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ABSTRACT 

The performance of a free electron laser strongly depends on the elec­
tron beam quality or brightness. The electron beam 1s transported into the 
free electron laser after 1t has been accelerated to the desired energy. 
Typically the maximum beam brightness produced by an accelerator 1s con­
strained by the beam brightness delivered by the accelerator Injector. Thus 
it 1s Important to design the accelerator Injector to yield the requ1r»j 
electron beam brightness. The DPC (Darwin Particle £ode) computer code has 
been written to numerically model accelerator Injectors. DPC solves for the 
transport of a beam from emission through acceleration up to the full energy 
of the Injector. The relat1v1st1c force equation 1s solved to determine par­
ticle orbits. Field equations are solved for self consistent electric and 
magnetic fields In the Darwin approximation. DPC has been used to Inves­
tigate the beam quality consequences of A-K gap, accelerating stress, elec­
trode configuration and axial magnetic field profile. 
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INTRODUCTION 

The operation of free electron lasers place constraints on acceptable 
input electron beam emittance and quality. To study the effect of various 
accelerator injector designs on these parameters an effort is underway to 
numerically model the injector. There are many computer codes which have 
previously been used to study accelerator injectors and beam transport. The 
injector codes can be broadly separated into time-independent and time-
dependent categories. The time-Independent or steady-state codes generally 
fix electrode voltages and then follow macro-particles or trace single 
particle rays until a convergence criteria is satisfied. The object is to 
obtain a state which corresponds to the solution a long time after the begin­
ning of a beam pulse. In some cases a steady-state solution is determined 
from a prescribed field or current distribution. The numerical model is then 
augmented by an analytic theory or perhaps known experimental observations. 
In other cases the solution is made self-consistent with fields which are 
applied and fields due to all current or charge sources. Use has been made 
of time independent results to interpret experiments and conduct scaling 
studies. 

When physics issues arise which involve inductive effects, in particular 
waves, fluctuations, beam interactions with a cavity, or electromagnetic 
stability, it is then necessary to resort to a time-dependent simulation. 
The most elaborate time-dependent codes self consistently solve Maxwell's 
equations and the force equation for a large number of macro-particles. 
These particle-in-cell (PIC) simulations have been used advantageously to 
study a broad range of electromagnetic phenomenon. Although, the greatest 
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amount of physics 1s Included 1n these codes there are several drawbacks. In 
an explicit solution of Maxwell's equations the time step 1s restricted by a 
Courant condition. In practice the time step must not exceed the mesh size 
times the speed of light, which might typically be 10 picoseconds. This 
means running a PIC code can be quite expensive. A second disadvantage 1s 
the effect known as excessive bremsstrahlung. Since a PIC simulation always 
represents a large number of real particles by a single computational macro-
particle, the numerical fluctuations are anomalously large. Consequently, 
unless special precautions are taken, an abnormally large amount of particle 
energy 1s radiated Into electromagnetic modes. 

In this work the problems of a full electromagnetic simulation are 
avoided by using the Darwin field approximation [1-2]. This model ha; been 
Implemented for ax1symmetr1c geometry 1n the OPC (Darwin Particle Code) com­
puter code. The Darwin model 1s the magnetolnductlve limit of Maxwell's 
equations, which retains the first order relat1v1st1c correction to the par­
ticle Lagranglan. This means high frequency phenomena or effects due to 
rapid current changes can not be studied with the Darwin model. However, 
because wave motion 1s not followed, the Courant condition of a full electro­
magnetic simulation can be violated. In addition, Inductive effects are 
modeled without creating non-physical radiation. The DPC code 1s thus a 
useful Implementation of a physics model which Includes Inductive effects 
missing from steady-state calculations. 

The DPC code solves for beam dynamics over a distance of typically 
50 cm. This Includes the field emission from a cathode and acceleration up 
to the energy of the injector. Particle trajectories are followed from the 
emitting surface and past all electrodes including the anode. The DPC 
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calculation reveals the immediate effect of parameter choices such as the A-K 
gap accelerating stress, electrode configuration and axial magnetic field 
profile. It is these considerations which must be understood to produce 
electron beams of high quality or brightness. OPC has the capability of 
external magnetic field coils, finite electrode voltage rise times, and 
"stair case" shaping of electrodes for geometric effects. For a particular 
injector design goal these capabilities permit the evaluation of the effect 
on brightness of non-linear applied and self fields. 

DPC MODEL 

DPC solves the relativistic force equation in cartesian x, y, z 
coordinates, 

-> 

2 -1/2 
where m is particle mass, y = (1 - (v/c) ) , v is velocity, q is charge, 

- * • - > • - » • _• 

c is the speed of light, u = yv/c, E is the electric field and B Is the mag­
netic field. Axisymmetry is assumed so fields are only functions of r and z. 
Consistent with this assumption the current and charge density are obtained 
from the particles by spreading these quantities in theta. 

Fields are obtained from Maxwell's equations in the Darwin approximation. 
The practical consequence of the Darwin approximation 1s the neglect of the 
solenoidal part of the displacement current. Denoting solenoidal by subscript 
t and irrotational by subscript i Maxwell's equations in the Darwin approxi­
mation are below. 
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B, = 0 < 2 a> 

•* . •> , BE 

V • E t = 4* P (2c) 

1 * Bt 
v x fct c at • (2d) 

There are three important points to note concerning the vector decomposition 
of Eq. (2) into solenoidal and irrotational components and the neglect of 
aE./at. First, a general magnetic field is strictly solenoidal so it 
plays the same role in the general equations as in the Darwin approximation. 
Hereafter, B t will be denoted by B. Second, it is possible to derive the 
continuity equation from Eq. (2b) by taking the divergence of each side. The 
continuity equation is not recovered in other models which neglect the entire 
displacement current. Third, a wave equation is usually derived by taking 

2 2 ? the curl of Faraday's equation v E ~ a E/at . The origin of the 
second time derivative term is the solenoidal part of the displacement cur­
rent which is absent in the Darwin approximation. Consequently, in the 
Darwin approximation the fundamentally hyperbolic nature of Maxwell's equa­
tions becomes elliptic. This means DPC obtains fields by only solving 
elliptic equations. Another viewpoint is that the propagation speed of 
electromagnetic modes is taken to be infinite and thus the time-asymptotic 
state evolves during each time step. 
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The Darwin field approximation provides a set of field equations consis-
2 

tent with a Lagrangian correct to order 0 . There are two ways of under­
standing how this approximation impacts Maxwell's equations. 

First the part of the Lagrangian, L related to fields consist of a sum 
of an electrostatic scalar potential <j> and a vector potential A. 

* + $ • A* . (3) 

In general, there are relativistic corrections to both <t> and A. In the 
Coulomb gauge, v • A = 0 and the potential <t> is known to all orders in 

-> p. Thus, in this gauge L only has relativistic corrections from A. The 
- * • Coulomb gauge infinite media, open boundary solution for A scales like p 

since J scales like the velocity. 

* ^ - l / 3 ( r ' , i r " - l n | / c ) d ' r ' • (4> 

In Eq. (4) J represents the solenoidal right hand side of Eq. (2b). From Eq. 
(4) it can be seen the effect of relativity is contained in the evalution of J 
at a retarded time. This means the A required to cause the Lagrangian to be 

2 correct to order p is just the unretarded function. To see what is 
neglected Eq. (4) can be expanded about the unretarded solution. 

- J j / g - ' r * . • • • (5) 

- t J- f £ rt3r' " "unretarded " J J at a r • c 
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The first neglected term in Eq. (5) scales like a wave number or inverse dis­
tance. This indicates the Darwin approximation is restricted by the allowed 
current variation. 

The second means of seeing the implication of the Darwin approximation is 
to notice the consequence of the solenoidal and irrotational components in 
Eq. (2). Because the curl of any vector is solenoidal Eq. (2b) implies, 

-, 1 a ^ 

and thus Eq. (2b) can be written, 

i t -V x B* = 4*c ] 1 . (7) 

The curl of Eq. (7) yields an elliptic equation rather than a wave equation so 
radiation is absent from the Darwin approximation. Likewise, the curl of Eq. 
(2d) yields an elliptic equation for E t rather than a wave equation. 

V 2? t=4*c" 2 y (8) 

Equation (8) shows E t has the time derivative of J t as a source. This 
- * • means the viability of neglecting aEt/at in Eq. (2b) depends on the size 

of the time variation of J.. If the time variation is small, aEt/at 
is insignificant and the Darwin approximation is good. Thus, the Darwin 

-> approximation is precise when J t is constant and there is no radiation. The 
•+ magnitude of J t may be large in this case. It is then clear the degree of 

approximation depends on the amount of current variation. 
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OPC solves for fields on a rectangular r, z grid which contains an anode, 
a cathode and may also contain additional electrodes. Since axisymmetry is 
assumed it is not necessary to obtain the solenoidal part of the source terms 
to solve Eq. (2b). In the most general Darwin model because the left side of 
Eq. (2b) is solenoidal this step is necessary. In the DPC implementation the 
following two elliptic equations are solved for B, 

A* * A = - 4* r JQ/c O a ) , 

where * D = rB_, *. = rA„, A, is the theta component of the vector potential 
B V A V f} 

2 -2 

and A* = r v • (r 7 . Solving for *_ gives B and the other two components 
are. 

1 8*A 1 a*A 
B r " " r JZ ' B z • r ar ' ( 1 0 ) 

Usually, there are solenoids around the injector. A solenoid is modeled as a 
finite number of discrete axisymmetric current filaments. The magnetic field 
of a solenoid is obtained by summing contributions of each filament using an 
analytic formula. The total magnetic field is then the sum of the field from 
Eq. (10) plus the solenoid contribution. 

The DPC electric field is calculated from equations obtained by letting 
ti = - v$ in Eq. (2c) and taking the curl of Eq. (2d), which gives 
Eq. (8) 
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V20) = - 4* P . (11) 

The time derivative of the current 1s obtained from moments of the kinetic 
equation, 

where D Is the kinetic stress. To obtain the solenoldal part of aj/at 1t 
1s first written as a sum of an Irrotatlonal part plus a solenoidal part. 

i? • * + (it>t • < i 3 ) 

The divergence of both sides of Eq. (13) 1s taken and then a Polsson equation 
is solved for +. The desired quantity 1s then obtained by subtraction, 

(f|)t=fi-V* . (14, 
Having obtained sources for Eq (9) and (8) from particle positions and veloc­
ities it is then possible to calculate self consistent fields. 

INJECTOR DESIGN STRATEGY 

The DPC computer code has been used to evaluate accelerator injector 
brightness from the perspective of small and large area cathode emission. 

It Is known that brightness scales as the inverse square of beam emit-
tance. Contributing factors to the emittance are non-linearities caused by 
external magnetic fields and the self fields of the beam. Near the axis 
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the exact field can be written as an expansion consisting of linear terms plus 
non-linear terms which are small. Thus, with a small emitting area the radius 
is small and an attempt is made to reduce the effect of brightness degradation 
caused by non-linearities. The emitting surface can not be allowed to become 
too small or the output current is inadequate. Thus, it is necessary to raise 
the current per area emission to large values In this case. 

In the designs with large area emission the non-linearity problem can 
clearly be troublesome. Consequently, an admission is made that some fraction 
of the total beam current 1s not useful for an FEL. Normally, a beam gen­
erated from a cathode expands due to space charge repulsion as it accel­
erates. To focus the beam external magnetic fields are applied. Several DPC 
calculations have shown significant brightness increases by relaxing the 
focusing magnetic field and allowing a portion of the beam to be lost. The 
conclusion from DPC results is that relaxing the magnetic field reduces avail­
able current, however, the phase space volume decreases more rapidly yielding 
a larger brightness. 

Common to the strategy of small and large area emission is the issue of 
field stress and the injector acceleration gradient. Heuristically, the emit-
tance scales like the product of energy and transverse velocity. Thus, to a 
large extent emittance is governed by the radial Lorentz force. Part of the 
radial Lorentz force is due to the beam radial electric field (de-focusing) 
and the beam theta magnetic fieU (focusing). These opposing contributions 
balance approximately as the inverse square of energy. To minimize the non­
linear self field contribution to emittance, it is therefore advantageous to 
increase the energy as rapidly as possible. This means a high field stress 
aids high brightness. The maximum field stress is, however, limited by break­
down. Related to field stress is the general question of what acceleration 
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gradient yields the highest brightness. A high brightness beam predominantly 
has particle trajectories in the longitudinal or z direction. Since it is 
desirable to have no rotation in the absence of a magnetic field the initial 
acceleration occurs in a small or vanishing magnetic field. The basic 
Injector design consists of two regions. In the first region the magnetic 
field is increasing in magnitude and the beam is accelerated by an applied 
potential gradient. In the secono region the magnetic field guides the beam 
and the potential gradient is reduced to zero. A fundamental property of a 
beam is that the radial space charge electric field is always large; than the 
self-magnetic pinching force. This means in the first region of the injector 
the accelerating potential gradient should be arranged to compensate for the 
intrinsic beam divergence. In the second region the magnetic field must be 
adjusted to overcome the beam divergence. 

The transition from the acceleration region to the second region where 
the beam is drifting is accompanied by radial field aberrations. The source 
of the aberrations is the presence of the anode entrance. There are two means 
of dealing with this problem. First the magnetic profile and accelerating 
gradient can be arranged to cause the gradient required at the anode to be 
zero. This then invokes a compatible condition with the natural boundary con­
dition which occurs at the anode. Second, a focusing cathode can be employed 
to offset the de-focusing effect of the anode aberrations. 
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