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1 
ABSTRACT 

A kinetic ballooning mode equation retaining full finite Ion Larmor 

radius and ion magnetic drift resonance effects is derived by employing the 

high n ballooning mode formalism. We find that the critical S is smaller than 

the ideal MHD critical 8, except when r\. = 0 (n. s dJlnT /d£nN) they are 
1 l l 

i d e n t i c a l . The f i n i t e Larmor r a d i u s e f f e c t s r e d u c e t he growth r a t e but Co no t 

s t a b i l i z e t h e mode. The ion raapnetic d r i f t r e s o n a n c e e f f e c t s a r e 

d e s t a b i M z i ng. 

WSSfSSSM Of TO OKJttW tS BtiE'ffl 
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I. INTRODUCTION 

It is believed that the plasma confinement in high temperature 

axisymmetric tokamaks may be limited by the instability of magnetohydrodynami:~ 

(MHD) hallooning modes. According to ideal MHD theory the ballooning modes 

Can be driven unstable by the combined effects of the magnetic curvature and 

the pressure gradient. When 6 (the ratio of the kinetic pressure to the 

magnetic pressure) increases to a critical value, p , an unstable mode can 

develop and balloons in the bad curvature region. Many calculations have 

been done to determine B from the ideal MHD equations. One of the basic 

assumptions of ideal MHD theory Is that the parallel electric field 

perturbation E vanishes. However, E may become finite when kinetic effects 

such as finite Larmor radius, magnetic 'rift and Landau resonances, trapped 

particles and collisional effects are included. Especially, in the high n 

limit these kinetic effects can be significant. It is, therefore, of interest 

to examine whether these kinetic effects could modify the stability of the 

ballooning modes and hence B . 

Previous investigations > of the kinetic effects on the M!'D ballooning 

modes have made use of the assumption that the ion magnetic drift frequency, 

<i>Di, is small compared with the mode frequency, u, and is treated 

perturbatively without Including resonances. However, this assumption is not 

always valid, especially when the modes are near marginal stability. In this 

paper vie will remove this limitation and investigate the stability of the 

hallooning modes by retaining full finite ion Larmor radius and ion magnetic 

drift resonance effects. Effects due to trapped particles, Landau resonances, 

and collisons will be Ignored, 
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Entploying the high n ballooning mode and WKB formalism,''" we have 

derived, in Section II, a set of eigenraode equations governing both drift and 

shear Alfven waves. If terms of order (uti/uj) are neglected (&>t̂  Is the ion 

transit frequency), we can obtain a single second order differential equation 

describing the kinetic ballooning modes. Then, we establish its relationship 

to the ideal MHD ballooning mode equation. In Section III, we first observe 

that for nj = 0 Cn = d£nT /dinN) the kinetic ballooning mode equation reduces 

to the ideal MHD ballooning mode equation at marginal stability with m = w 

(ujtj is the Ion diamagnetic drift frequency). This means that $ r is identical 

to the Ideal MHD B and is independent of the ion Larmor radius and magnetic 

drift resonance effects. For n. * 0 , 6 is found to be smaller than the 
i c 

ideal MHD 3,,, and numerical solutions with parametric variations of B, etc. 

are presented .in detail. r'Inally, a summary is given in Section IV. 

II. FORMULATION 

Let us consider low 6 plasma in an aKisymmetric, large aspect ratio torus 

with concentric, circular magnetic surfaces. We use a (r, a, c.) coordinate 

system, where r is the minor radius, 8 is the poloidal angle, and c is the 

toroidal angle. The equilibrium magnetic field Is given by B = B 
o 

(1 - r costf/R)[? + (r/qR)B). The perturbed quantities can be expressed in 

the form 

* = 4(r, 8) exp[i(m0 - nr, - wt)] . 

The linearized ion gyrokinettc equation is given by 
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= h ^ f 1" " «*i[l + ̂ (v 2 - |)} J o(^±) (* - v | A |/c) (1) 

where ut- - vj/qK is the ion transit frequency, s = (r - r0)/Ars, r 0 is the 

minor radius of the reference mode rational surface with m = nq(r ), 

Ar s = 1/kgS , kg = >"/r0, s = (rq'/q) at r = r Q ) ^ = -i[(6/r)3/36 + r3/3rl, n { 

= eB/nijC, rii = (dJlnTj/dinN), the magnetic drift frequency is m d l = (2en/-r} 
u*e ^ v n 2 + v 2/2)(eoa8 - is sine 3/3s) T = Tg/Tj, E n = rn/R, r n is the density 

scale length, R is the major radius of the torus, q is the safety factor, 

u* e - (cTe/eB) (lc8/rn), w ^ = -u>*e/t, v = v/v , v f = 2T I/m 1, F M is the local 

Maxwellian distribution function, * is the perturbed electrostatic 

potential, A is the parallel component of the perturbed vector potential, and 

Hj is related to the perturbed ion distribution f\ by f^ = -(e*/T.)FM + Hj.. 

Since we will work in the limit u)t, < u, the 9 dependence of v and v wilL be 

ignored. 

In the following, we will employ the ballooning mode formalism which uses 

e = 1/n as an expansion parameter to develop an asymptotic solution of Eq. 

(1). The perturhed quantities have short perpendicular and long parallel wave 

lengths and can be expressed by the eikonal representation 

* = *(8,s,0 exp[- i S(6,s)/e] (2) 

where S describes the rapid cioss field variations and ti • 7S = 0. In the 

axisymmetric case, S can be expressed as 
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S ( d , s ) = (m/n - n ) M f k (s )dq 

= -fir q ' l s e - / k ds] (3) 
e q 

where k (*s)/e i s the r a d i a l wavenumber in ( 9 , q ) c o o r d i n a t e s . I n s e r t Eq. (2) 

i n to Eq. (1) and expanding in powers of e, we f ind a t lowest o rde r 

tio - i u t l v ( 3/3e + D D i l H t 

( eF^ /T) . ;,-. - U j t l U + n ± ^ 2 - 3/2)1} J Q <l - v ( | A B / c ) (4) 

3 C. 
I 

wlie re 

» n . = 2 w. (e / T ) ( V , + v , /2 ) (cosS + s (6 - k ) s i n e ) , Di *e n I i q 

J o a J o ( b i ' / 2 ) ' b i • 2 b 6 C l + » 2 r 2 ) v 2 / t , b 0 = x k 0

2 p . 2 / 2 , 

and 

pt - V V 

In Eq. (4) we will choose k - 0 so that the perturbations are centered at the 

outside of the torus. This choice of k is made because we have learned from 

numerical experience that the maxima of ImCaO occur at k *= 2nN (N = 0, 1...) 

for up-down symmetric equilibrium. Equation (A) Is defined over an infinite 
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range in 6 without periodicity constraint. The boundary condition for H is 
i 

that H. decays sufficiently fast as |9| •» °°. 

In the limit w-j << u, Eq. (4) can be solved to yield 

2* 2 2 3 
H. iw,,v„ 3G, w t. v, 3 G, u. 

H = _ 2 - - + _ ^ J _ - ^ - - ^ J _A+0<-£i) . (3) 
1 " + UDi ( W + ( , D i ) 2 3 6 ( U + W D . ) 3 S 9 2 

The ion density and current perturbations, 5n and 1 ., can be calculated from 
i t i 

£ q . ( 5 ) and a r e g i v e n by 

-± - - e i /T , + / H..I od 3v 

2 3* 2 2 "• 2 3 " 
J F Q .d v o / J Z F v , il .d v 2 

_ , / o o S i t i [ o o I! s i 3 A 
1 7 " D i J J (n + n _ . ) 36^ 

Pi 
2 " 2 3 " 

, J £F v , il .d v , 2 J s> 3 
• ' n ' 3 2 o ; ' 

" (S2 + £ ! „ . ) 36^ a 

and 

5 - d f- ,i r J J 

la i n = 36 / e v , , H i V v 

Hev ,1 „ „ 2 , 2 2 , 2 
i t i r . 2 - " 2 . f 3 A / 3 B 123 3 / 3 9 i . 3 " 

w h e r e 

f f i l 

Di (fl + n D J ) 
" t i

2 

+ 0 ( - | t ) , (7) 

l - / T e , A = e A / T e > A = J d6A ( w V j / i w ^ c , 5} = u / u ^ , ^ D j = " D i K e . 

si , - u , / w * . SI , = TiJ + 1 + n , ( v 2 - 3 / 2 ) and F = U / n 3 / 2 ) e x p ( - ^ 2 ) . 
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We will consider all the electrons to be highly circulating and 

collisions and trapped electron effects are not retained. The linearized 

gyrokinetic equation for electrons is given by 

[ Q - h \ e \ Ifl + V "e = ( e F H / T ) e "se (* " V , , / c ) 5 Ge ( 8 ) 

where 

De Di t e e M *e e e e 

2 = Q - [1 + ne(v - 3/2)], v - v/v , and n e = dtnTe/dJtnN. 

Since we are interested In the limit 2 « £J , the 6 dependence of v will be 

ignored and Eq. (8) can be solved with the asymptotic decaying boundary 

condition to give 

H = ; e d 9 i ^ + /e d e. ?_L^J 9'd9" -h-+o C-f-)3 . (9) 
gte v„ "teVll "te w| 

The electron density perturbation, 6n„, and current perturbation, 1 . can be 
e I e 

obta ined from Eq. (9) and a r e given by 

5n e/N = e* /T e + j H g d 3 v = * - f l - l / f l A + 0 (QAl ) 2 , (10) 

and 



3 3 , ~ J 
36 J l e = "ae ' eVll V V 

Nev 
[ft(ft - 1) (<t - A) + 2e (ft - 1 - n )f„A] 

in ft n e 8 

+ 0 C^~) , ( l O 
" t e 

where fc = cos-3 + S'i s in : ) . Comparing Rq . (7) with Eq. (11) we not*" 

t h a t 31 . /30 i s of o rde r ( f t , . / f t ) 2 sma l l e r than 3 i / 3 9 . 
' I. l 1 1 H e 

The basic set of coupled one dimensional equations governing the 

eigenmodes of the system can now be written in terms of the solutions of the 

perturbed quantities Riven by Eqs. (7), (8), (10), and (11). These are t!u> 

quasi-neutrality condition and the parallel component of Ampere's law 

along 3. The quasi-neutrality condition can be expressed as 

2 3 
— ^ — (5> - A) = -( ) f + 

2 - 1 3 
o o Vi "si r3 »/39* 8"A/35' (12) 

and the p a r a l l e l Ampere's law i s given by 

| g (i + s V ) | | = n~ 2 |.i<n - o (• - A) + 2 e n <a - 1 - n e ) f f ,A 

2 * 2 . 
_ 2 , o oV|l " s i f j_A Q £±; A i ( n ) 

where ^ T 2 - [ 0 /2 (1 + l / O H q / e ) 2 and 6 = 8nN(T + T . ) / 8 2 . Since the p a r a l l e l A n c I 
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electric field perturbation E is proportional to 3/39 C<f> ~ A), the right hand 

side of Eq. (12) represents the kinetic ion contributions from finite Lar.nor 

radius and magnetic drift resonance effects. If we further neglect terms of 

order (a ./a) 2, Eqs. (12) and (13) can be reduced to a single second order 

differential equation, i.e., 

2 3 , J 4F o d v 

."Conation (14) d e s c r i b e s the k i t . e t i c ba l looning mode with even A in 6 and can 

he solved as an e igenva lue equat ion for fj under the boundary cond i t i on t h a t A 

decays a s y m p t o t i c a l l y as ISl + » . We can now compare Eq. (14) with the 

,ina logons MUD equa t ions . " 1 J If tlDi/U and b e a re taken as -mal l parameters and 

! r j i ' " > a i m I D . 
- ~2 2 2 

terms of order (tlniAT) and (b ( 1 + s 6 ) ] a r e n e g l e c t e d , then Eq. (14) 
6 reduces to 

(1 + s V ) | s - A - -Q.2{2r M + n + (! + n . ) / r j r . 

+ 71 |n + (1 + n . ) / T l b _ ( l + s 2 8 2 ) U * ( I S ) 
1 y ' 

In the l imi t b,, * 0, Eq. (15) corresponds e x a c t l y t o the i d e a l , s i n g l e - f l u i d 

MHD ba l loon ing mode equa t ion . From Eq. (15) ue see t h a t the e igenfrequency a t 

marginal s t a b i l i t y i s given by a • - (1 + n , ) / 2 T , and the c r i t i c a l 0„ ve rsus b Q 

1 c o 

is shown in Fig. ( I ) by so lv ing Eq. (15) numer ica l ly for the p a r a m e t e r s : 

s = 0 . r , , c n * 0 . 2 , q « 2, T = 1, and n g * o, » 0. Figure 1 c leaTly shows the 
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flnite Larmor radius stabilization of the MHD ballooning modes. In the limit 

b Q + 0, 3 C approaches to the ideal MHD critical B. However, the assumptions, 
"2 2 iiDi/n « 1 and bgCl + s B )/T « 1, that lead to Eq. (15) become invalid at 

marginal stability because the mode structure becomes very broad and extends 
9 to 8 - 0(10 ). Therefore, the result in Fig. 1 is incorrect and we must 

employ Eq. (14) to study the ballooning modes near marginal stability. 

III. RESULTS 

In this section we present the results of an eigenmode analysis of 

kinetic ballooning modes (with the even A solution) by solving Eq. (14) 

numerically. Let us first consider the T\- - 0 case. We observe that for 9. -

- 1/T (i.e., w = (U*.J), Eq. (14) reduces exactly to the ideal MHD ballooning 

mode equation at marginal stability' ' (with si = 0), i.e., 

|r- (1 + s V ) \T A + B (q2/£ ) [1 + n /(l + 1/T)](COS6 + sO sin8) A = 0. do do c n e 
(16) 

Therefore, the critical 6 obtained from Eq. (16) is exactly the same as the 

ideal MHP 8 and is independent of the kinetic ion contributions due to finite 

Larmor radius and magnetic drift resonance effects. Note that this conclusion 

of B is unchanged when we employ the self-consistent equilibrium, and the 

second critical B also occurs at • - U*J. It is not difficult to understand 

this result physically because at marginal stability with Q = -1/T, the ions 

behave adiabatically and the parallel electric field perturb?tion E vanishes 

identically which corresponds to the ideal MHD assumption. This phenomenon 

can also be seen in Fig. 2 where the numerical elgenfrequencles from solving 

Eq. (14) are shown versus 0 for the parameters: s = 0.5, E n = 0.2, q = 2, 
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T = I, b„ = 0.1 and n, ™ n = 0 . The broken curve shows the growth rates of 

the ideal MHD ballooning modes (bg * 0 limit). We note that the g-owth rates 

of the kinetic ballooning modes are reduced due to finite Larwor radius and 

magnetic drift effects, but reach marginal stability at the same B as the 

ideal MHD modes. 
o 

Note that in solving Eq. (14) ue have made the approximation0 

«Di = 2 < E „ / T ) ^ h ° 7 ) 

so that the velocity space integral in Ec. (14) can be carried out 

analytically to yield 

f J 2 F a .d 3v/(A + nn. = Km + l - n. /2) r + n .b( r , - r )] o + n.r D. 
J o o s i Di l o l 1 o o l o 1 

(18) 

where 

D = ( T / 4 E f ) Z ( 0 / f , , D = ( T / 4 e f f l ) f l + f Z ( £ ) l . F,2 = -(Qi/ic f, ) , o n o I n o nG 

Z is the plasma dispersion function, TQ , = IQ , (b) exp(-b) and b = bg 
"2 2 (1 + s 9 )/T. In obtaining DQ and D t, we must perform the proDer analytic 

continuation of the integntion contour and %, in the complex v space. This 
il 

approximation deforms the resonant surface in velocity space into a plane 

without affecting the basic magnetic drift resonance effects. 

In addition to the eigenmode (branch I) described in Fig. 2, there exists 

another eigenmode branch (branch II). For n. = 0, branch II remains stable 

for all SJ. Figure 3 shows the dependence of the eigenfrequency a on rij for 
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these two branches of eigenmodes with parameters: n e
 = 0) i = 1.0, e - 0.2, 

bfl = 0. I, q = 2.0, s = 0.5, and B = 0.017. Branch I is unstable for small nj 

and becomes stable for large n^. On the other hand, branch II ir. stable for 

small nj, but becomes Mghly destabilized as nj increases. For both branches 

the real frequencies decrease as rij increases. Figure 4 shows the 

eigenfrequency !2 versus n e for r^ = 0, T = 1.0, c n • 0.2, b Q - 0.1, q = 

2.0, s = 0.5, and 6 = 0.017. Here, contrary to the n, dependence in Fig. 4, 

branch I is destabilized by n e and branc. II remains stable for all n e 

shown. For both branches the real frequencies increase with rig-

Figures 5(a) and 5(b) show the eigenfunctions A(8) of branches I and II 

for n e = Hj = °, 6 = 0.017, i = 1.0, E n = 0.2, b g = 0.1, s = U.5, and q = 

2.0. The eipenfrequenc'es are fi - - 0.896 + O.lli for branch I and n = -1.59 

- 0.0731 for branch II. The modes are near marginal stability and have very 

broad structure. Since the ion magnetic drift frequency ui^i i s secular in 9, 

the perturbative treatment of o)rjt term breaks down for 6 > (T/2E S ) « 5. Also 
"2 2 "2 1/2 

the assumption b (1 + s 9 )/T « 1 is not valid for 9 > (t/bg* ) = 6-

We have studied the behavior of these two branches of eigenmodes in the 

(n , n-i ) plane. We find that for the set of parameters described in Figs. 3 

and 4 there is a branch point at (nj, n €) » (0.71, 0.55) where these two 

branches coincide and become a double root with fl = (-1-8, 0.185). If we vary 

ru and n along a closed path in (n*, n ) plane around the branch point once, 

we find that branch I interchanges with branch II. 

For nj * 0 the critical 6 is different from the ideal MHD 6 C and Is 

usually smaller. The dependence of the eigenfrequency of the most unstable 

mode on 6 is displayed in Fig. 6 for ^ = n e = 1.0, s = 0.5, e n = 0.2, q = 

2.0 b~ = 0.1, and T =• 1.0. The mode becomes marginally stable at $, = 0.006 

with eigenfrefluency Q * -4.0. The grr h rate of the ideal MHD mode is also 
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hniwn in Fig. 6 for comparison. figure 7 shows the dependence of ii or) bg for 

£ = 0.017 and the other parameters are the same *s in FIR. f>. The finite 

Lirmor radius effect can reduce the growth rate, hut does not stahilize the 

mode eve,i when b B is larger than unity. The reaL frequency decreases as b Q 

increases. For b < 10 , the condition (LU , !tn) « 1 is not well satisfied 

and the solutir.ns are questionable. 

The evolution of the ballooning modes is also examined as the parameters, 

s and £ , arc varied. The fixed parameters are r\ = r\j = 1.0, B =" 0.02, h„ = 

1.1, q = 2.0, and T = 1.0. In Fig. 8(a) (with c^ = 0.2) the she.ir 

-•tab! li/at ion of the ballooning modes occurs at s = L15. Both the real 

frequenc' , i!_, and the growth rate, it, , decrease as s ':.creases. Figure H(b) 

displays the dependence of \~i on £ with s = 0. 5. There are two stability 

boundaries with t . = 0.0135 and E •> = 0.306. For small r.n ( )w n ./wl « I) the 

magnetic drift resonance effect is exponentially small and the modes evolve 

from a pair of almost complex conjugates Into two real ,i .solutions as r 

decreases below C-i. This differs from the ideal MHD results in that there is 

only one critical E for a low 8 equilibrium with concentric, circular 

magnetic surfaces. 

IV. CONCLUSION? 

In this paper we have employed the high n ballooning mode formalism to 

derive the eigenmode equation for kinetic ballooning modes of arbitrary 

wavelengths in the limit w t i < w < uit . The ion magnetic drift frequency, 
,JDi> I s n o t t aken to be smaller than the mode fiequency, u, so that the ion 

magnetic drift resonances are retained. In the limits w D i / w << I and h„ -» 0, 

the eijjenfflode equation reduces to the ideal MHD ballooning mode equation. The 
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eigenraode equation is then analyzed numerically by using a shooting code. Two 

branches of eigenmodes at„ found to exist. For r\, = 0 we have observed that 

the critical B of branch I which occurs at ui = u*t is identical to Lhp ideal 

MHD 6 C and is independent of the finite Larmor radius and magnetic drift 

r°son rce effects. Branch II remains stable for all 8 at ij = 0, hut can he 

more unstable than branch I as r\i is varied. For n ( ' 1 the numerical results 

havi? shewn that the critical 8 is smaller than the ideal MHD 0 and the finite 

Larmor radius effect can reduce the growth rate, but does not stabilize the 

ballooning modes. The ion magnetic drift resonance effect is destabilizing. 

The dependence of \1 on E shows that there are two stability boundaries in 

r . This is different from the ideal MHD prediction of only one critical =~ 

for a low i equilibrium with concentric, circular magnetic surface?. 

Finally, this work is incomplete since kinetic effects, si.c'i as trapp-d 
q i n particles, Landau resonances, and collisions * , are suppressed here in order 

to concentrate on the finite ion Larmor radius and ion magnetic drift 

resonance effects. The self-consistent MHD equilibrium must also be included 

before we can determine the critical 6 of tokamaks. 
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Fig. 1 Cr i t ica l a versus b g for s = 0.5, c = 0.2, q = 2.0, T =• 1.0, and n-

= r\ = 0 by solving Eq. (15). 
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Fig. 2 The dependence of ft on B For i>, - 0,1 s = 0.5 ? = ft 7 n - ? n T 

= 1.0, and n e = Hi = 0, The Ideal MHD grovth rate is also shown. 
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# A ITO072 

Fig . 3 The dependence of & on rij for two branches of etgenmodes. The Fixed 

paramete rs a r e 3 " 0 . 017 , b g - 0 . 1 , s = 0 . 5 , E n = 0 . 2 , q = 2 . 0 , T = 

1.0, and r ' 0. 
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# 8IT007I 

Fig. 4 The dependence of S2 on T\ for two branches of eigenmodes wich n. 

0. The other parameters are t!ie samp a« In Fig. 3. 
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Fig. 5 Plot of the elgenfunction of two branches of eigenmodes (for B " 

0.02, b e - 0.1, s = 0.5, t n - 0.2, q = 2.0, T = 1.0, and n = n,. = 

0): (a) branch I with a - (- 0.896, 0.11), (b) branch II with a » (-

1.588, - 0.073). 
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F i g . ft The dependence nf i] on 6 f o r h. = 0.1 , s = 0 . ">, E = 0 . 2 , q = 2 . n , r 

= 1.(1 and n p • n i ~ 1.0. Thp c o r r e s p o n d i n g i d e s ] MHD growth r a t e i«? 

a l s o shown. 
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F l , : . H The dependence o f j on (a) s f n r 

0.3 

„ = 0 . 2 , and (b> . n in r s = 0 . 5 . 

The fixed parameters a r e B - 0 .02 , b„ = «... 1, i « 1.0, q = 2 .0 , and n 


