L) g

{ St Lo S
APRIL 1381 PPPL-17¢&2

NE
e w

KINETIC THEORY OF COLLISIOMLESS
EALLOONING tMODES

BY

Cs Z. CHENG

PLASMA PHYSICS
LABORATORY

LSTRiEL T OF TAIS BOSLNENT 5 URUR'T?)
PRINCETON UMIVERSITY
PRINCETON, NEW JERSEY ]

This werk supoorted 3y the U.S. Department of Snary: —
Contract 5. JE-ACZ2-75~CHO-3073. Repraduction, tranms-
lation, puslication, use and disposal, in whole or in

part, bv or for the Urited States adovernmert js :efﬂi:tac.‘;:



Kinetic Theory of Collisionless Ballooning Modes
by

C. Z. Cheng
Piasma Physics Laboratory, Princeton University

Princeton, New Jersey 08544

[—\ —— DISCLAMER “___\]
ABSTRACT o

A kinetic¢ ballooning mode equation retaining full finite {on Larmor
radius and ion magnetic drift resonance effects is derived by employing the
high n ballooning mode formalism. We find that the critical B is smaller than
the ideal MHD critical 8, except when ng = 0 (ni z dEnTi/dlnN) they are
identical. The finite Larmor radius effects reduce the growth rate buc do not
stabilize the mode. The ion mapgnetic drift resgnance effects are

destabilizing.
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I. INTRODUCTION

It is ©believed that the plasma confinement in high temperature
axisymmetric tokamaks may be limited by the instability of magnetohydrodynami-
(MHD) ballooning modes. According to 1ideal MHD theory the ballooning modes
can be driven unstable by the combined effects of the magnetic curvature and
the pressure gradient. When B {the ratioc of the kinetic pressure to the
an unstable mode can
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wagnetic pressure) increases te a critical value, Bor
develiop and %“alloons in the bad curvature region. Many calculations have
been done to determine Be from the ideal MHD equaticns. One of the basic

assumptions of 1ideal MRD theory 1is that the parallel electric field

perturbation E" vanishes. Hawever, Eil may become finite when kinetic effects
such as finite Larmor radius, magnetic 7rift and Landau resonances, trapped
particles and c¢ollisional effects are included. Especially, in the high n
limit these kinetic effects can be signiifcant. Tt is, therefore, of interest
to examine whether these kinstic effects could modify the stability of the
ballooning modes and hence Beoo

Previous investigations6’7 of the kinetic effects on the MiID ballooning

modes have made use of the assumption that the ion mapgnetir drift frequency,

wpi, 1is small compared with the mode frequency, w, and is rtreated

perturbatively without including resonances. However, this assumption is not
always valid, especially when the modes are near marginal stability. In this
paper we will remove this limitation and investigate the stability of the
ballooning modes by retaining full finite ion Larmor radius and ion magnetic

drift resonance effects. Effects due to trapped particles, Landau resonances,

and collisons will be ignored,
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Emploving the high n ballooning mode and WKB [-'ormaliSrn,z"5 we have

derjved, in Section II, a set of eigenmode equations governing both drift and
shear Alfv;n waves. If terms of order (”:1/W)2 are neglected (w¢y 1s the ion
transit frequency), we can obtain a single second order differential equation
deseribing the kinetic ballooning modes. Then, we establish its relationship
to the ideal MHD ballooning mode equation. In Section III, we first observe
that for ny; = 0 (ni = dZnTi/dan) the kinetic ballooning mode equation reduces
to the ideal MHD ballogoning mode equatien at marginal stability with o =uw

*i
(“*i is the ieon diamagnetie drift frequency). This means that B. is identical
to the ideal MHP Be and is Independent of the ion Larmor radius and magnetic
drifr resonance effects. For n; #0 , B, is found to be smaller than the

ideal MHD 3., and numerical solutions with parametrie variations of B, etec.

are presented in detail. V¥ipally, a summary is given in Seection IV,
11. FORMULATION

Let us consider low 8 plasma in an axisymmetrie, large aspeet ratio torus
with concentrie, circular magnetic surfaces. We use a (r, 3, ) coordinate
system, where r is the minor radius, 9 is the poleidal angle, and ¢ is the
tornidal angle. The equilibrium magnetie field 1s given by 3 - B0

(I -~ r eos®/R){z + {r/qRr)B]. The perturbed quantities can be expressed in

the form
$ = 6(r, 8) exp{i(m8 - nz - wr)] .

The linearized ion gyrokinet{ec equation is given by



_ P 3
lo = wgvy(s = 1 35) +ugl By

= () = o [+ (37 - 3)) 9 ;ii) (6 - v,A,/e) (1
where w.; = v;/qR is the ion tramsit frequency, s = (r - r )/ar,, r, is the
minor radius of the reference mode rational surface with m = nq(ro),
Arg = l/ke; s kg = m/r, s = (rq'/q) at t = T, il = —1[(é/r)a/ae + ;B/arT, it
= eB/mic, n; = (dEnTi/dlnN), the magnetie drift frequency is uwyy = (2€n/1)
wse (v, 7+ 7 %/2)(cos8 - 1s sing 3/0s) T = T/Tys €q = /R, 1, is the density

scale length, R 1is the major radius of the torus, q is the safety factor,
Wiy = (cTe/eB) (ke/rn), wap = “wa/T, VS V/Vi’ viz = 2Ti/mi, Fy is the loecal
Maxwellian distribution function, ¢ is the perturbed electrostatic
potential, A" is the parallel component of the perturbed veetor potential, and

H, is related to the perturbed ion distribution fi by fi = —(eds/Ti)FM + M.

i
Since we will work in the limit we g { w, the 8 dependence of v, and v will be

ignored.

In the following, we will employ the ballooning mode formalism which uses
¢ = 1/n as an expansion parameter to develop an asymptotic soclution of Eq.
(1). The perturbed quantities have short perpendicular and long parallel wave

lengths and can be expressed by the eikonal representation
¢ = ¢(8,8,c) expl~ 1 S(8,8)/¢] (2)

where S describes the rapid ecross fileld variations and . 75 = 0. In the

axisymmetric case, S5 can be expressed as

Tt
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8(0,8) = (m/n - q) 8 + kq(s)dq
= -ar _q7(s8 - | kqu] (3

where kq(S)/e is the radial wavenumber in (9,q) coordinates. Insert Eq. (2)

into Eq. (1) and expanding in powers of ¢, we find atr lowest order

~

v, 3/98 + mDi} Hi

fo =1 uy v,

"2
r
(eF /T); =~ wy Il +ny (v

"

- YD} I (6 - v A L) (4)

where

- 2 - 2 ~ .
wp; = 2 Dy (En/r) (vu + v, /2) (ecosb + s {8 - kq) sing),

1/2 ~ ~2.2.°2 _ 2 2
I o= Jo(bi ), by = Zbe(l + s W /T, b5 = tku oy /2

and

©
I

vilﬂi.

In Eq. (4) we will choose kq = 0 so that the perturbations are ¢enteresd at the
outside of the torus. This choice of kq is made because we have learned from

numerical experience that the maxima of Im{w) oceur at kq = 2aN (N =0, L...)

for up-down symmetrie equilibrium. FEquation (4) is defined over aa infintte



range in 6 without periodicity constraint. The boundary condition for H, is
i
that ﬁi decays sufficiently fast as {68! + w.

In the limit wy, << w, Eg. (4) can be solved to yield

- 22 2 2 3
i .
U St T R T O "Y1, 3! )
ST T P 3 .2 w .t
Di  (w + wpy,) (w +wpy )7 29

The ion density and current perturbations, 5n, and j!i' can be calculated from
i

Eq. {(5) and are given by

§n

— = -eo/T, + | HiJ0d3v
1% g _a% ol L
e cis 4 (o 05 4L 0o ok "si a_A
Wl G Ta. 3 T 3 3
) bi @ +q..) a6
ni
2.2 3
J “F v a .d7v |2 2.
'Qt-z o o'l si 3 % +0( ;1) , (6
1 it
(o + QDi) 36
and
3. _a_ . a..3
38 hii T 36 ev“HiJod v
Nev 2 2 2 2 2
A ST (3% 3% (@ af38° _pay/an” 30
iQ o "ol Tsi ‘Q +-9Di (@ + QDi)2‘
2
Loy
o (5, (M
where
. . R § - ) )
b= e/T . A=eA/T , A= [7 80A wy [tu o, 6 =wfug , Rpy = wp fog,
=+ 1+ nl(vz - 3/2) and FO = (l/nj/z) exp(- ;2).
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We will consider all the electrons to be highly circulating and
collisions and trapped electron effects are not retained. The linearized

gyrokinetic equation for electrons is given by

. "3 - oo " ~
[a lntevu 25 + ”De] He (eFH/T)e 2., (¢ le“/c) z Ge (8)

where

- . - 2 _
Qne = TQDi’ Qte = ve/(qu*e)’ v, = 2Te/me,

@ - [1+ ne(:l2 - 3/, v = v/ve, and n, = dgnT_/dznN.

ES]
"

se

Since we are interested in the limit @ << Spes the 6 dependence of ;" will be
ignored and Eq. (B8) can be solved with the asymptotic decaying beundary

condition to give

ST Qa*a, .. G 3
hy = e —+ [Paer —2 [Plae S+ 0 2y . (9)
tei eV BeeV te

The electron density perturbation, dne, and current perturbarion, jle, can be
obtained from Eq. {9) and are given by

. - o 3. _ 2

n /N = ed/T +f Hy d7v = ¢--l/a A + 0 (a/n, )7, (10)

and
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L] JIe B a0 f ev" Hed v
Nev
= - e - - -1 -
T [ala 1) {¢ - A) + zsn(n 1 ne)feA]
te
a 2
+0 (), an
“te
where £, = cos3 + s? sind. Comparing Fq. (7) with Egq. (11) we note

that ajLi/aa is of order (ﬁti/ﬂ)z smaller than ajFE/BB.

The basic set of coupled one dimensional equations governing the

eigenmodes of the system can now be written in terms of the solutions of the

perturbed quantities given by Egs. (7), (8), (10), and (11). These are the

quasi-neutrality condition and the parallel component of Ampere's law

along 5. The quasi-neutrality condition can be expressed as

r = ™+ 1 ‘Jog}‘ogsidlv
— (3 - A) = ~(——) s + ' n + o y @
¢ b4 ik JD i
2.~ 2 3
- 2 2
20 PV 1YY 9% es 3°A/35 a2
“ei A 2 “Ta + a.,) 7 ’ -
(" + 2D1) Di

and the parallel Ampere's law is given by

3 22 3 -2 ) L
Yy (1 + s787) 38 = 94 {2ata - 1) (o ~ A) + (@ 1~ n)f A
222 ,
- 2 | Jo Fols Psi [32A _ Q 3¢ FER (1)
. 2 ’
ti @ +Qa,) 592 TRy 2

where n;z = [g/2(] + l/r)](q/cn)2 and 8 = SnN(TO + Ti)/ﬂz. Since the parallel



electric field perturbation E" is proportional to 3/3% (¢ — A), the right hand
side of Eq. (12) represents the kinetic fon contributions from finite Larmor
radius and magnetic drift resonance effects, If we further neglect terms of

order (Qtilﬂ)z, Eqs. (12) and (13) can be teduced to a single second order

differential equation, i.e.,

- N _ _2 _ _ _ R
35 G vsege=0," {22 @~ 1-n)f -6@ -1

2F Q _dav
[s]

J
2 - o] si
t@- DY+ - 75—;—55——7—1| A (14)

i
Fauation (14) describes the kitetic ballooning mode with even A in A and can
be solved as an eigenvalue equation for { under the boundary condition thar A
decavs asymptotically as 18] + =. We can now compare Eq. (l4) with the
sinalnpons MHD equations.z'S If Qpi/% and by are taken as -~mail parameters and
terms of order (ﬂui/n)z and {ba (1 + ;262)}2 are neglected, then Eq. {(14)

reduces tnﬁ

2 2

P 22,3 -
= L+ sT8) sp A= 0 20 [V 4+ (1 a0 e0f

+2 l2+ (40 /lb (1 + s%60)ia, {15)

In the limit by » 0, Eq. (15) corresponds exactly to the ideal, single~fluid
MHD ballooning mode equation. From Eq. {15) we see that the eigenfrequency at
marginal stability is given by Q = ~(1 + ni)IZT, and the eritical 8, versus by
is showm in Fig. (1) by solving %q. (15) numerically for rhe parameters:

s =05, € = 0.2, g =2, v =1, and ng *n; = 0. Figure | clearly shows the
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finite Larmor radius stabilization of the MHD ballooning modes. 1In the limit
t:.e + 0, Bc approaches to the ideal MHD eritical B. However, the assumptions,
Qpg /2 << 1 and be(l + ;262)/1 << 1, that lead to Eq. (15) become invalid at
marginal stability because the mode structure becomes very broad and extends
to 8 ~ 0(102)- Therefore, the result in Fig. 1 1is incorrect and we must

employ Eq. (14) to study the ballooning modes near marginal stability.
TIT. RESULTS

In this section we present the results of an eigenmode analvsis of
kinerie ballooning modes (with the even A solution) by solving Eg. (14)
numerically. Let us first consider the ng = 0 case. We observe that for p =
- 1/t (f.e., w = “”'i)' Eq. (14) reduces exactly to the ideal MHD ballooning

mode equation at marginal stabilitylz—S] (with § = 0), i.e.,
3 “2.2 2 2 ’ .
— (1 +s0")=Aa+8 (g /e )1 +n /(1 +1/1)](cost + s0 sind) A = 0.
36 c n e
(16)

Therefore, the eritical 8 obtained from Eq. (16) is exactly the same as the
ideal MHD B8, and is independent of the kinetiec ion contributions due to finite
Larmor radius and magnetic drift resonance effeets. Note that this conclusion
of B 1s unchanged when we employ the self-c¢onsistent equilibrium, and the
second critical 8 also occurs at w = Wiy It is not difficult to understand
this result physically because at marginal stabllity with @ = -1/t, the ions
behave adiabatically and the parallel electric field perturbation E" vanishes

identically which corresponds to the ideal MHD assumption. This phenomenon

can also be seen in Fig., 2 where the numerical eigenfrequencies from solving

~

Eq. (14) are shown versus 8 for the parameters: s = 0.5, €n = 0.2, q = 2,

)

“._vjﬁnwf

1
H
H
H
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=1, by = 0.1 and Ny = ong = 0, The broken curve shows the growth rates of
the ideal MHD balleoning modes (bg -+ 0 limit). We note that the g-owth rates
of the kinetle ballooning modes are reduced due to finite Larmor radius and
magnetic drift effects, but reach marginal stability at the same 8 as the
ideai MHD modes.

Note that in solving Eq. (14) we have made the apprcximation8

~2
iy < 2(5“/1) (ZVH)EB (17)

so  that the velocity space integral in Ee. (14) can be carried out

analvtically to yieid

2 3 _ _
[ I Fa dv/@+ay = [+ 1 -n/2) T +nb(0) =T 31D +nrTD

D 1
(18)
where
o)
= = + C = -
D= (nlhe £02(E)/E, Py = (t/he £ +£2(0)], ¢ (av/be £.),
Z is the plasma dispersion funectinan, Tgy = ID 1 (b) exp(-b) and b = bg

(1 + ;282)/7. In obtaining Dy and D, We must perform the proper analvtic

continuation of the integrition ceontour and £ in the complex v space. This
l

I
approximation deforms the resonant surface in velocity space inte a plane
without affecting the basic magnetic drift resonance effects.

In addition to the eigenmode (branch I) deseribed in Fig. 2, there exists

another eigenmode branch (branch II). For ng; = 0, branch II remains stable

for all 8. Figure 3 shows the dependence of the eigenfrequency 2 on n; for



,_
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these two tranches of eigermodes with parameters: ng = 0, v = 1.0, €q = 0.2,
bg = 0.1, q = 2.0, ; = 0.5, and B = 0,017. Branch I is unstable for small nj
and becomes stable for large n;. On the other hand, branch II is stable for
small ny, but becomes lLiighly destabilized as n; Increases. For both branches
the real frequencies decrease as ny increases. Figure 4 shows the
eigenfrequency i versus n, for ng = 0, 1 = 1.0, En = 0.2, by = 0.1, q =
2.0, ; = 0,5 and B = 0.017. Here, contrary to the ny dependence in Fig. 4,
branch I {s destabilized by n, and branc. II remains stable for all n,
shown. For bath branches the real frequencies increase with N«

Figures 5{a) and 5(b) show the eigenfunctions A(8) of bhranches T and Il

for ng = n; = 0, 8 = 0.017, 1 = 1.0, e, = 0.2, bg = 0.1, 5 = 0.5, and q =

2.0. The eipenfrequencies are o = — 0.896 + 0.11i for branch T and 0 = =-1.59
- D,073i for braneh Il, The modes are near marginal stability and have very
broad structure. Since the ion magnetic drift frequency wpy is secular in 06,
the perturbative treatment of wp; term breaks down for © 2 (T/Zen;) = 5, also
the assumption be(l + ;262)/1 << 1 is not valid for 8 > (1'/be.;2)l/2 = b

We have ctudied the behavior of these two branches of eigenmodes in the
(ne, ni) plane. We find that for the set of parameters described in Figs. 3
and 4 there 1is a branch point at (”1’ ne) s (0,71, 0.35) where these two
branches coincide and become a double root with @ = (—l.é, 0.185). 1If we vary
ny and n, along a elosed path in ("1* ne) plane ifound the branch point once,
we find that branech I interchanges with branch IIL.

For ny # 0 the critical 8 is different from the ideal MHD B, and 1s
usually smaller. The dependence of the eigenfrequency of the most unstable
mode on B is displayed in Fig. 6 for g S ng = 1.0, ; = 0.5 ¢, = 0.2, ¢
2.0, by = 0.1, and T = 1.0. The mode becomes marginally stable at 8, = 0.006

with eigenfrequeney ¢ = -4.0. The gri:-"h rate of the ideal MWD mode 1s also

g .
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siown in Fig. 6 for comparlsen. Fipure 7 shows the dependence of i on by for
L = 0.017 and the other parameters are the same «as in Fig. 6. The finite
Larmor radius effect can reduce the growth rate, but dees not stahilize the
mode evea when be is larger than unity. The real frequeney derreases as h0

increases. For b, < 10’3, the c¢ondition (mt‘/m) << | is not well satisfied

8

and the solutlcns are questionahle.

The evolution of the ballooning modes is alsn examined As the parameters,

& and £qs are varied. The fixed parameters are n, = n; = 1.0, g = 0,02, by =
nt, q = 2.9, and 7 = 1.0, In Fig. 8{(a) (with <, = 0.2) the shear
stabilization of the ballooning modes occurs at s = |, 15, Both the real

frequenc: |, 2y, and rhe growth rate, i,, decrease as s ficreases.  Figure 5(b)

displays the dependence of 2 on e, with s = 0.5. There are two stability
boundaries with ¢y = 0.0135 and £, = 0.306. For small r (lup;/wl << 1) the
magnetic drift resonance effect is exponentiallv small and the modes evolve

from a pair of almost complex conjupates into two real ) snlutions as i

decreases helow ¢ This differs from the ideal MHD resulcts in that there is

nl”

only onpe critical €n for a low B8 equilibrium with econcentrir, eireular

magnetie surfaces.

1V, CONCLUSINNR

In this paper we have employed the high n ballooning mode formalism to
derive the eigenmade equation for kinetic ballooning modes of arbitraty
wavelengths in the limic wp; < w £ uy o+ The jon magnetic drift frequency,
wpis» 1s not taken to be smaller than the mode frequency, w, so that the iaom
magnetic drift resonances are retained. 1In the limirs “Di/“ << 1 and by + O,

the eigenmode equation reduces to the ideal MHD ballooning mode equa.ion. The
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eigenmode equation is then analyzed numerically by using a shooting code. Two
branches of elgenmodes ar. found to exist. For ng = 0 we have observed that
the critical B of branch I which occurs at w = Wiy is identical to Lhe ideal
MHD B, and is independent of the Ffinite Llarmor radius and magnetic driteg
regorarce effects, Branch II remains stable for all 8 at n; = 0, bhut can be
more unstable than branch T as ny is varied. For ny 0 the numerical results
have shown that the critical B is smaller than rhe ideal MHD Be and the finite
Larmor radius etfect can reduce the growth rate, but does not stabilize the
balloening modes. The 1on magnetic drift resonance effect is destabilizing.
The denendence of 2 on 3 shows that there are two stability boundaries in

€nr This is different from the ideal MHD predirtion of only one critiecal “n
for a4 low ¢ equilibrium with concentric, circular magnetic surfacer.

Finally, this work is incomplete since kinetic effects, sich as trappd
particles, Landau rescunances, and collisionsg'lo, are suppressed here in order
to concentrate on the finite ion Larmor radius and 1ion ma-netlic drift
resonance effects. The self-counsistent MHD equilibrium must also be included

before we can determine the critical 8 of tokamaks.
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Fig. 1 Critical 8 versus by for s = 0.5, €= 0.2, ¢ = 2.9, v = 1,0, and n;

=ng = 0 by solving Eq. (19).
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The dependence of @ on B for i.

= 1.0, and e =ng = O

s = 0.1, s = 0,5, €q = 2, ¢ = 2,0, 1

»

The {deal MHD growth rate is also shown.
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Fig. 3 The dependence of 2 on n; for two branches nf eigenmodes. The Ffixed
parameters are 8 = 0.017, by = 0.1, s = 0.5, e, = 0.2, q = 2.0, 1

i.0, and »_ = O,
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0. The other parameters are the same as in Fig, 3,
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= 1.0 and Ng = ng = 1.0. The corresponding ideal MHD growth rate is

also shown.
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