiee of freedom
by relating it to a pathology of the original superconformal ghost action (3.28}.
This 2ction is first order in derivatives while involving beson rather than fermion
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fields. Any such action leads to a spectrum which is not bounded below. In fact,
it is not difficult to construct atates of the (§,~) theory of arbitrarily negative
Lo. From (4.22), we see that 7y {0} # 0. Because 74 is a bosonic aperator, we

can apply it arbitrarily many times to 0}, lowering Lo by % unit at each step.

A more sensible vacuurn state would be annihilated by 73 To see how to
construct this state, compute

d
e e joY = 2_:; 2578 p(2) D) ne(®)

(7.69)

9z kg n L p(z) et 6O
27t

This vanishes only if (k = § — n) > 0. The unique state of the class ¢ |0y
which is 2xnihilated by all 43 and @ for k > 0 is the state given by »n = —1. The
state annihilated by all Lg-lowering ghost operators is, then,

1) = <(0)e=# Jo} . (7.70)
According to (7.61), the exponential has dimension -;—, so that the state |{1)
has Lq = -§, This is just the position of the tachyon in the Neveu-Schwarz

sector. We may identify (7.70) as the vacuum of the Neveu-Schwarz theory
which properly includes all ghost contributions.

The transformation from [0) to |{1) cannot be achleved by applying any finite
number of 4x and F; aperators to the SL(2, C)-invariant vacuum. The twostates
live in disjoint Hilbert spaces, within each of which the ~; and f; operators act.
FMS visualize this by imagining that the states of (3.28) contain a condensate

of bosonic ghosts with indefinite 8, v number—the Bose aea. They interpret the
¢ charge as the filling level of this Bose gea.

There is no conceptual problem in working within a given Bose sea level.
We can, in fact, describe processes with an arbitrary number of external Neveu-
Schwarz particles without changing the Bose sea level by using vertex operators
of the form (7.33), (7.34), etc. However, two features of the formalism force us
to study the relation of the various Bose sea levels. The first of these is the fact
that the fermion vertex operator (7.68), and, more gencrally, any spin field for
the superconformal ghosts, necessarily changes the Bose sea level. The second is
the facl that for the superconformal ghosts, as for the reparametrization ghostsa,
conformal field theory matrix elements on the plane violate ghost number by a
fixed amount, We derived in Section 5 the result that the ghost aumber of b
and ¢ is violated by 3 units in string tree diagram calculations, and that this
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observation plays an important rele in determining the structure of scattering
amplitudes. The basic statement of this nonconservation was the expectation
value (0jc_ycoeq [0} = 1, or, in bosonized form,

{0+ oy = 1. (1.71)

This slatement has a twofold gencralization to the bosonized superconformal
ghosts: Both ghost number currents are anomalous. FMS argued that the deficits

are (—2) and 1 unit for the ¢ and (n, £) systems, respectively, corresponding to
2 and 1 normatizable zere modes, Explicitly,

0«2 0y = 1, and (0] €0)J0) = L. {7.72)

These statements couple different Bose sea levels. Further, they rule out the
use of vertex operators with predetermined exponentials of ¢ to describe arbi-
trary scattering processes. Far example, except for processes involving exactly 4
fermions, the changes in Bose sea level by (-%) unjt produced by the insertion

of successive vertex operators {7.68) will not add up properly to fulfill the first
relation of {7.72".

To solve this problem, we need to find alternative forms of the fermion vertex
operator, equivalent to (7.68), which change the Bose sea charge by a different
number of units. This can be done, in an effective but very counterintuitive
way, a5 follows: Because of the second relation of (7.72), the z-independent
Fourier component £y corresponds to a zero mode; thus, every nonvanishing
matrix element of vertex operators must contain a factor £p to saturate this
zero mode. This zero mode does not appear anywhere else in our formalism; in
particular, the bosonization formulae (7.63) depend only on 8.£. Taking this

into account, let us consider the transforming the fermion vertex operator (7.68)
according to

Vilz) = [Q, &(z)Voy(2)] - (71.73)

The commutator is defined, as usual, by taking the contour in the definition of
@ to encircle the point z at which the vertex operator is inserted. If V_; is
BRST-invariant, as is guaranteed by the on-shell conditions, the BRST contour
passes through V_* and acts on £{z), eliminating the redundant factor £p that
could potantially appear. The result is a new vertex operator which is BRST-
invariant by virtue of the relation @2 = 0. Technically, (7.73) is the second
member of a BRST doublet. However, this is somewhat obscure, because the
first member of the doublet contains £p, which is, in some sense, outside cur
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formalism. Evaluating (7.73) explicitly, we find

Vi(2) = ﬁﬁ(k){cm(a.xu %k-w")qf;ﬂsn + c““nbs,.} et X

(7.74)
This is a sensible-looking vertex operator which creates & spin-} fermion state.

If V_, is BRST invariant, this object is also. (it is not hard to check directly,
using {7.61), that (7.74) has dimension 0 if ¥ = 0.) Thus, {7.74) is a second
veriex operator for the massless fermion state of the Ramond sector, differing
from (7.68) in that it raises the Bose sea charge by 3 unit,

FMS refer to the transformation on vertex operators defined in the previous
paragraph as the pieture-changing operation:

V) = e v - (1.75)

They emphasize that X works quite generally as a methad of transforming BRST-
invariant vertex operators to new operators carrying the same space-time quan-

tum numbers but different Bose sea charge. Let me present two more examples
of this relation:

Q. €+ (k" e Xese )] = (X . 7=t
. _ (7.76)
[Q' E ' {;"[B.X“ + ik - ﬂ)tpu)g'k'xgtc":*}] - §#¢p¢lk~x . ch_é i

The operators (7.33} and {7.34) may thus be recognized as picture-changed ver-
sions of the vertex operators which create the most natural forms of the low-lying
states of the Neveu-Schwarz theory:

eEXI0) v TR (1.77)

To complete our discussion of the picture-changing operator, I would like to
argue that picture-changed versions of the same vertex operator are equivalent

for the purpose of computing scattering amplitudes. To understand how to make
this argument, let us recall the transformation

e(z)V(z) — fzi;-?; b(w) ¢(2)V () (7.78)

which we introduced in eq. (5.26) to define the bosonic string scattering ampli-
tudes. This transformation, involving the contour integral of & ghost operator, is
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Figute 9. tow to move the picture-changing operator from one on-shell
vertex operator to another,

gimilar in structure to the picture-changing operation. In our discussion of (5.26),
we saw that the b contours could be freely moved from one vertex operator to
any other vertex operator in the same correlation funetion. If the same is true of
the picture-changing contour, we can move this contour onto or off of any given
operator without changing the value of the scattering amplitude.

The argument that we can move the picture-changing operator from a given ver-
tex operator V(z,) to r. éecond operator V(z;) is illustrated in Fig. 9. To begin,
note that the amplitude, to be nonzero, must contain a factor £o. Since £g is z-
independent, we can consider this operator to come from the Fourier expansion of
£(z) placed at any desired point, say, z2. Now deform the BRST contour so that
it winds sround £(z3)V{z3}. This contour passes through all BRST-invariant
vertex operators, but it sticks on the factor £(z2). Finally, replace the newly
isolated £(z;) by £o. This argument proves that picture-changed versions of the

same vertex operator are equivalent for the computation of on-shell scattering
amplitudes.

In our discussion of the reparametrization ghosts, we saw that the structure
of the BRST charge and the ghost Hilbert space fixed the structure of the theory
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even off-shell, since these elements gave directly the form of the gauge-invariant
action. This construction generalizes directly to allow one to contruct a gauge-
invariant action for the Neveu-Schwarzsecior in the picture with Bose sea charge

(- 1) which contains the state |§3). For the Ramond theory, Witten 18] has shown
how to combine these elements with the picture-changing operation to construct
2 gauge-invariant action for the Ramond theory in the picture with Bose sea
charge (--3). The role of states with other values of the Bose sea charge in the
off-shell formalism rerains obscure, and, more generally, the full structure of the
gauge-invariant interacting theory is much in need of further investigation.

8. One-Loop Amplitudes for Strings

At several points in our argument, we have found that the string theory is
naturally projected onto a subspace of the full Hilbert space of states on the
world sheet. The projection onto the ghor free subspace is expected in any
gauge-invariant theory, but two other projections which we made—the projection
onto states with Lo = Lo in the closed string theory and the GSO projection in
the superstring theory—have no natural analogue in conventional field theory. It
would be useful to explore these operations further.

The origin of these physical state projections, and their relation to other
intrinisically stringy aspects of the formalism, is made most clear through their
role in the {formulation of loop corrections 1o the siring scattering amplitudes. In
this section, I would like to illustrate this by computing the one-loop amplitudes
for bosonic and fermionic strings. This computation is interesting in its own right
because it reveals that the ultraviolet divergences of the string theory, even in &
space-time of very high dimension, are much less severe than the divergences of
a Jocal field theory. But it will be most illuminating because of the role played in
this analysis by the invariances of the world-sheet geometry. For varions reasons,
the analysis of loop amplitudes is simpler for elosed strings, so I will consider
only that case. ] will also restrict my discussion to the O-point amplitude, the
vacuum energy shift or cosmological censtant renormalization,

B.1. Mopuu

Let us begin with the bosonic closed string theory. Tree-level amplitudes in
this theory correspand to integrals over conformally invariant fields on a plane, or,
equivalently, on & sphere, At the one-loop level, we must include a virtual closed
string breaking off from the sphere and then reattaching. This gives the world
sheet the topology of a torus, Using Joca) conformal invariance, we may consider
the world sheet to be precisely a torus, Our proiicia, thea, iz to functionally
integrate over the coordinate fields X#(z) on a base space which in a torus,
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taking proper account of the geometrical invariances of the string theory. This
calculation was first done, in the formalism of dual models, by Shzspim;[s'il a

very clear and complete modern treattnent has been given by Pn]chinski!"; My
discussion of this problem will clarify most of the issues of physies, but 1 will
refer you to ref. 57 for a proper treatment of the reparametrization ghosts.

For the bosonic string theory at tree level, the 0-point amplitude is trivial. At
the one-loop level, however, a complication arises which gives even this amplitude
an interes\ing structure. Although any surface with the topology of a torus can
be cenverted to a flat torus by making a conformal transformation, it is not trye
that any flat torus can be confermally tranformed into any other,

3-87 5728A10

Figure 10. A torus, viewed as a parallelogram with opposite sides iden-
tified,

We may visualize a 2-dimensional torus as a parallelogram with opposite sides
identified (Fig. 10). By conformal transformations, we can convert the metric
on the space to the form gog = fap and scale the length of the bottom edge to
1. But this construction leaves the length and orientation of the Jeft-hand edge
undetermined. These two parameters may be summarized as a complex number

r =1 + ir3. (8.1}

r parametrizes classes of tori which are conformally inequivalent. The conformal-
ly-invariant functional integral over X*(z) should then depend on 7, and the full
one-loop correction should contain an integral over all inequivalent values of this



parameter. In higher loops, where the base space is a sutface of higher genus,
one finds more degrees of freedom in the world-sheet geometry which cannot be
removed by conformal transformations. The parameters of conformal equivalence
classes of 2-dimensional surfaces are called moduli.

The existence of moduli forces us to reconsider the prccedure described in Sec-
tion 3 for replacing the integral over all metrics on the world-sheet by a Fadde'ev-
Popov integral over reparametrization ghosts. The result of that discussion must
be changed to allow for the fact that those degrees of freedom in gap which do not
correspond to gauge transformations of the theory—reparametrizations and con-
formal transformations—sghould not be eliminated by the Fadde'ev-Popov proce-

dure but should remain in the final answer. This means that eq. (3.8) should be
replaced by

N S _ - f(vazcrba) | 2k x
VregViort / P = / DbDee / [T dettstrt)y, (82

where the 7% are the moduli, J is an appropriate Jacobian, and, to be precise, the
ghosts b(z) should be integrated only over their nonzers modes. It can be shown
that the zero modes of b are in one-lto-one correspondence with the moduli. This
relation, combined with our discussion of the gero modes of b from egs. (5.7)
and (5.8) in Settion 5, tells us that 3{g — 1) (complex} moduli will appear in the
expressian for the g-loop amplitudes.

For the case of a torus, it is not hard to derive the Jacobian J explicitly. It

is most convenient to begin by mapping the general torus ehown in Fig. 10 into

a fixed square: 0 < §; € 1,0 € £; < 1. In these coordinates, the line element
becomes

ds? = | + 1d&|? = gapde®de? (8.3)

whete

1 T
Jab = 2 ! . {8.4)
T fi + fg

The Jacobian J is obtained by differentiating with respect to r; and r; the modes
of gag orthogonal Lo reparametrizations and conformal transformatione. A plau-

» The formula (8.2) has been derived and analysed with exemplary clasity by Alvarez!®?!
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sible, properly invariant, formula for JTJ is

a a3
JTN;: = ¢°8. (- g5,
(IT0) = ¢°f - ar.-””') g7 - ( 5 gbar) (8.5)
Evaluating this expression, and taking the square root of its determinant, gives

detJ = 2v2/7%. (8.6)

The result (B.6) can actually be obtained from more gencra] considerations,
which also lluminate somewhat more the nature of the moduli. In our discussion
of the origin of r, we considered only the possible equivalence of tori under
infinitesimal reparametrizations and conformal transformations. However, the
terus shown in Fig. 10 can be transformed into tori with different values of 7
by making discrete reparametrizations. For example, by rotating and scaling
the right-hand edge of Fig. 10 onto the interval {0,1), we transform r — ~1/1.
By taking the upper right-hand corner instead of the upper lefi-hand cerner to
define r, we transform r — r+1. These two transformations generate the medular
group, the group of fractional linear transformations

ar + b
er+d’

—

(8.7)

for which a,b,¢,d are integera satisfying ad -~ bc = 1.

The integrand of (8.2) should depend only on the intrinsic geometry of the
world sheet, 80 it should be invariant to modular transformations. This is auto-
matically true fot the functional integral over the X#, as we will see in 2 mowment.
The Jacobian J must convert the integral d?s into a medular-invariant measure.

For the value of J we have obtained in (B.6), this works out just right; it is easy
to check that

1
f |dr|? ;-2,:, {8.8)

is explicitly invariant to (8.7).

Since the integrand of (8.2} is modular-invariant, the integral over r which
is indicated in this equation overcounts unless this integral includes only values
r which are not equivalent by modular transformations. A suitable integration
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Figure 11. The fundamental dom »in for integration of modular-invariant
quantilies.

region can be found as follows: Of the two transformations which generate the
modular group

r 417 +1, T = - (8.9)

the first carries the strip of the complex r plane —-} < Rer < -;- into an adjacent

strip, and the second carries the exterior of the unit circle in the r plane into the
interior.

The overlap of these two regions, shown in Fig. 11, is the largest region which
contlains no pairs of points carried one into another by either of these transfor-
mations. It is not hard to see that this conclusion still holds when more general
modular transformations are considered. This region thus gives the correct do-
main for the d?r integration in the 1-lcop amplitude.

This whele discussion generalizes to the treatment of the moduli of higher-
genus surfaces. In our discussion earlier in this section, we stated that (5.2}
must be integrated over a parameter apace of 3(g — 1) complex dimensions. If
we consider all values of the parameters corresponding to surfaces ineguivalent
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with respect to infinitesimal reparametrizations and conformal transformations,
we find an unbounded parameter space called Teichmiller space. In general,
though, this space must be divided up according to the action of the group of
discrete reparametrizations, the mapping elass group. The maximal subspace
of Teichmiller space which contains only points inequivalent under this group
represents the space of moduli. Like the region of Fig. 11 for the case of tori,
taken with the measure (8.8), the moduli space of any higher genus is compact
in its patural invariant measure.

B.2. CLOSED BOSONIC STRING

Having now clarified the role of the meduli, let us return to the calculation
of the one-loop bosconic string amplitude. The function of r which must be
integrated over (8.8) is given by the functional integral aver coordinate and ghost
fields on the torus. 1 will compute the integral over coordinate fields X* explicitly;
however, I will treat the ghosts only by assuming that they precisely cancel the
contribution of two coordinate degrees of freedom, which one might imagine to
be the longitudinal end timelike modes of oscillation. This result is justified in

the paper of Polchinski, ref. 57. With this replacement, the one-loop amplitude
of the bosonic string takes the form

A = /%—T [4x)*, (8.10)

where

Ax = /DX e3P x| (8.11)

1 have rescaled the field X* from my previous convention for ronvenience in this
context.

We can evaluate the integral Ax by making use of the connection between
Euclidean functional integrals and Harmiltonian evolution. Write the variable on
the plane of Fig. 10 as z = z; +1r2. Then 22 is a Euclidean time with periodicity
72. If r; = 0, this situation of a periodic Euclidean time gives precisely the
functional representation of tr [exp(—7;H)], where H is a Hamiltonian defined
on a ring. To reintroduce 7, we define an operator T {ry) which twists the ring

» The theory of higher-loop string amplitudes and higher-genus surfaces has recently been

reviewed by Alvares-Gaum# and Nehon.l“]
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Figwre V2, Evaluation of the one-loop siring amplituds by relsting it to
a quantum partition function,

through an angle 2xr;. Then

Ax = ur [T{n) e~mH], (8.12)

The relation between the geometry of the torus and the Hamiltonian interpreta-
tion of Ax is illustrated in Fig. 12.

To see what Hamiltonian to use in evaluating (8.12), let us Fourier decompose
X*(z,) at fixed z5:

X(z) = Xo + 3 Xnetinm (8.19)
B30

Introducing (8.13) into the exponent of (8.11), we find

s = % ] X{-2)X = / & {%x& + D [XnKon + (%»)’Xax-n]} -

(8.14)
This is just a set of harmonic oscillators, one for each normal mode on the ring.
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Let us separate out the zero mode part of the dynamies by writing
H=H + H;, (8.15)
where Hy = }P§ and Hy is & sum of Hamiltonians for harmonic oscillators of

frequency wq = 2wn.

The portion of the expression (8.12}] involving the zero modes is readily eval-
uated by using simple quantum mechanies:

RN ] dXp {(Xoje™ T 1Xo) = ] ﬂo% . (8.16)

The contribution of the nonzero modes is the product of terms assoicated with
the left~- and right-moving normal modes. At r, = D, this facter is

tr[e"™#] = tr exp[-r;. ) (2analen + mz)]’

2 sz: swnk|?
= |e~%2, LR AL

A0 k=0

= e 2. T (1 - g""‘")-lr .

a>g¢

(8.17)

In this equation, £ is the sum of the zero-point energies of the oscillators. We
may regularize this sum using the Riemann zeta function:

1
£ = -1} = —— . 8.18
;;o =¢(-1) = -5 (8.18)
Reintroducing 7y adds to each ierm a Iactor
T(n) = &K, (8.19)

where K is the momentum around the ring, equal to (+n) for each quantum of
excitation of 3 left-moving mode and (-n) for each quantum of excitation of a



right-moving mode. This changes the second line of (8.17) according to

e irnk _, eQﬂ'r.'nke-u-anh = e?n‘r-nk; (8.20)

this modification, in turn, changes (ir3) to r throughout the rest of the analysis.
Assembling all the pieces {and ignoring the overall normalization), we find

jdxo — mmH e3mint) |2. (8.21)

n>0
Finally, inserting this answer into (8.10), we fnd

f d’ﬁ (l) eti¥ma
f: Tn

If we have computed correctly, this expression should be modular-invariant.
To check this, we need only check the invariance of the integrand to the tweo
transformations (8.9) which genecrate the modular group. The invariance under
7 — r+1is obvious. The invariance under r — —1/r is not clear to the unaided
eye. However, sameone familiar with the theory of Jacobi theta functions will
recognize immediately that {8.22) contains the Dedekind n-function

—48

H (1 :hrmr

(8.22)

nir) = exir/n2 ﬁ(l — i) (8.23)
> 1

This function has a very polite transformation law under modular transforma-
tions:

n(r+1} = Mp(r),  pl=1/r) = (—~inin(r) (8.24)

These relations are, in fact, just what we need to prove the invariance of (8.22).
The factor |\/7|~4® generated by the second transformation above is cancelled
exactly by the modular transformation of the prefactor (r2)~12.

As this example makes clear, a student of string theory will find it indispen-
sible to have some acqaintance with the Jacobi theta functions. I would therefore
like to digress and present some of the main properties of these functiona. These
properties and other are discussed very clearly in the textbook of Whittaker and

Watson®% (Please note, though, that my conventions differ slightly from thase
of Whittaker and Waison in order to follow the modemn string literature.)
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The Jacobi thetz functions are 2 canonical set of natural analytic functions

on the torus. Whittaker and Watson define four basic functions, of which the
simplest is

0
Islz|r) = Z Srnir ining (8.25)

Nno=a0

This function is analytic on the whole z plane. If 2 is translated by a peried of
the torus, d;3(z|r) transforms according to

Balz+1lr) = da(zlr), Oalz+7]r) = €™ IMEy(2)r) . (5.26)

Thus, ¢3 is periodic in z with period 1, but it is only quasi-periedic with period
r. If this function had been periodic under z — z 4 r, it would have been an
analytic function without singularities on the torus and therefore a constant;
thus, 93 is as close as anything can come to being a nontrivial analytic function
on the torus. The periodicity relations (8.26) can be used to count the number

of zeros Nz of #3: Taking the contour around the boundary of the parallelogram
in Fig. 10, we may compute

_ 9ilalr) _
Nz = o d: 63(31? = 1. (8.27)

It is not hard to see that the zero is located at the center of the parallelogram,
— 1 T

The other three theta functions are essentially translations of 93 with zeros
at the other three half-periods. They may be characterized by

60r) = 0, a3lr)

0,
(8.28)

1 7 r
%5+l =0, 2u(5lr) = 0.
Series representation for the four #:{(z}r) are given in the appendix to this section.

Modular transformations such as those shown in (8.9) relabel r and thus
interchange the labels of the four half-periods. Thus, modular transformations
interchange the various 9;. The transformations at z = 0 are especially useful;
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let me, then, record them as follows:

S{{V]r +1) = €*/499](0r) , 2{(0]— 1) = (—ir)kd{(0]r) .
93(0)r + 1) = */49,(0)r), 92(0] — 1) = (—ir}do.{0lr) .
ds(0jr +1) = d4(0ir} 95(0| — 2) = (-ir)tos(0]7) -
94(0lr +1) = 95(0}r) , ve(0j~ }) =

(~ir)¥e;(0)r) .
(8.
Since ¢, vanishes at z = 0, ] have quoted the result for its first derivative.

in addition to series representations of the form of (B.25), all four theta

funictions possess infinite product representations, which are derived in Whittaker
and Watson. For example,

-
¥i(zlr) = 27 4ginxz. H (1 - c?n‘nr) (l _ e:n‘nfch'ix) (1 _ c:ﬁnrc—zn’l) .
n=1
(B.30)
The product representations for all four ¥;(z{r] are given in the appendix to this
section. Eq. (8.30) implies immediately that

9;{0r) = 2mp¥(r). (8.31)

The modular transformation formulae for 7(r) quoted in (8.24} follow from (8.29)
through this connection.

Let us now return to the bosonic string one-loop amplitude (8.22) and note
thtee important properties of this expression. First, once we have regulated
\he 2ero-point energy by the prescription of eq. (B.18), this expression has no
further ultraviolet divergences, In the case of the bosonic string, this subtraction
is made on an ad hoc basis (though it is in fact necessary to maintain world-
sheet conformal invariance), but for the supersiring the corresponding zero-point
energy term is mutomatically finite as the result of 2 cancellation between the
bosonic and fermionic degrees of freedom on the world sheet. The expression
(8.22) does contain a divergent integral, however, because the integrand blows
up exponentially as 5 — oo. To understand this divergence, let us locok more
closely at the form of the integrand in that limit. Seiting r = 2774, we find

wd 2
r e—m r
A~ j - (_rﬂm) \ (8.32)
with m? = —-2. The integrand of (8.22) is just the asymptotic form of the

propagator of a Klein-Gordon particle in 26 dimensions. The masz which appears
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is tachyonic precisely because the state of lowest mass in the apectrum of the
bosonic string is a tachyon. We might have suspected from the beginning that
the presence of a tachyon in the spectrum would lead to inconsistencies in the
theory. It is now clear that this leads to an infrared divergence in the one-loop
amplitude. In fact, this term and a similar, weaker singularity due to the dilaton
are the only divergences in this quantity.

A second feature of (8.22) is found in its general etructure. The complicated
part of the expression is the absolute square of an analytic function of the modulus
7. This form atises for a simple reason: The string dynamics treats the left- and
right-moving modes separately, and the functional integrals over these modes
are respectively analytic and anti-analytic in 7, except for the factors explicitly
associated with the zero modes Xj. Belavin and Knizhnik 811 have shown that

this decomposition continues to higher loops; the bosonic string amplitude at all
higher loops has the form

A = chr" a(r*,#%) [F(e9)|? (8.33)

where the r* are the moduli and p(r*,7%) is a trivial nonanalytic factor which can
be determined directly. This observation has become the basis of a ¢alculational

method for higher-loop amplitudes. This ret of developments is reviewed in ref,
59,

Finally, let us note the significance of the dependence of the integrand of
{(8.22) on 7;. This dependence comes only from exponentials of r or 7. [f we
expand the integrand of (8.22) in powers of ¢?*i" (an expansion clearly valid for
7 large), 2 typical term has the form

[dfl drs (H Cg_e"i"""') (H azne-m'ﬂ'.?) , (3.34)

n>0 H>0

where k,, k., are integers and Ci_,Ci, are numerical constants. Setting r = 277y
as above, this takes the form

/dr c—r(znk.-i-z:ﬁ;.)_jdn eirirl-(zuk.-zﬁi.‘) . (835)

The first exponent is the contribution of mode excitations to Lo+ Lo, and thereby
to the mess of the string state. The second exponent conizins Lo — Lo, The
integral over r; is exactly the projector into Ly -~ Lo = 0. The projection which
we found in Section 6 from the geometry of operator insertions in the world sheet
is thus also imposed on all virtval particles that can appear in loop amplitudes. It
appears precisely because we must sum over all possible world-sheet geometries.

96



8.3. CLOSED SUPERSTRING

Let us now generalize this ¢alculation to the superstring. The computation
of the O-point one-loop amplitude can ba found as the product of two terms. The
first of these is the integral over coprdinate fields X* and anticommuting ghosts
on the torus, Except for a change in the number of total space-time dimensions,
this factor is calculated exactly as in the previous section. The new ingredient is
the functional integral over fermions and commuting ghosts, It is useful to group
the fermions ¢¥ in pairs; the contribution of the commuting ghosts cancels that
of one of these pairs. The superstring one-loop amplitude then takes the form

d? 2-
4= -;3} (4x)® |[2e)] (8.36)
where Ax is given by (8.11) and
A¢l = / D‘pl D‘b: e—!d’: ¢1t8!8:|+53188;)¢3 . (8.37)

Notice that the exponent of (8.37) is the action of an analytic fermion field, We

must square this quantity, as is indicated in (8.36), ta account far both left- and
right-moving fermion modes,

Just as we did for dx, we can calculate #y by rewriting it in Hamiltoniag
form:

Ag = tr [T(n) e ™F} . (8.38)

Alvarer-Gaumé, Moore, and Vaia'®® have noted that it involves no extra trouble
to sssign to the fermions arbitrarily twisted periodic boundary conditions:

Vilz+1) = ="y (2),  yilz+7)

Ya{z +1) = —et2"0y,(2) , V(e r)

~—¢_="‘|ﬁl(zl ’

. (8.39]
___t—:hié'ﬁ: (z) .

These boundary canditions are the most general consistent with the requirement
that the action in (8.37) be periodic. The factor (—1) in the boundary condi-
tione in time appears automatically from the operator expression tr je—?5), aa in
finite-temperature perturbation theory. The corresponding minus sign in the ¢
boundary condition is inciuded for convenience.
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The Hamiltonian corresponding to (8.37) is a sum of fermionic oszillators
(that is, two-level systems) corresponding o the Fourier components of ¥,(z;),
th2(z1). The Fourier components of ¥, have wavenumber 2r{n — 0 + -]. they
are creation or annihilation operators for the fermionic oscillators ucordmz to
whether this quantity is negatlive or positive. The cortesponding annihilation or
creation operators are the Fourier components of ;. The excitation energy for

each oscillator is |[» ~ @ + 1|. With this information, we may easily evaluate 4y
forr; =0,¢=0:

It

Ap(i =0, =0) = tr [e="H]

e~ vraZ{a) ﬁ (1 + c—ﬁl‘fz(n+0-§)) (l & ==l"l'-|(l'l—5+§)) .

nx]

(.40)
The sums run over the ground state and the one excited state of each fermion

oscillator. The quantity Z(8) is the 8-dependent zero-point energy, which is given
by

Lo

z@) = Y ;(n—ﬂ+%). (8.41)

n=0

With a suitable regularization, this should satisfy the functional relation Z () =

Z(9+ 1)+ {3 + 9) and should reduce to the result Z of eq. (8.18) for 8 = 1.
The unique }unctlon satisfying these properties is
1 1.1 a 2
Z{) = -1 + (3-89 = (— - —6 ). (8.42)

Now 7, may be reintroduced by the prescription of eq. (8.18). The phase ¢
associated with a timelike circuit of the torus has a similar effect: It requires
each state created by a component of ¢; to be rotated by e~37% and each state

created by a component of ¢; to suffer the opposite rotation. Assembling the
pleces, we find at last

A,(8.8) =

e2rirle?/3-1/24] ﬁ (1 + cz..-r(nw-g;e:nw) (1 + e!n‘r{n-—!+§}c—3ﬂ'd)_

n= (8.43)

Let us now apply this calculation to the superstring one-loop amplitude. To
treat the Neveu-Schwarr and Ramond sections, we must take # =0 and # = 5.



respectively. It is clearly inconsistent with the geometrical invariances of the
problem, however, to allow periodic or antiperiodic boundary conditions around
one cycle of the torus without allowing the same choice of boundary conditions
around the other cycle. The operation of summing over pericdic and antiperiodic
boundary conditions in time, however, has a very direct physical interpretation:

Ay =t [+ (-1)F)T(n) e7mH] (8.44)

where F is the total number of fermions in the state, This is exactly the GSO
projection. Once we have insisted that our string theory contain both bosons
and fermions (that is, both Neveu-Schwarz and Ramond particles), the GSO
projection follows from the sum over all possible world-sheet geometries,

To define the superstring amplitude, then, we must sum over # = 0,1 z and
independently over ¢ = 0,1, It is possible, and, as we will see, enlightening, to
sum coherently over these sectors separately for the left- and right-moving degrees
of freedom. To write the amplitude explicitly, we need compact expressions for
Aw(f,¢) at the required values of its arguments. Fortunately, evaluating (8.43) at

these four points produces exaclly the product representations of the four theta
functions:

gw(_ _) = % =0, .4‘,,{%,0) = %‘:‘)”),
93(0]r) 1, _ 94(0r) (49
T T
A4(0,0] = _%W A4(0.3) = ‘:T(%T

The analytic part of the fermion contribution to (8.36) then takes the form

4 4 4
[02(0|r)] + [134(0'1')] _ [‘,3(0|7)] s (8.46)
n{r) n(r) n(r)
where 1 have supplied the relative signs so that the form of the expression is

preserved as the theta functions transform under modular transformations ac-
cording to (B.29). Multiplying in the remaining pieces of {8.36}, we find as our

final expression:
2
1
(8.47)

Using (8.24) and (8.29), it is straightforward to show that {8.47) is modular
invariant. Notice that an expression of this form could not possibly have been
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modular invariant if we had not included both sectors with ¢ = 0 and sectors
with ¢ = 1,

Two properties of this expression are worth noting. First, let us consider the
behavior of the integrand as rz — oo. Just a5 in the bosonic string, the factors
of the % function in the denominator lead to a divergence in this limit:

|n(r)|7*¢ ~ et (8.48)

To compare to eq. (8.32), we again set r = 27, then this factor is associated
with the appearance of a particle of mass m? = —1, the Neveu-Schwarz tachyon.
However, #; vanishes as 13 — oo and 93 and ¥4 tend to the same value. Thus,
the tachyon contribution to {8.36), and its associated divergence, cancels. This is
of course the result of the G50 projection; aItnrnat:vely, this cancellation follows
directly from modular invariance,

Actually, the formula (8.47) contains stronger cancellations, Among the theta
function identities proved in Whittaker and Watscn is the following remarkable
result of Jacobi (“aequatio identice satis abstrusa™):

d3(0ir) + 03{0jr) — 93{0jr) = (B.49}

The entire expression vanishes. The vacuum energy of the superstring is not
renormalized. This is clearly 2 sign of an underlying space-time supersymrmetry
in the theory, which requires all of the possible pericdic and antiperiedic sectors

for its implementation. I will display this supersymmelry more explicitly in the
next section.

8.4. HETEROTIC STRING

Since we have now derived all of the technology for computing one-loop am-
plitudes, I would like to complete my discussion by extending this analysis to the
case of the heterotic string. This string is obtained by combining the right-moving
degrees of freedom of the superstring with the left-moving degrees of freedom of
the bosonic string. The spectrum of this theory has been discussed with some
care by Michael Green. The massless states are those of 10-dimensional super-

gravity, together with the gauge bosons and gauginos of an Ey x Eg or 0{32)
gauge theory.

The heterotic string theory contains 10 right-moving coordinate degrees of
freedom X#(z) but 26 left-moving coordinates X#(zZ). It is easiest to understand
how to deal with the 16 left-moving coordinates with no right-moving pariners
by fermionizing them. This gives a string with 10 ordinary coordinate ficlds
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plus 32 left-moving {ormions (in addition ta the 10 right-moving fermions of the
supersiring and their associated commuting ghosts). The Ep x Ejg version of the
heterotic string theory is obtained by GSO projecting these 32 fermions in groups
of 16. Using the expressions (B.45) for the fermion functional integrals, we can
immediately evaluate the required integrals over each set of 8 pairs of fermions
and sum these coherently, Multiplying together these two contributions and
including the contributions of the remaining coordinates and the right-moving
fermions, we find for the value of the one-loop amplitude of the heterotic string

A =/d’°x dsy 1 [1' (ﬂs[oh) + 08(0}r) + 0% (o|f)) ]

Tz () (n(r}))® (8.50)
1 /9d(or) + d4(o]r) — 9 ${0jr)
g [n‘( n* )}

This expression is indeed modular-invariant. Another modular-invariant expres-
sion can be obtained from the same ingredients by GSO-projecting all 16 pairs
ef fermions together; this gives the one-loop amplitude of the 0(32) heterotic
string. In either case, the amplitude vanishes by virtue of (8.49), that is, by
virtue of the space-time supersymmetry of the theory.

It is instructive to abtain the result (8.50) in a diflerent way, by treating the
16 purely lelt-moving coordinates as bosonic cootdinates compactified on a self-
dua! lattice. It is easy to functionally integrate over such bosons by extending the
results of our previous analysis. All that we necd to do is to extend the Fourier
decomposition (8.13} to allow for configurations of X* which are perjodic in =z,

- » i
only up to translation by a lattice vector ¢ :

Xia) = Xo +VFL (m—22) + Y Xnedminta-e) (8.51)

n#D

The nonierc modes give exactly the same result sz before. The zero modes
contribution, however, is replaced by a factor which sums the contributions to

¢=¥ from each possible value of 7. This gives for the full one-loop amplitude

1= [oxe [ 5 2 (5x) [P ¥ ) - ZCE
(8.52)

where

F=) evtir (8.53)
2
The symmetry group Eg x Eg is obtained by taking eack group of 8 left-moving
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coordinates to be compactifed on the lattice generated by the root vecters of Ej.
This lattice, which gives the possible values for ?. is:

L =

(n2,m3,...,n8) , 3. ni = even integer
{ (8.54)

(ﬂ1+ %Inz+%l"'lua+%) ] 2ini=even inteaer

The condition that the components n, sum to an even integer can be irplernented

by summing over all values of the n; with the weight (1 + e"'Z""). If we use

this trick, we can write the contribution to F from the vectors in the first line of
(8.54) as

H ST einnlr, (HHe"m-) = 93(0ir) + 93(0)r); (8.55)

1 have recognized each term as the series representation of a theta function,
Similarly, the vectors in the second line of (8.54) give the centribution

[1Y etrbr (14 [[e0) = a5orr) + 930lr) . (8.56)
[y n, 1
Inserting (8.55) and (8.56) into (8.52), we find again the result (8.50}. This nicaly
checks the equivalence of the fermionic and bosonic forms of the theery,

8.5. APPENDIX: REPRESENTATIONS OF JACOBI THETA FUNCTIONS

In this appendix, I list for your reference the series and product represen-
tations of the four Jacobi theta functions which appear in the analysis of this
section. These telations are all derived in the textbook of Whittaker and Wat-
son.**'The series representatjons are:

)
tjl(z]r) = Z cir(n+§)=reiri(n+§)(:—*]
d3(z|r) = Z piT(n+3)r 2xi(nd)e

T {8.87)
1’3(2!7] = Z el"ﬂ’TCZI'"u

& - .

6‘[2’1) - z e\-wnﬂrc'.lnn(:ﬁ-;] ,

n=-—0o0
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The produc’ representations ave:

0,(2lr) = 26" 4sinmz . Hl (1 = EPrinr) (1 - (Aeimr aminy () _ win - 2ein)
Ba(zlr) = 26%cosme- ﬁ (1 = 37NPY () 4 gdeinr amis) ( 4 Fwinr,- anin)
Ba(2]t) = ﬁ:(l — 3TIT) (1 4 (BRI RIr2e) () 4 Awiln— f)r p-2ein)
de(slr) = ﬁ (1= eaminr) (1 = gamitnmirgiriny(y _ 2eiln-yrg-riz) |

nml
{8.58)
Many propurtias of the theta functions can be checked directly from these rela-
tions. For e<aruple, it is easy to see that 9;(z|7) is odd in z, while the other three
functions are even. One can also check the relations

Safelr) = da(a+ 3lr)
Jafalr) = €T ETY (ak 2 4 T 1) (8.59)
Ve(alr) = -ie‘""e‘"ﬂ;(x—i-%h)

which interconnect the four theta funciions and imply the locations for their
zeros given in (8.28).



9. Three Grand Questions

1 would now like to pause from my development of the formalism of super-
string theories to discuss three deep jssues whith are important 1o the physical
interpretation of the theory. The first two of these concern the properties of the
theory in the idealized setting of a flat 10-dimensional background space. We
would like to know whether the space-time supersymmetry of which we saw a
hint in the previc: - =ection ir manifested in scattering amplitudes and whether
this supersymmetr, implies the Bnitencss of the theory to all orders of loops. The
third issue concerns the transition from this idealized setting to a more realistic
one, via the compauctification of six of these spatial dimensions,

The first of these three questions has a well-definod answer, but one which
6till leaves many puzzles. What we know about the second and third lsaues are
mostly guesses. The problem of compactification ls & very deep one, however, zo
even our present very tentative knowledg *as fueled the development, by Witten
and others, of a very beautiful mathema. 'z, theory. To presant this theory in
detail would require another full course, 80} 1 conteni myeell hare with a brie!
description of the simplest scenario. The rea. '+ sesking an introducilon to the
mathematics needed to analyze compastification schemes wlll And an accessible
and quite elaborate presentation in the second volume of the book of Green,

Schwarz, and Witten®

9,1. SUPERSYMMETRY AND FINITENESS

Let us first discuss the supersymmetry of the supersiring theory, in the co-
variant formulation that we have studied in Section 7. To verify supersymmetry,
we must identify a conserved charge which interchanges space-time bosone and
fermions and satisfies the supersymmetry algebra, at least on shell, Once we
have identified this object, I will use it to make some intuitive slatements about
the finiteness of the superstring theory,

Since the supersymmetry charge changes bosons into fermions and vice versa,
it must carry the space-time spinor character and the branch cut on the world
sheet characteristic of a veriex operater for a state in the Ramond sector. Like a
vertex operator, the supersymmetry charge must be BRST invariant. The sim-
plest way to construct a supersymmetry charge is, then, to start with a Ramond

vertex operator at zero momentum. Taking (7.68) as a starting point, we would
guess:

= fi —4/3 )

dz
Qa = f 20 V-4 alk,2)
It is not difficult to check directly (taking ¢ to be a constant epinor supersymmetry
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paramete-] that
7Q Vy(kis)] = Trhulk) @uXP 4 ik-9gR) *X, (02)

and that commutation of €Q with V_} gives 2 picture-changed version of this

relation. The right-hand side of {9.2) is just the vertex operator V, (k) of eq.
(7.34). Cormmuting one step further,

Q¢ Valk2)] = Sale - k-]) Sp X, (9.3)

Tae result is just V_ (k). The commutation rela.t:ons (9.2), (9.3) have exactly
the structure of the supersymmetry which links the massless gaugino and vector
states of 10-dimensions! Yang-Mills theory, except that the double commutation

returns a picture-changed version of the original fermion vertex operator rather
than that operater itself,

The charge Q4 defined in the previous paragraph apparently is not a true
supersymmetry except on shell, where we tan identify picture-changed represen-
tations of the same state. The algebra of Q4 with itself has the same unsatis-
factory feature. To display this algebra most clearly, relabel Q4 as Q_jarand

define its picture-changed counterpart Q% a from V* (k). Then, we can compute

(IQ-gqu*] [i' d-! _!(k 0,z), ¥ i';vﬂ(" 03')}

dz
et . 4 25 M
e fzm, g, X" .

(5.4)
On shell, where we can identify Q. and Q 1 this is precisely the supersymmetry
algebra

Q. 7Q| = Ty*¢ P, . {90.5)

The resiriction to mass shell, and thus to physical scattering amplitudes, is an
awkward feature of this formalism. In scattering amplitvdes, however, either Q

or any of ity picture-changed variants do implement correctly the canstraints of
Rupersymmetry.

The fact that the supersymmetry charge of the string theory appears as
a contour integral on the world sheet suggests & general method for proving
nonrenormalization theorems following from supersymmetry.
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Figute 13. Method for proving supersymmetry nonrencmalization theos
Iemd.

The technique is illustrated in Fig. 13. Let Vp(z) be the vertex operator for

some particular boson in the theory. i Vg(z) can be written as a supersymmetry
variation of a fermion veriex operator, we can write

Vala) = [Qa Vel)l = § 22 aa(w) Vls) (95)

If we are compnting a loop amplitude, the contour of w is a closed path on a
tompact 2-dimensional surface. If we can push this contour to the opposite side
of the surface and contract it to zero, the expectation value of Vg will vanish.
Thus, we ¢an potentially prove to all orders in string perturbation theory the
vanishing of the tadpole disgram for the particle created by Vg, as well as the
vertex of this particle with any other particles whose veriex operators commute
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with Q4. Martinec 183) }as argued in this way that the tadpole of the dilaton,
and, thus, the cosmological constant, vanishes to all orders in any background
that preserves a gpace-time supersymmetry.

The subtlety in this argument is made clear in the Sgure: As we pull the
operator ga(w) to the back side of the surface, this operator carries jts branch
cut with it. Thus, the boundary conditions are changed from periodic to an-
tiperiodic {or vice versa) around any closed loop through which q4(w) is moved.
In the discussion of the one-loop superstring amplitude given in the previous
section, we found supersymmetry and vanishing cosmological constant only if
we summed coherently over all possible sets of boundary conditions, indepen-
dently for the analytic and anti-analytic de~rees of freedom. Speaking loosely,
the geometry of Fig. 13 mal..s clear that the same prescription is necessary to
Zuarantee that supersymmetry of higher-loop amplitudes. This is already quite
Al interesting conclusion. However, the exact prescription for the relative phases
and normalizations of the various sectors, and the invariance of the resulting sum
of amplitudes under the higher-loop generalization of the modular group, has not
yet been checked in detail”

It is not difficult to imagine that the vanishing of the O-point function might
be checked directly by a similar analysis, diagiammed in Fig. 14. Represent
one propagator in the diagram as a sum over states in the theory. We know
that—-vn shell—these states form boson-fermion paits, Il the same relation held
ofl-shell, one could represent the fermion states as supersymmetry commutators
with bosons, distort the contours as shown, relabel the boundary conditions, and
show the explicit cancellation of bosonic and fermionic contributions. I would
very murh like to know whether this argument is merely a heuristic, ot whether

it can be made into a rigorous proof of the nonrenermalization of the vacuum
energy.

©.2. A PHILOSOPHICAL DIGRESSION

After s0 much formal analysis, it may seem overdue that I begin at last to
discuss the relevance of string theories to the observed world of particle phenom-
ena. If you think that this unseemly delay betrays my personal position on string

theory, you are right. 1 ask you, the reader, for your indulgence as I digress to
state that pesition in some detail.

Over the past two years, string theory has been hailed as the solution to
all fundamenta}l problems in physics and damned as “recreational mathemat-
ics”. These extreme positions highlight a situation of great uncertainty about

* A part of this analysis has been presented recently by Atick and Sen(®4!
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Figure 14. Method for directly proving the vanishing of the 0-peint func-
tion at higher loops in & supersymmetric string theory, following Ref. 63.

the eventnal position of strings in fundamental theory. I believe that the situa-
tion in the recent history of particle physics which is most precisely analogous is
ihat of Yang-Mills theory in the early 1960°s. At that time, Yang-Mills theory
was known to be a profound generalization of Quantum Electrodynamics. Some
mathematical methods were known for computing in this theory, but they were
quite incomplete. At the same time, the beauty of the theory was already unmis-
takable, and connections to the observed forces were strengly suggested. Glashow
used the Yang-Mills Lagrangian to build a weak-interaction theory which was cor-
rect except for the embarrassment of having massless vector bosons. Sakuraj used
the Yang-Mills Lagrangian as a model for the strong interactions, and postulated
the vector mesons p, w, ¢. In both cases, the phenomenolegical application of the
theory led to significant physical insight. But, on the other hand, the precise and
eventually correct application of the principles of non-Abelian gauge symmetry
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required another ten years and the development of Further crocial mathematical
methods—the Higgs mechanism, the Faddce'ev-Popov procedure, and the renor-
malization group.

String theory nas now been developing for almost twenty years, but we still
seem to be quite far from having a complete mathematical grasp on its formal-
ismm. Because our calculational methods are incomplete, it is difficult to assess
how precisely strings will finally appear in our understanding of the fundamental
forces. Considerably more work must be done to develop the foundations of the
theory and to improve its calculational methods. In particular, we desperately
need some methods for performing nonperturbative string computations, since
many interesting properties of string theories are apparently determined only at
the nonperturbative level. At the same time, it will certainly be useful to try
to apply our present, incomplete, understanding of string theory to the major
phenomenological questions of the day, the problem of the vanishing of the cos-
mological constant and the origin of quark and lepton generations and their mass
spectra. In exploring the relevance of string theory for these problems, however,
we should be aware that we might learn more about the mathematics of string
theory than (directly) about how these problems are solved. I would therefore
favor approaches which involve string computations which are as explicit as pos-

sible, even if the phernomenological scenario does not seem sufficiently plausible
in itself to justify such detailed analyses.

At the moment, the cosmological constant probiem looks as difficult to solve
in string theory as it has in any supergravity model. However, the most direct
physical interpretations of the string theory have provided some interesting new
approaches to the problem of quark and leptan generations. In the remainder of
these lectures, I would like to concentrate on approaches to this question which
use the string theory in an essential way. I do not know whether the analysis I will
present ia more important for what it teaches us about quarks and leptons or for
what it teaches us about strings; in any event, 1 hope that these material somehow

leads us nearer the goal of finding the role of strings in & unified understanding
of Nature.

9.3. CALABI-YaAU IDEOLCGY

The case that the compatification of 10-dimensional string theory might pro-
duce the quarks and leptons directly as string eigenstates was made forcibly just
after the discovery of consistent Ey x Ey string theories, in a remarkable pa-
per of Candelas, Horowitz, Strominger, and Witten [l (CHSW). These authors
proposed an interpretation of string theory of great mathematical beauty which
gives nontrivial answers to many of the basic questions of phenomenology. No
discussion of the physical interpretation of sirings could be complete without a
discussion of this program, so [ wi}l review it briefly here. However, because this
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program allows relatively few explicit computations, and because it is reviewed

in great detail in the book of Green, Schwarz, and Witten.{sll will limit myself to
an outline of its contents.

In Section 6, we derived conformal consistency equations for background
gravitational fields which might interact with a bosonic string. To leading order
in a perturbation theory in the curvature of the background geometry, we found
ss a criterion for this consistency that the Ricci tensor of the background space
should vanish. If one applies this methed of analysis to the heterotic string, one
finds the same result at first order, but, in the next order of perturbation theory,

there appears also a contribution from background Yang-Mills fields 284! For
example, one finds

e = (d-26) + Ga'{-%R + ...} + (a®? {% tr(Fu)? - (R,w;,)g} . {9.7)

CHSW suggested that one look for a solution to this condition and the other
consistency equations with H,., = 0, ¢ = 0, and vanishing Ricci tensor. For
obvious reasons, they wanted to find a solution in which 6 dimensions were com-
pactified and 4 dimensions were left extended. They also wanted to insure that
the compactified theory maintained a 4-dimensional supersymmetry which might
survive to energies well below the cornpactification scale. This requirement is
satisfied if the compactified 6-dimensional apace possesses a covariantly constant
spinor n4(y); then the subgroup of 10-dimensional local supersymmetry gener-
ated by the 10-dimensional spinar built up as & product of this object with a
4-dimensional constant spinor

ta ® naly) {9.8}

remains a symmetry of the compactified theory.

All of these requirements fit together neatly. The equation for the covariant
constancy of n4(y) can be manipulated as follows: Begin with

Var =0 = [9V,%]n = Runlfn =0, {5.9)

where 2 = %{70,7‘1 is the generator of rotations of epinors. Now contract
this equation with 4 and break up the resunlting object into pieces symmetric
and antisymmetric between  and p or A. The completely antisymmetric piece
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vanishes because of the Bianchi identity Ry, = 0. The remaining pieces
involve contractions of indices. Thus (9.9) implies

Ru*n = 0. (9.10)

This equation has a nontrivial solution only if R,,, = 0. Once we have a covari-
antly constant spinor, this spinor may be viewed as a preferred direction in the
tangent space of the 6-dimensional manifold. On any curved manifold, tangent
vectors parallel-transported around closed loops suffer rotations from their orig-
inal orientations. The group of such rotations is called the tangent-space group
or the holonomy group. For a general 6-dimensional manifold, we would expect
that these rotations would fill out the whole of SO(6). Let us recall, though,
that SO(6) is isomorphic to SU(4), with the spinor of SO(6) identified with the
4 of SU(4) and the vector of S0(6) with the antisymmetric tensor (8) of SU{4).
Thus, a covariantly constant spinor may be though of as a preferred orientation in
this SU(4) which is not changed by parallel translation. The holonomy group of
the manifolds we seek should then be SU(3). Under the decomposition 4 —+ 1+3,
the antisymmetic combination of two 4's decomposes as 6 — 3 + 8. This implies
that the 6-dimensional coordinate y may be represented as complex conjugate
triplets (¥*,¥'), ¥ = 1,2,3; that is, the manifold has a natural counplex structure.
This geometry of the curvature may be linked naturally to the geometry of gauge
fields by identilying the SU(3) holonomy group with an SU/(3) subgroup of the

gauge group and setting up gauge fields equal to the spin connection wyso of the
manifold:

AlTe = %wmz*’, or  FrveTe — %R,.y;.,zl". (9.11)

This identification causes the last term in {9.7) to vanish and also solves the re-
maining constrainis on the appearance of a low-energy supersymmetry. Actually,
it is now known that a manifold of the form chosen by CHSW dces not satisfy the
conformal consistency conditions at the fourth order in perturbation theory; fes)
however, a small deformation of such a manifold is known to give a solution to
any finite order.lm’m’

The problem of finding compactification spaces for the heterotic string is thus
reduced to that of constructing 8-dimensional complex manifolds with holonomy
group SU(3). The existence of such manifolds is guarranteed by a general theo-

rem conjectured by Caiabilas} and proved by 'Yau.[“l Let M be a 6-dimensional
complex manifold satisfying the additional condition that its metric is (locally}
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the derivative of & potential

a?
- = =Ky, v¥] . 9.12
95 = prioet [v*, "] (9.12)

Such a manifold is called a Kdhkler manifold. A 6-dimensional complex manifold
naturally has U(3) holonomy. We may view the spin connection on M as 2 gauge
field of {3} = SU{3) x U(1). Let the U(1) part of this gauge field have trivial
topology, in the sense that the associated field strength, the projection onto
this U(1) of %Rw,\,ﬂ“". has zero flux through eclosed surfaces. The theorem
then states that the metric on M may be continuously deformed into a metric
with SU(3) holonomy. It should be noted that this result falls far short of an
actual construction of the metric for a space of SU{3) holonomy, even when the
geometry of the original manifold M is understood in detail. Manifolds of SU(3)

holonomy generally have no isometries, and, in fact, no metrics for such manifolds
are known explicitly.

However, the geometry of the original manifold M in the argument of Calabi
and Yau can be used to compute the topological invariants of the manifeld with
5U(3) holonomy, and these give a certain amount of definite information about
the effective theory resulting from compactification. If the fundamental theory
contains chira] fermions in a complex representation of the gauge SU(3), an
index theorem will relate the number of fermion zero modes to the topology of
this gauge field, and so, after the identification of eq. (9.11), to the topology of the
manifold itself. Let us take the fundamental theory to be the Ey x Eg heterotic
string theory and identify the SU(3) gauge field as that of a factor of the maximal

subgroup Eg¢ x SU(3) of one Ey. Decomposing the adjoint representation of Eg
onto Eg x SU(3), we find

248 — (78,1) + (27,3) + (27,3) + (1,8). (9.13)

Then for each zero mode of a 3 of SU(3), we find a 27 of Eg surviving to low
energies. Evaluating the indices, one finds that the number of 27’5 and the

number of 27’s are determined topologically;mthe net number of generations is
given by the remarkable formula

N(zT) - N(27) = ;x, (9.149)

B

where y is the Euler characteristic of the 6-dimensional compact space.

112



As an example, CHSW considered the submanifold of CP* specified as the
solution to

S =0. (9.15)

i=l

-

-~This space satisfies Calabi's condition and so can be deformed into a manifold
with SU(3) holonomy. This manifold has x = ~200, However, the manifold
has an isometry group Z° x Z8; identifying points carried into one another by

. this group gives a multiply-connected manifald with x = —8. Compactification
on this manifold produces 4 generations of quarks and leptons at Jow energy.
One could envision breaking the grand unification symmeiry Ez to a amaller
*group by adding to the multiply-connected manifold E4 gauge fields with zero

. _‘_ge]d strength but nonzero values for the Bohm-Aharonov laop integrals [ dz- A.
Note that we can decrease the rank of the ariginal Eg only by identifying the
genttators of the two Z's with two mutunlly noncommuting values of the loop
integral. Thus, this class of models generally leads to low-energy gauge groups
of rank 5 or 6, that is, with at least an extra U(1) gauge boson in addition to
the standard model SU(3) x SU(2) x U(1).

A noteworthy, and disturbing, property of the CHSW scheme, is that the
selution to the consistency equations exists independently of the value of the
radius of the compactified space. This radius is one of a number of parameters of
the compactification scheme which are apparently not determined at all by the
consistency equations. A second such parameter is the expectation value of the
dilaton field ¢(z). This apparently obscure field has great physical importance:

Because the dilaton field appears in an overall prefactor in the effective action
(eg., eq. (6.34))

Sep = f d2/G e {R + ...}, {9.18)

it can be absorbed into the effective gauge and gravitational couplings. Thus,
it is the dilaton vacuum expectation value which determines dynamically the

values of these couplings. Unfortunately, Dine and Se‘nbergml have argued that,
il these two parameters are not determined at the string tree Jevel, they ate
not determined tc any finite order in string perturbation theory. Even more
unfortunately, the {ailure of our present calculational methods to determine these
paremeters seema to apply not only to this particular scheme of compactification
but to more general schemes as well. Apparently, though some consequences
of string compactification are readily computed, others will be understood only
with 8 major improvement of our mathematical methods.
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10. Orbifolds

In the previous section, we discussed the schetne of Candelas, Horowitz, Stro-
minger, and Witten for compactifying string theory from 10 to 4 dimensions. |
eketched the elegant mathematical arguments offered by these authors, which led
to the suggestien that the compact spatial dimensions form a Calabi-Yan mani-
fold, a complex manifold with SU(3) holonomy. However, this conclusion was in
some sense disappointing. The geometries of the Calabi-Yau manifolds are not
known explicitly, and the problem of solving & nonlinear sigma mode] with une
of these manifolds as the target space seems extremely difficult, even if the exact

conformal invariance of the system allows some simplifications. How could we
improve this situation?

One response is to start from the other extreme position by exploring com-
pactification schemes wi rh are known to be tractable and adding complication
until they become as realistic as possible. The almplest compactification which
is not completely trivial is given by taking the compact space to be a torus. As
we saw in the discussion of the heterotic string, the problem of a string moving
on a torus is not appreciably more difficult than that of a string in extended
space. The nonzero frequency mades of the string have the same spectrum in
these two cases. The center-of-mass coordinate is modified in two ways: First,
the momentum is quantized in the compactified directions, Second, the string
may have additional soliton states which wind around the torus, corresponding
to the boundary conditions

z{e =0) = =zp, Tlo=1) = zp + T, (10.1)

where € isa displacement by periods of the torus which is identified with 0. The
set of displacements T identified with O in this compactification forms a lattice

L= {3 nd:, mez}, (10.2)

and we may alternatively describe the torus as the coset space of Euclidean
gspace divided by this lattice: T9 = R24/£, This scheme of compactification is
excessively simple; in particular, it cannot break the original gauge symmetry,
since all of the zero-mass bosons of the uncompactified theory are stil] present as

states in the _[ = 0 sector. Worse, the splition sectors can sometimes contribute
additiona! zero-mass pacticles. This is, after ali, the way most of the Eg X By
bosons arise in the heterotic string theory.
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In order to break Ey x Eg, and in order to break 10-dimensional supersym-
metry down to 4-dimensional supersymmetry, we must deform the torus in a
way that will eliminate some of these massless states. Dixon, Harvey, Vafa, and

Witten Is](DHVW) introduced an elegant method for accomplishing this: They
proposed that one identify points on the torus which are taken into one another
by a group T of discrete symmetries of the lattice £. The resulting space may
be though of as the coset space T%/T', or, equivalently, the quotient of R? by the
crysialiographic group of translations by elements of £ plus rotations and reflec-
tions in . In general, some points of the torus will be fixed under the action
of T. The identifications will then tie up the neighborhoods of these points into

complicated singularities, Thus, this space is not a manifold; DHVW refer to it
as an orbifold.

DHVW show, quite remarkably, that the singularities of the orbifeld can
simulate many aspects of string propagation in curved background spaces while
retaining most of the simplifying features of string dynamics on a torus. In this
gense, comnpactification on an orbifold represents an ideal compromise between
calculability and realism. These compactification schemes are therefore worthy
of our close attention. In this section, I would like to present a simple example
of an orbifeld and to compute the low-energy modes of local felds and of strings
arising from this compactification.

10.1. ORBIFOLD GEOMETRY

To compactify the heterotic string, we need a 6-dimensional orbifold” Let me
begin, however, by discussing the geometry of a simple 2-dimensional orbifold.

By taking 3 copies of this space, we will find 2 6-dimensional space which will
serve as my main illustrative example,

Begin, then, with the torus obtained by identifying points in the plane con-
nected by the translations of a 2-dimensional triangular lattice. This torus may
be pictured as the space obtained by identifying opposite edges of the equilateral
parallelogram, with internal angles 60° and 120°, as shown in Fig. 15. Now re-
duce this space by making a further identification of points related by the group
T of 120° rotations about the origin. This prescription identifies, for example, the
left-hand edge and the bottom edge of the parallelogram, as shown. The origin
is a fixed point under the rotation. As a consequence of this, the origin becomes
a conical singularity of the orbifold, since lines through the origin at 120° to one
another are glued together by the identification.

w» More general schemes of which ahare the advantages of orbifold compactification have
recently been presented in refs, T1-74.
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Figure 15. A simple 2-dimensional erbifeld.
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Figure 16. Three fxed points of the erbifold of Fig, 15,

Fig. 16 shows that the points

; 1 T3
2l +81? = ¥

7 , Tr+ir? = %-:‘ (10.3)

on the long diagonal are also fixed under the combined acticn of rotations and

lattice translations. These two points alse become conical singularities of the
orbifold.

It is not difficult to solve the field equations of ecalar fields on the tarus subject
to the identification of points connected by the group I'. The treatment of local
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fields with spin, however, is more subtle, since the identification subjects such
fields to nontrivial boundary conditions. When we identify the left and bottom
edges of the parallelogram in Fig. 15, we also identify the vectors tangent to
these edges. Thua, at a point P on the bottom edge identified with & point P’

on the left edge, & vector field T"(z} must obey the boundary condition

V(P = ®(120°). V(P}, (10.4)

where R(120°) denotes a rotation through 120°. Spinor fields, and field of more
general 5pin, obey a similar boundary condition with the rotation matrix in the
appropriate representation of the rotation group.

In string theory, the situation betomes even more involved.

© \Q
L

{t}

(<)

y-86
BE3SAIE

Figure 17, Three posaible configurations for closed stringe on an orbifald:
{a) trivial; (b) winding; {c) twisted.
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A closed string may describe a configuration of any of the three types shown in
Fig. 17. The first two cases appear already in the dynamies of strings on a torus.
The third case is new: A closed string may run from one point on the torus to
a second point identified with the first under I'. Strings of this last type a:rc
called funsted states. In general, the boundary conditions of twisted sirings may
be represented as a rotation about one of the fixed points. For the configuration
shown in Fig. 17(c), if we represent the 2-dimensional variable as z = z* + 172
and call the fixed point g, the boundary condition is

(zlo=1)~ 20) = ¥/ (z{o = 0) — zp) . {10.5)

This ¢cendition implies the Fourier decomposition

(o) = zp+ Z z et {10.6)
q=n+4

where n i6 an integer. The twisted states thus differs from states of the cther
two types in having fractional-integer quantization of their nonzero modes.

DHVW describe an orbifold as the singular limit of a manifold. However, it
is worth noting some circumstances where is correspondence does not. literally
hold. First of all, a manifold with highly concentrated curvature would have
very large curvature tensor, and (in any reasonable coordinates) a singularity in
its metric, at the point of concentration. This would produce a latge noniinear
term in the sigma model constructed with the manifold as its target space. The
orbifold string theory does not include this nonlinear term, and cannot, because
this term would ruin the exact solubility of the model. This prescription seems
to be a perfectly consistent one.

The second subtlety comes in describing the topology of the orbifold. It is of-
ten straightforward to compute the Euler characteristic x of the smooth manifoid
which the orbifold appproximates. For the example of Fig. 15, that computation
goes as follows: One must recall from (5.8) that a torus has Euler characteristic 0
and that (for an appropriate definition of the boundary cortribution) a disc, be-
ing half a ephere, has Euler characteristic 1. Beginning from the torus of Fig. 15,
remove disks about each of the fixed points, indentify triples of points under T',
and then restore disks at the fixed points which smooth the conical singularities.
The Euler characteristic of the final surface is

(0-3) +3 = 2; (10.7)

[~

x:

that is, the smoathed orbifold is topologically a sphere. Given this value of the
Euler characteristic, one might be tempted to use an index theorem 1o predict
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the number of zero modes of a massless fermion field on the orbifold. However, it
is possible that some of these zero modes might shrink to zero size and disappear
in the singular orbifold limit. We will zee an example of the disappearance and
reappearance of zero modes later in this section.

10.2. FIELDS ON THE Z-ORBIFOLD

To understand more concretely the mechanies of fields on orbifolds, let us
solve explicitly, in a specific example, for the modes of local fields which corre-
spond to massless particles after compactification. A simple example to choase
is a 6-dimensional space called by DEVW the Z-orbifold. It is built from the
direct product of three of the equilateral tori shown in Fig. 15. Call the complex

coordinates on these three spaces (zy,22,23). Identify points connected by the
simultaneous rotation of all three tori:

(z1,23,23) — (232,62 /32, 77 /32,) . (10.8)

Consider first the dynamics of a local field ¢ with no gauge charges. Massless
particles after compactification will correspond to solutions of the field equations
which can consistently have zero momentum in the extended directions; these will
be zero-mode solutions of the wave equation for that field on the 6-dimensional
surface. Since the 6-dimensional space is a product of flat spaces, & zero mode
eolution will, quite generally for any spin, be a solution to

8:¢ =0, or ¢ =0 (10.9)

which is normalizable on the compact space. The only solution to these equations
is given by taking ¢ to be constant.

If ¢ represents a scalar field, the constant mode of ¢ is a perfectly acceptable
zero mode. However, if ¢ has spin, we must impose the nontrivial boundary
condition which arises from identifying tangent vectors as be iéentify points, For

the case at hand, the boundary condition on ¢ may be represented quite generally
as

¢(P’} = R1(120°) - R,(120°) - R3(120°) - $(P) , (10.10)
where the three rotations are made in the planes of the three tori. This boundary
condition is compatible with ¢ being constant only if R, - ®; - Ry = 1. This

condition has very few nontrivial solutions. Consider, for example, the case in
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which ¢ is a 10-dimensional vector field. Decompose ¢ as follows, chosing
complex componentsa for the compactified dimensions:

M = (g*, BT, GO0, GTHIE QT8 4040 4o-it0) (10.11)

The components ¢*, u = 1,...,4, coorresponding to vector components which
point into the uncompactified directions, are zcalars with respect to the rotations
Ry, Mz, Ra. Thus each of these components will have a zero mode, and these four
zero modes form a Lorentz 4-vector after compactification. On the other hand,
the component ¢5+'® picks up a nontrivial phase ®; = ¢*™/3 while Ry = R3 =1
on this component. Thus, this field has no zero mode. A similar conclusion holds
for the remaining components of (10.11).

A similar analysis may be carried through for a 10-dimensional spinor field.
To do that, it will be useful to digtess briefly and set up a bit of formalism for
spinors in 10 dimensions. Let us choose a representation of the 10-dimensional
(Minkowski) Dirac matrices similar to that displayed in (7.54):

"fao) = '7&)@1@1@1

Ty = 1 @V2etelel

_ (10.12)
Y = el eViietel
1?1*0")10 = 4" ®c R0 ® V2ict,

where 1?'4) are 4-dirnensional Dirac matrices and % is the usual 4-dimensional
chirality. The 10-dimensional chirality is given by

1.7

T = ~l47...41% = 1*020°@0°@0% = T Ts. (10.13)

In this basis, the 10-dimensional charge conjugation operator, which implements
cMIC = ~(+M)T, s

C =g’ ®0?. (10.14)
Charge conjugation of a spinor is the operation

v — (@0)7; (10.15)

this preserves T', so in 10 dimensions it is possible to define spinors which are
simultaneously Majorana (self-charge-conjugate) and Weyl {I' = -+ 1). Note,
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however, that (10.15) flips the parity of both I'y and I's. Thus, 2 10-dimensional
Majorana-Weyl spinor has the structure:

— Ty=+41 Teg=+1
q,:( '*”) =41 Te=+ (10.16)

(ve)T — T4=-1 Tg=-1,

where the components ¢ are chirality-projected. This whole object ia determined
by ita I'y = T§ = +1 part. Thus, the modes of ¥ which correspond to massiess
fermions in the extended 4-dimensional space may be built by attaching a con-
stant 4-dimension positive-chirality spinor to a Dirac zero mode with I'y = +1
on the compact 6-dimensional space to form the object ¢ in (10.16).

Let us now search for these Dirac zero modes on the orbifold specified by
{10.8). In the basizs we have chosen for the Dirac matrices, the three rotation
operators in (10.10) take the form

R o= 10 Pg101
R; = 121" /291 (10.17)

R3

101010/,

The boundary condition which must be satisfied is

¢ = (2R - R Rp- ¢, (10.18)

where the factor (1) reflects the usual ambiguity that we may choose periodic
or antiperiodic boundary conditions for fermions. I would like to choose the sign

(—1), for reasons that will be made clear in a moment. There are four poesible
choices for T's = +1 spinors:

(€)1, (6%)2,(6%)5) = (+1,4L,+1)  RiBaRs = -1
= (+1,-1,-1) = ¢'*/8
= (—1,—1,+1) = g"'-'/a (10-19)
= (-1,+1,-1) = g3

Only the first of these satisfies the boundary condition (10.18).
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The zero mode that we have just identified is a covariantly constant spinor
on the orbifold. Thus we should expect that, if we started with a supersym-
metric theory in 10 dimensions, compactification on this space should yield a
4-dimensjon effective theory with supersymmetry. To check this in the present
example, begin with a 10-dimensional matter supermultiplet consisting of a vector
and 2 Majorana-Weylspinor (AM ¥). We have seen that compactification on this
ortifold produces, as massless modes afler compacitification, one 4-dimensional
vector and one 4-dimensional Majorana spinor. This is exactly the content of a
4-dimensional supermultiplet consisting of a gauge boson and & gaugino.

Let us now alter this construction to mimic more features of the Calabi-Yau
compactification discussed in the previous section. In particular, I would like to
add to the space an SU(3} gauge field equal to the apin connection. The only
aspect of the spin connection on the orbifold which is actually visible is its integral
around a closed curve, the nontrivial rotation (10.10) which connects identified
points. We may introduce a nontrivial gauge field by introducing a gauge rotation
around the same closed curve. Let us assume that a 8 of SU(3) carried between

identified points picks up a the Bohm-Aharonov phase e fd=A o g-amis3 Then
a field in a general representation of SU(3) will acquire the phase

G = (e, (10.20)

where £ is the ¢riality of the representation {t = 1 for 8,t = —1 for 3, 2 = 0 for

1, 8). With this addition, the boundary conditions (10.10), {10.18) should be
generalized to

6= (-1)7R Ry Ry-G- 0. (10.21)

In this equation, the rotation matrices depend on the spin of the particle, the
factor § depends on the SU(3) properties, and F = 1 for a spinor field. It is
actually this enhanced space that DHVW define to be the Z-orbifold,

For Bields in the 1 or 8 of SU(3), the analysis of zero modes we carried out
earlier goes through unchanged. However, for fields in the 3 or 3, there are inter-
esting modifications. Consider first the case of spinor fields. Adding the phase
5 to the results of (10.19), we gee that the constant spinor solutions of the types
(+—-), (= +-), and {~ — +), for spinor fields in the 3—out not the S—satisfy
(10.21) and thus give massless particles of the compactified theory. In addition,
the components of a 10-dimensional vector $3+7€, ¢7+18 49+010 corresponding to
fields in the 3 now satisfy (10.21). These give massless scalar fields in 4 dimen-
sions. Zero modes for the S can be built from the remaining vector components
and from pegative-chirality spinors; these form the antiparticles of the scalars
and apinors from the 8’s. Thus, a 10-dimensional supermultiplet (4*,¥) in the
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3 of SU(3) produces 3 4-dimensional supermultiplets, each of which contains a
chiral spinor and a complex scalar (and their antiparticles).

If we use the Z-orbifold to compactify a 10-dimennional local feld theery
with B¢ x Eg gauge symmetry, according to the program outlined in the pre-
vious section, we find chiral fermion generations and accompanying Ee gauge
fields. According to the decomposition {9.13) of the adjoint representation of
Eg, fermions in the 3 of the embedded SU{3) are 27’6 of the accompanying Es
group. The zero modes we have identified correspond to a set of massless parti-
cles arising from compactification which contain one supermultipiet each of gauge
bosons and gauginos for the 78 of Es and the 8 of SU(3), plus 3 supermuitiplets
of spinors and scalars in the representation (27,3) of Ea x SU(3). These latter
mulitiplets give 9 generations of quarks and leptons.

It is worth inquiring how this number compares to the Euler characteristic of

the orbifold. Candclas, Horowitz, Strominger, and Witten L4 computed the Euler
characteristic x of the corresponding smooth manifold in the following way: The
original product of tori has x = 0. The Z-orbifold has 3 x 3 x 3 = 27 fixed points.
Remove a small sphere about each of these fixed points; this gives an cobject
of x = —27, Divide by Zi, and then repair each hole by inserting an object
with x = 3. The final surface has x = 72, by the analysis of CHSW, it should
produce 36 generations. Unfortunately, we have only found 9 of these. The others

must disappear from local Geld theory in the limit in which the smooth manifold
becomes a singular orbifold.

10.3. STRINGS ON THE Z-ORBIFOLD

The analysis of zero modes which I have presented for lozal fields an the Z-
orbifold can be repeated for strings on the Z-orbifold in the topologically trivial
sector of Fig. 17. The same 6et of zero-mass states is repraduced. However,
in string theory, we have available also the nontrivial sectors shown in Fig. 17.
These can give rise to additional zero modes which have no simple interpretation
in local field theory. Particularly interesting are the twisted sectors, whose exis-
tence is unique to orbifold compactifications. As a final exercise for this course,
then, ] would like to explore the spectrum of the twisted sectors of string theory

on the Z-orbifold, in order to identify any further massless states which arise
there.

For simplicity, I will perform this analysis in the light-cone gauge. The po-
sition of the ground state will be determined by the zero-point energy of the
system of oscillators. The excited states will be raised above this ground state
by ladder operators; as we have seen in eq. (10.6), these operators should have
a fractional offset in their quantization. A crucial ingredient in this analysis will
be the formula for the zero point energy of a set of such shifted oscillators given
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by (B.42). We may rewrite tais result as:

Z{a) = Z %(n—}- a)
n=-o0o (10.22)
= Gemqlem ) = g get- o).

The second term in the second line displays the shift of the zero-point energy from
the situation of periodic boundary conditions on the string. The first term in this

line displays the shift of the zero-point energy from the situation of antiperiodic
boundary conditions.

As a first step, let us recall the way in which the Ey x Eg quantum numbers
of the 10-dimensional heterotic string arice from a fermionic representation of
the left-moving degrees of freedom. This analysis will give the massless states
represented in the partition function of eq. (B.50). 1n a light-cone quantization,
the left-moving sector of this string contains 8 bosonic and 32 fermionic fields.
The fermions should be divided into two groups of 16 fields, each of which will
produce the quantium numbers of one Eg. Let us refer to the two Eg groups
as E} and E¥, to indicate the groups which will be broken and unbroken after
compactification. 1 will also label the corresponding fermions as (w*)*, (¢*)*.

In the uncompactified string theory, these fermions may have simple periodic
or antiperiodic boundary conditions around the string. Taking each choice of
boundary condition for each set of fermions, we find 4 sectors. The zero-point
energy of each sector can be computed by summing values of Z(a) given in
(10.22). (We must recall that fermionic oscillators give a negative contribution.)
For example, in the sector in which the ¥ fermions have Neveu-Schwarz (here,
antiperiodic) boundary canditions and the ¢* fermions have Ramond (periodic)

boundary conditions, the total zero-point energy of 8 bosons and two sets of 16
fermions is:

1 1 1
- A+ — ==} = 0. 10.23
8(24)+16 (+24)+]6(48) 0 ( )
The zero-point energies of the four sectors are:
(NS ® (N -8 — Z = -1
(R} ® (NS — Z2=0
(10.24)
(NS)* & (R — Z2=0
(R ® (R — Z =41
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The last sector produces only massive states. The middle two sectors pro-
duce spectra which begin at the massless level, The ground states are spinors
of the O(16) associated with the spin operator construction using the 16 pairs
of fermions with Ramond boundary conditiona. After the GSO projection, these
become chiral spinors. These two sectors then contribute massless states in the
representation (128, 1)+ (1, 128) of O(16) x O(16). The first sector of (10.24)pro-
duces a spectrum which begins at a tachyonic level. (There are no tachyons in
the spectrum of the complete string because there are no tachyonic states in the

right-moving sector to satisfy the condition Lg = Lo.) The massless states in
this sector are of the states

WL @Y, L, {10.25)

The states (pb)% 3 (\D“)"_* [f1} are removed by the separate GSO projections for &

and v. The states of {10.25) form a (120, 1)+(1,120) of O{16)xO(16). Each 120
assembles with the corresponding 128 to form the 248, the adjoint represetation,
of an Eg. The right-moving sector endows these states with the space-time
quantum numbers of a 10-dimensional matter supermultiplet (AM, ).

Now we can easily describe the generalization of this construction to a twisted
sector of the heterotic string compactified on the Z-orbifold. We have already
noted in eq. (10.6) that, in a twisted state on this orbifold, the bosonic cecillators
corresponding to compactified dimensions have their quantization shifted by
of 2 unit. We might describe this by saying that the 8 transverse coordinates
X*, which form an 8 of the transverse rotational symmetry O(8), break up into
the representation (2,1) + (1,3) + (1,3) of the new transverse tangeni-space
group O(2) x SU(3). We can represent the identification of the gauge connection
with the spin connection by assigning 6 of the fermions (*)" also to transform
as a {3 + 8) under SU(3), and to be similarly offset in their quantization by

3 unit. This sssignment breaks the fermionic interchange symmetry O{16) to
0O(10) x SU(3).

Let us now recompute the zero point energies of the four sectors. The result
will differ from (10.24) only because of the shifts of the contributions from oscil
lators with fractional offset. These can be read from eq. {10.22). For example, in
the sector with Neveu-Schwarz boundary conditions for both 4 and u, the shift
due to replacing 6 @ = 0 bosons by a = -;;,-g— bosons and replacing 6 & = }
fermions by a = }, 3 fermions is given by

1 1
A = P o— " — R
Z 6 6 + 6 36’ (10.26)
80 that the total zero-point energy is now (—-}) For the four poesible sectors, we
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find

(NS)E ® (N-5) - zZ = -1
{R®* © (NS -, 7 -0
(10.27)
(NS ® (R)™ — zZ =3
(R)* ® (RN — Z = 41

The two sectors with Z > 0 contain no massless siates. The second sector
listed has a spectrum which begins at zero mass; the massless states form a spinor
of O(10), the 16. The first sector has states al the zero-mass level of the form

(WM, M, k=110

\ by s (10.28)
()2, (W2 (), 17, abe=1,2,3;

these form a (10 + 1) of O(10). These three representations assemble into a 27
of Eg. The left-moving sector supplies for this multiplet the space-time quantum
numbers of a 4-dimensional supermultiplet consisting of a spinor plus a scalar.

Each twisted sector of the Z-orbifold compactification contains another Fg gen-
eration of quarks and leptons.

Since there are 27 fixed points on the Z-orbifold, we find 27 new generations.
It is worth noting that this accounts precisely for the difference noted earlier
between the topological estimate of the number of quark and lepton generations
and the humber of such generations found as zero modes in the local field theory
limit. Apparently, the elements of topology which shrink to points and become
invisible as the manifold collapses to an orbifold are still visible to strings prop-
agating on the surface. DHVW argue that this correlation between the Euler
characteristic of the smoothed manifold and the counting of generations in the
string theory on the orbifold holds under yu.iz general conditions.

Let me conclude with a few comments about the 3-point couplings of the
mnassless particles we have constructed by compactifying strings on erbifolds.
These ¢couplings have a direct importance for phenomenology, since, if we can
identify two of the massless scalars as the Higgs bosons and a set of the mass-
less fermions as the known quarks and leptons, these couplings are exactly the
Yukawa couplings of the low-energy theory which are responsible for generating
the ferrnion masses. In orbifold compactifications, it is possible to compute these
couplings explicitly, at least as & perturbation expansion in string loops.
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The analysis of these Yukawa couplings has been worked out in some detail

for the case of the Z-orbifold!"® "7 The couplings of the @ multiplets in the
trivial sector can be found directly from the corresponding local field theory, by

inserting the explicit form of the zero-mode eolutions into the standard gauge
coupling

f&f(m) = /dmzaﬁw . (10.29)

The couplings of multiplets in the twisted sector have no direct interpretation
in terms of local fields, but they can be computed as the amplitude for a world-
sheet process in which three twisted strings join and disappear into the vacuum.

Dixon, Friedan, Martinec, and Shenker "y ave developed methods for evaluating

these amplitudes explicitly by generalizing the technology used for computing
expectation values of spin operators.

Fig. 18 shows two qualitatively different processes which give rise to these 3-
point couplings. In Fig. 18(a), three twisied atrings at the same fixed point
join and contract in a classically allowed process which obviously has a large
amplitude. In Fig. 18(b), three twisted strinps at different fixed points join
in a process which involves virtual string propagation across the orbifold. This
process involvesintermediate string configurations with 8,X ~ R, where R is the
physical size of the orbifold. Thus, the coupling arising from this process should
. . (76,77)
be suppressed by a serniclassical factor
eS ~ ~cRa (10.30)
This result is noteworthy for two reasons. First, we have seen in Section 6 that
o' [R? is effectively the coupling constant of the 2-dimensional nonlinear sigma
model which tepresents the string world-sheet dynamics. Apparently, orbifold
calculations can represent effects nonperturbative in this coupling constant, and
such effect may be quelitatively important to the string physics. Second, and
much more importantly, this effect offers a plausible mechanical interpretation
for the magnitudes of Yukawa couplings. If R is at all large compared to the
natural string scale, we find that these couplings form a natural hierarchy.

What an unusual and bizarre, but also rich and wonderful, picture of the
quark and lepton generations emerges from string compactification! Surely we
have much to learn from our further explorstion of this theory.



(a) éé

{b} )
5TZ2BA18

Figure 18. Two world-sheet processes which give rise to 3-point couplings

of twisted states in an orbifold compactification.
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