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1. Introduction.

In a perturbative formulation of string theory one considers string back- 
grounds as two-dimensional conformal field theories (for review see [1]). One 
refers to such string backgrounds as string vacua. For space-time supersymmet­
ric string theories it turns out that the vacua correspond to N = 2 superconformal 
field theories (SCFTs) [2, 3]. The (2,2) vacua that will be considered in this pa­
per, are those for which both left- and right-handed SCFTs have N = 2 world 
sheet SUSY.

A property used in the study of the space of possible string vacua is the possi­
bility to deform a given vacuum continuously. One calls the coupling parameters 
of such continuous deformations the moduli of the string vacuum. Thus, in gen­
eral, to each CFT a moduli space of continuous deformations is attached. This 
space is denoted by M.. By construction, each deformation of the vacuum will 
lead to a geometrically different target space. For example, in a circle compact- 
ification one may change continuously the radius, i?, corresponding to just one 
real modulus.

An important aspect of the moduli spaces of string vacua is that they re­
spect a number of surprising symmetries. An example of such a symmetry is 
the well known duality symmetry in circle compactifications, which relates a cir­
cle with radius R to one with radius \jR [4]. This duality is an automorphism 
of the conformal field theory, which gives rise to an isomorphism of two mod­
els with distinct underlying geometry. The duality symmetry was generalized to 
d-dimensional (d > 1) toroidal compactifications [5, 6, 7, 8, 9] and to toroidal 
orbifolds [10, 11, 12]. In these cases, the symmetry groups are non-abelian, and 
contain elements relating small volumes target spaces to large ones. Such ‘mod­
ular’ transformations are important in constructing an effective low energy field 
theory [7, 13, 14, 12, 15] and possible applications to cosmology [16].

So fax, however, there is no systematic way to classify these symmetry groups. 
In [17] an approach to this problem is discussed using a description of (2,2) vacua 
in terms of ‘orbifoldized’ N = 2 Landau-Ginzburg (LG) models (this approach
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was used later also in [18]). 1 It turns out that such models can be used to 
describe (2,2) vacua corresponding to target Kahler manifolds with vanishing first 
Chem class [19, 20, 21, 22, 23, 24, 25, 26]. These LG models are characterized 
by superpotentials which are weighted homogeneous polynomials with isolated 
singularities. Using the mathematical theory of isolated singularities one may 
obtain insight in the structure of the symmetry groups mentioned above.

In these proceedings we review the technique discussed in [17] and discuss 
some new examples for c = 6 and c = 9 compactifications. In addition to this, 
we discuss transformations that relate small volume compactifications with large 
volume compactifications. Before we discuss our results in detail, we review some 
of the properties of the (2,2) vacua that we will consider in this work. For most 
of the notation and general background on LG theories relevant for (2,2) vacua 
we refer to the reviews [22, 26].

The LG models that we will consider are characterized by superpotentials 
W(Xi) that axe quasi-homogeneous functions with isolated singularities. The 
weight qi of the scalar chiral superfield Xx is its //(^-charge at the critical point. 
Examples of such superpotentials are

w = 'txl‘, (1.1)
«=1

where /, = 1/#. Such superpotentials correspond to Gepner models of the type 
n?=i where k, = /,• — 2 is the level of a minimal N = 2 SCFT using the A-type 
modular invariant [3].

Let us next briefly recall some of the properties an iV = 2 SCFT should 
have in order to serve as a vacuum of string theory. Essential for a string-like 
interpretation are two conditions which come from the relation between the left- 
and right-handed properties of string states and their t/(l)-charges. String states 
have holomorphic and antiholomorphic (z and z dependent) parts. We denote the 
chiral holomorphic and chiral anti-holomorphic states by (c, c). Their anti-chiral 
partners, which are obtained by complex conjugation in field space, are denoted

IThe study of the symmetries in the c = 3 cases was done already in [27, 28], although in an 
opposite way: the known symmetries in the (2, 2) c = 3 toroidal-orbifolds were used in order 
to find the symmetries of the c = 3 LG moduli.
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by (a, a). In addition there axe (a,c) states, and their conjugated partners (c, a). 
In order to serve as a vacuum of the superstring the U{1) charges in the NS-sector 
must be integral. Furthermore, for a space-time interpretation the theory should 
have a central charge which is a multiple of three.

The condition that the central charge be a multiple of three permits one to 
derive an algebraic equation describing the target space. It arises in the path inte­
gral of the LG theory as delta-function constraint, 8(W), evaluated in a weighted 
projective space, WCPn~l. 2 This procedure is described in detail for the defor­
mations of the models (1.1) in [20, 22], where it is claimed that this hypersurface 
is a candidate target space on which the string propagates. It is also possible 
to factor out the target manifold by a discrete automorphism group. Such orb- 
ifoldizing (not to be confused with the first orbifoldization of the LG theory) of 
the target space gives rise to a different string vacuum.

The addition of marginal deformations to a given vacuum, corresponds to a 
change in the geometry of the target space. A superstring vacuum has two differ­
ent types of moduli; those associated with complex structure deformations and 
those associated with the Kahler structure deformations. Naively, the complex 
structure deformations are given by the marginal operators of the (c, c) ring. The 
marginal deformations in the (c, c) ring come from the (1,1) operators, where the 
notation denotes the left- respectively right-handed I7(l)-charge, and describe 
perturbations of the superpotential. Some of the moduli in the (c, c) ring come 
from the untwisted sector, and correspond to a perturbation of the superpoten­
tial, while others come from the twisted sector of the orbifoldized LG model [25]. 
The Kahler structure deformations are represented by the moduli coming from 
the (a,c) ring. These operators always come from the twisted sectors of the 
orbifoldized LG theory.

The picture in which the (c, c) moduli correspond to complex structure de­
formations, while the (a,c) moduli correspond to Kahler structure deformations 
can be interchanged, that is, we can view the (c, c) moduli as deformations of

2The identification Xi = e.2mqiXi which give rise to the weighted projective space amounts 
to a twisting or ‘orbifoldizing’ of the original LG model by a product of cyclic groups. This 
twisting turns out to correspond to the generalized GSO-projection [25].
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the Kahler structure (of a possibly different target space) [29, 30, 31]. This inter­
changing is a consequence of a symmetry qi, —* —qi, of the iV = 2 SCFT, where 
qi, denotes the left-handed C(l)-charge. This symmetry plays an important role 
in the study of symmetries on the moduli space of (2,2)-superstring vacua arising 
from orbifoldized LG models. In the general scheme we will describe this sym­
metry will be used to treat the discrete groups as acting on the Kahler structure 
moduli.

This concludes our brief review of the basics of LG theories that define (2,2) 
vacua at the critical point. In the next section we discuss the general scheme 
used in [17] to find physical symmetries on the moduli space of a given N = 2 
LG theory. By construction, the symmetries found are those acting on the sub­
moduli of (c, c) untwisted deformations. We will give some new examples in 
the c=6 (K3) and c=9 (CY) cases. In order to simplify the discussion we will 
further restrict to the surviving (c,c) untwisted moduli of an orbifoldized CY 
manifold. 3 Subsequently, in section 3 we will discuss the technique from a more 
geometrical point of view, leading to the conclusion that stabilizing sub groups of 
the symmetry groups correspond to automorphism groups of the target space, i.e. 
of Calabi-Yau (CY) manifolds. Finally in section 4 we comment on an application 
of our result involving a symmetry between small volume compactifications and 
large volume compactifications.

3The corapactification on the quotient of a CY manifold by a discrete group is interesting 
as it reduces the number of generations.

4



2. Symmetries on the Untwisted (c,c) Moduli Space.

In this section we review the algorithm described in [17] for constructing 
symmetry groups acting on the moduli space of a given N = 2 LG model. After 
we discussed the general technique, we will present some new examples in the 
c = 6 and c = 9 case. For simplicity we discuss the deformations of a model of 
the type (1.1), described by the superpotential

VK(X,a) = £\Y''+£>i.tJPO, (2.1)
.=i j=i

where <$j is a (c, c) primary field of charge (1,1) (and therefore of super-dimension 
(1/2,1/2)); m is the number of such fields in the chiral ring and aj is a complex 
parameter. We call the space of couplings a = (cti, ...,am) ‘the a-moduli space’.

The a-moduli space is a subspace of the full moduli space of geometrically 
different target-spaces of the string theory. The physical symmetries of this 
subspace correspond to generalized duality transformations which relate target 
spaces which differ geometrically but for which the physical theory is the same.

Such symmetry transformations can be studied by performing certain field 
redefinitions of the chiral superfields AT, (and their complex conjugates). The 
idea is to look for those field redefinitions for which the kinetic term in the iV = 2 
LG action remains a Kahler potential, and for which the effect on the superpo­
tential can be expressed as a transformation involving only the parameters a, i.e. 
W(AT, a) is changed to W(X,a') (up to an overall factor). As the physical theory 
is left unchanged, we conclude that the points a and a' in the moduli space are 
physically equivalent. We will call such a transformation a —+ a' & ‘modular’ 
transformation. In principle one may obtain in this way all the generators of 
such ‘modular’ transformations and the group thus generated will certainly be 
a subgroup of the full symmetry group acting on the moduli space of iV = 2 
SCFTs.

Let us explain this idea in more detail. For a given LG theory, consider the 
transformation

(2.2)
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The U(l) symmetry in the N = 2 superconformai algebra restricts the powers n,- 
to be such that the charges q(X£k) are equal for all k. Under the field redefinition 
the kinetic term K is transformed to K', which must be a Kahler potential. Any 
non-singular linear transformation on the fields Xi, mixing only fields of the same 
charge, changes iv to a new Kahler potential. 4 The universality class of the flow 
of the kinetic term is preserved since the operator corresponding to the difference 
K' — K \s axi irrelevant perturbation. Thus, we are interested in transformations 
of the form

XI = UijX,-, X = Ui:Xj, (2.3)

where U is a non-singular matrix, and the indices i,j run over all chiral scalar 
superfields with the same U(l) charge. Some of the solutions for U are diagonal 
matrices consisting just of phases

Uij = SijCti, s.t. = 1, (2.4)

(there is no summation on the index i).
In another simple case, 17 is a permutation matrix, permuting different super­

fields Xi with themselves. The property of the phase and permutation transfor­
mation is that whatever the superpotential in (2.1) is (i.e., no matter what the 
values of aj are), the kinetic term and the part of W describing the Gepner model 
are invariant. Only the moduli parameters, a, are transformed into a'. In the 
case where U is of the form (2.4), the parameters a' are related to a by phases. 
The point a = 0 is a fixed point of 17. Such symmetries of the Gepner’s models 
were described in reference [32]. In the permutation case, the a' parameters are 
related to the original ones by permutations. Even though the permutation sym­
metry is obvious in the superpotential framework, its physical consequences are 
not trivial. For example, a permutation may relate a scale transformation or a de­
formation of the complex structure, on a toroidal orbifold, with a transformation 
which blows up orbifold singularities [17].

4For example, if one chooses K = 7^(7L XiXi, it is transformed to K' = J2xj(U^U)ijXiXj 
which is Kahler. In principle, there might be non-linear field redefinitions such that K' is a. 
Kahler potential, but we do not consider those here.
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Other solutions for U axe possible if we start at a point in the moduli space 
which is a Gepner model of the type kN. 3 For that let us discuss the conditions on 
the matrices U coming from the requirement that the transformed superpotential 
W(X') corresponds to an untwisted (c, c) deformation of the original Gepner 
model. The deformed superpotential of the Gepner model kN is given by (1.1,2.1)

iV 771

W(X, a) = '£ X,M + £ (2.5)
1=1 j=l

Let us perform a linear transformation on the superfields Xi. In order to study 
symmetries on the a-moduli, we should make sure that the new superpotential, 
VF'(X, a') has the same form as the original W, i.e.

W(X',a) = W'(X,a') = C(a)(£Xf+2 + £^4,) (2.6)
i=i

This means the the deformations in W axe still described by marginal opera­
tors from the chiral ring. The factor C(a) can be eliminated by rescaling the 
superfields.

What axe the conditions one gets on the entries of U? Expressing X- in W(X') 
in terms of the superfields Xi, gives N terms of the form X,+2, i = 1,N, 
with coefficients Ai(U,a). We also obtain N(N — 1) terms of the form Xf+1Xj, 
i zfc. j, with coefficients a). The coefficients of all the terms in the new
superpotential axe functions of the entries of the matrix [7 and of the original 
moduli parameters, a. In order to satisfy (2.6), the coefficients Ai(a) should 
be equal to C(a). This preserves the part of the superpotential describing the 
Gepner model. Hence we have at most N—l independent equations coming from 
this condition. Furthermore, we impose that the coefficients Aij(U, a) will vanish. 
This guarantees that we only get terms which appear in the (c,c) ring, and gives 
rise to N(N — 1) equations. All together, one finds iV2 — 1 complex equations:

Ai(U,a) = Ai+i(U,a), i = 1, ...,1V - 1;

Ajk(U,a) = 0, j / k, j, k = 1, ...,1V. (2.7) 5

5The discussion can be generalized to deformations of a model Arp by considering each 
factor separately.
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Let us next determine some of the properties that the matrix U should have. 
The matrix U can be written as U = ~(U', where 7 is a complex number and 
det(U') = 1. The number 7 gives an irrelevant factor 7/c+2 between W' and K. 
Thus, we are left with the N2 — 1 complex parameters of the matrix U'. The 
equations in (2.7) are not linear equations, so one does not get in general a unique 
solution; a set of discrete solutions is possible. In the rest of this section we give 
examples of non-trivial solutions (in addition to the phase and permutation ones) 
in the c = 6 and c = 9 cases.

2.1. An Example in the c = 6 case.

The (2,2) string vacua, for which c = 6, correspond geometrically to either a 
complex two-dimensional torus or a K3-surface (which is also a projective complex 
two-dimensional surface). We will discuss the K3 compactification. The space 
of K3 compactifications, viewed as string backgrounds, is simply connected and 
isomorphic to the homogeneous space 0(20,4)/(O(20) x 0(4)). There is a discrete 
group of symmetries acting on this space which is conjectured to be isomorphic to 
0(20,4, Z) [33]. We would like to consider the ‘physical’ moduli space obtained 
by modding out this discrete symmetry group. The c = 6 Gepner models form 
a finite set of points on that space. They axe fixed by the phase transformations 
of the type (2.4), but they axe transformed in general to different points under 
the action of other elements in 0(20,4, Z). However, this action will in general 
destroy the invariants of the singularity of the superpotential, hence dividing out 
this group from the moduli spaces is not very useful in the context of LG models.

As a first step, therefore, we want to divide by a sub-group which preserves 
the invariants of the singularity. There are two different types of elements in such 
a group. The first type leaves the superpotential invariant for any a, although 
it acts non-trivially on 0(20,4)/(0(20) x 0(4)) (analogous to F(2) and F(3) in 
the c = 3 case [27, 17]). Such elements generate a sub-group closely related to 
the monodromy of the singularity. A discussion on those physical symmetries is 
presented in section 3. Below we will discuss an explicit example concerning the 
symmetries which act nontrivially on the a-moduli.
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Consider a family of K3 surfaces parametrized by the superpotential

W(XUX2,X3) =

xf + x% + x« + ai(x*xl + xfxi + x%xi)
+a2X{XlXi + az{X*X2Xz + X*XxX3 + X*XxX2). (2.8)

The 6-dimensional (c, c) moduli space in (2.8) is the space which is invariant 
under the twist group generated by the elements diag(l, a, or) and Pi23 (a cyclic 
permutation). It can be thus considered as the untwisted moduli of the K3 surface 
modded out by the above twist group. The transformation

( X[
X'2

V*3

/ 1 1 
1 a

\ 1 cr

1
oor

a

Xx
X2

X3

(2.9)

where a3 = 1, tahes W(X\,X2,X3, a) to W\X[,X^X'3) which is explicitly

W = X* + X%+ Xi
^ ^90 + 9ai — 6a2 -)-15<33^-••• ,----- ) (XiX2X3 + XiXxX3 + XiXxX2)

O + OCL\ + <22 r 0CI3 /
60 *” 21ai Qcio ”f” 6a3\ / o o

(x?x|+x'xl+x?xi)
^ /270 + 27ai + 9a2 — 18a3\

+

V .8 4- 8/1, 4-
•2 r2 V2
1 •

up to an overall irrelevant factor. We thus arrive at the following conclusion: 
The LG model described by the superpotential (2.8) is equivalent upon the field 
redefinition (2.9) to the model with superpotential (2.10).

The complete group of symmetries acting on the a-moduli is generated by field 
redefinitions of the type [fp (permutations), Ut (phases) and Us (presented in 
(2.9)). The group of symmetries which leaves the (ai,a2,a3) moduli invariant is 
isomorphic to T K S3, where T is the tetrahedral group and Sn is the symmetric 
group of n elements. The point (01,02,03) = (—10,0,0) is a fixed point, and 
thus the group T K <S3 corresponds to an automorphism group of the K3 surface 
defined at this point. We will elaborate on this in section 3.
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The transformation of the type Us plays a special role, as it relates finite 
parameters a to infinite ones. Combined with the other symmetries, and moti­
vated by an explicit study in the c = 3 cases [27, 17], we conjecture that such 
symmetries relate small volumes of the target-space to large ones. This will be 
discussed in section 4.

2.2. Examples for which c = 9

For c = 9 (2,2) vacua, the target space is conjecturally either a torus or 
a Calabi-Yau (CY) manifold [3]. The moduli space of CY compactifications 
is disconnected. That is, we consider a possible equivalence on the boundary 
of each simply connected component as disconnected, so each simply-connected 
component defines a family of CY manifolds with the same topology. In the 
following we will describe two examples of the symmetries acting on the (c, c) 
untwisted moduli which survive the action of a twist group Gt. (Other examples 
involving phase and permutation symmetries on the untwisted sub-moduli space 
surviving the action of a twist group on a CY manifold are presented in [18]).

Consider the (c, c) untwisted deformations of the LG theory corresponding 
to the Gepner model 64, which are invariant under Gt = tx generated 
by the elements: diag(—1,1,1,1), diag(l, 1, —1,1), Pi2 and P34, where is a 
permutation of i and j. The surviving a-moduli space is 24-dimensional, and the 
superpotential is given by

+ *42)

W = X? + Xl+Xi+X*

+a1Y12Y22(Y14 + Y4) + a2X~X;_XlX; + a3X2Y2(Y2 + Y2)(Y2

+a4X;Xi(X* + X4) + a5X*Xt(Xi + Y2)(Y2 + X2)

+a6X2X2(X4 + X4) + arX2X2(X4 + X4)

+a8(X2 + X2)(X2 + X2)(X4 + X4) + a9(X2 + X2)(Xf + X2)(X4 + X4) 

+aXX4 + X4VX4 + Xi) 4- a„X4X4 + a^XlXl 10 11

The a-moduli space in (2.11) is invariant under the action of a symmetry group
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generated by Gt, diag(v/i, \A, 1,1) and S, where

5 ~ V—2 (1 -l)’ J-(o l)’

where c(a) is an a dependent factor which is chosen such that W contains Xf -f 
Xf+Xf+Xf up to an overall factor. (If one extends Gt to include also the element 
P13P24, then on the invariant 14-dimensional a-moduli space c(a) = 1). The 
presence of the transformation of the type S is again an evidence for symmetries 
relating small volumes of the target-space to large ones. This transformation 
relates finite parameters a to divergent ones.

The second example we consider is the group of symmetries acting on the 
a-moduli of deformations of the model 1 • 163, which is invariant under Gt — 
Z3 K Z3 generated by diag(l,or,a2) (a3 = l)and Pi23 acting on the superfields 
Xi, i = 1,2,3, corresponding to the 163 factor. The invariant untwisted (c, c) 
moduli space is 46-dimensional. The deformed superpotential is given by

W = Y3 + X}8 + X}8 + X^8

-\-G1A.8 4- 0.2^B -f- CI3A.4B3 -f- a4A4C -I- 4- a^A3B3

+a7A3BC + a8A3BY + a9A2B2C + al0A2B2Y + auA2B4 + auA2CY

-{-CI13AB3 4" a.\4AB3C 4- a.isAB3Y 4* cli&ABC2 4- ci\jABCY

+a\8B4C 4- o.\qB4Y 4* cl2qB2C2 4- a.2\B2CY 4- CL22C3 -t- a23G2Y, (2.12)

where

A = B = X3 4- X3 + X3, ri _ 1 1 v^3

The group of symmetries acting on the a-moduli in (2.12) is isomorphic to {S3 K 
T) x Z3. The Z3 corresponds to a phase redefinition of the field Y {Y ^ aY)] 
the subgroup S3 corresponds to permutations of the fields Xi] the tetrahedral 
group is generated by the Z3 phase redefinition diag(a, 1,1), and by the element

S =
1

V^3

/l 1 1 \
1 a a2

\1 Oor a )
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The transformation S acting on the superfields should be followed by a rescal­
ing of the field Y, Y —+ c(a)Y. The a dependant factor c(a) is chosen such that 
W' contains Y3 + XJ8 -f- Xj8 +X38 up to an overall factor. It is again remarkable 
that the transformation 5 relates finite parameters a to infinite ones.

The general scheme can be used to study the symmetries on the moduli of 
Gepner models taken in any type of modular invariance. For example, we studied 
the symmetries on the moduli space of the model 1 • 16|;/(Z3 k Z3). The label E 
means that each k = 16 factor is in the type E7 modular invariance. The twist 
group Z3 K Z3 is chosen such that the effective number of generations is 3 [34], 
and thus the models are phenomenologically interesting. Among the symmetries, 
we find one which takes small volumes to big ones. It acts on a sub-space of the 
CY manifold, which is isomorphic to a complex torus, in a similar way as in the 
fiat case. A detailed study of this example will be presented in [35].
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3. Symmetry Groups on the a-Moduli Space from 
Singularity Theory.

It is the aim of this section to show that the theory of resolving singularities 
may be of use for a more general study of the symmetries on the moduli space 
of (2,2)-string vacua. Although much of the techniques we will discuss are in the 
context of c = 6 theories, they are in fact more general and could be applied, at 
least in principle, to the c = 9 theories as well.

In the first subsection we will apply some ideas of singularity theory to obtain 
a useful description of the a-moduli space of the untwisted (c, c) deformations of 
a given LG theory. For this we will closely follow [17]. Subsequently, we will use 
this description to discuss the symmetry groups introduced in the previous section 
from a general point of view. In particular we will show that sub groups of the 
symmetry groups discussed in section 2 which stabilize certain deformations cor­
respond to automorphism groups of CY manifolds. In the case the CY-manifold 
is a K3 surface we may use a classification theorem of automorphism groups of 
these surfaces, to identify (large) symmetry groups of certain (2,2)-vacua.

3.1. The moduli space of untwisted (c, c) deformations of a given LG-theory.

Let us explain briefly the description of the moduli space of untwisted (c,c) 
deformations. The moduli space of c = 6 (2,2) vacua which is formed by the 
untwisted marginal deformations of a LG model can be described as a symmetric 
sub-space, of the homogeneous space Af = O(20,4)/(O(4) x 0(20)), modded 
out by a discrete symmetry group which contains the monodromy group F. The 
group F is a topological invariant of the singularity of the superpotential in the 
LG model, so it is invariant under arbitrary smooth deformations of the su­
perpotential. This can be used to reformulate any smooth deformation of the 
superpotential in terms of the marginal operators that appear in the (c, c) ring. 
The monodromy group gives rise to a fundamental domain for the marginal de­
formations of the superpotential, on which the symmetry group meant in section 
2 acts.
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To see this explicitly we will concentrate on a particular set of singularities 
summarized in tables 1 and 2 that are relevant in the c = 6 case. Tables 1-2 give 
a complete list of all the isolated singularities which can be compactified to a K3 
surface in C3 which is described by a single polynomial equation involving only 
four variables (see e.g.[36, 37]). Henceforth we will restrict to LG superpoten­
tials that consist of only four fields (we exclude c = 6 models defined as tensor 
products c = 3 models, which correspond to toroidal orbifolds). The singularities 
in table 1 are the so-called exceptional modality-one singularities in the classifi­
cation by Arnold [38]. For both tables the central charge of the corresponding 
LG-theory is The chiral ring of these LG theories all contain one field with 
dimension greater than one and none of dimension equal to one. In other words: 
the spectrum of these LG theories does not contain marginal operators, i.e. there 
are no physical moduli in any of these theories. However, there exists a math­
ematical construction, called the compactification of the singularity which gives 
rise to new LG-theories which do contain physical moduli. The compactification 
of the singularities in tables 1-2 lead to LG-theories that correspond at the criti­
cal point to IV = 2 SCFTs on K3 surfaces. In particular, one may obtain in this 
way all Gepner models that are known to be defined on K3 surfaces, including 
type D—modular invariants. They are thus labelled by some of the polynomials 
in tables 1-2.

Since the compactification of a singularity is tightly related to its resolution we 
will explain first some generalities on resolutions of isolated simple singularities 
focussing on the role of the monodromy group. Let us denote the polynomial 
defining the singularity by f(X\, ATo, J'G). To resolve or unfold a singularity means 
to change / analytically in ‘all possible ways’, so that the singularities that will 
appear as a result of this are of a simpler nature. Such analytical deformations 
preserve the (analytical) structure of the singularity. For example, consider the 
polynomial

f = Xt + Xl + Xl (3.1)

which is the modality-one singularity in table 1. A priori there is no reason to 
expect that a generic resolution will correspond to an operator that appears in the
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chiral ring of the superpotentiai. However, a result in [39] on resolving isolated 
singularities states that all possible deformations of a given superpotentiai can 
always be written in terms of linear combinations of operators that appear in the 
chiral ring. Thus, for the example in (3.1) it is enough to consider

fa = Xl + Xl + X37 + £ aijkX\X]2Xl (3.2)
i»0, 7*0,1 5

which depends on 12 complex parameters and corresponds to elements in the 
chiral ring of the LG model with superpotentiai (3.1).

It is customary [40] to describe the above resolution in terms of the hypersur- 
faces Ea defined as

Sa = {(X1,X2,.Y3)|/a=0}, Eo = /o = 0. (3.3)

The union of all of these surfaces constitutes a fiber space, denoted as

7T : E —* 5 (3.4)

and turns out to be equivalent with the resolution (3.2). The base space S is the 
affine space of parameters The fiber 7r-1(a) is isomorphic to the surface Ea.

The deformation is invariant under multiplication with the non-zero complex 
numbers, C*. Furthermore, there is always one element a,^ for each of the 
polynomials in table 1-2 which corresponds to the single irrelevant operator in 
the LG theory. Restricting to the relevant operators, and taking into account the 
C* symmetry, we let the space

St = s+ - {0}/C* (3.5)

be the base space parameterizing all (untwisted) relevant perturbations. (Recall 
that there are no marginal deformations in this case.) In S+ we will consider two 
sub-spaces

Steg = {a 6 5+ | Ea non-singular} (3.6)

Stm = |a € 5+ | Ea has only simple singularities} . (3.7)
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The moduli space 5+ has a rich topology, so in order to describe it we need 
some invariant objects. An example of such an invariant turns out to be the 
monodromy group. Formally, the monodromy group of a singularity is defined 
by the embedding of the fundamental group of S?eg into the integral homology of 
the surface £a. Fortunately, due to a result in [41], the only non-trivial homology 
group turns out to be H2(T,ao,Z) ~ ZM, which is for the singularities in table 
1-2 an even symmetric integral lattice, referred to as the Milnor lattice, denoted 
by La. Its dimension, i.e. the dimension of the integral homology group of Sa 
is given by the Milnor number /i and corresponds to the minimal number of 
independent deformations of the singularity necessary to describe its resolution 
[40].

In some cases the monodromy group has a more concrete definition, namely 
as the group generated by pseudo-reflections acting on a basis {et};=i in La:

se. (x) = x + <?(x, ei)ei, x € La, (3.8)

where q denotes the bilinear form on La. It satisfies q(e,-, &{) = —2. Hence 
se. (e^) = —e,- and sei(x) = 0 for all x _L e,-. The vectors {e;} are the so-called 
vanishing cycles of the singularity [40]. The group T is an infinite group for the 
singularities of tables 1 and 2. One has

F C Aut(La), (3.9)

where Aut(La) denotes the full group of isometries of the lattice La. The equality 
occurs exactly for the singularities of table 1 [40, 42].

It follows [39] that the monodromy group is a topological invariant of the 
singularity and hence invariant under smooth deformations of the superpotentiai. 
One may use this fact to find a fundamental domain for these deformations. For 
this one introduces a period map

: SXg —* Lc

^(a) (7) = / <^(a) each a € 5+ , (3.10)
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where Lq denotes the complexification of the Milnor lattice. The holomorphic 
two-form on Ea is defined as

u;(a) = P.R.
dXx A dX2 A dX3 

MX1,X2,X3)
(3.11)

The notation ‘P.R.’ means to take the Poincare residue of the meromorphic three- 
form ^ re^er the reader to [43, page 147] for an explanation of this
map.

Now it turns out [44] that the period map extends naturally to a multivalued 
holomorphic ramified map

: S+m — Lc- (3.12)

Let D denote the component containing the image of S+tm under the map <p 
induced by the period map. The monodromy group P acts on D discontinuously, 
so the space D/P is a well defined complex space. This is called the fundamental 
domain for the lattice La. As is shown in [40] the map 4> factorizes over C*, i.e. 
it extends to a map

i-.S+JC- ~DIT. (3.13)

Using this period map one can show [44] that for the singularities of tables 1-2

S+JC- C D/T, (3.14)

where the equality occurs for only three singularities of the type K\2, Ufio, U\2 

appearing in table 1. So we may describe the moduli space of the affine surfaces 
Ea by way of the fundamental domain D/Y.

In order to find a description of the moduli space of the compactified surfaces 
£„ one has to study the compactification of D/Y, which as we mentioned earher, 
arises through an embedding of in 5+ = 5+ — {0}/C*. In general the 
compactification of £a is obtained via a particular resolution, consisting of the 
addition of extra polynomials. In general such a resolution looks like

Z=MX,)+ £ a“Pol0(.Y,.)r- (3.15)
a

9(Pola)<l
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where Pola denotes a set of weighted homogeneous polynomials labelled by ot 
in the variables X{, i = 1,2,3, of degree at most iV, where N is the Coxeter 
number associated with the singularity listed in the tables 1-2, i.e. it is the least 
common multiple of the weights of the original polynomial /. The new variable 
is denoted by Y. Its power na depends on the set of divisors of N which appears 
in <3r(Pola) = na/N (in the corresponding N = 2 SCFT, q is the U(l) charge). 
The coefficients aa are normalized using the C* symmetry. The precise form of 
the polynomials follows from the requirement that the resulting surface describes 
a compact CY surface, i.e. a K3 surface in the c = 6 case. All the fields of 
dimension less than one for the original uncompactified singularity become all 
marginal fields for the compactified singularity. In this way all the singularities 
of tables 1-2 give rise after compactification to K3 surfaces [45, 44].

Let us illustrate this for the example (3.2). The compactification of Ea corre­
sponds to a particular deformation of So by adding a term to the polynomial
/a

Ta = X2x + Xl + x37 + aoooYf + x; aijkX'2XiXkA (3.16)
.»l,j=*0...4

where A: = 42 — 14i — 67. Ruling out the possibility of having aooo = 0 and using 
the C*-symmetry to normalize aooo = 1, we restrict to the space S+ defined in 
(3.5). Thus the addition of the term X^2 amounts to an embedding

c St. (3.17)

The surface defined by

7 = X\ + Xl 4- Xl + X$2 = 0 (3.18)

is known to describe a K3 surface which has only simple isolated singularities. 
If one uses / as a superpotentiai in a LG model one finds that the content of 
the chiral ring coincides with that of the spectrum of chiral states of the c = 6 
Gepner model 1 • 5 • 40. Note that the terms of the sum in (3.16) correspond 
to the marginal deformations in the untwisted (c, c) chiral ring of the deformed
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Gepner model 1 • 5 • 40. The space of

{aijk\i = 0, j = i = l,j = 0...4; k = 42-l4i-6j}

is what we called in section 2 the a-moduli space. The fact that one has to add 
a polynomial X4 of degree 42 follows from the details of the compactification of 
the affine surface Ea turning it into a K3 surface. In this example above there is 
only one coefficient (a = 1) in (3.15) so that n = iV = 42.

In general the equation /a = 0 at y = 0 describes a curve in CP2 which has 
at most isolated simple singularities. That is, the surfaces Sa have for all a the 
same singularities, implying that there exists a uniform resolution

tt' : E —► S+ - {0}/C. (3.19)

This describes a holomorphic family of K3 surfaces all having the same singularity 
structure. Because of this, one may describe the compactification alternatively 
in terms of a compactification of the space D/T. From [44] one learns that the 
compactification of D/T is obtained by adding the rational boundary components 
of D. The compactification of D/T is denoted by (D/T)* = D*/T. D* is a 
symmetric space in the coset 0(20,4)/(O(20) x 0(4)). 5+ is embedded in D*/T 
by a map V>, which is an extension of the period map <f> introduced earlier, such 
that the following diagram is commutative

4> ) D/T
i

0
1 (3.20)

Sa+ D*/T

The embedding xp turns out to be an isomorphism [40, 44] for the three singular­
ities of the type K\2, VF12, U\2 in table 1.

The space D* /T is the submoduli space of K3 surfaces which are of the same 
type as E„. We thus conclude that the space D*/T corresponds to the moduli 
space formed by the (untwisted) marginal deformations of the LG theory defined 
by a compactification of a given singularity of tables 1-2. This moduli space is a
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sub space of the complete moduli space of all K3 surfaces denoted by .Ad. That 
is
S^CM.

The space M is well known. We recall from [46] that Ai is the simply connected 
space,

M ~ 0(19,3)/(0(19) x 0(3)). (3.21)

In other words: the homology lattice ^(S, Z) is the same for all K3 surfaces 
E. The latter is known to be the even self-dual Lorentzian lattice Lks of rank 22

IK3 = 2(-Ss) e 3 ( ° J) , (3.22)

where Eg denotes the self-dual lattice associated with the Dynkin diagram of the 
Lie algebra of type Eg- The isometry group of this lattice, i.e. its automorphism 
group, is known to be the discrete group 0(19,3, Z) [46]. We thus conclude 
that the Milnor lattice of any of the compactified singularities in tables 1-2 is 
embedded into The results in [40, 44 , 45], described above, now imply that 
this embedding can be alternatively described by using the period map ■0, i.e. we 
have an embedding

5+ c nyr c m, (3.23)

where F is the monodromy group of the affine surface Ea. In fact, F is contained 
in the automorphism group of L/C3- The action of F on the symmetric subspace 
D* C A4 relates different points which axe physically equivalent: under the action 
of F the superpotentiai of the corresponding LG model remains the same. That 
is, adding an untwisted marginal deformation the monodromy does not change. 
Of course the monodromy has in general a non trivial effect on the kinetic term 
of the LG-model. However, as the monodromy of the superpotentiai remains the 
same, the change of the kinetic term corresponds to a perturbation of the kinetic 
term which becomes irrelevant at the critical point (see e.g. [47]).

20



3.2. Physical symmetries on and automorphism groups of K3 surfaces.

Let us now turn to the problem of finding symmetry groups on the moduli 
space Sf of untwisted marginal deformations of a (2,2) vacuum. The description 
of the moduli space in terms of the monodromy group turns out to be very useful 
to obtain a geometrical understanding of these groups. Recall that in section 2 
we presented an algorithm for finding the generators of such symmetry groups 
using certain field redefinitions of the LG theory. For most of the potentials 
it is in general not so easy to identify these groups. In this subsection we will 
describe these groups in a more geometrical way which allows one to identify 
certain sub groups as automorphism groups of CY manifolds. Again we will 
restrict ourselves to the c = 6 superpotentials, i.e. to K3 surfaces, since in this 
case the complete classification of automorphism groups is known [48]. However, 
most of the arguments hold for the c = 9 superpotentials as well.

To describe possible symmetry groups on the moduli space of untwisted de­
formations we will use the moduli space D*/T. We start with a more precise 
description of the Milnor lattice La of the compactified singularity using the 
Hodge decomposition of the two dimensional cohomology of of a K3 surface S:

if2(S, C) = + H'1’1(S) + H°'2CZ), (3.24)

with

dimif2’°(E) = dimi/°’2(S) = 1, dimtf1’1^) = 19. (3.25)

Any K3 surface is completely determined by the unique holomorphic two-form u> 
(i.e. a form without poles or zeros) of which we saw an example in the previous 
sub-section. This two-form is an element in hP^fE).

Next we define the lattice Sf as

S^=H2CE,Z)nHl'\E),

that is,

% = {r <= H2{E, Z)\x ■ H2’°(Z) = 0} . ' (3.26)
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This lattice is referred to as the Picard lattice [49, 50]. Together with it we define 
its orthogonal complement by

Ts = S^ intf2(E,Z). (3.27)

Obviously,

® Tg- = Lkz, (3.28)

where Lkz is given in (3.22). It is known [49, 50] that any K3 surface is uniquely 
determined by its Picard lattice.

The lattice Sg- has signature (!,&), k < 20 so that Tg- has signature (2,19 — 
rank 5g). It is not hard to see that the lattice La which was defined in the previous 
section as homology lattice formed by the vanishing cycles of the compactified 
singularity is given as the Poincare dual of the lattice 5g.

Let us now explain the relevance of the automorphism group of a K3 surface 
in the discussion of the physical symmetries acting on the moduli space 5^. Let 
Aut(5g) denote the automorphism group of the Picard lattice of a K3 surface S. 
Denote by f its subgroup generated by pseudo-reflections (defined in (3.8)). This 
group contains in particular the monodromy group P introduced in the previous 
section. To be more precise: the quotient P/P fixes the ‘point’ y = 0 in (3.15) 
added at infinity by which we compactified the surface Ea.

A well known fact [49] states that the automorphism group of the K3 surface 
can be expressed as the quotient

Aut(E) ~ Aut(Sg)/f. (3.29)

We will assume that Aut(E) is a finite group. By definition Aut(E) leaves invari­
ant (up to a complex phase) the holomorphic two-from u> which defines the K3 
surface. To be more precise: for any element u> € if2’°(E) we have

g*u = ct{g)uj, (3.30)

with a(g) € C* and g € Aut(E). (The star above g denotes the pullback). If we 
denote the kernel of a by Gg, i.e. the elements g for which cx(g) = 1, then we
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have that

Aut(E) ~ GV f* Zm, (3.31)

where it is known [49] that M can be at most equal to 66. One can show rather 
easily, using the results in [51] that for each of the polynomials in table 1-2 M 
is at most equal to the Coxeter number N. (For the models corresponding to 
type A-modular invariants, N is the least common multiple of the powers in the 
defining polynomial.) If the three powers are co-prime it turns out that Aut(E) 
is the group of phases Zyv discussed in [32].

We now come to the main point. Let us consider a particular K3 surface 
arising via the compactification of one of the singularities in tables 1-2, and fix 
a parameter a0 € 5^", corresponding to a particular deformation. The action of 
the automorphism group Aut(Eao) on the holomorphic two-form u;(ao) defined 
in (3.30) is induced from an action on CPn [48]. (That is, it corresponds to a 
redefinition of the fields X{). The only transformations which preserve u;(ao), 
which we consider, are linear transformations on the fields X{. 6 It then follows 
from the definition (3.11) of u;, that in terms of the LG model, Aut(Eao) is an 
example of a sub-group of physical symmetries acting on the theory by a field 
redefinition. 7

The action of the automorphism group Aut(Eao) on the holomorphic two-form 
u(ao) can be lifted to the whole space of deformations S+] the group Aut(Eac) 
acts non-trivially on the two-forms u;(a) associated to deformations parameterized 
by a € a ^ ao. The deformation for which a = a0 corresponds to the fixed 
point of this group, which is the automorphism group of the K3 surface defined 
by the two-form u/(oo).

In section 2 we considered the example (2.8) where we found explicitly that the 
group Aut(E) ~ Tk 5a acts on the moduli space 5+ with fixed point (cq, a2, a3) = 
(—10,0,0). The non-abelian group Gf ~ Mg of order 72 is contained in the 
maximal automorphism group of the K3 surface 5Zf_1 Xf — 10(ATfXf + yYjLYf 4-

6In principle, there may be non-linear transformations which preserve However, all the 
examples studied in [48] turn out to correspond to linear unitary field redefinitions.

7Vacua for which AutiE^) is not trivial are important as they usually correspond to models 
with am extended symmetry.

23



= 0 in CP2 (see e.g. [48]). This is the sub-group of field redefinitions 
preserving u, i.e. preserving the superpotential and of determinant 1.

The above found relation between the automorphism groups of K3 surfaces 
and the group of transformations described in section 2 by field redefinitions is 
in fact generalized to all possible a-moduli spaces. The groups generated by the 
field redefinitions described in section 2 contain the automorphism groups of any 
K3 surfaces that appears as a possible deformation of the unperturbed surface. 
The automorphism groups correspond to the stabilizing subgroups in the group 
obtained from field redefinitions, acting non-trivially on the a-moduli of untwisted 
(c, c) marginal deformations.

Remarkably, the classification of symplectic automorphisms of a K3 surface 
is known [48]. It follows that each possible group GV is isomorphic to one of 
the 11 groups (or subgroups thereof) listed in table 3, shown at the end of this 
section. For the notation of these groups we refer to [48, 52]. The blank en­
tries in the fourth column correspond to K3 surfaces that axe not obtained via 
compactification of one of the singularities in tables 1-2. (See [48] for the corre­
sponding surfaces.) The first K3 surface is closely related to the compactification 
of the singularity K12 in tables 1-2 (see [38, 40, 53]) Lines 4,5 and 7 correspond 
to the deformed Gepner model 24. The group F3&4 is generated by phase trans­
formations and permutations. The group M2q contains the transformation of the 
type S. Line 10 is the example mentioned above, which we discussed in detail 
in section 2. The full automorphism group is obtained by taking the semi-direct 
product with the cyclic group Z/v/ as in (3.31). So we conclude that the groups 
Aut(E) are subgroups of the ‘modular’ group obtained from field redefinitions in 
section 2.

By construction, the groups axe all sub-groups of 0(19, 3, Z) and therefore 
of 0(20,4, Z) as well. This concludes the discussion on the relation between sub­
groups of the symmetry groups acting on the moduli space of untwisted marginal 
deformations of a (2,2) c = 6 vacuum and automorphism groups of K2 surfaces. 
In principle the same argument holds also for the c = 9 case, however, much less 
is known about the structure of automorphism groups of CY manifolds (work on 
this subject is in progress [35]).
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No. Gr order K3 surface
1 L2(7) 168 XfX2 -r XlX3 + X^Xx +X* = 0
2 A 360 £? Xi = El x? = z? x? = o
3 Ss 120 e!x = e!^? = i:;x? = o
4 M2q 960 Et^ + i2nt^ = o
5 ■F384 384

oII

>
<w

6 ^U,4 288
7 T\92 192 Et Xf - 2iV3(X?X* + XjX?) = 0
8 H\92 192
9 Nt2 72

10 m9 72 Ei xf - io(xfxi + x23x33 + xix?) = o
11 T48 48

Table 3: Finite automorphism groups of K3 surfaces 
which axe nontrivial physical symmetry groups.
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4. Transformations Relating Small and Large Volume 
Compact ificatio ns.

In this section we discuss a particular symmetry on the moduli space of (2,2)- 
vacua which relates small radius compactifications with large ones. For definite­
ness we restrict here to c = 6 superpotentials. In order to reformulate the moduli 
problem for c = 6 LG theories in terms of metrics we use a known relation [54] 
between the metric and the holomorphic two-form on the K3- surface Ea. We 
remind the reader that a Kahler metric <7,j is a CY metric (i.e. Ricci-flat) if

Rij = log (det {gij)) = 0, (4.1)

and correspondingly defines a unique class (up to isomorphism) in 
Now, for K3 surfaces (i.e. compact CY manifolds in complex dimension 2) this 
implies that a Kahler metric on it is Ricci-fiat if and only if there exists a positive 
constant c such that [54]

(f> A 4> = cua Aula, (4.2)

where u>a is the unique global holomorphic two-form characterizing the K3 surface, 
as defined in (3.11), and <j) = Im^jdz, A dzj is the Kahler form on Ea. Now let us 
consider a deformed K3 surface defined by the two-form The volume of the 
surface corresponding to the metric <7;j is given by

Vol(gij(a)) = [_ uaAua (4.3)
Jz*

which is explicitly depending on the moduli a E S£ of the K3 surface. Note 
that this is not the volume form obtained from the embedding of the surface into 
some projective space: the induced metric coming from the embedding is not 
Ricci-flat and gives rise to a volume form which can not be written in terms of a 
holomorphic and anti-holomorphic two-form.

Let us next find generators in the symmetry group on the moduli space of a 
LG model that act nontrivially on the volume in (4.3). In particular, we will be
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interested in the possibility of finding modular transformations that transform 
‘small volumes to large ones’. We will follow the example in (2.8), with the action 
of an 5 transformation on the a-moduli. However, the same arguments will give 
the same conclusion in other cases where a type S transformation relates finite 
values of a to infinite ones.

The limit ai —oo in (2.8) is equivalent to (01,03,03) = (—7,9,3) as can be 
found using (2.10). We will denote the superpotential for given o parameters 
by Waiia2,a3 (^fi, X2, Wb) • The holomorphic two-form (3.11) in both cases is the 
same, up to an overall factor 9/oi at the limit oi —► 00. This can be seen as 
follows. At the limit oi —► 00, the superpotential is effectively

^,.^(XuX1,X3) - a,(XfXi + X?Xj + X|X|). (4.4)

On the other hand,

W-TM(x;,Xi,X£ = 9(X?X? + X?X? + X?X?), (4.5)

where in (4.5) the X' are related to the Xi by the type 5 transformation (2.9). 
The Jacobian of the transformation (2.9) is 1, and thus the factor 9/oi is estab­
lished. Using (4.3) we conclude that the ratio between the volumes of the two 
corresponding models diverges, and thus small volumes are related to large ones.
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Tables of Singularities

In the following tables N denotes the dual Coxeter number of the singularity 
which equals the number of the least common multiple in the case the singularity 
is of the form Yh Xf'. In the last collumn we have given the number of untwisted 
(c, c) deformations. It is computed for the compactified singularity, i.e. after 
adding a term with power equal to N. These tables can be found e.g. in [37].

N Superpotential Type A
24 X?X, + X1 + X* Qio 8
18 x?x3 + x* + x2xi Qn 9
15 x?x3 + xi + xi Ql2 10
16 X;X3 + X2Xi + xt 5U 9
13 x^x3 + x2x^ + xlxi 5i2 10
12 X* + X? + x< 10
30 X?X2 + X.5 + XI Zu 9
22 X*X2+X1X* + X1 Zi2 10
18 x*x2 + x$ + xz Z\3 11
20 XJ + Xl+Xl W12 10
16 X? + X.X* + XI W13 11
42 x?+x*+xz k12 10
30 Xf + X^Xl + X* k13 11
24 x? + x* + xz k14 12

Table 1. The Exceptional Modality 1 Superpotentials with c = 3(^^).
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N Superpotential Type
18 3- Xo + x^ -^269(^3,0) 14
14 Xl + XlX^X* -R247(2’l,o) 13
12 XIX2 + X3 + XxX* R?4s(Q21o) 12
12 xf + xt + xf ^236 (^l.o) 13
10 XI + Xhx3 + X,Xi ^234(‘S'l,o) 12
9 xi + xi + x^x* ^233(^1,0) 12
10 Xf + Xf + Xf R22s(Xi6) 14
8 Xf + Xf + X2X2 -^223(^1,0) 13
12 XI2 + xf + xf JRl46( ^4,0) 18
10 Xl° + X1Xf + Xf 17
9 xf + xz + XxXf -^134(^3,0) 16
8 Xf+Xf+ Xf -^124(^2,0) 17
7 XI + X.Xf + X,Xf + XfX3 -^123(‘S'2o) 16
6 Xf + xf + xf R\22 16
5 Xf + Xf + XxXf R\\2 16
6 Xf + X* + Xf R\\3 19
4 Xf + Xf + Xf R\\\ 19

Table 2. Remaining superpotentials that embed in C3 with c =
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