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ABSTRACT

The inflationary scenario was motivated to explain the large scale homogeneity
of the universe. However, most of the work in this area has been carried out in
homogeneous spacetimes! We present a 3D study solving Einstein's equations for
inhomogeneous cosmologies to analyze the effects of matter and spacetime inhomo-
geneities on inflation. We use York’s conformal approach to solve the initial value
problem. Preliminary results of the evolution of inhomogeneous initial data are
presented.

The inflationary universe scenario' has generated great interest because it
offers the possibility of explaining the homogeneity, isotropy and flatness of the uni-
verse, and the origin of density perturbations. Among inflationary models, chaotic
inflation® has emerged with great appeal because of its lack of an initial thermal
state and the simplicity of its potential. In chaotic inflation the inflaton field ¢ is
chaotically initially displaced in some regions from the minimum of its potential,
and it evolves slowly towards the minimum. The rapid expansion (inflation) is due
to its potential energy density. We use V(¢) = A¢*/4 for the effective potential. For
potentials with sufficiently small curvature (A =~ 10-!%) to obtain density perturba-
tions of the proper amplitude, ¢ initially knows nothing about the position of the
minimum of the effective potential. Thus the inflaton field can take initially any
value. but in order to obtain sufficient inflation to solve the standard astrophysical
conundra, ¢, > 4.5M,. Our numerical study of the influence of inhomogeneities on
inflation is based on nonlinear deviations from the homogeneous solutions. We are
interested in addressing the question of which truly chaotic initial conditions will
lead to inflation; that is, if there exists a large enough region of space where inflation
is a generic description of early universe evolution.

We use York’s® conformal approach to solve the initial value problem of
general relativity. The Hamiltonian constraint becomes

o2 _
BAY — Ru + A AV Y~ — 51\%5 + 2kpy 3 = 0, (1)



where R is the Ricci scalar of the initial conformal 3-slice, X the trace of the extrinsic
curvature, 4;; its traceless part, and p = 1(n*+V¢V'¢)+V is the energy density, with 4
the inflaton momentum. Solutions of this elliptic equation yield the conformal factor
v. The physical metric is recovered by the conformal transformation h;; — vih;;.
From the momentum constraint we get the elliptic equation

(A W) — %wGV‘K -kJ'=0, (2)

where J! = —nVi4 is the momentum density. This gives the vector potential IV* which
determines the longitudinal part of the extrinsic curvature. We choose* inflaton field

2

. - ) . . .
é(rtyt)=¢§h(t)[l+alz_lmsmz;smymsmzn], (3)
where z; = 27z{/L + 6, with § random phases. We assume trace of the extrinsic

curvature given by K = K,(1+8v), where K, = —3H with H the Hubble constant. With
this choice, Eq. 1 and Eq. 2 remain coupled. We use ¢, = 2.5M,,A =10"3,a = 0.04,4 =
1.0 and the size of the grid L is approximately six horizon lengths. Then the total
energy density is 3.7 x 10~?M,;} and distributed as follows: 27% potential, 71% kinetic
and 2% spatial gradients. Once the initial data is obtained, the evolution problem
consists of evolving the inflaton field ¢, its momentum 75, the 3D metric h;;, and the
extrinsic curvature K;;. We choose zero shift and unit lapse as gauge conditions,
and the constraints are only used to check deviations of our data from Einstein
data. The figures show a model which evolves through inflation to reheating. This
computation models a volume expansion of over 10%4.

This work supported by NSF grant PHY88-08567, DOE grant W-7405-ENG-
48, AFOSR 91NP025, and by a Cray Research University grant to Richard Matzner.
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2. 1D plots of the left front edge of the surface plots every 64 cycles for (a):
left and (b): the volume expansion log,, \/det A;; right. Time evolution runs down for the inflaton
field and up for the determinant of the metric. ¢ decreases throughout the evolution, achieving a
negative value as reheating begins. The volume factor v/deth increases by about 102 during the

evolution.
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1. 2D surface plots from a (64 x 64 x 5) run at cycles 0, 1024 for (a): the inflaton field ¢ top, and

the volume expansion log,, /det F,»j bottom. Initially (left) there are 3.8 horizon lengths in
our computational grid. The simulation ends after 20 e-folds with 157.8 horizon lengths in our grid.
The grid cell size first exceeds the horizon size at about timestep 80.
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