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ABSTRACT 

. 

This r e p o r t  d e s c r i b e s  t h e  mathemat ica l  a n a l y s i s ,  t h e  
p h y s i c a l  s c a l e  model ing ,  and a f u l l - s c a l e  c r a s h  t e s t  o f  
a r a i l c a r  spen t -nuc lea r - fue l  sh ipp ing  system. The 
mathemat ica l  a n a l y s i s  u t i l i z e d  a lumped-parameter model 
t o  p r e d i c t  t h e  s t r u c t u r a l  r e sponse  o f  t h e  r a i l c a r  and 
t h e  sh ipp ing  c a s k .  
a n a l y s i s  c o n s i s t e d  of two c r a s h  t e s t s  t h a t  used 1 /8-  
s c a l e  models t o  a s s e s s  r a i l c a r  and sh ipp ing  c a s k  
damage, 
r e t i r e d  r a i l c a r  equipment ,  was c a r e f u l l y  moni tored  wi th  
onboard i n s t r u m e n t a t  ion  and high-speed photography.  
R e s u l t s  o f  t h e  mathemat ica l  and s c a l e  model ing a n a l y s e s  
a r e  compared wi th  t h e  f u l l - s c a l e  t e s t .  

The p h y s i c a l  s c a l e  model ing 

The f u l l - s c a l e  c r a s h  t e s t ,  conducted wi th  
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A N A L Y S I S ,  S C A L E  M O D E L I N G ,  AND F U L L - S C A L E  TEST O F  A 
R A I L C A R  AND SPENT-NUCLEAR-FUEL S H I P P I N G  CASK I N  A 

H I G H - V E L O C I T Y  I M P A C T  A G A I N S T  A R I G I D  R A R R I E R  

I n t r o d u c t i o n  

T h i s  r e p o r t  p r e s e n t s  t h e  a n a l y s i s  and r e s u l t s  o f  a c r a s h  t e s t  o f  a 

r a i l c a r  spen t -nuc lea r - fue l  sh ipp ing  system. Th i s  t e s t  was conducted by  

Sandia  L a b o r a t o r i e s  on September 2 7 ,  1 9 7 7 ,  f o r  t he  United S t a t e s  Depart- 

ment o f  Energy. The r a i l c a r  t e s t  i s  t h e  t h i r d  i n  a s e r i e s  t o  i n v e s t i g a t e  
1 v a r i o u s  t r a n s p o r t a t  i o n  s y s  tems f o r  spen t-nuc lear- fue  1 sh ipp ing  c a s k s .  

The f i r s t  two t e s t s  provided d a t a  on t h e  r e sponse  o f  a t r u c k - t r a i l e r  sys-  

tem c a r r y i n g  spen t -nuc lea r - fue l  a s  i t  impacted a r i g i d  b a r r i e r  a t  h igh  

speed .*  The r a i l c a r  system impacted a c o n c r e t e  s t r u c t u r e  a t  a nominal 

v e l o c i t y  o f  1 2 9  km/hr ( 8 0  mph). 

t o r e d  wi th  high-speed photography and wi th  onboard i n s t r u m e n t a t i o n  opera-  

t i n g  through a t e l e m e t r y  package. One o f  t h e  purposes  o f  a l l  t h e s e  t e s t s  

was t o  a s s e s s  t h e  eng inee r ing  c a p a b i l i t y  t o  p r e d i c t  t h e  r e sponse  o f  sh ip-  

p ing  systems t o  seve re  a c c i d e n t s  whi le  c a r r y i n g  s p e n t - n u c l e a r - f u e l .  

The system response  was c a r e f u l l y  moni- 

Before t h e  f u l l - s c a l e  t e s t s  w e r e  conducted , a thorough p r e l i m i n a r y  

i n v e s t i g a t i o n  was conducted t o  de t e rmine  how t h e  system would respond.  

Pre tes t  a n a l y s e s  o f  t h e  r a i l c a r  t e s t  inc luded  mathemat ica l  lumped- 

parameter  modeling and one-eighth scale-model t e s t s ,  t h e  r e s u l t s  o f  which 

were g iven  i n  an e a r l i e r  r e p 0 1 - t . ~  

r a i l c a r  s y s t e m ,  t h e  mathemat ica l  c a l c u l a t i o n s ,  t h e  scale-model t e s t s ,  and 

t h e  r e s u l t s  o f  t h e  f u l l - s c a l e  t e s t .  A comparison o f  t h e  r e s u l t s  o f  t h e  

p r e t e s t  a n a l y s e s  and t h e  f u l l - s c a l e  t e s t  i s  a l s o  p r e s e n t e d .  

The p r e s e n t  r e p o r t  d e s c r i b e s  t h e  
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The R a i l c a r  System 

The r a i l c a r  system used i n  t h e  t es t  was a r e t i r e d  u n i t  b u i l t  around 

1960 ( F i g u r e  1 ) .  

two t h ree -ax le  t r u c k s  a t t a c h e d  t o  cross b o l s t e r s  on the frame, each  truck 
weighing 9 m e t r i c  t o n s  (20,000 l b s ) .  P a r t  o f  t h e  r a i l c a r  system was t h e  

c a s k  encasement s t r u c t u r e  ( F i g u r e  2 )  , comprised o f  heavy s tee l  components 

welded t o g e t h e r  and i n c l u d i n g  a b o l t e d  down c o v e r .  The complete  sys tem,  

i n c l u d i n g  t h e  c a s k ,  weighed about 136 m e t r i c  t o n s  (300,000 l b s ) .  

i t s e l f  weighed 68 m e t r i c  t o n s  (150,000 l b s ) .  

The r a i l c a r  system c o n s i s t e d  o f  a heavy s teel  frame w i t h  

The c a s k  

F i g u r e  1. R a i l c a r  System as Acquired 

Within t h e  encasement s t r u c t u r e ,  a c y l i n d r i c a l  s p a c e r  ( o r  f i l l e r )  

u n i t  se rved  t o  c o n s t r a i n  any movement o f  t h e  sh ipp ing  c a s k  ( F i g u r e  2 ) .  

The w a l l  o f  t h e  c y l i n d e r  was 1 .27  cm (0.5 i n . )  t h i c k .  The c a s k  and t h e  

s p a c e r  u n i t  were clamped i n  p l a c e  by i n v e r t e d  s a d d l e  s t r u c t u r e s  on t h e  

b o l t e d  down cove r .  

encasement s t r u c t u r e  a x i a l l y  r e s t r a i n e d  t h e  c a s k  and s p a c e r  u n i t ,  and 

ac t ed  a s  a bumper system f o r  t h e  encasement s t r u c t u r e .  

Four h a l f - i n c h - t h i c k  g u s s e t  p l a t e s  a t  each  end o f  t h e  

8 



End Members, 10 I 35 
Gusse t  P la tes ,  1 . 2 7  c m  
( 1 / 2  in) t h i c k  (4) 

Bottom Cross 
Members, 21 WF 73 15.24 m (50 f t )  

(1.0 i n )  A-A, S i d e  G i r d e r  

F igu re  2 .  Schematic o f  t h e  R a i l c a r  S t r u c t u r e  

The s h i p p i n g  cask  was made o f  s t a i n l e s s  s t e e l  w i th  l e a d  s h i e l d i n g  

(F igu re  3 ) .  

s h e l l  was 0.95 cm (0.375 i n . )  t h i c k .  The o u t e r  d i ame te r  o f  t h e  cask  w a s  

157 cm ( 6 2  i n . )  and i t s  o v e r a l l  l e n g t h  was 394 cm (153 i n . ) .  The cask  

head con ta ined  heavy s t a i n l e s s  s t e e l  p l a t e s ,  l e a d  s h i e l d i n g ,  and a pump 

c a v i t y .  I t  was a t t a c h e d  t o  t h e  cask  body w i t h  twenty-four  3.2-cm 

(1 -1 /2 - in . )  h i g h - s t r e n g t h  b o l t s .  The f u e l  c a v i t y ,  w i th  space  f o r  10 f u e l  

a s s e m b l i e s ,  was normal ly  w a t e r - f i l l e d  when t r a n s p o r t i n g  f u e l .  

The o u t e r  s h e l l  was 3 . 5  cm (1 .375  i n . )  t h i c k  and t h e  i n n e r  

I n  t h e  t e s t ,  th'e c a s k  c a r r i e d  n i n e  mock a s sembl i e s  and one r e a l ,  bu t  

u n i r r a d i a t e d ,  u n i t .  F i g u r e  4 i s  a photograph o f  t h e  f u e l  rod assembly 

( d e p l e t e d  uranium) c a r r i e d  i n  t h e  w a t e r - f i l l e d  c a s k .  

9 



,394 cm 

F i g u r e  3 .  Schemat i c  of the S h i p p i n g  Cask 

F i g u r e  4 .  F u e l  Rod Assembly 
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Ma themat i c a l  Ana lys i s  

Methodology 

P r e l i m i n a r y  c a l c u l a t i o n s  based on t h e  c rush  s t r e n g t h  o f  t h e  r a i l c a r  

s t r u c t u r e ,  t h e  c e n t e r  o f  g r a v i t y ,  and t h e  r o t a t i o n a l  i n e r t i a  o f  t h e  system 

i n d i c a t e d  t h a t  t h e r e  would be no a p p r e c i a b l e  r o t a t i o n  o f  t h e  r a i l c a r  

s t r u c t u r e  upon impact.  Hence, t h e  problem, judged t o  be e s s e n t i a l l y  one- 

d imens iona l ,  was ana lyzed  by u s i n g  a one-dimensional lumped-parameter 

model. I n  t h i s  t y p e  of  model, t h e  system i s  d i s c r e t i z e d  i n t o  mass e l e -  

ments and coupl ing  ( s p r i n g )  e lements .  The model i s  t h e n  used i n  conjunc-  

t i o n  wi th  a computer program t o  c a l c u l a t e  t h e  dynamic r e sponse  o f  t h e  

system. F igu re  5 i s  a schemat ic  of t h e  lumped-parameter model formula ted  

t o  ana lyze  t h i s  problem. 

Cask 
Spacer\  - 

/ / / / / / / / /  

Figure  5. Schematic of t h e  Lumped P,arameter Model 

The r a i l c a r  s t r u c t u r e  i n  F i g u r e  5 i s  r e p r e s e n t e d  by mass e lements  2 

th rough 12.  Mass 13 r e p r e s e n t s  t h e  s p a c e r  u n i t  and mass e lements  14 

through 1 7  r e p r e s e n t  t h e  cask .  Mass 1 ,  t h e  t a r g e t ,  was assumed t o  be  

f i x e d .  The coup l ing  e lements  f o r  t h e  model were de r ived  from s t r u c t u r a l  

a n a l y s i s  e s t i m a t e s  o f  t h e  force-d isp lacement  c h a r a c t e r i s t i c s  f o r  each 

1 1  



element  o f  t h e  s t r u c t u r e .  The impact was s imula t ed  by g i v i n g  a l l  t h e  mass 

e l emen t s ,  except  t h e  t a r g e t ,  an i n i t i a l  v e l o c i t y  e q u a l  t o  t h e  p r o j e c t e d  

f u l l - s c a l e  impact v e l o c i t y  o f  t h e  t e s t .  The SHOCK computer program was 

used wi th  t h i s  model t o  c a l c u l a t e  t h e  dynamic r e sponse  o f  t h e  system ( s e e  

Appendix A f o r  d e t a i l s ) .  

4 

R e s u l t s  

For  an impact a t  129 km/hr (80  mph), c a l c u l a t i o n s  i n d i c a t e d  t h a t  t h e  

f r o n t  end o f  t h e  r a i l c a r  s t r u c t u r e  would c r u s h  about  250 cm (100 i n . ) .  

C a l c u l a t i o n s  a l s o  i n d i c a t e d  t h a t  t h e  c a s k  would move e s s e n t i a l l y  a s  a 

r i g i d  body w i t h i n  t h e  encasement s t r u c t u r e ,  p a r t i a l l y  c r u s h i n g  t h e  s p a c e r  

u n i t .  Fo rces  a c t i n g  on t h e  c a s k  were n o t  c a l c u l a t e d  t o  be  g r e a t  enough t o  

p l a s t i c a l l y  deform i t s  b a s i c  s t r u c t u r e .  Only de fo rma t ions  t o  e x t e r n a l  

c o o l i n g  f i n s  and small  i m p r i n t s  on t h e  head area were b e l i e v e d  t o  b e  

p o s s i b l e .  

F i g u r e s  6 and 7 r e f l e c t  some r e s u l t s  o f  c a l c u l a t i o n s  made wi th  t h i s  

model.  F igu re  6 shows t h e  c a s k  d i sp lacemen t  a s  a f u n c t i o n  o f  t i m e ,  wi th  

z e r o  be ing  the  t ime o f  c o n t a c t  between t h e  f r o n t  end o f  t h e  system and t h e  

t a r g e t .  I t  was c a l c u l a t e d  t h a t  t h e  cask  would d i s p l a c e  forward about  300 

crn (120  i n . )  i n  0 .145 s .  Figure  7 i l l u s t r a t e s  t h e  c a l c u l a t e d  c a s k  ve lo-  

c i t y  a s  a f u n c t i o n  o f  t i m e .  The c a l c u l a t i o n s  i n d i c a t e d  t h a t  t h e  c a s k  

would d e c e l e r a t e  v e r y  un i fo rmly ,  r e a c h i n g  a z e r o  h o r i z o n t a l  v e l o c i t y  i n  

about 0 .145 s .  The r a i l c a r  s t r u c t u r e  would s t o p  even more q u i c k l y  w i t h  

t h e  c a s k  c o n t i n u i n g  t o  move forward w i t h i n  t h e  encasement s t r u c t u r e .  The 

maximum r ig id-body d e c e l e r a t i o n  l e v e l s  f o r  t h e  c a s k  were c a l c u l a t e d  t o  be  

about  30 g .  

Thus,  t h e  lumped-parameter model showed t h a t  a 129 km/hr (80  mph:) 

impact would no t  cause  permanent de fo rma t ions  t o  t h e  c a s k .  However, such  

an impact would c rush  t h e  f r o n t  end o f  t h e  r a i l c a r  s t r u c t u r e ,  c a u s i n g  t h e  

c a s k  t o  move forward w i t h i n  t h e  encasement s t r u c t u r e ,  p a r t i a l l y  crushnng 

t h e  space r  u n i t .  The mathemat ica l  a n a l y s i s  was v e r i f i e d  by t h e  r e s u l t s  o f  

scale-model t e s t  s--the next  s t e p  i n  t h e  a n a l y s i s .  
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IO 
Time (s )  

Figure 6. Cask Displacement as a Function of Time, 
Computed With the Lumped-Parameter Model 

Time (s) 

Figure 7. Cask Velocity as a Function of Time, Computed 
With the Lumped-Parameter Model 
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Sca le  Models 

The s c a l e  models were des igned  t o  p r e d i c t  t h e  behav io r  o f  t h e  f u l l -  

s c a l e  sys tem.  Only t h e  p e r t i n e n t  s t r u c t u r a l  f e a t u r e s  were inc luded  i n  t h e  

mode l s ,  s i m i l a r  t o  the  modeling t echn ique  used i n  t h e  t r a c t o r - t r a i l e r  

c r a s h  t e s t . *  

s i o n  o f  s c a l e  modeling i s  p r e s e n t e d .  A d e s c r i p t i o n  o f  t h e  s c a l e  models 

c o n s t r u c t e d  f o r  t h e  r a i l c a r  s t u d y  and t h e  r e s u l t s  o f  scale-model impact 

t e s t s  w i l l  be p re sen ted  h e r e .  The r e s u l t s  w i l l  be  shown t o  conf i rm t h e  

mathematical analysis, 

I n  t h e  r e p o r t  d e s c r i b i n g  t h a t  t e s t ,  a more complete  d i s c u s -  

The models used i n  t h i s  s t u d y  c o n s i s t e d  o f  t h e  r a i l c a r  s t r u c t u r e ,  t h e  

c a s k ,  and t h e  f i l l e r  u n i t .  Because t h e  r a i l c a r  was t h e  most s i g n i f i c a n t  

s t r u c t u r e  i n  terms o f  system re sponse ,  more p lanning  went i n t o  t h e  d e s i g n  

and c o n s t r u c t i o n  o f  t h i s  model t h a n  i n t o  t h a t  o f  t h e  c a s k  model.  Construc- 

t i o n  d e t a i l s  o f  t h e  system model are  inc luded  i n  Appendix B. Figure  8 i s  

a schemat ic  o f  t h e  complete  one-eighth s c a l e  model. The m a t e r i a l s  were 

s i m i l a r  t o  those  i n  t h e  p r o t o t y p e .  

Model Shipping 

T40246-000 
Cask 2 

--Shoe 
T40863-000 

Figure  8 .  Schematic o f  t h e  One-Eighth S c a l e  Model 
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The r a i l c a r  was c o n s t r u c t e d  of  small s t o c k - s e c t i o n s  and p l a t e s  welded 

i n t o  p l a c e  ( F i g u r e  9 ) .  

s tee l  tub ing  w i t h  welded end-p la t e s .  

c a s k  and t h e  s p a c e r  u n i t  i n  p l a c e ,  was b o l t e d  t o  t h e  r a i l c a r  s t r u c t u r e  

w i t h  scaled-down b o l t s .  The model was des igned  t o  run  on a s l e d  t r a c k  and 

t h e  shoes  on t h e  model s imula t ed  t h e  r a i l c a r  t r u c k s .  

The model sh ipp ing  c a s k  c o n s i s t e d  o f  c o n c e n t r i c  

The r a i l c a r  c o v e r ,  which clamps t h e  

F i g u r e  9 .  Photograph o f  t h e  S c a l e  Model 

Two scale-model t e s t s  were conducted a t  nominal impact v e l o c i t i e s  o f  

129 km/hr (80  mph). In  t h e  f i r s t  t e s t ,  t h e  r a i l c a r  impacted a g a i n s t  a 

c o n c r e t e  t a r g e t .  In  t h e  second t e s t ,  i t  impacted a g a i n s t  a more mass ive  

s t e e l - f a c e d  c o n c r e t e  b lock .  F i g u r e s  10 and 11 i l l u s t r a t e  t h e  sequence o f  

e v e n t s  observed i n  t h e  f i r s t  t e s t ,  a g a i n s t  t h e  c o n c r e t e  t a r g e t .  

1 5  



16 

Time, Seconds 

t = 0.0  

t = 0.0033 

t = 0,0066 

t = 0.0100 

Figure 10. Early Sequence of Events in the F i r s t  Scale-Model Test 
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The model response i n  t h e  f i r s t  t e s t  was c o n s i s t e n t  w i th  what had 

been p r e d i c t e d  by t h e  mathemat ica l  a n a l y s i s  (Appendix C c o n t a i n s  d a t a  from 

both of t h e  s c a l e  model t e s t s ) .  The system remained n e a r l y  h o r i z o n t a l  a s  

t h e  f r o n t  end o f  t h e  s t r u c t u r e  c rushed ;  t h e n ,  towards t h e  end o f  t h e  

impact ,  t h e  system began r o t a t i n g ,  wi th  t h e  back end r i s i n g .  The c r a s h  of  

t h e  r a i l c a r  c rushed  back t h e  f r o n t  end of  t h e  s t r u c t u r e  -20 cm ( 8  i n . ) ,  

almost t o  t h e  f r o n t  b o l s t e r .  The cask  moved forward w i t h i n  t h e  encasement 

s t r u c t u r e ,  p a r t i a l l y  c r u s h i n g  t h e  space r  u n i t ,  y e t  remain ing  v i r t u a l l y  

undamaged. 

d e f l e c t i n g  more a t  t h e  t o p .  

detached from the  s t r u c t u r e ;  most of  t h e  r e t a i n i n g  screws were broken ,  b u t  

remained i n  p l a c e .  Photometr ic  a n a l y s i s  o f  t h e  f i l m s  i n d i c a t e d  t h a t  t'he 

cask  d e c e l e r z t e d  f a i r l y  uni formly  through t h e  impact and came t o  a h o r i -  

z o n t a l  s t o p  i n  0 .020  s. This  model response  i n d i c a t e d  t h a t  t h e  f u l l -  

s c a l e  cask  impact would t a k e  0.160 s, s i n c e  e v e n t s  i n  t h e  scale-model 

t e s t s  o c c u r  more q u i c k l y  by  t h e  s ca l e  f a c t o r  t h a n  i n  t h e  p r o t o t y p e .  (With 

a one-eighth s c a l e  model,  t h e  s c a l e  f a c t o r  i s  8.) 

The bumper system on t h e  r a i l c a r  s t r u c t u r e  y i e l d e d  s l i g h t l y ,  

The r a i l c a r  encasement cover  was n e a r l y  

The second t e s t ,  i n  which t h e  r a i l c a r  impacted t h e  s t e e l - f a c e d  t a r -  

g e t ,  y i e l d e d  b a s i c a l l y  t h e  same r e s u l t s ;  however, t h e  f r o n t  end of  t h e  

r a i l c a r  s t r u c t u r e  and t h e  space r  u n i t  underwent a s l i g h t l y  g r e a t e r  de- 

format ion .  Also, t h e  r a i l c a r  cover  was comple te ly  d i s lodged  i n  t h i s  t e s t .  

D e s p i t e  these e f f e c t s ,  t h e  c a s k  remained undamaged a s  i n  t h e  f i r s t  t e a t .  

F igu res  1 2  and 1 3  i l l u s t r a t e  t h e  sequence o f  e v e n t s  i n  t h e  second t e s t .  

The d i f f e r e n c e  i n  impact behav io r  observed i n  t h e  two t e s t s  was a t t r i -  

buted p r i m a r i l y  t o  t h e  d e f l e c t i o n  of  t h e  c o n c r e t e  t a r g e t  i n  t h e  f i r s t  

t e s t .  Upon impact ,  t h e  c o n c r e t e  t a r g e t  d e f l e c t e d  somewhat because  t h e  

backing s o i l  was n o t '  f i r m  enough t o  suppor t  i t .  I n  t h e  second t e s t ,  thLe 

s u p p o r t i n g  s o i l  was we l l  tamped. 

second t e s t  was faced wi th  a 5.1-cm ( 2 - i n . I - t h i c k  s t e e l  p l a t e .  

t e s t  was an a t t empt  t o  model t h e  worst  p o s s i b l e  c a s e .  It was expec ted  

t h a t  t h e  f u l l - s c a l e  system response  would f a l l  somewhere between t h e  two 

r e sponses  observed i n  t h e  scale-model t e s t s .  

i n d i c a t e d  t h a t  t h e  cask  would come through t h e  impact v i r t u a l l y  undamaged, 

d e s p i t e  t h e  e x t e n s i v e  damage t o  t h e  f r o n t  end o f  t h e  r a i l c a r .  

I n  a d d i t i o n ,  t h e  c o n c r e t e  t a r g e t  i n  t h e  

The second 

Both scale-model t e s t s  
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Time, Seconds 

t = 0 .0  

t = 0.0033 

t = 0.0066 

t = 0.0100 

Figure 1 2 .  Ear ly  Sequence of Events in the Second Scale-Model Test 
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t = 0.0133 

t = 0.0166 
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t = 0.023 

Figure 13. Late Sequence of Events in the Second Scale-Model Test 
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F u l l - s c a l e  Tes t  

Test  D e s c r i p t i o n  and Hardware 

The f u l l - s c a l e  t e s t  was conducted a t  a s l e d  t r a c k  f a c i l i t y  where t h e  

system was a c c e l e r a t e d  t o  speed and al lowed t o  c o a s t  i n t o  a s p e c i a l l y  

c o n s t r u c t e d ,  r i g i d l y  r e i n f o r c e d  c o n c r e t e  t a r g e t ,  The system was p r o p e l l e d  

by a c l u s t e r  o f  24 r o c k e t  motors  a t t a c h e d  t o  a pusher  s l e d .  A wa te r  b rake  

s e p a r a t e d  t h e  pusher  from t h e  r a i l c a r  a t  a p o i n t  nea r  t h e  t a r g e t ,  a l l owing  

t h e  r a i l c a r  system t o  c o a s t  i n t o  t h e  t a r g e t .  

The hardware f o r  t h e  t e s t  was c a r e f u l l y  prepared  i n  terms o f  p r e t e s t  

i n s p e c t i o n  and i n s t r u m e n t a t i o n .  Br ight -co lored  p a i n t  on t h e  hardware made 

i t  more v i s i b l e  i n  t h e  photocoverage.  F igu re  14 shows t h e  cask  be ing  

lowered i n t o  t h e  r a i l c a r  s t r u c t u r e .  F igu re  15 i l l u s t r a t e s  t h e  assembled 

system wi th  t h e  pusher  s l e d .  Three onboard cameras were i n s t a l l e d  on t h e  

back end o f  t h e  c a r  t o  f i l m  t h e  even t .  The cameras a s  wel l  a s  t h e  system 

o f  r o c k e t  motors  a r e  more c l e a r l y  v i s i b l e  i n  F igu re  16, which shows t h e  

back end o f  t h e  system. F igu re  1 7  i s  a close-up view o f  t h e  c o n c r e t e  t a r -  

g e t ,  which was a l s o  used fo r  t h e  t r a c t o r - t r a i l e r  c r a s h  tes t s .*  
range  view o f  t h e  t r a c k  ( F i g u r e  18)  shows t h e  g u i d e r a i l s  and overhead 

cameras.  A more complete  d e s c r i p t i o n  o f  t h e  t a r g e t  s t r u c t u r e  i s  g iven  i n  

t h e  t r a c t o r - t r a i l e r  c r a s h  t e s t  r e p o r t .  

A long- 

2 

I n s t r u m e n t a t i o n  

Ex tens ive  high-speed f i l m  coverage ,  w i th  f i l m i n g  r a t e s  up t o  3000 

frames/second,  was provided f o r  t h e  t es t .  Ground cameras on bo th  s i d e s  o f  

t h e  t r a c k  and overhead cameras i n  f r o n t  o f  t h e  t r a c k  were aimed a t  t h e  

impact s i d e  from v a r i o u s  a n g l e s .  Data from t h e  photography coverage  were 

ga the red  and d i g i t i z e d .  

The a c t i v e  t e l eme te red  i n s t r u m e n t a t i o n  onboard t h e  r a i l c a r  inc luded  

on-off s w i t c h e s ,  s t r a i n  gages ,  and p i e z o r e s i s t i v e  acce le romete r s .  S t r a i n  

gages were i n s t a l l e d  on t h e  f r o n t  end o f  t h e  r a i l c a r  frame, on t h e  cask  

head and body, and on two f u e l  rods  i n s i d e  t h e  cask .  Acce lerometers  were 

p laced  on t h e  r a i l c a r ,  r a i l c a r  c o v e r ,  and on t h e  cask .  E i t h e r  "crush" o r  

2 1  



"breakwire" on-off swi t ches  were used t o  i n d i c a t e  when t h e  system con- 
t a c t e d  t h e  t a r g e t ,  when t h e  cask  began t o  move r e l a t i v e  t o  t h e  r a i l c a r ,  

and when the  t r u c k s  sheared  from t h e  frame. Some acce le romete r s  were a l s o  

placed nea r  t he  t o p  of  t h e  t a r g e t  s u r f a c e .  Two t e l e m e t r y  packs on t h e  

r a i l c a r  t r a n s m i t t e d  t h e  s i g n a l s  from the  onboard i n s t r u m e n t a t i o n .  These 

d a t a  were recorded on magnet ic  t a p e ,  t hen  d i g i t i z e d  and p l o t t e d .  

F igure  14. F u l l - s c a l e  Cask Being Lowered I n t o  the  R a i l c a r  
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F i g u r e  15. The F u l l - s c a l e  System Assembled 

. 

F i g u r e  16. Back End of t h e  System I n c l u d i n g  t h e  Rocket Motors 
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F i g u r e  1 7 .  Close-up V i e w  of t h e  Concre te  T a r g e t  

F i g u r e  18. Long-Range V i e w  of t h e  Concrete  T a r g e t  I n c l u d i n g  
tile G u i d e r a i l s  and Overhead Cameras 
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R e s u l t s  

c 

The f u l l - s c a l e  system was s u c c e s s f u l l y  launched and impacted a t  a 

v e l o c i t y  of  131 km/hr (81 mph). F i g u r e s  19 ,  20 ,  and 2 1  i l l u s t r a t e  t h e  

sequence o f  e v e n t s  d u r i n g  t h e  f i r s t  250 m s  o f  t h e  impact ,  w i th  t i m e  z e r o  

b e i n g  t h e  i n s t a n t  t h e  c o u p l e r  c o n t a c t e d  t h e  w a l l .  

e x t e n s i v e  damage t o  t h e  r a i l c a r  s t r u c t u r e ,  bu t  damage t o  t h e  t a r g e t  was 

minimal;  t h e  t a r g e t  d e f l e c t i o n  was n e g l i g i b l e .  The two t r u c k s  s imul t a -  

neous ly  sheared  from t h e  frame a t  about  25 m s ,  t h e  r e a r  t r u c k s  s c o o t i n g  

forward under t h e  frame and coming tQ res t  nea r  t h e  f r o n t  o f  t h e  v e h i c l e .  

The v e h i c l e  s t r u c t u r e  i t s e l f  came t o  a h o r i z o n t a l  s t o p  i n  -140 m s  wh i l e  

t h e  c a s k  con t inued  t o  move forward w i t h i n  t h e  r a i l c a r  s t r u c t u r e  f o r  

another  50 m s .  The f r o n t  end of  t h e  r a i l c a r  was crushed  back  n e a r l y  t o  

t h e  f r o n t  b o l s t e r ,  and t h e  r e s u l t a n t  forward movement o f  t h e  c a s k  com- 

p l e t e l y  c rushed  t h e  space r  u n i t  ( F i g u r e s  22, 23 and 2 4 ) .  The r a i l c a r  

cover  remained i n  p l a c e  wi th  t h e  s a d d l e  s t r u c t u r e s  f a i l i n g  i n  a h inge  

mode. The cask  body i t s e l f  was comple te ly  undeformed except  f o r  minor 

de fo rma t ions  t o  e x t e r n a l  c o o l i n g  f i n s  ( F i g u r e  2 5 ) .  

Subsequent examinat ion  o f  t h e  f u e l  r o d s ,  con ta ined  w i t h i n  t h e  c a s k ,  

r e v e a l e d  t h a t  t h e y  were undamaged. Only t h e  suppor t  b r a c k e t  a t  t h e  end o f  

t h e  bundle  was s l i g h t l y  d i s t o r t e d  ( F i g u r e  26 ) .  

The impact r e s u l t e d  i n  

* 

There was no l e a k a g e .  

The photography coverage  and t h e  onboard i n s t r u m e n t a t i o n  func t ioned  

q u i t e  w e l l ,  a l t hough  a number o f  t e l e m e t r y  s i g n a l s  were l o s t  b e f o r e  t h e  

end o f  impact .  Ana lys i s  o f  t h e  f i l m s  provided  d isp lacement - t ime d a t a  t h a t  

were used t o  g e n e r a t e  a d e c e l e r a t i o n - t i m e  cu rve  f o r  t h e  c a s k .  

n e a r  t h e  c e n t e r  o f  t h e  c a s k  was fol lowed t o  ana lyze  t h e  c a s k  motion 

( F i g u r e  2 7 ) .  The f i l m  d a t a  i n d i c a t e d  t h a t  t h e  c a s k  underwent a d e c e l e r a -  

t i o n  v a l u e  o f  about  32 g .  A d d i t i o n a l  f i l m  d a t a  i s  inc luded  i n  Appendix D .  

A p o i n t  

* 
The space r  u n i t  crushed comple te ly  due t o  t h e  f a c t  t h a t  t h e  a x i a l  I 

beams i n d i c a t e d  i n  drawings were l e f t  o u t  o f  t h e  u n i t  d u r i n g  i t s  c o n s t r u c -  
t i o n .  Because t h e  u n i t  was a s e a l e d  c y l i n d e r ,  t h e  absence o f  t h e  I-beams 
was n o t  n o t i c e d  i n  t h e  examinat ion  o f  t h e  hardware.  T h i s  d i s c r e p a n c y  
caused some e r r o r  i n  t h e  a n a l y s e s  and al lowed t h e  c a s k  t o  t r a v e l  f u r t h e r  
t h a n  a n t i c i p a t e d .  
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Time, Seconds 

t = -0.025 

t = 0.025 

t = 0,050 

* 

Figure 19. Full-scale Test Sequence of Events F r o m  -0.025 t o  0.050 e 
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Time, Seconds 

t = 0,075 

t = 0.100 

t = 0.125 

t = 0.150 

Figure 20. Full-scale Test Sequence of Events From 0.075 to  0.150 s 
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Figure 21 .  Full-scale Test Sequence of Events From 0.175 to  0.250 8 
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F i g u r e  ... L 

F r o n t  End of t h e  F u l l - s c a l e  
System A f t e r  Impact 

F i g u r e  23 .  

Close-Up V i e w  of t h e  F ron t  End of t h e  
Cask and t h e  Spacer  U n i t  A f t e r  Impact 
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Figure 2 4 .  Side V i e w  of the  Full-scale System After Impact 

Figure 25. S h i p p i n g  Cask After Impact 
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Impact End o f  t h e  Fue l  Bundle 

F i g u r e  27 . '  

Cask D e c e l e r a t i o n  vs T i m e  ( f i l m  d a t a )  
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Only one complete d e c e l e r a t i o n  p l o t  f o r  t h e  cask  was ob ta ined  from 

the  onboard i n s t r u m e n t a t i o n .  This  d a t a ,  inc luded  i n  Appendix D ,  i n d i c a t e d  

a peak v a l u e  somewhat h ighe r  than  t h a t  ob ta ined  from f i l m  d a t a .  Appendix 

D a l s o  c o n t a i n s  a p l o t  o f  d e c e l e r a t i o n  vs  t ime f o r  a p o i n t  on t h e  r a i l c a r  

s t r u c t u r e  near  t h e  f r o n t .  The d e c e l e r a t i o n  recorded  on t h e  r a i l c a r  wi th  

t h e  acce le romete r s  was c o n s i d e r a b l y  h i g h e r  t h a n  t h a t  recorded  on t h e  c a s k .  

The r a i l c a r  acce le romete r s  recorded  peak r ead ings  above 100 g .  Film d a t a ,  

analyzed by fo l lowing  a p o i n t  nea r  t h e  back of  t h e  s t r u c t u r e ,  i n d i c a t e d  a 

peak v a l u e  of  about 40 g .  

The s t r a i n  gage r ead ings  from t h e  f r o n t  of  t h e  r a i l c a r  frame (approx i -  

ma te ly  above t h e  c e n t e r  of  t h e  t r u c k s )  i n d i c a t e d  t h a t  t h e  s t r a i n s  a t  t h i s  

po in t  went p l a s t i c  a t  about 20 m s .  Readings from t h e  s t r a i n  gages on t h e  

r i g h t  s i d e  of t h e  cask  were h i g h e r  than  those  on t h e  l e f t ,  i n d i c a t i n g  

impact a t  a s l i g h t  ang le .  In  a d d i t i o n ,  the  s t r a i n s  on t h e  head were 

h i g h e r  than  those  on t h e  cask  body. However, a l l  ca sk  s t r a i n s  were w i t h i n  

t h e  e l a s t i c  l i m i t ,  i n d i c a t i n g  t h a t  t h e  cask  was no t  permanent ly  deformed. 

The s t r a i n s  recorded  f o r  t h e  f u e l  r o d s  ( s e e  appendix D >  were a l s o  w i t h i n  

t h e  e l a s t i c  l i m i t .  

D i scuss ion  

D e c e l e r a t i o n  p l o t s  ob ta ined  from f i l m  d a t a  have been found t o  y i e l d  

peak v a l u e s  t h a t  were lower than  v a l u e s  ob ta ined  from onboard ins t rumenta-  

t i o n  d a t a .  This  was found t o  be t h e  c a s e  i n  t h e  t r u c k - t r a i l e r  s tudy  a s  

w e l l ,  y e t  t h e  r easons  f o r  t h i s  a r e  not  comple te ly  c l e a r .  It  i s  b e l i e v e d  

t h a t  t h e  f i l m  d a t a  v a l u e s  a r e  more r e a l i s t i c  f i g u r e s  t o  u s e  because i n t e -  

g r a t i o n  of  t h e  f i l m  a c c e l e r a t i o n - t i m e  curve  produces t h e  c o r r e c t  v e l o c i t y  

change f o r  t h e  impact .  The acce le romete r  d a t a ,  a l though f i l t e r e d ,  i s  prob- 

a b l y  s t i l l  somewhat b i a sed  by h igh  f r e q u e n c i e s .  The f i l m  d a t a  i s  cons i -  

dered  t o  be more r e p r e s e n t a t i v e  of  what can be termed a r i g i d  body motion 

o f  t h e  cask .  
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To e v a l u a t e  t h e  recorded  s t r a i n s ,  t h e  y i e l d  p o i n t  o f  t h e  s t a i n l e s s  

s t e e l  c a s k  and f u e l  rod c l a d d i n g  can  be  t aken  t o  be  about 1100 x 
cm/cm. The f u e l  rod gages ,  a l i g n e d  a long  t h e  p r i n c i p a l  s t r e s s  d i r e c t i o n ,  

c a n  produce a d i r e c t  comparison t o  t h i s  v a l u e  u s i n g  t h e  d a t a  i n  Appendix 

D. The d a t a  i n d i c a t e  t h a t  peak s t r e s s e s  i n  t h e  f u e l  r o d s  reached  a p o i n t  

t h a t  was about 50% o f  t h e  y i e l d  v a l u e .  The h i g h e s t  recorded  s t r e s s e s  were 

on t h e  r i g h t  s i d e  o f  t h e  cask  head .  The s t r e s s  a t  t h i s  p o i n t  reached  

about  75% o f  t h e  y i e l d  b u t  t h e  s t ress  on t h e  l e f t  s i d e  appeared t o  r eac l  a 

va lue  o f  on ly  25% of  t h e  y i e l d .  T h e r e f o r e ,  t h e  ave rage  s t r e s s  i n  t h e  cask  

head reached  an appa ren t  ave rage  v a l u e  of  50% o f  t h e  y i e l d  p o i n t .  S t r e s s e s  

on t h e  c a s k  body were c o n s i d e r a b l y  lower .  These numbers a r e  rough approx- 

ima t ions  and are p r e s e n t e d  mere ly  t o  show t h e  e s t i m a t e d  s e v e r i t y  o f  t h e  

s t resses  induced i n  t h e  cask  and f u e l  r o d s .  

Comparison of  Ana lys i s  and Sca le  Model Tests  
t o  R e s u l t s  o f  F u l l - s c a l e  Test  

The f u l l - s c a l e  t e s t  g e n e r a l l y  c o r r e l a t e d  we l l  w i th  t h e  p r e d i c t e d  

r e s u l t s .  The mathemat ica l  a n a l y s i s  p r e d i c t e d  t h a t  t h e  f r o n t  end o f  t h e  

r a i l c a r  would c r u s h  s i g n i f i c a n t l y  and t h a t  t h e  cask  would move s l i g h t l y  

forward w i t h i n  t h e  encasement s t r u c t u r e .  I t  a l s o  p r e d i c t e d  t h a t  t h e  c a s k  

would come t o  a h o r i z o n t a l  s t o p  i n  approximate ly  0 .145 s and t h a t  i t  would 

not  b e  deformed i n  t h e  impact .  These r e s u l t s  were g e n e r a l l y  v e r i f i e d  by 

bo th  t h e  scale-model and f u l l - s c a l e  t e s t s ,  a l t hough  t h e  m i s s i n g  s p a c e r  I- 

beams i n  t h e  f u l l - s c a l e  system d i d  i n t r o d u c e  some e r r o r .  

The f u l l - s c a l e  t e s t  r e s u l t s  a l s o  agreed  w e l l  w i th  t h e  a n a l y s e s  i n  a 

k inemat ic  s e n s e .  The system crushed  wi thout  r o t a t i n g  s i g n i f i c a n t l y .  The 

t i m e  d u r a t i o n  o f  t h e  impact ,  t h e  d i sp lacemen t  o f  t h e  c a s k ,  and t h e  

v e l o c i t y - t i m e  h i s t o r y  o f  t h e  c a s k  occur red  almost  a s  p r e d i c t e d  by t h e  

mathemat ica l  a n a l y s i s  and t h e  scale-model t e s t s .  F i g u r e s  28 and 29 com- 

pare  t h e  r e s u l t s  q u a n t i t a t i v e l y .  F i g u r e  28 i l l u s t r a t e s  t h e  d i sp lacemen t  

o f  t h e  c a s k  as  a f u n c t i o n  o f  t ime .  A s  can  be  s e e n ,  t h e  d isp lacement  was 

somewhat unde res t ima ted ,  p r i m a r i l y  because  t h e  s p a c e r  u n i t  c rushed  a g r e a t  

d e a l  more t h a n  expec ted .  I t  was l a t e r  d i scove red  t h a t  t h e  s p a c e r  u n i t  had 
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n o t  been equipped wi th  t h e  i n t e r n a l  I-beams ( F i g u r e  2 ) .  

f o r  t h e  d i s c r e p a n c y  i n  d isp lacement - t ime f o r  t h e  f u l l - s c a l e  tes t  was t h a t  

t h e  r a i l c a r  system y i e l d e d  s l i g h t l y  more than  expec ted  ( F i g u r e  2 3 ) .  

Another r e a s o n  
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Figure  28. Cask Displacement a s  a Funct ion  o f  T ime  ( f i l m  d a t a )  

F igu re  29, t h e  v e l o c i t y - t i m e  h i s t o r y  f o r  t h e  c a s k  from t h e  a n a l y s i s ,  

scale-model tes ts ,  and f u l l - s c a l e  t e s t ,  i l l u s t r a t e s  t h e  c o n s i d e r a b l e  agree- 

ment among t h e  t h r e e  c u r v e s .  However, t h e  f u l l - s c a l e  system d e c e l e r a t e d  

more s lowly  due t o  g r e a t e r  c a s k  d i sp lacemen t .  T h i s  g r e a t e r  c a s k  d i s p l a c e -  

ment was ma in ly  due t o  t h e  l a r g e  amount o f  c r u s h  s u s t a i n e d  by t h e  s p a c e r  

u n i t .  Also,  t h e  f u l l - s c a l e  system appea r s  t o  have had q u i t e  a b i t  o f  

s l a c k  which was n o t  i nc luded  i n  t h e  model.  Another p o s s i b l e  e x p l a n a t i o n  

f o r  t h e  v a r i a t i o n s  between t h e  a n a l y s e s  and tes t  i s  t h a t  i n  t h e  f i l m  analy-  

sis, t h e  i n i t i a l  p o i n t  o f  impact could  have been t aken  somewhat e a r l y  i n  

time. N e v e r t h e l e s s ,  d e s p i t e  t h e s e  d i s c r e p a n c i e s ,  t h e  c o r r e l a t i o n s  are  

s t i l l  cons ide red  good. 
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The a n a l y t i c a l  and scale-model a n a l y s e s  p r e d i c t e d  t h a t  t h e  body o f  

t h e  cask  would not  be s t r e s s e d  p a s t  i t s  e l a s t i c  l i m i t  and t h a t  components 

i n  f r o n t  o f  t h e  cask  would c rush  b e f o r e  the  cask  would be damaged. Th i s  

crush-up d i d  indeed happen i n  t h e  f u l l - s c a l e  t e s t .  I f  t h e  s p a c e r  u n i t  had 

con ta ined  a x i a l  I-beams, i t  i s  b e l i e v e d  t h a t  t he  cask  s t i l l  would have 

been undamaged s i n c e  i t  was c a l c u l a t e d  t h a t  t h e  cask  head and body could 

t ake  c o n s i d e r a b l y  more a x i a l  load than  t h e  space r  b e f o r e  y i e l d i n g .  Use of 

t h e  I-beams in t h e  f u l l - s c a l e  t e s t  would have r e s u l t e d  i n  less  cask  d i s -  

placement and b e t t e r  agreement with the  a n a l y s e s .  
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Figure  2 9 .  Cask V e l o c i t y  as  a Funct ion  o f  T i m e  ( f i l m  d a t a )  

The r a i l c a r  s t r u c t u r e  i t s e l f  responded c l o s e  t o  p r e t e s t  p r e d i c t i o n s .  

The f r o n t  end of t h e  c a r  c rushed  approximate ly  a s  expec ted .  The mathe- 

m a t i c a l  a n a l y s i s  p r e d i c t e d  - 2 . 5  rn (100 i n . )  o f  c r u s h  and t h e  f u l l - s c a l e  

system crushed  back -2 .0  m (80 i n . ) .  The damage t o  t h e  f r o n t  end o f  t h e  

r a i l c a r  was a l s o  s i m i l a r  t o  t h a t  observed i n  t h e  scale-model t e s t s .  How- 

e v e r ,  t h e  bumper system d e f l e c t e d  a l i t t l e  more than  was expec ted .  Thus, 

t h e  a n a l y s e s  modeled t h e  f r o n t  end o f  t h e  c a r  on t h e  " s o f t "  s i d e  and t h e  

bumper s y s t e m  on t h e  s t i f f  s i d e .  
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The b o l t i n g  system des igned  f o r  t h e  r a i l c a r  cove r  on t h e  s c a l e  model 

was less  s t u r d y  t h a n  t h e  one on t h e  f u l l - s c a l e  v e h i c l e ,  c a u s i n g  t h e  model 

cover  t o  d i s l o d g e  i n  t h e  second model t e s t .  The b o l t i n g  system was weak 

because t h e  s c a l e  model lacked  p a r t i a l l y  concea led  s h e a r  p i n s  t h a t  were 

inc luded  i n  t h e  f u l l - s c a l e  system. Yet, even t h e  cove r  dis lodgement  i n  

the  second model t e s t  d i d  not  i n f l u e n c e  t h e  response  o f  t h e  cask .  Agree- 

ment ,  t h e r e f o r e ,  between t h e  p r e d i c t e d  and observed r e sponses  o f  t h e  r a i l -  

c a r  s t r u c t u r e  i s  s t i l l  cons ide red  good. 

Conclusion 

Both t h e  mathematical  a n a l y s i s  and t h e  scale-model t e s t s  were a b l e  t o  

p r e d i c t ,  wi th  a r e a s o n a b l e  deg ree  o f  accu racy ,  t h e  r e sponse  o f  a complex 

r a i l  spen t -nuc lea r - fue l - sh ipp ing  system involved  i n  an ex t r eme ly  s e v e r e  

a c c i d e n t .  These t echn iques  have a l s o  been s u c c e s s f u l l y  demonst ra ted  i n  

t h e  a n a l y s i s  o f  a highway Th i s  s t u d y  f u r t h e r  v a l i d a t e s  t h e  

t echn iques  and demons t r a t e s  an e n g i n e e r i n g  c a p a b i l i t y  o f  p r e d i c t i n g  t h e  

response  of  spen t -nuc lea r - fue l  sh ipp ing  casks  and a s s o c i a t e d  t r a n s p o r t  

s t r u c t u r e s  involved  i n  s e v e r e  impacts .  

The same b a s i c  t echn iques  a long  wi th  good e n g i n e e r i n g  judgment can  be  

used t o  e v a l u a t e  new t r a n s p o r t a t i o n  system d e s i g n s  and d i f f e r e n t  envi ron-  

ments which a c c i d e n t - p r o b a b i l i t y  s t u d i e s  i n d i c a t e  should be i n v e s t i g a t e d .  

These t echn iques  w i l l  p rov ide  more a c c u r a t e  resii l ts  when a p p l i e d  t o  equip-  

ment t h a t  i s  b e t t e r  de f ined  and wi th  fewer s t r u c t u r a l  u n c e r t a i n t i e s .  Th i s  

equipment would a l s o  have t h e  b e n e f i t  o f  newer technology and more s t r in-  

gent  q u a l i t y  c o n t r o l  measures than  t h e  o l d e r ,  r e t i r e d  systems.  This  w i l l  

make p o s s i b l e  t h e  c o n s t r u c t i o n  o f  more p r e c i s e  a n a l y t i c a l  and s c a l e  

models.  This  s t u d y ,  a long  with t h e  work i n  Reference  2 ,  h a s  demonst ra ted  

t h a t  indeed i t  i s  p o s s i b l e ,  with p r e s e n t  a n a l y t i c a l  t o o l s ,  t o  p r e d i c t  t h e  

response  o f  spen t -nuc lea r - fue l  t r a n s p o r t a t i o n  systems involved  i n  

ex t remely  s e v e r e  impact s i t u a t i o n s .  
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APPENDIX A 

Details o f  the Lumped Parameter Model 

The lumped parameter model (Figure 5 )  was used in conjunction with 

the SHOCK computer program.4 
numerically solves the second-order differential equations of motion 
associated with a spring-mass model. Spring (coupling) definitions may be 
nonlinear and can load and unload along different paths, simulating a 

hysteresis effect. 

Given some initial conditions, SHOCK 

The model in this study made extensive use of the HYSTER option in 

the SHOCK program t o  simulate crush-up of structures. 
plings are illustrated in Figures A.l. The mass and linear spring values 

used are listed below. The first mass was held fixed, therefore its value 
is irrelevant. The coupling definitions were structural analysis esti- 
mates based on measurements made o f  the hardware and expected yield 

strength values of the materials. 

The HYSTER cou- 

. 

M2 = 11,793 kg (26,OO lbm) 

M3 = 11,339 kg (25,000 lbm) 

M4 = 2,948 kg (6,500 lbm) 
M5 = 2 , 2 6 7  kg (5,000 lbm) 

M6 = 2,721 kg (6,000 lbm) 

M7 = 2,494 kg (5 ,500 lbm) 

M8 = 2,041 kg (4,500 lbm) 

% = 1,814 kg (4,000 lbm) 
K5-6 = 3.50x108N/cm (2.0x1081b/in.) 

K6-7 = 2.71x1O8N/cm (1.55x1081b/in.) 

K7-8 = 5.44x1o8N/cm (3.11x1081b/in.) 

K8-9 = 5 .44x1O8N/cm (3. 1lxlO8lb/in.) 
K9-10 = 4.20x1O8N/cm (2.40x1081b/in.) 

M10 = 2,948 (6,500 lbm) 

Mll = 11,793 (26,000 lbm) 

M12 = 7,484 (16,500 lbm) 
M13 = 1,814 ( 4 , 0 0 0  l b m )  

M14 = 17,009 (37,500 Ibm) 

M15 = 17,009 (37,500 lbm) 
MI6 = 17,009 (37,500 lbm) 
M17 = 17,009 (37,500 lbm) 

K10-11 = 2.85x108N/cm (1.63x1081b/in.) 

Kll-12 = 2.08~10 N/cm (1.19~10 lb/in.) 

K14-15 = 3.94~10 N/cm (2.25~10 lb/in.) 

K15-16 = 3.94~10 N/cm (2.25~10 lb/in.) 
K16-17 = 3.94x108N/cm (2.25x1081b/in.) 

8 8 
8 8 

8 8 
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Cons t ruc t ion  Details f o r  t h e  S c a l e  Models 
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D a t a  From t h e  Two S c a l e  Model T e s t s  
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APPENDIX D 

Data From t h e  F u l l - s c a l e  Test 
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