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ABSTRACT 

A b r i e f  survey was made of t h e  c h a r a c t e r i s t i c s  of t h e  r o t a t i n g  

f l u i d i z e d  bed used a s  a  f i l t e r  f o r  f i n e  d u s t s  and m i s t s .  A sample ca l cu la -  

t i o n  of o v e r a l l  f i l t r a t i o n  e f f i c i e n c y  was made f o r  a  r o t a t i n g  bed ope ra t ing  

a t  minimum f l u i d i z a t i o n  wi th  a  v e l o c i t y  of 4 m/sec and a  g-loading of about  

50. Account was taken of removal by t h e  c l a s s i c a l  mechanisms of d i f f u s i o n ,  

i n t e r c e p t i o n ,  and i n e r t i a l  impaction. High e f f i c i e n c i e s  were found f o r  d u s t  

p a r t i c l e s  a s  s m a l l  a s  1 pm. The r o t a t i n g  f l u i d  bed f i l t e r  should have 

approximately t h e  same c o l l e c t i o n  e f f i c i e n c y  and p re s su re  drop a s  t h e  f i x e d  

and moving bed f i l t e r e  opera t ing  a t  t h e  same v e l o c i t y ,  bu t  i n  a d d i t i o n  

should more r e a d i l y  permit  continuous ope ra t ion  without  c logging and wi th  

e f f e c t i v e  regenera t ion .  

The same sample c a l c u l a t i o n  of f i l t r a t i o n  e f f i c i e n c y  app l i ed  t o  t h e  

convent ional  1-g f l u i d  bed opera t ing  a t  1.5 t imes t h e  minimum f l u i d i z a t i o n  

v e l o c i t y  of 0.2 m/sec ind ica t ed  lower c o l l e c t i o n  e f f i c i e n c i e s  near  1 ym 

than  f o r  t h e  r o t a t i n g  system. The low velocity--and corresponding low 

throughput--in t h e  s t a t i o n a r y  system i s  r equ i r ed  t o  avoid bubble formation 

which would tend t o  lower f i l t r a t i o n  e f f i c i e n c y  because of bypassing. 

The p o s s i b l e  harmful e f f e c t  on f i l t r a t i o n  e f f i c i e n c y  of reent ra inment  

of d u s t  p a r t i c l e s  a t  t h e  high ope ra t ing  v e l o c i t i e s  of t h e  r o t a t i n g  system 

a s  w e l l  a s  t h e  h e l p f u l  e f f e c t  of t r i b o e l e c t r i f i c a t i o n  w i l l  have t o  be 

determined by experiment. 
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I. INTRODUCTION 

$ .  

In  r e c e n t  yea r s  a number of s t u d i e s  have been r epor t ed  on t h e  use  of 

a  f i x e d ,  ' f l u i d i z e d ,  o r  spouted bed t o  f i l t e r  f i n e  p a r t i c l e s  f rom.a  gas  . 

stream. Many of t h e s e  have been summarized by C l i f t  and Thambimuthu. 
8  

With f i x e d  beds,  t h e  main opera t ing  problem is  removal of t h e  c o l l e c t e d  

p a r t i c l e s  from t h e  f i l t e r  bed; i f  t h e  bed becomes s a t u r a t e d ,  t h e  f i l t r a t i o n  

e f f i c i e n c y  quick ly  drops t o  zero.  The r egene ra t ion  problem has been overcome 

by using a moving bed., a s  i n  t h e  GBP f i l t e r  under development by Combustion 

Power ~ o r n ~ a n ~ , ~ ~ o r  by some means of i n t e r m i t t e n t  backf l u sh ing  , a s  i n  t h e  

Ducan f i l t e r  descr ibed  by Kalen and ~ e n z .  l8 Both t h e s e  techniques p re sen t  

s u b s t a n t i a l  opera t ing  problems regard ing  t h e  prevent ion  of c logging ,  both 

of t h e  f i l t e r  bed i n l e t  s u r f a c e  and t h e  bed i t s e l f .  The idea  of us ing  a  

f l u i d i z e d  bed t o  a c t  a s  a  d u s t  f i l t e r  d a t e s  back t o  1949, when Meissner and 

~ i c k l e y ~ '  e s t a b l i s h e d  t h a t  f l u i d i z e d  beds could s e r v e  t o  remove m i s t s  and 

d u s t s  from air  a t  h igh  e f f i c i e n c i e s .  The b a s i c  concept involves  us ing  t h e  

gas  t o  be  f i l t e r e d  a s  t h e  f l u i d i z i n g  medium t o  f l u i d i z e  a  bed of c o l l e c t o r  

p a r t i c l e s ;  t h e  c o l l e c t o r  p a r t i c l e s  can then  be  removed and rep laced  continu- 

ous ly  w i t h  no opera t ing  d i f f i c u l t i e s .  Care must be  taken t o  prevent  plugging 

of t h e  d i s t r i b u t o r  p l a t e  of a f l u i d i z e d  bed f i l t e r  w i t h  d u s t  p a r t i c l e s ,  b u t  

otherwise ope ra t ion  of t h e  f i l t e r  is  no d i f f e r e n t  from t h a t  of a  c0nve.n- 

t i o n a l  f l u i d i z e d  bed. 

Although i t  has  been found t h a t  h igh  c o l l e c t i o n  e f f i c i e n c i e s  f o r  d u s t  

p a r t i c l e s  around 1 vm and l a r g e r  could be a t t a i n e d  i n  shal low beds of spherical .  

p a r t 5 c l e s  w i th  a  diameter  range of 100 t o  600 pm i n  a  f l u i d i z e d  bed 
19,28,46 f i l t e r ,  f l u i d i z e d  bed d u s t  c o l l e c t o r s  have f a i l e d  t o  ga in  i n d u s ~ r i a l  

acceptance. I n  s p i t e  of t h e  g r e a t  advantage t h a t  t h e  bed can be regenerated 

cont inuously,  t h e  u s e  of a  f l u i d i z e d  bed f o r  commercial a p p l i c a t i o n s  i s  

seve re ly  l i m i t e d  by t h e  minimum f l u i d i z a t i o n  v e l o c i t y  of t h e  bed p a r t i c l e s  

o r  granules .  Operat ion a t  f low r a t e s  much h igher  than t h i s  minimum l e a d s  t o  

bypassing of gas  i n  t h e  form of l a r g e  bubbles  and consequent ly t o  poor 

c o l l e c t i o n  e f f i c i e n c i e s .  3'40 Moreover, bubbling f l u i d i z a t i o n  cannot be used 

wi th  f r a g i l e  p a r t i c l e s  such a s  sand45 because i t  r e s u l t s  i n  ex t ens ive  g ranu le  

a t t r i t i o n .  To overcome t h e  l i m i t a t i o n  of ope ra t ing  t h e  f l u i d i z e d  bed f i l t e r  



a t  v e l o c i t i e s  near  t h e  minimum f l u i d i z a t i o n  v e l o c i t y  and thus  achieve  h ighe r  

g a s  throughputs ,  Meisen and MathurZg suggested us ing  a  spouted bed wi th  

p a r t i c l e s  t o o  coa r se  (mi l l ime te r  s i z e )  f o r  good f l u i d i z a t i o n ,  and Boubel and 
4 

Junge d i d  some experiments w i th  a  r o t a t i n g  f l u i d i z e d  bed ope ra t ing  a t  r a d i a l  

a c c e l e r a t i o n  f o r c e s  >>l-g-. 

It i s  t h e  purpose of t h i s  s tudy  t o  examine t h e  f e a s i b i l i t y  of us ing  a  

r o t a t i n g  f l u i d i z e d  bed a s  a  d u s t  . c o l l e c t o r  o r  f i l t e r .  

11. THE ROTATING FLUIDIZED BED 

The rotahi.ng f j .~.~l .di .zcd he.d 25'27 i s  s device ,  uounl ly  cylindrical i n  

shape,  ' t h a t  r o t a t e s  around i ts  v e r t i c a l  a x i s  of symmetry. The r o t a t i n g  

c y l i n d r i c a l  s u r f a c e  is porous and se rves  a s  t h e  d i s t r i b u t o r  f o r  t h e  bed. 

The l a r g e  c e n t r i p e t a l  f o r c e s  produced by r o t a t i o n  f o r c e  t h e  bed m a t e r i a l  i n t o  

an  annular  reg ion  a t  t h e  circumference of t h e  bed. Gas f lows  r a d i a l l y  inward 

through t h e  porous d i s t r i b u t o r ;  when t h e  g a s  f low i s  such t h a t  t h e  t o t a l  drag 

f o r c e  of t h e  gas a g a i n s t  t h e  p a r t i c l e s  j u s t  ba lances  t h e  c e n t r i p e t a l  f o r c e  

due t o  t h e  r o t a t i o n ,  t h e  bed becomes f l u i d i z e d .  For a  g iven  r o t a t i o n a l  

speed,  f l u i d i z a t i o n  s t a r t s - a t  t h e  lnner  s u r f a c e  of t h e  bed, where t h e  r a d i a l  

a c c e l e r a t i o n  i s  s m a l l e s t ,  and even tua l ly  reaches  t h e  d i s t r i b u t o r  a s  t h e  gas  

v e l o c i t y  i n  increased.  Fu r the r  i n c r e a s e s  i n  gas  v e l o c i t y  w i l l  cause t h e  bed 

t o  expand and gas bubbles  t o  appear ,  a s  i n  a convent ional  f l u i d i z e d  bed. 

Since t h e  speed of r o t a t i o n  of t h e  bed and hence t h e  r a d i a l  a c c e l e r a t i o n  

can be  increased  t o  any d e s i r e d  l e v e l  (usua l ly  between 10 and 50 t imes t h e  

a c c e l e r a t i o n  of g r a v i t y ) ,  t h e  r o t a t i n g  f l u i d i z e d  bed 'permits much l a r g e r  

f low r a t e s  p e r  u n i t  a r e a  of t h e  d i s t r i b u t o r  than a r e  p o s s i b l e  i n  convent.i..nnel. 

f  l i i d i z e d  beds,  which ope ra t e  only  a.gai.nst. t h e  f o r c e  of g r a v i t y .  These much 

h igher  gas  v e l o c i t i e s  make t h e  r o t a t i n g  f l u i d i z e d  bed a t t r a c t i v e  f o r  u s e  a s  

a  combustor a s  w e l l  a s  f o r  u s e  a s  a p o s s i b l e  f i l t e r  f o r  removing d u s t  

p a r t i c l e s  . 
The p re s su re  drop and minimum f l u i d i z a t i o n  v e l o c i t y  i n  a  r o t a t i n g  

f l u i d i z e d  bed can b e  obta ined  by us ing  c l a s s i c a l  r e l a t i o n s h i p s  found i n  t h e  

l i t e r a t u r e  f o r  ord inary  f l u i d i z e d  beds by r ep lac ing  t h e  a c c e l e r a t i o n  of 

g r a v i t y ,  g ,  i n  t h e s e  r e l a t i o n s h i p s  by t h e  r a d i a l  a c c e l e r a t i o n ,  ar,  produced 



by t h e  r o t a t i o n  of t h e  d i s t r i b u t o r  such t h a t  

A s  shown i n  F igure  1, L = r = r i s  t h e  th i ckness  of t h e  bed, E i s  t h e  void 
o i 

Figure 1. Geometry of a rotating f luidized bed. . 

f r a c t i o n ,  d  i s  t h e  diameter of bed p a r t i c l e  o r  g r a i n ,  and w o  i s  t h e  r o t a -  
g  

t i o n a l  speed of t h e  d i s t r i b u t o r .  The f r e e  s u r f a c e  of t h e  bed w i l l  assume 

t h e  shape of a  paraboloid of r evo lu t ion ,26  b u t  a bed r o t a t i n g  at a  h igh  

enough r o t a t i o n a l  speed can be considered t o  be a  c y l i n d r i c a l  annulus.  

The l o c a l  p re s su re  drop ac ros s  t h e  bed is  g iven  by 

where p i s  t h e  d e n s i t y  of t h e  g r a i n s  . o r  f l u i d i z e d  p a r t i c l e s  and pf is  t h e  
g - 

d e n s i t y  of t h e  f l u i d i z i n g  a i r .  E q .  (2) can be i n t e g r a t e d  i n  two d i f f e r e n t  
2  4 

ways. 

(a) Assume t h e  t a n g e n t i a l  v e l o c i t y  t o  be cons tan t  throughout t h e  bed 

(i. e. , Vt = r , i t s  maximum va lue )  s o  t h a t  i n  Eq. (1) ar = w 2r 2/r and 
0 0 2  2  

0 0 

Eq.  (2) becomes dP/dr = (1 - E) (pg - p ) o  r /r. I n t e g r a t i o n  g i v e s  



(b) Assume t h e  t a n g e n t i a l  v e l o c i t y  t o  v a r y  throughout t h e  bed as 

V = w r (solid-body r o t a t i o n )  s o  t h a t  Eq. (2) becomes dP/dr = 
t 0 2 
(1 - e)(pg - pf)wo r. I n t e g r a t i o n  g i v e s  

. F o r  t h i n  beds (L/r < < I )  t h e s e  two express ions  y i e l d  n e a r l y  t h e  same r e s u l t ,  
0 

b u t  f o r  t h i c k  beds Eq. (3) p r e d i c t s  s i g n i f i c a n t l y  higher  p re s su re  drops  than  

d.nes Eq. ( 4 ) .  Since t h e  behavior  of t h e  t a n g e n t i a l  v e l o c i t y  i n  t h e  bed is  

n o t  known, t h e  use  of e i t h e r  Eq. (3) o r  Eq. (4) t o  p r e d i c t  t h e  p re s su re  drop 

i n  t h i c k  beds must b e  checked by experiment. 

Demircan e t  al.1° and Metca l fe  and I-Ioward31 d e f i n e  t h e  p r e s s u r e  drop 

a c r o s s  t h e  bed a s  simply t h e  weight of t h e  bed per  u n i t  a r e a  of t h e  

d i s t r i b u t o r :  

L 

weight of bed - ( 1  - E ) ( P  - pf)m(ro - r L)ha  
- i r 

AP = 
a r e a  of d i s t r i b u t o r  2.rrro h 

where h  i s  t h e  he igh t  of t h e  bed. L e t t i n g  a  = w 
2 

r o  ro 

which i s  e x a c t l y  t h e  r e s u l t  given by Eq. (4) .  Demircan e t  a l . ,  us ing  bed 

depths  of 3  t o  5 cm i n  a 20-cm-diameter bed, r e p o r t  p re s su re  drops i n  good 

agreement w i t h  Eq. (4) ;  whereas Metcalfe  and Howard found experimental  

p r e s s u r e  drops i n  t h e i r  bed, which w a s  20 cm i n  diameter  and about 1 .5 cm 

t h i c k ,  t o  be only 80% of t h a t  prediceed by Eq. (4) .  

To compute t h e  minimum f l u i d i z a t i o n  v e l o c i t y ,  Urnf , i n  t h e  rutaLi~lg bed, 
20 

one equa te s  t h e  p re s su re  drop ,  Eq. ( 2 ) ,  wi th  t h e  p re s su re  drop g iven  by 

t h e  Ergun c o r r e l a t i o n :  



where t h e  s u b s c r i p t  m i  r e f e r s  t o  minimum f l u i d i z a t i o n  c o n d i t i o n s ,  and Ga is  

t h e  Ga l i l eo  number def ined  a s  . . 

. . 

o r ,  i n  t h e  case  of . a  r o t a t i n g  f l u i d i z e d  bed, w i t h  g  rep laced  by a  r ' 

and 

The minimum f l u i d i z a t i . d n  v e l o c i t y  def ined  i n  Eq. (7) w i l l  hepend somewhat 

on p o s i t i o n  r i n  t h e  bed, being h ighes t  a t  r = r o ( d i s t r i b u t o r )  and lowest 

a t  t h e  f r e e  s u r f a c e  r = r 
i' 

I f  i t  i s  assumed20 t h a t  

1 - . €  ' 

' , k 1 4  and 5 11 

+s 'mi 
E 

. . 4 s  m i  

and Eq. (5) i s  solved f o r  Remf, then 

For small  p a r t i c l e s  when the  p a r t i c l e s  o r  g r a i n  Reynolds number, Re g  , i s  

smai l ,  Eq. (5) reduces  t o  

and f o r  l a r g e  p a r t i c l e s  



where t h e  p a r t i c l e  Reynolds number i s  def ined  a s  

I n  t h e  f reeboard  r eg ion ,  de f ined  a s  t h e  r eg ion  r a d i a l l y  inward from t h e  

f r e e  s u r f a c e  of t h e  bed, ' t he  g a s  l eav ing  t h e  s u r f a c e  of t h e  bed i s  moving 

bo th  r a d i a l l y  and .  t a n g e n t i a l l y  because of t h e  r o t a t i o n  of t h e  d i s t r i b u t o r .  

Close t o  t h e  bed s u r f a c e  t h e  gas  main ta ins  a cons t an t  angular  momentum so  

t h a t  t h e  t a n g e n t i a l  v e l o c i t y  v a r i e s  i n v e r s e l y  wi th  r a d i u s ,  and t h i s  zone is 

i n  i r r o t a t i o n a l  motion much l i k e  t h a t  i n  a f r e e  vnrt.ext Towards t h e  center 

of t h e  bed, t h e  f l ~ w  regime changes t n  rotatinnal (fnrc~d vor t ex )  so that 

t h e  combined r e s u l t i n g  f low i s  t h a t  of a Rankine vor tex .  

The p re s su re  drop i n  t h e  f reeboard  r eg ion  i s  g iven  by 

To e v a l u a t e  t h e  p r e s s u r e  drop,  app ropr i a t e  express ions  f o r  t h e  tangent Tal 

v e l o c i t y  of t h e  g a s ,  V t ,  must be  obta ined  f o r  bo th  t h e  f r e e  and forced  

v o r t e x  r eg ions  of t h e  f low be fo re  Eq. (11) can be i n t e g r a t e d .  Such expres- 
7 

s i o n s  h a v e b e e n  proposed bo th  by Levy e t  a ~ . ' ~ a n d  by Chevray e t  a l .  us ing  

semiempir ical  methods. However, t h e  ' f reeboard  p re s su re  drop is  g e n e r a l l y  

sma l l  compared wi th  t h e  bed p re s su re  drop. 

Chevray et a l .  have a l s o  computed p a r t i c l e  t ra jec . tory  ana lyses  i n  t h e  

f reeboard  and found t h a t  l a r g e  p a r t i c l e s  r e t u r n  quick ly  t o  t h e  bed, i n t e r -  

media te  s i z e d  p a r t i c l e s  a r e  captured by t h e  v o r t e x  and remain i n  a c i r c u l a r  

o r b i t ,  and ve ry  s m a l l  p a r t i c l e s  a r e  e l u t r i a t e d .  For p a r t i c l e s  of s i z e s  

such t h a t  t hey  a r e  captured . in  t h e  i r r o t a t i o n a l  f low reg ion ,  a balance 

between t h e  drag f o r c e  and t h e  c e n t r i p e t a l  f o r c e  caused by t h e  r o t a t i o n  gave 

t h e  fo l lowing  equat ion  f o r  t h e  minimum p a r t i c l e  s i z e  captured:  

where Q is t h e  volumetr ic  f low of g a s ,  h i s  t h e  he igh t  of t h e  bed, and r i s  

t h e  p o s i t i o n  i n  t h e  f reeboard  where cap tu re  occurs .  



. !emircan e t  do found t h a t  i n  a bubbling t o t a t i n g  f l u i d i z e d  bed 

( a i r  f low rates above minimum f ' l u i d i z a t i o n )  t h e  behavior  of tlie p a r t i c l e s  

a f t e r  t h e  bubbles  b u r s t  was q u i t e  d i f f e r e n t  from t h a t  i n  a  convent iona l  

f l u i d i z e d  bed. ' I n  t h e  l a t t e r ,  p a r t i c l e . s  tend t o '  s p l a s h  h i g h  above t h e  

bed, bu t  i n  t h e  former,  t h e  bed p a r t i c l e s ,  because of t h e i r  h igh  t a n g e n t i a l  

v e l o c i t y ,  proceed i n  a s t r a i g h t  l i n e  which t r a n s f e r s  them back t o  t h e  

s u r f a c e  of t h e  bed. A t  l o w e r . r o t a t i o n a 1  speeds,  t h e  v e r t i c a l . g r a v i t a t i o n a 1  

f i e l d  causes r e t u r n  of t h e  p a r t i c l e s  a t  a  lower p o i n t  on the  su r f ace -  of t h e  

bed, augmenting t h e  l o n g i t u d i n a l  mixing wi th in  t h e  bed. . .. 

111. GRANULAR BED FTLTRAT I O N  THEORY 

I n  a t h e o r e t i c a l  a n a l y s i s  of a  g ranu la r  bed f i l t e r  such a s  a  convent iona l  

o r  a  r o t a t i n g  f l u i d i z e d  bed, t h e  bed i s  usua l ly  assumed t o  be a  homogeneous 

bed of s p h e r i c a l  p a r t i c l e s  of uniform s i z e  through which t h e  dus ty  gas - f lows .  

F i l t r a t i o n  of t h e  p a r t i c u l a t e  ma t t e r  i s  accomplished by t h e  s t i c k i n g  of t h e  

d u s t  p a r t i c l e s  i n  t h e  g a s  t o  t h e  s u r f a c e s  of t h e  f i l t e r  elements (granules) .  

It i s  a l s o  assumed t h a t  every f i l t e r  element experiences s i m i l a r  f i l t r a t i o n  

phenomena, and t h e r e f o r e  a  s i n g l e - p a r t i c l e  e f f i c i e n c y  E can be def ined  so t h a t  

t h e  f i l t r a t i o n  e f f i c i e n c y  of t h e  e n t i r e  bed of g ranu le s  can be computed by 

summing t h e  e f f e c t s  of a l l  t h e  elements i n  t h e  f i l t e r .  Thus, t h e  t h e o r e t i c a l  

computation of t h e  o v e r a l l  f i l t e r  e f f i c i e n c y  TI u s u a l l y  f i r s t  r e q u i r e s  pre- 

d i c t i n g  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  E. 

Other i nhe ren t  assumptions a r e  t h a t  t h e  d u s t  p a r t i c l e  concen t r a t ion  i n  

t h e  gas  s t ream i s h o w  enough no t  t o  i n f luence  t h e  gas  f low f i e l d  around t h e  

f i l t e r  e lements ,  and t h a t  t h e  f i l t r a t i o n  process  is  time independent s o  t h a t  

each f i l t e r  element,  a s  w e l l  a s  t h e  e n t i r e  f i l t e r  bed, always has  t h e  same 

e f f i c i ency .  These two assumptions a r e  reasonable  f o r  a  f l u i d i z e d  bed used t o  

f i l t e r  r e l a t i v e l y  d i l u t e  dus ty  gases  and s u b j e c t  t o  cont inuous r ecyc l ing  and 

c leaning  of t h e  bed granules .  The assumption t h a t  a  p a r t i c l e  which 

approaches a  g ranu le  t o  w i t h i n  a d i s t a n c e  comparable t o  i t s  r a d i u s  w i l l  

c o l l i d e  wi th  i t  and s t i c k  t o  i t  excludes t h e  e f f e c t  of t h e  s u r f a c e  p r o p e r t i e s  

of t h e  two subs tance  coming I n t o  con tac t .  For example, t h e  a d h e s i v i t y  of 

d u s t  p a r t i c l e s  t o  each o the r  may be  g r e a t e r  than  t h e i r  a d h e s i v i t y  t o  g ranu le s ,  



s o  t h a t  d u s t  agglomerates o r  " t rees1 '  may be  formed. Furthermore, f i l t r a t i o n  

i n  a  f l u i d i z e d  bed is complicated by d u s t  p a r t i c l e  buoyancy and e s p e c i a l l y  

by reentrainment:  d u s t  p a r t i c l e s  c o l l i d i n g  w i t h  a c o l l e c t o r  o r  g ranu le  o r  

even captured  on previous  g ranu le s  can b e  c a r r i e d  downstream by t h e  gas  

f low,  and t h i s  reduces  t h e  o v e r a l l  f i l t r a t i o n  e f f i c i e n c y .  These phenomena 

occur mainly when opera t ing  v e l o c i t y  is h igh  and when t h e  c o l l e c t i o n  medium 

(granules)  i s  almost s a t u r a t e d  w i t h  d u s t  p a r t i c l e s .  

The s i n g l e - p a r t i c l e  e f f i c i e n c y  E i s  def ined  a s  t h e  t o t a l  number of d u s t  

p a r t i c l e s  captured  by a  s i n g l e  g ranu le  d iv ided  by t h e  t o t a l  number of p a r t i -  

c l e s  flowing towards i t  i n  a  c y l i n d e r  of diameter  2a ,  o r i en t ed  along t h e  

f low d i r e c t i o n ,  a s  shown i n  F igure  2. Thus, 
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Figure 2 .  l n e r t i d l  deposition 1.lf particles. 

where J i s  t h e  t o t a l  d u s t  p a r t i c l e  f low r a t e  towards t h e  g ranu le  s u r f a c e ,  n  
0 

i s  t h e  d u s t  concen t r a t ion ,  and, U i s  t h e  gas s i i p e r f i c l a l  .ve loc i ty .  I f  i t  i s  
0 

assumed t h a t  t h e  captured  pa i t r ic lcs  a l l  fluw toward t h c  c o l l c o t o r  i n  a 

cnax ia l  c y l i n d e r  of diameter  2b, 

then  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  E can a l s o  be def lned  a s  



The computation of E r e q u i r e s  knowledge of e i t h e r  t h e  t o t a l  f low r a t e  J i n  

Eq. (13) o r  t h e  d i s t a n c e  b y  t h e  so-cal led d i s t a n c e  of t h e  l i m i t  o r  g raz ing  

t r a j e c t o r y ,  i n  Eq. (13a). Deposi t ion by d i f f u s i o n  i s  u s u a l l y  obtained from 

t h e  former and depos i t i on  by i n e r t i a l  impaction from t h e  l a t t e r .  

A. Dust Deposi t ion Mechanisms 

The s i m p l i f i e d  assumptions d iscussed  above a l low t h e  f l u i d i z e d  bed 

f i l t e r  t o  be  modeled mathematically.  The s i n g l e - p a r t i c l e  c o l l e c t i o n  mech- 

anisms considered t o  be  important a r e  Brownian d i f f u s i o n ,  i n e r t i a l  impact ion,  

d i r e c t  i n t e r c e p t i o n ,  and g r a v i t a t i o n a l  sedimentat ion.  Besides t h e s e  c l a s s i -  

c a l  depos i t i on  mechanisms, depos i t i on  by e l e c t r o s t a t i c  phenomena (usua l ly  

neglec ted  i n  publ ished t h e o r e t i c a l  s t u d i e s  of f i l t r a t i o n )  should have a  

l a r g e  in f luence  because of t h e  n a t u r a l  e l e c t r o s t a t i c  charging of t h e  g ranu le s  

a s  t hey  move about i n  t h e  f l u i d i z e d  bed, bilt t h e  problem of determining t h e  

s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  e l e c t r i c a l  f o r c e s  i n  a  bed of p a r t i c l e s  has  

no t  y e t  been solved.  

1. Brownian Dif fus ion .  For p a r t i c l e s  i n  t h e  submicron s i z e  r ange ,  t h e  

Brownian motion r e l a t i v e  t o  t h a t  of t h e  gas  stream i s  s u f f i c i e n t l y  i n t e n s e  t o  

produce c o l l i s i o n s  wi th  a  l a r g e  s u r f a c e  (granule)  l oca t ed  i n  t h e  flow. I f  

t h i s  s u r f a c e  r e t a i n s  t h e  p a r t i c l e s  e i t h e r  by adhesion o r  by some o the r  e f f e c t ,  

a  concent ra t ion  g r a d i e n t  i s  e s t ab l i shed  and p a r t i c l e s  d i f f u s e  i n  t h e  d i r e c t i o n  

of t h e  c o l l e c t o r .  D i f fus iona l  depos i t i on  i n c r e a s e s  r a p i d l y  wi th  decreas ing  

p a r t i c l e  s i z e  i d  decreas ing  v e l o c i t y  of f low and, neg lec t ing  ' e l e c t r o s t a t i c  

e f f e c t s ,  i s  t h e  main mechanism f o r  depos i t i on  i n  t h e  submicron p a r t i c l e  

s i z e  range. 

~ e v i c h ~ ~  obtained a  s o l u t i o n  f o r  t h e  p a r t i c l e  f l u x  due t o  d i f f u s i o n  

around a  s i n g l e  sphe re ,  i n  t h e  creeping motion (Re + 0) 'range i n  terms of t h e  
g: 

dimensionless  Sherwood number and P e c l e t  number, 
- .  



which ho lds  f o r  h i g h  P e c l e t  numbers. S u b s t i t u t i o n  of Eq. (15) i n t o  Eq. (13) 

g i v e s  

-2 /3  
E,, = 4xO.99~e (16) 

where t h e  P e c l e t  number is  defined a s  

and t h e  d i f f u s i o n  c o e f f i c i e n t  D a s  

where C i s -  t h e  Cunningham c o r r e c t i o n  f a c t o r ,  k  is  t h e  Boltzman c o n s t a n t ,  T  i s  

t h e  a b s o l u t e .  temperature,  r i s  t h e  r a d i u s  of t h e  d u s t  p a r t i c l e  and, p i s  t h e  
P  

v i s c o s i t y  of t h e  gas.  The Cunningham c o r r e c t i o n  f a c t o r  is  necessary  i n  con- 

s i d e r i n g  submicron s i z e d  p a r t i c l e s  when t h e  p a r t i c l e  s i z e  approaches t h e  

magnitude of t h e  mean f r e e  pa th  of t h e  gas  molecules.  It can be ca l cu la t ed  

from 

where A1=,1.257, A2 = 0.40, A = 0.55, and R i s  t h e  mean f r e e  pa th  of gas 
3  

molecules  % 0.065 pm a t  2 5 " ~  and 1 atm. 

For a sphere  loca t ed  i n  a  bed of neighboring p a r t i c l e s  a s  i n  a  

packed o r  f l u i d i z e d  bed a  c o r r e c t i o n  f a c t o r  g ( ~ )  must be introduced i n  

Eq. (16) i n  p l ace  of t h e  cons tan t  0.99 ' t o  t a k e  i n t o  account t h e  e f f e c t  of t h e  

p o r o s i t y  of t h e  bed, E .  This  was f i r s t  suggested by ~ f e f f e r ; ~ ~  who used t h e  

~appel ' '  sphere  i n  a  c e l l  or  " f r e e  sur face"  model t o  r e p r e s e n t  t h e  gas  flow 

f i e l d  i n  a  m u l t i p a r t i c l e  system. I n  ~ a p p e l ' s  model a l e d  u i  p a r t i c l e s  is  

r ep resen ted  by a  s i n g l e  p a r t i c l e  occupying t h e  cen te r  of an i d e a l i z e d  c e l l .  

The c e l l  c o n s i s t s  of two concen t r i c  spheres ,  a n  inne r  sphere  r ep re sen t ing  t h e  

s o l i d  p a r t i c l e  and an o u t e r  sphere  r ep re sen t ing  a  f l u i d  envelope having an 

o u t e r  " f r e e  su r i ace , "  i . e . ,  a  s u r f a c e  under no t a n g e n t i a l  strc33. The c e l l  

dimensions a r e  such t h a t  t h e  r a t i o  of t h e  volume of t h e  gas  i n  t h e  c e l l  t o  



t h e  t o t a l . vo lume  of t h e  c e 1 l . i ~  equal  t o  t h e  po ros i ty  of t h e  bed. Combining 

t h i s  model w i th  t h e  Levich.procedure f o r  so lv ing  t h e  d i f f u s i o n  equat ion ,  
36 

Pfef f e r  - obtained 

where g ( ~ )  i s  a complex f u n c t i o n  of t h e  po ros i ty  E. 

Other f low models t o  r ep re sen t  a  bed of spheres  i n  t h e  creeping 

motion range (Re + 0) have been proposed by KuwabaraY2'  am,^^ and Neale - g 
and ~ a d e ? .  33 These have been reviewed by Tardos e t  a l .  , 43y46  and i n  a l l  

c a ses  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  d i f f u s i o n  is  represented  by an  

equat ion  of t h e  fonn (16a) wi th  only t h e  func t ion  g ( ~ )  =hanging f  ran 

t o  model. For p o r o s i t i e s  i n  t h e  f l u i d i z e d  bed range (0.35 I E 5 0 . 7 )  Tardos 
4 6 

e t  al.  recammend t h e  semiempir ical  express ion  g ( ~ )  = 1 . 3 1 1 ~  a s  a  good 

r e p r e s e n t a t i o n  of bo th  t h e  t h e o r e t i c a l  s o l u t i o n s  and t h e  a v a i l a b l e  exper i -  

mental  d a t a ,  s o  t h a t  Eq. (16a) becomes 
I . . .  . . . .  

For h igh  p a r t i c l e  Reynolds numbers, t h e  f low f i e l d s  d iscussed  above' 

and  Eq. (16b) a r e  no t  app l i cab le .  chao5 used a  p o t e n t i a l  f low s o l u t i o n  f o r  

t h e  s ingle-sphere mass t r a n s f e r  problem and obtained., i n  terms o'f t h e  

Sherwood' number ;. . . 

112 Sh = 1.13Pe . (20) 
, . 

i7 I s h i i  and Johnson modified t h i s  s o l u t i o n  by us ing  t h e  p o t e n t i a l  flow 
22 s o l u t i o n  i n  Lamb. f o r  two concen t r i c  spheres  t o  t ake  i n t o  account t h e  

e f f e c t  of neighboring p a r t i c l e s  (po ros i ty  e f f e c t ) .  Their  r e s u l t ,  i n  terms 

of t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  E i s  g iven  by 
D ' 

Thus Eqs. (16b) and (21) e f f e c t i v e l y  se rve  t o  bracke t  t h e  s i n g l e - p a r t i c l e  

e f f i c i e n c y  due t o  d i f f u s i o n  f o r  very  low and v e r y  h igh  p a r t i c l e  Reynolds 



numbers, r e s p e c t i v e l y .  Tardos et  a1. 44 modified t h e s e  r e s u l t s  s l i g h t l y  t o  

t a k e  i n t o  account d e p o s i t i o n  s imultaneously by d i f f u s i o n  and by i n t e r -  

cep t ion  (d iscussed  below) by simply applying t h e  boundary cond i t i on  on t h e  

s u r f a c e  of t h e  c o l l e c t o r  (granule)  t o  include.  t h e  f i n i t e  s i z e  of t h e  d u s t  

p a r t i c l e .  This  r e q u i r e s ,  however, a  numerical  s o l u t i o n  f o r  d i f f e r e n t  

v a l u e s  of t h e  i n t e r c e p t i o n  parameter R , namely, t h e  r a t i o  of d u s t  p a r t i c l e  
P 

s i z e  t o  granule  s i z e ,  2 r  /d .. The s i n g l e - P a r t i c l e  e f f i c i e n c y  by d i f f u s i o n  
P  g  

and i n t e r c e p t i o n  obtained i n  t h i s  manner f o r  E = 0.5 us ing  t h e  Kuwabara f low 
4  4  f i e l d  is  p l o t t e d  i n  F igu re  3 .  

2. I n e r t i a l  Impaction. Unlike Brownian d i f f u s i o n ,  which i s  p reva len t  

f o r  submicron s i z e d  p a r t i c l e s  and decreases  w i th  f low v e l o c i t y ,  depos i t i on  

by i n e r t i a l  impaction i s  c h a r a c t e r i s t i c  f o r  p a r t i c l e s  >1 pm and i n c r e a s e s  

w i th  f low v e l o c i t y .  The mechanism of i n e r t i a l  impaction can be simply 

expla ined  as fol lows.  The e x i s t e n c e  of t h e  c o l l e c t o r  (granule)  i n  t h e  f low 

causes  bending of t h e  g a s  s t r eaml ines  near  t h e  su r f ace .  The p a r t i c l e s ,  

because of t h e i r  i n e r t i a ,  fo l low t h e  cu rva tu re  of t h e  s t r eaml ines  i n  t h e  

v i c i n i t y  of t h e  c o l l e c t o r  and a r e  p ro j ec t ed  a g a i n s t  i t  and separa ted  from 

t h e  stream. I n  o rde r  t o  f i n d  t h e  cond i t i ons  f o r  impact of a  d u s t  p a r t i c l e  

and a  g ranu le ,  t h e  t r a j e c t o r y  of t h e  d u s t  p a r t i c l e  must be computed. 

F igu re  2  shows t h e  l i m i t i n g  o r  graz ing  t r a j e c t o r y ,  def ined  a s  t h e  t r a j e c t o r y  

of a  d u s t  p a r t i c l e  s t a r t i n g  f a r  from t h e  c o l l e c t o r  and j u s t  being captured 

by a  granule .  Once t h i s  l i m i t i n g  t r a j e c t o r y  i s  known, t h e  s i n g l e - p a r t i c l e  

e f f i c i e n c y  by i n e r t i a l  impaction can be computed from E q .  (13a).  

T h e . t r a j e c t o r y  equat ions  f o r  a d u s t  p a r t i c l e  approaching a s i n g l e  
16 

s p h e r i c a l  c o l l e c t o r  were solved by Herne us ing  t h e  creeping f low v e l o c i t y  

f i e l d  (Re + 0) and by Michael and   ore^^^ f o r  p o t e n t i a l  f low (Re + -1 . 
g 35 g 

Pare t sky  e t  a l .  repea ted  t h e  s o l u t i o n  f o r  creeping f low us ing  the  Happel . 

I I f r e e  sur face"  model f low f i e l d  s o  t h a t  t h e  e f f e c t  of neighboring p a r t i c l e s  

could be taken i n t o  cons ide ra t ion .  ~ a r d o s ~ '  computed t h e  s i n g l e - p a r t i c l e  

e f f i c i e n c y  by i n e r t i a l  impaction us ing  t h e  f low f i e l d s  suggested by Tam, 
4 1  

Neale and Nader , 3 3  and Kuwabara. 21 H i s  r e s u l t ,  i n  t h e  form of t h e  s ing le -  

p a r t i c l e  e f f i c i e n c y  E p l o t t e d  a s  a  f u n c t i o n  of t h e  Stokes number def ined  by 
I 

\ 



f o r  a  p o r o s i t y  c = 0.4,  i s  g iven  i n  F igu re  4  f o r  t h e  f low f i e l d  of Neale and 

' Nader (Re +-. 0). Also included i n  F i g u r e  4 i s  t h e  s o l u t i o n  u s i n g ,  t h e  poten- 
g  

t i a l  ' f low f i e l d  and t h e  ~ u w a b a r a  model f o r  Re +- w. Both t h e  c reeping  f low 
g  

and t h e  p o t e n t i a l  f low s o l u t i o n s  i n d i c a t e  t h a t  no impaction of d u s t  would 

occur on t h e  c o l l e c t o r  below a  c e r t a i n  c r i t i c a 1 , v a l u e  of t h e  Stokes number. 

The p o t e n t i a l  f low model a l s o  p r e d i c t s  a  h igher  c o l l e c t i o n  e f f i c i e n c y  and 

a  lower c r i t i c a l  Stokes number than  t h e  c reeping  flow model because t h e  gas 

s t r eaml ines  a r e  crowded much c l o s e r  t oge the r  i n  p o t e n t i a l  f low than  i n  

creeping flow, a s  i nd ica t ed  by F igu re  5 ,  which shows t h e  v e l o c i t y  p r o f i l e  

' f o r  each c a s e  around a  s i n g l e  sphere.  
,' 

The dimensionless  p a r t i c l e  t r a j e c t o r y  equat ions  t h a t  were solved t o  . 
ob ta in  t h e  r e s u l t s  p l o t t e d  i n  F igure  4  a r e  

2  2  2  2  
where d  X/dt and d  Y/dt a r e  t h e  a c c e l e r a t i o n s  of t h e  dus t  p a r t i c l e ,  

dX/dt and dY/dt aFe t h e  v e l o c i t i e s  of t h e  d u s t  p a r t i c l e ,  U and U a r e  t h e  
X Y 

v e l o c i t y  components obtained from a  g iven  flow f i e l d  model, m i s  the  mass 
3 

P 
of t h e  p a r t i c l e ,  and t h e  v e c t o r  F i s  t h e  e x t e r n a l  f o r c e  a c t i n g  on t h e  

e x t  +- 
p a r t i c l e .  k'or d e p o s i t i u ~ ~  by i n e r t i a l  impaction on1 y  , Fext was s e t  equa l  t o  

+ + 
zero. I f  % is  s e t  equal  t o  m g  where g  i s  t h e  a c c e l e r a t i o n  of g r a v i l y ,  

e x t  P  
then  t h e  s o l u t i o n  of Eqs. ( 2 3 )  and ( 2 4 )  w i l l  g ive  depos i t i on  of t h e  p a r t i c l e s  

by a  combination of i n e r t i a l  and g r a v i t a t i o n  e f f e c t s .  The dimensionless  
2  + -+ 

group GaN=ga/U , which r e s u l t s  from s u b s t i t u t i o n  of Fext = m g  i n  Eqs. ( 2 3 )  
0 P 

and ( 2 4 ) ,  i s  c a l l e d  t h e  Galilee number and i s  c h a r a c t e r i s t i c  of g r a v i t a t i o n a l  

separa t ion .  E l e c t r o s t a t f c  efIrcts eould t h e o r e t i c a l l y  also be included i n  

t h e  s o l u t i o n  o f - t h e s e  equat ions  i f  a  r e l a t i o n s h i p  could be  developed f o r  t h e  

e x t e r n a l  f o r c e  due t o  e l e c t r o s t a t i c  e f f e c t s  on one d u s t  par t ic le 'moving  i n  a  



bed of granules .  As ;in the.  c a s e  of d ig fus ion ,  depos i t i on  by i n t e r c e p t i o n  can 

be  superimposed on i n e r t i a l  d e p o s i t i o n  s h p l y  by tak ing  i n t o  account t h e  

f i n i t e  s i z e  of t h e  d u s t  p a r t i c l e  by us ing  a  dimensionless  e f f e c t i v e  r a d i u s  

of t h e  g ranu le  equa l  t o  1 + R i n s t e a d  of t h e  a c t u a l  r a d i u s  of t h e  g ranu le  
P  ' 

i n  t h e  computations. This  was done by Gut f inger  e t  a1.14 f o r  bo th  t h e  

c reeping  and p o t e n t i a l  f low f i e l d s  f o r  a  po ros i ty  E = 0.5 (Figure 6 ) .  

:3, Direc t  In t e rcep t ion .  . The mechanism of i n t e r c e p t i o n  i s  t h a t  a  cer- 

t a i n  amount of dus ty  g a s  pas ses  i n  t h e  v i c i n i t y  of t h e  c o l l e c t o r  through t h e  

c o n c e n t r i c  a n n u l i  of r a d i i  a  and a  + r and d u s t  p a r t i c l e s  c a r r i e d  by t h e  
P ' 

gas  through t h i s  space  touch t h e  g ranu le  because of t h e i r  s i z e  r . This  
P 

happens even when i n e r t i a l ,  d i f f u s i o n a l ,  and o t h e r  d e p o s i t i o n  e f f e c t s  a r e  

n e g l i g i b l e  and is  independent of t h e  v e l o c i t y  of t h e  gas ,  depending only on 

t h e  s i z e  of t h e  d u s t  p a r t i c l e ,  r , t h e  s i z e  of the  g ranu le ,  a ,  and t h e  
P .  

p o r o s i t y  of t h e  bed, E. I n t e r c e p t i o n  can be taken  i n t o  account i n  combination 

w i t h  d i f f u s i o n  o r  i n e r t i a l  impaction a s  d iscussed  above, bu t  f o r  smal l  va lues  

of t h e  i n t e r c e p t i o n  parameter R = r p / a ,  a  s e p a r a t e  a n a l y t i c a l  s o l u t i o n  is  
P 

poss ib l e .  I f  i t  i s  assumed t h a t  t h e  d u s t  p z r t i c l e s  fo l low t h e  s t r eaml ines  

of t h e  f l u i d  and a p a r t i c l e  i s  captured only i f  i t  passes  w i th in  a  d i s t a n c e  

r of t h e  c o l l e c t o r  s u r f a c e  measured a t  t h e  ang le  0 = 90° w i t h  r e s p e c t  t o  t h e  
P  

d i r e c t i o n  of flow, t hen  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  is  g iven  by 

3 5 
Pare tsky  et a l .  , us ing  U0 e=n a s  g iven  by t h e  f low f i e l d  , 
i n t e g r a t e d  Eq. (25) t o  o b t a i n  ' 

and, choosing g ( ~ )  = 1 . 3 $ / ~ ,  
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Fi~ure 5. Flow lines around a sphere. 



With t h e  ~ a r n b ~ ~  f low f i e l d  used f o r  f low between two concen t r i c  spheres  i n  

p o t e n t i a l  f low,  i n t e g r a t i o n  of Eq. (24) g i v e s  

and, f o r  R << 1, 
P 

Thus, a l though i n  each c a s e  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  i n t e r -  

cep t ion  i s  independent of gas  v e l o c i t y ,  t h e  e f f i c i e n c y  is  much h igher  f o r  a 

g iven  v a l u e  of t h e  i n t e r c e p t i o n  parameter ,  
RP , f o r  p o t e n t i a l  f low than  f o r  

c reeping  flow. Th i s  i s  ev iden t  when comparing t h e  two f low f i e l d s  around 

a s i n g l e  s p h e r i c a l  c o l l e c t o r  (Figure 5).  I n  g e n e r a l ,  c ap tu re  by d i r e c t  

i n t e r c e p t i o n  i s  much l e s s  than  c a p t u r e  by d i f f u s i o n  o r  i n e r t i a l  impaction. 

4. Gravi ty  S e t t l i n g .  A s  pointed ou t ' above ,  t h e  t r a j e c t o r y  equa t ions ,  

Eqs. (23) and (24) ,  can be  used t o  i nc lude  any f o r c e  t h a t  can in f luence  t h e  

motion of a  d u s t  p a r t i c l e  i n  a  g ranu la r  bed. I f  t h e  e x t e r n a l  f o r c e  i n  t h e  
-+ -+ 

eq,uations i s  taken a s  F = m g ,  g r a v i t a t i o n a l  s e p a r a t i o n  ( s e t t l i n g )  of 
e x t  p  4 2 

p ~ r t i c l e s  i s  obtained toge the r  w i th  i n e r t i a l  e f f e c t s .  ~ a r d o s ' e t  a l ,  us ing  

t h e  Kuwabara f l o w  model, ob ta ined  t h e  cmbined  e f f e c t  of g r a y i t y  s e t t l i n g  

and i n e r t i a l  impaction f o r  a  bed of s p h e r i c a l  p a r t i c l e s  df p o r o s i t y  ' 

E = 9.5 ( F j ~ u r e  7 ) .  Since g r a v i t y  a c t s  i n  t h e  d i r e c t i o n  oppos i t e  t o  t h e  f low 

of t h e  gas ,  t h e  e f f i c i e n c y  i s  g r e a t e r  ??hen g r a v i t y  s e t t l i n g  i s  no t  included 

than  when i t  is. This  w a s  ' v e r i f i e d  experimental ly  by Thomas and Yocler 
4 7 

3 5 
a n d  by Pare tsky  e t  a l . ,  who found h i g h e i : f i l t r a t i o n  ' k f f i c i e n c i e s  i n  packed 

beds of s p h e r i c a l  p a r t i c l e s  f o r  downward than f o r  upward flow. However, l i k e  

c a p t u r e  by d i r e c t  i n t e r c e p t i o n ,  cap ture  by g r a v i t y  s e t t l i n g  iS smallcmpared 

wi th  t h a t  by d i f f u s i o n  and i n e r t i a l  impaction, un le s s  t he  d u s t  p a r t i c l e s  a r e  

v e r y  l a r g e .  

For a  s i n g l e  i s o l a t e d  c o l l e c t o r  (granule) ,  assuming a l l  o t h e r  co l l ec -  
6 

t i o n  mechanisms t o  be n e g l i g i b l e ,  Chen sugges ts  t h a t  t h e  s i n g l e - p a r t i c l e  

e f f i c i e n c y  due t o  g r a v i t y  s e t t l i n g  i s  given by 



PARTICLE DIAMETER ( p m  ) 

Single-sphere efficiency vs. particle diameter .42 

where V i s  t h e  te rmina l  s e t t l i n g  v e l o c i t y  of t h e  dus t  p a r t i c l e .  For 
P 

creeping f low and a  s p h e r i c a l  d u s t  p a r t i c l e  

s o  t h a t  Eq. (27) becomes 

With th. Stokes and G a l i l e o  numbers def ined  a s  S t  = 2Cp U r 2/9au and 
2 P O P  

Ga* = ga/Uo , and neglec t ing  p compared wi th  p , Eq. (27) becomes 
f P 

This  i s  t h e  same express ion  obtained by P r i eve  and ~ u c k e n s t e i n ~ ~  and by 

Rajagopalan and ~ i e n ~ '  f o r  a  s i n g l e  i s o l a t e d  c o l l e c t o r .  

To t a k e  i n t o  account t h e  e f f e c t  of neighboring p a r t i c l e s  i n  t h e  . 

3 5 
bed, Pare tsky  et  a l .  m u l t i p l i e d  Eq. (27b) by a  c o r r e c t i o n  f a c t o r  equal  t o  



t h e  average minimum pro jec t ed  area a v a i l a b l e  f o r  f low between t h e  

p a r t i c l e s ,  s o  t h a t  

EG = KcSt Ga' (27c) 

where K i s  t h e  c o r r e c t r o n  f a c t o r ,  chosen r a t h e r  a r b i t r a r i l y  a s  0.062. 
C 

Another way t o  t a k e  g r a v i t y  s e t t l i n g  i n t o  account' i n  a bed of p a r t i c l e s  is  

simply t o  r e p l a c e  t h e  s u p e r f i c i a l  v e l o c i t y  U i n  Eq. (27) b y .  t h e  bed 0  
v e l o c i t y ,  U 0 / s  Th i s  g i v e s  a  c o r r e c t i o n  f a c t o r  of K = E. 

C 

F i g i ~ r ~ .  7 ,  shows t h a t  f o r  403-pm g ranu le s  and f o r  2-pm d u s t  p a r t i c l e s  

t h e  c o l l e c t i o n  e f f i c i e n c y  i s  0.031% w i t h  g r a v i t y  taken i n t o  account and 

0.055% wi thout  i t ,  so  t h a t  t h e  e f f e c t  of g r a v i t y  is  %0.024%. Eq. (27c) g ives  

t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  g r a v i t y  s e t t l i n g  a s  0.0086% w i t h  

K = 0.062, and a s  0.056% w i t h  K = 0.4. 
C C 

For very  h igh  p a r t i c l e  Reynolds numbers, i f  t h e  drag c o e f f i c i e n t  

i s  taken  as cons tan t  and s e t  equal  t o  0.44, t h e  te rmina l  s e t t l i n g  v e i o t i r y  

of a  d u s t  p a r t i c l e  i s  g iven  by 

s o  t h a t  Kc[. ( 2 9 )  beculues . . 

which inc ludes  t h e  c o r r e c t i o n  f a c t o r  K t o  t ake  i n t o  account t h a t  t he  d u s t  
C 

p a r t i c l e s  a r e  s e t t l i n g  i n  a  bed of granules  r a t h e r  than on an i s o l a t e d  

c o l l e c t o r .  Since Eq. (29) i s  applicable only when the duot p a r t i c l e  

Reynolds number i s  ve ry  l a r g e  ( R e  2 l o o ) ,  Eq. (27c) w i l l  u s u a l l y  be v a l i d  
P  

f o r  t h e  f i l t r a t i o n  of micron s i zed  d u s t  p a r t i c l e s  even a t  ve ry  h igh  gas  

v e 1 o c j . t l . e ~  (potent ial .  f low) .  

B. Ove ra l l  F i l t r a t i o n  Ef f i c i ency  : 

In  t h e  preceding s e c t i o n ,  s i n g l e - p a r t i c l e  c o l l e c t i o n  e f f i c i e n c i e s  f o r  
. . .  

c a p t u r e  of d u s t  p a r t i c l e s  i n  a  g ranu la r  bed of s p h e r i c a l  c o l l e c t o r s  were 

presented  f o r  t h e  mechanisms of ~ r o w n i a n  d i f f u s i o n ,  i n e r t i a l  impaction, 



d i r e c t  i n t e r c e p t i o n ,  and g r a v i t a t i o n a l  s e t t l i n g .  To o b t a i n  t h e  t o t a l  

s i n g l e - p a r t i c l e  e f f i c i e n c y  when more than  one depos i t i on  mechanism is 

ope ra t ive  s imultaneously,  i t  is  necessary  somehow t o  combine t h e s e  expres- 

s ions .  One way of doing t h i s ,  a l r eady  d iscussed ,  i s  t o  s o l v e  t h e  t r a j e c t o r y  

equat ions ,  Eqs. (23) and (24) ,  f o r  i n e r t i a l  depos i t i on ,  w i th  i n t e r c e p t i o n  

and g r a v i t a t i o n a l  e f f e c t s  taken i n t o  account by modifying t h e  equat ions  

(adding t h e  g r a v i t a t i o n a l  f o r c e )  o r  t h e  boundary condi t ions .  Another 

p o s s i b i l i t y  i s  simply t o  add t h e  e f f i c i e n c i e s  t oge the r .  The simple empi r i ca l  

equat ion f o r  t h e  t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y ,  

48 
has been used by ~ a v i e s , '  p ichY3'  Paya takes  e t  a1.  ,34 Yao e t  a l . ,  and 

o the r s .  Davies p o i n t s  ou t  t h a t ,  s i n c e  t h e  i n t e r c e p t i o n  mechanism b r idges  

t h e  r eg ion  i n  which e i t h e r  d i f f u s i o n  o r  i n e r t i a  predominates,  i t  i s  

reasonable  t o  add t h e  t h r e e  e f f i c i e n c i e s  t o  o b t a i n  t h e  t o t a l  s i n g l e - p a r t i c l e  

e f f i c i ency .  Eq. (30) is ,  however, a t  b e s t  an approximation and must be used 

cau t ious ly  s i n c e  i t  can g i v e  ove r ly  h igh  e f f i c i e n c i e s ,  e s p e c i a l l y  when 

g r a v i t a t i o n a l  s e t t l i n g  and/or e l e c t r o s t a t i c  cap tu re  a r e  a l s o  s i g n i f i c a n t  and 

a r e  included i n  t h e  summation. 

I f  t h e  t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y  can be es t imated  from Eq. (30) 

o r  otherwise,  then  t h e  o v e r a l l  f i l t r a t i o n  e f f i c i e n c y  f o r  t h e  g ranu la r  bed, 

0 ,  can be c a l c u l a t e d  by using an equat ion  der ived  both  by Pare tsky  e t  a l .  
3  5 

and by Tardos e t  a l . ,  
42 
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where L i s  t h e  th ickness  o r  he ight  of t h e  g ranu la r  bed and E i s  i t s  voidage. 

This  express ion  f o r  t h e  o v e r a l l  e f f i c i e n c y  is  ve ry  s i m i l a r  t o  t h e  one 

cormnonly used f o r  c y l i n d r i c a l  f i b e r  f i l t e r s ,  12' 37 and assumes t h a t  f i l t e r  

elements s i t u a t e d  i n  t h e  same l a y e r  ( ~ / 2 a )  e x h i b i t  s i m i l a r  s e p a r a t i o n  prop- 

erties a11d L l l a L   he d u s t  conccnt ra t ion  a t  t h e  e x i t  and ent rance  of each 

l a y e r  i s  uniform. Eq. (31) shows t h e  important e f f e c t  of f i l t e r  t h i ckness  

L on f i l t r a t i o n  e f f i c i e n c y .  Thus, i nc reas ing  t h e  f i l t e r  t h i ckness  may 



d r a m a t i c a l l y  improve f i l t r a t i o n  e f f i c i e n c i e s  even f o r  t h e  c a s e  of ve ry  low 

s i n g l e - p a r t i c l e  e f f i c i e n c i e s .  

I n  F igures  8 and 9 ,  from Tardos e t  a1. ,46 t h e  o v e r a l l  f i l t r a t i o n  e f  f  i- 

c i ency  computed from Eq. (31) i s  compared wi th  exper imenta l  f i l t e r  bed e f f i -  

c i e n c i e s .  F igure  8 shows l i m i t e d  d a t a  from ~ a r e t s k y ~ ~  on a packed bed f i l t e r  

and d a t a  from Knett ing and ~ e e c l a n a n s ' ~  on a f  l u i d i e e d  bed f i l t e r .  I n  F igure  

9  t h e  theory  i s  compared wi th  experimental  d a t a  obtained by ~ a r d o s 4 ~  under 

c o n d i t i o n s  c a r e f u l l y  c o n t r o l l e d  t o  keep e l e c t r o s t a t i c  charge e f f e c t s  n e g l i g i -  

b l e .  I n  both  f i g u r e s  t h e  f i t  between t h e  theory  and experimental  d a t a  is  

q u i t e  good. Experimental d a t a  obta ined  where e l e c t r o s t a t i c  e f f e c t s  were no t  

n e g l i g i b l e  i nd ica t ed  e f f i c i e n c i e s  much h igher  than those  t h e o r e t i c a l l y  pre- 

d i c t e d  (an example of such d a t a  i s  presented i n  a l a t e r  s e c t i o n ) ,  

L= BED THICKNESS 
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Figure 8 .  Fluidized bed f i l t e r  e f f ic iency  v s .  dust part ic le  diameter.46 - , f i l t e r  porosity E = 0 . 5 ,  sphere diam. 2a = 100 pm, gas ve loc i ty  Uo = 

13 c ~ / s ~ c :  --- , F: = I l . ? H ,  :!a = h?5 1.1m, Ir, = 11.2 cm/soc. A ,  Paretolcy c t  
a1.35 experiment: U, = 13.3 crn/sec, L = 8 . 2  cm, 2a = 500-1850 urn, a = 
0.43; 0 , Knetting and ~eekmansly experiment: screen supported bed, 
U, = 11.2 cm/sec, L = 10 cm, 2a = 425 pm, E = 0.38.  
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t i n  bed of 690-urn granules (porosity E = 0.5)  m46 



A s t r i k i n g  f e a t u r e  of t he -  curves  i n  l?igures 8  and 9  i s  t h e  l a r g e  d i p  i n  

o v e r a l l . f i L l t r a t i o n  e f f i c i e n c y  a t  va lues  of t h e  d u s t  p a r t i c l e  diameter  i n  t h e  

range 0 .1  t o  5  Urn. The l o c a t i o n  .of t h e  d i p  and t h e  v a l u e  of t h e  o v e r a l l  

f i l t r a t i o n  e f f i c i e n c y ' t h e r e  a r e  f u n c t i o n s  of granule  d iameter ,  gas  v e l o c i t y ,  

and f i l t e r  bed th ickness .  Thus a  g ranu la r  bed f i l t e r  cannot be cha rac t e r -  

i zed  by an  o v e r a l l  e f f i c i e n c y  of s ay ,  99%. The e f f i c i e n c y  v a r i e s  w i t h  t h e  

s i z e  of t h e  dus t  being f i l t e r e d ,  b u t  i t  can be s a f e l y  s a i d  t h a t  g r a n u l a r  bed 

f i l t e r s . a r e  v e r y  e f f i c i e n t  i n  f i l t e r i n g  d u s t  of s i z e s  > 5  pm and <0.1 pm. 

IV. THE ROTATING FLUIDIZED BED AS A DUST FILTER 

I n  t h i s  s e c t i o n  a  numerical example i s  used t o  compare t h e  performance 

of a  convent ional  f l u i d i z e d  bed wi th  t h a t  of a  r o t a t i n g  f l u i d i z e d  bed a s  a  

dus t  f i l t e r .  Assume a  convent ional  f l u i d i z e d  bed of granule  diameter  

d  = 0.5 nun, g ranule  d e n s i t y  p = 2.5 g/cm3, and po ros i ty  E = 0.4. The 
g  g  

minimum f l u i d i z a t i o n  v e l o c i t y ,  U m f ,  depends on t h e  va lue  of Re . Assume 
,2 g 

Re < 20 and use  Eq. (9) t o  c a l c u l a t e  U rep lac ing  w r by g ,  t h e  
g mf ' 0 

a c c e l e r a t i o n  of g rav i ty :  

The g r a i n  Reynolds number i s  

The p re s su re  drop per  u n i t  th ickness  o r  l eng th  of bed is  computed from 

Eq. ( 2 ) ,  aga in  wi th  a rep laced  by g : 
r 

L 
- - - 0.6(2.5)980 = 

1470 dynes/cm = ' cm water 
L cm cm bed ' 



The main disadvantage of u s ing  a  convent ional  f l u i d i z e d  bed as a  d u s t  

f i l t e r ,  a s  d i scussed  i n  t h e  In t roduc t ion ,  i s  t h e  I M t a t i o n  of t h e  gas  

v e l o c i t y  t o  about 50% above t h e  minimum f l u i d i z a t i o n t v e l o c i t y .  I n  any indus- 

t r i a l  f i l t e r  t h i s  would r e q u i r e  t h e  f i l t e r  a r e a  t o  be  exces s ive ly  l a r g e .  I n  

t h e  r o t a t i n g  f l u i d i z e d  bed t h e  v e l o c i t y  i n  t h e  bed can be r a i s e d  t o  much 

h ighe r  levels by inc reas ing  t h e  r o t a t i o n a l  speed (g-loading). Assume, f o r  

example, a  r o t a t i n g  bed ope ra t ing  a t  a  v e l o c i t y  20 times a s  g r e a t  a s  t h e  

minimw f l u i d i z a t i o n  v e l o c i t y  of the convent ional  f l u i d i z e d  bed, i . e . ,  400 

cm/sec. Th i s  g ives  a  g r a i n  Reynolds number 

Assume a  bed th i ckness  L = 5 cm and an o u t e r  r a d i u s  ro = 12.5 cm, and evalu-  

a t e  t h e  G a l i l e o  number a t  r = r by us ing  Eq. (6a) : 
0 

Ar a  minimum f l u i d i z a t i o n  v e l o c i t y  of 400 cm/sec 

S u b s t i t u t i n g  i n t o  Eq. (8) and so lv ing  f o r  t h e  Ga l i l eo  number g ives  . . 

2 
B v t  Ga = 121w , s o  t h a t  

0 



A t  t h i s  r o t a t i o n a l  speed t h e  g-loading is 

. . 

This  i s  roughly a t  t h e  upper l i m i t  of t h e  range of r a d i a l  a c c e l e r a t i o n s  

(10 t o  50 g) used i n  r e c e n t  r ,o ta t ing  f l u i d i z e d  bed designs. 
. . 

Use of t h e  s imp l i f i ed  Eq. (9) t o  c a l c u l a t e  t h e  r o t a t i o n a l  speed . . g i v e s  

This  i s  an apprec i ab le  d i f f e r e n c e  from t h e  63.3 r a d i a n s l s e c  ca l cu la t ed  from 

Eq. (8) and i n d i c a t e s  t h a t  Eq. (9) cannot be used a t  a g r a i n  Reynolds numbers, 

R e  = 111, which i s  >20. 
g 

Calcu la t ion  of t h e  bed p re s su re  drop from Eq.  (4) g i v e s  

and 
I .  5 

AP - 3 . 0 1 ~ 1 0  = 6 1 a 3  - -  " cm'water 
L 5x980 cm bed 

Use nf Eq. (3)  t n  c a l c u l a t e  the  p re s su re  drop g i v e s  

2 2 
AP = 0.6(2.5) (63.3) (12.5) ln(12.517.5) , 

. - . . .  . . 
5 2 

AP = 4.80x1fl dynes/cm , 
and.  . 

5 
AP 4 . 8 0 ~ 1 0  = 98, - =  cm water  
L 5x980 cm bed ' 



Thus, f o r  a 5-cm-thick bed, Eqs. (3) and (4) g i v e  appr'&ciably d;lf f  e r e n t  

r e s u l t s  f o r  bed p r e s s u r e  drop. Comparison of t h e  r e s u l t  of Eq. (41, which 

i s  equ iva l en t  t o  assuming t h e  p r e s s u r e  drop t o  be  equal  t o  t h e  weight of 

t h e  r o t a t i n g  f l u i d b e d  bed pe r  u n i t  a r e a  of t h e  d i s t r l b u t o r  , Eq. (4a),  

w i t h  t h e  p re s su re  drop i n . t h e  convent ional  f l u i d i z e d  bed shows t h a t  i nc reas ing  

t h e  v e l o c i t y  by a f a c t o r  of ' 20 i n c r e a s e s  t h e  p r e s s u r e  droP pe r  u n i t  t h i ck -  

n e s s  a c r o s s  t h e  . bed . by . a . ' f a c t o r  of $40 and r e q u i r e s  a g-loading about 50 
. .. 

times t h e  a c c e l e r a t i o n  'of g r a v i t y .  

S ince  t h e  r o t a t i n g  f l u i d i z e d  bed i n  t h i s  example ope ra t e s  a t  a g-loading 

50 t imes  t h e  a c c e l e r a t i o n  of g r a v i t y ,  t h e  f i r s t  t h ing  t o  be  determined i s  

whether t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  g r a v i t a t i o n a l  s e t t l i n g ,  unlike 

t h a t  i n  a convent ional  f l u i d i z e d  bed, becomes an  important  mechanism of 

deposkti 'on i n  a r o t a t i n g  f l u i d i z e d  bed f i l t e r .  From Eq. (27c),  t h e  s i n g l e -  

p a r t i c l e  e f f i c i e n c y  due t o  g r a v i t y  s e t t l i n g  is  g iven  by 

EG = KcSt Ga' ( 2 7 ~ )  

2 
where Sf = 2Cp U r /gap and G a *  = g a / ~ 0 2  . Replecing U by t h e  minimum 

P 0 P 0 2 
f l u i d i z a t i o n  v e l o c i t y  Umf and g by t h e  r a d i a l  a c c e l e r a t i o n ,  a = w r ,  g i v e s  

. . r  0 

For low g r a i n  Reynolds numbers (creeping motion range) U m f Is evalua ted  by 

us ing  Eq. (9) so  that Eq. (32) becanes 

and, w i t h  p = 2.0 and p = 2.5, t h e  r e s u l t  is  
P g 

where R i s  t h e  i n t e r c e p t i o n  parameter prev ious ly  def ined  a s  R = 2 r  /d . 
P P P R 



For v e r y  h igh  g r a i n  . .  Reynolds . . numbers ( p o t e n t i a l  flow) , Urn, i n  Eq. (32.) 

is  def ined  by Eq. (10) : 
I 

For r '=  ro, Eq. (32) becomes 

and, w i t h  w = 63.3 r a d i a n s / s e c ,  r = 12.5 cm, and d  = 0.05 cm , 
0 0 g  

Equation (32b) i n d i c a t e s  t h a t  i n  t h e  creeping f low regime depos i t i on  by 

g r a v i t a t i o n a l  s e t t l i n g  i n  t h e  r o t a t i n g  f l u i d i z e d  bed i s  independent of ro t a -  

t i o n a l  speed and depends only  on t h e  i n t e r c e p t i o n  parameter R . This  i s  
P  

because inc reas ing  t h e  g  f o r c e  causes  an i n c r e a s e  i n  t h e  s e t t l i n g  v e l o c i t y  

of t h e  d u s t  p a r t i c l e ,  b u t  a l s o  causes  a  corresponding inc rease  i n  t h e  minimum 

f l u i d i z a t i o n  v e l o c i t y  of t h e  bed. I n  t h e  p o t e n t i a l  f low regime, however, 

depos i t i on  by g r a v i t a t i o n a l  s e t t l i n g  i s  a  func t ion  of t h e  square  r o o t  of t h e  

r a d i a l  a c c e l e r a t i o n  and t h e r e f o r e  v a r i e s  wi th  t h e  r o t a t i o n a l  speed of t h e  

bed. 

Table 1 g i v e s  va lues  of t h e  s i n g l e - p a r t i c l e  g r a v i t a t i o n a l  s e t t l i n g  

e f f i c i e n c y  a s  a  func t ion  of dus t  p a r t i c l e  s i z e ,  2 r  f o r  t h e  ca se  being 
P' 

considered,  w i th  u s e  of e i t h e r  Eq. (32h) or Eq. (32d) and an a r b i t r a r y  

va lue  of K = 0.062. 
C 

The d a t a  i n d i c a t e  t h a t  i n  bo th  t h e  creeping motion and t h e  p o t e n t i a l  

f low regimes t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  g r a v i t a t i o n a l  depos i t i on  

i n  t h e  r o t a t i u g  f l u i d i z e d  bed, as i n  a convent.i.ona1 f l u i d i z e d  bed, i s  ve ry  

small  f o r  dus t  p a r t i c l e s  i n  t h e  s i z e  range  0 .1  t o  4.0 vm.  Since t h e  r a d i a l  

a c c e l e r a t i o n  a c t s  oppos i t e  t o  t h e  d i r e c t s o n  of f low of t h e  gas ,  t h e  g r a v i t a -  

t i o n a l  depos i t i on  tends  t o  lower t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y .  However, 

because of t h e  smal l  e f f i c i e n c i e s  c a l c u l a t e d  i n  Table 1, t h e  u n c e r t a i n t y  



Table. 1 

Single-Particle Efficiency for Gravitational.Deposition 

Creeping Flow Regtme, ~ q .  (32b) 
-5 

0.1 3.05 ' 5.6~101: 5.6~10-~ 
0.5 1.33 6,1~10-~ 6.1~10-~ 
1.0 1.16 4 x10F5 2.1~10-~ 2.1~10-~ 
4.0 1.04 6.4~10 3.1~10 3.1~10 

Potential Flow Regime, Eq. (32d) 
-10 -4 

0.1 3.05 1.2~10-~ 
0.5  1.33 1.9~10-~ 1.3~10 - 1.3xPO-.+ 
1.0 P.16. . I 5  4.4~10-; 
4.0 1.04 1.6~10 6.3~10 6.3~10 

of t h e  v a l u e  of K and t h e  ques t ionab le  leg i t imacy of inc luding  E a s  another  
c G 

term i n  Eq. (30) t o  o b t a i n  t h e  t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y ,  t h i s  term 

w i l l  be  neg lec t ed ,  and only  depos i t i on  by d i f f u s i o n ,  i n e r t i a l  impaction, and 

i n t e r c e p t i o n  w i l l  be  considered.  

The s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  d i f f u s i o n ,  i n e r t i a l  impaction, and 

i n t e r c e p t i o n  is  computed below f o r  d u s t  p a r t i c l e  s i z e s  0 . 1  t o  4.0  pm f o r  

bo th  c reeping  f low (Re -t 0) and p o t e n t i a l  f low (Re -t w) with  use  of t h e  
g g 

equa t ions  developed i n  Sec t ion  111. Since t h e  a c t u a l  g r a i n  Reynolds number 

f o r  bo th  t h e  convent iona l  and t h e  r o t a t i n g  f l u i d i z e d  bed i s  of f i n i t e  s i z e  

between t h e s e  l i m i t s ,  t h e  r e s u l t s  w i l l  tend t o  bracke t  t h e  a c t u a l  

expected e f f i c i e n c i e s  . 
For d i f f u s i o n  i n  t h e  c reeping  motion regime, Eq. (16b) i s  used,  

. = 

w i t h  t h e  P e c l e t  number def ined  by ~ 4 .  .(17), t h e  diffus ' ion c o e f f i c i e n t  by 

Eq. (18), and t h e  Cunningham c o r r e c t i o n  f a c t o r  by Eq. (19) ,  and w i t h  t h e  
-16 ~ o l t z m a k  cons t an t  = 1 . 3 8 ~ 1 0  e r g s / O K  and a  bed voidage E = Q.4. 

Equation (18) can be  w r i t t e n  a s  



where 2 r  i s  t h e  d u s t  p a r t i c l e  diameter  i n  mfcrons, and i t  can b e  convenient ly  
P  

used t o  c a l c u l a t e  t h e  d i f f u s i o n  c o e f f i c i e n t  appearing i n  t h e  P e c l e t  number. 

S ing le -pa r t i c l e  e f f i c i e n c i e s  (as percent )  were c a l c u l a t e d  w i t h  Eq. (16b) and 

p l o t t e d  ve r sus  t h e  s u p e r f i c ' i a l  v e l o c i t y  i n  t h e  bed f o r  d u s t  p a r t i c l e s  of s i z e  

0.1, , 0 .5 ,  1 .0 ,  and 4.0 v m  (Figures  10 t o  13). The curves a r e  a l l  s t r a i g h t  

l i n e s  of s l o p e  equal  t o  -2/3 on t h e  log  p l o t s  and c l e a r l y  show t h a t  t h e  

e f f i c i e n c y  due t o  d i f f u s f o n  is  l a r g e s t  f o r  smal l  p a r t i c l e s  and decreases  a s  

t h e  d u s t  p a r t i c l e  s i z e  and v e l o c i t y  i n  t h e  bed inc rease .  

For d i r e c t  i n t e r c e p t i o n  i n  t h e  creeping motion regime, Eq. (25b) i s  used, 

and, ' f o r  E = 0.4, 

Calculated va lues  of E a r e  given i n  Table 2 . '  They a r e  s i g n i f i c a n t  on ly  
R .  

f o r  p a r t i c l e  s i z e s  of 1 and 4,pm and appear i n  F igures  12 and 13 a s  h o r i z o n t a l  

l i n e s  independent of v e l o c i t y .  

Table 2 

Single-Particle Eff ic iency, for  Direct Interception, R e  -t 0 

For i n e r t i a l  impaction, t h e  Re + 0 curve i n  F igure  4  (a p l o t  of s i n g l e -  

p a r t i c l e  e f f i c i e n c y  vs .  Stokes number) i s  used t o  c a l c u l a t e  s i n g l e - p a r t i c l e  

e f f i c i e n c y  a s  a func t ion  of s u p e r f i c i a l  bed v e l o c i t y  f o r  each p a r t i c l e  s i z e  

considered. A s  seen i n  Figure 4, depos i t i on  by i n e r t i a l  impaction i s  ze ro  

below a  c r i t i c a l  va lue  of t h e  Stokes number. For dus t  p a r t i c l e s  of s i z e s  

0 .1  and 0.5 Urn t h e  c r i t i c a l  Stokes number has  no t  y e t  been reached a t  super- 

f i c i a l  bed v e l o c i t i e s  of up t o  1000 cm/sec, so  t h a t  i n e r t i a l  impaction does 
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n o t  c o n t r i b u t e  t o  the f i l t r a t i o n  efficj.ency, and the t o t a l  s i n g l e - p a r t i c l e  

e f f i c i e n c i e s  p l o t t e d  i n  F igu res  10 and 11 a r e  f o r  d i f f u s i o n  and impaction 

only. For d u s t  p a r t i c l e s  of s i z e s  1.0 and 4 f0  urn, i n e r t i a l  impaction becomes 

important i n  t h e  v e l o c i t y  range  of i n t e r e s t ,  and i t s  e f f e c t  i s  seen  i n  the 

r a p i d l y  r i s i n g  p o r t i o n  of the t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y  curves i n  

F igures  12 and 13. I n  F igures  10 through 13 t h e  t o t a l  s i n g l e - p a r t i c l e  

e f f i c i e n c y  was c a l c u l a t e d  by t h e  s imple  summation r u l e ,  E q .  (30). 

For p o t e n t i a l  f low,  t h e  s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  d i f f u s i o n  was 

ca l cu la t ed  by us ing  Eq.  (211, 

The s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  i n t e r c e p t i o n  was c a l c u l a t e d  by us ing  

Eq. C26a), , I 
. > 

ER.= 3R / E - ,  . . . . . . 
P .  

(26a) 

and, f o r  E = 0.4, 

Table 3 

Single-Particle Efficiency for Direct Interception, Re -+ 

The r e s u l t s ,  summarized i n  Table 3 ,  a r e  seen  t o  be much h igher  than  those  f o r  

c reeping  f low (Table. 2). T l ~ e  s i n g l e - p a r t i c l e  e f f i c i e n c y  by i n e r t i a l  impac- 

t i o n  was obtained by u s i n g  t h e  Re -t - curve  i n  F igu re  4 .  F igures  14 through 

17 a r e  p l o t s  of t h e  s i n g l e - p a r t i c l e  efficiency f o r  d i f f u s i o n  and f o r  d i r e c r  

f n t e r c e p t i o n  and of t h e  t o t a l  obtained by  t h e  s imple summation r u l e ,  Eq.  (30). 
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The r e s u l t s  f o r  t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y  i n  F igures  10 through 

17 were used t o  p l o t  t o t a l  s i n g l e - p a r t i c l e  e f f i c i e n c y  a g a i n s t  d u s t  p a r t i c l e  

s i z e  f o r  superf  i c i a l  v e l o c i t i e s  of 30 and. 400 cm/sec, f o r  bo th  creeping and 

p o t e n t i a l  flow (Figure 18).  For a s u p e r f i c i a l  v e l o c i t y  of 30 cm/sec, repre-  

s en t ing  opera t ing  condi t ions  i n  a convent ional  f l u i d i z e d  bed a t  1.5 t imes 

t h e  minimum f l u i d i z a t i o n  v e l o c i t y ,  t h e  lower curve  (Re +- 0) i s  more a p p l i c a b l e  

because t h e  g r a i n  Reynolds number is  v e r y  low (< lo ) .  For t h e  r o t a t i n g  f l u i d -  

i zed  bed ope ra t ing  a t  a  s u p e r f i c i a l  v e l o c i t y  of 400 cm/sec, t h e  g r a i n  

Raynolds number was ca l cu la t ed  t o  be  ill; t h e r e f o r e ,  t h e  proper  e f f i c i e n c y  

vs. d u s t  p a r t i c l e  diameter  curve l i e s  somewhere between t h e  two l i m i t i n g  

curves r ep re sen t ing  creeping f low and p o t e n t i a l  flow. 

The o v e r a l l  bed e f f i c i e n c y  n w a s  ca l cu la t ed  from t h e  t o t a l  s i n g l e -  

p a r t i c l e  e f f i c i e n c y  by us ing  Eq. (31) w i t h  an assumed bed th i ckness  

L = 5 cm. The r e s u l t s  f o r  a  r o t a t i n g  f l u i d i z e d  bed opera t ing  a t  a  minimum 

f l u i d i z a t i o n  v e l o c i t y  of 400 cm/sec a r e  presented i n  F igure  19 f o r  t h e  two 

l i m i t i n g  cases  of creeping motion (Re +- 0)  and p o t e n t i a l  f low (Re  +- -). 

The a c t u a l  curve f o r  a  Reynolds number of 111 should l i e  somewhere.in.betwee* 

The d a t a  i n  F igure  19 i n d i c a t e  t h a t  a  r o t a t i n g  f l u i d i z e d  bed ope ra t ing  a t  the.  

condi t ions  chosen f o r  t h i s  numerical example should se rve  a s  an e x c e l l e n t  

f i l t e r ,  wi th  e f f i c i e n c i e s  t h a t  a r e  v e r y  h igh  i n  t h e  e n t i r e  spectrum of d u s t  

p a r t i c l e  s i z e s  and approach 100% f o r  p a r t i c l e s  >1 um.  

The o v e r a l l  f i l t r a t i o n  e f f i c i e n c i e s  a c t u a l l y  obtained i n  a  r o t a t i n g  

f l u i d i z e d  bed could be lower than those  p red ic t ed  by Figure  19 s i n c e  t h e  

t h e o r e t i c a l  a n a l y s i s  d id  not  t ake  i n t o  account t h e  p o s s i b i l i t y  of r e e n t r a i n -  

ment of d u s t  p a r t i c l e s  once t h e y  1~ri.vs been captured by the.  g r anu le s  i n  t h e  

f i l t e r .  This d i d  not  seem t o  occur i n  experiments i n  convent ional  f l u i d i z e d  

bed f i l t e r s ,  a s  shown by t h e  good agreement between t h e  experimental  d a t a  and 

t h e  t h e o r e t i c a l  p r e d i c t i o n s  i n  F igures  8  and 9.  However, t h e  much h igher  

opera t ing  v e l o c i t y  (400 r a t h e r  than  30 cm/sec) a s  we l l  a s  t h e  e f f e c t  of t h e  

t a n g e n t i a l  v e l o c i t y  imparted t o  t h e  g a s  i n  t h e  r o t a t i n g  f l u i d i z e d  bed could 

cause apprec i ab le  d u s t  r e e n t r a i ~ u e i ~ t  and a corrsspond3,ng drop i n  o v e r a l l  

e f f i c i ency .  Whether t h i s  w i l l  occur i n  p r a c t i c e  can be  determined only by 

experiments . 



On t h e  o t h e r  hand, t h e  t h e q r e t i c a l  a n a l y s i s  a l s o  neglec ted  d e p o s i t i o n  

of d u s t  due t o  e l e c t r o s t a t i c  e f f e c t s ,  *ch could g r e a t l y  enhance t h e  o v e r a l l  

f i l t r a t i o n  e f f i c i e n c y .  ~ a r d o s ~ ~  found t h a t  a f l u i d i z e d  bed f i l t e r  w l t h  

L u c i t e  spheres  as t h e  g ranu le s  f o r  f i l t e r i n g  cement d u s t  gave f i l t r a t i o n  

. e f f i c i e n c i e s  much h igher  than  expected from t h e o r e t i c a l  p r e d i c t i o n s  

(F igure  20). H e  found t h a t  t h e  d iscrepancy  between theory  and experiment 

was due t o  t h e  L u c i t e  bed being e l e c t r o s t a t i c a l l y  charged, and t h a t  t h e  

amount of charge could be  increased  by v igorous  f l u i d i z a t i o n  of t h e  bed wi th  

d r y  a i r  be fo re  o r  dur ing  t h e  f i l t r a t i o n  experiment o r  decreased by pass ing  

v e r y  humid a i r  a t  low v e l o c i t y  through t h e  bed t o  remove t h e  charge. The 

f i l t r a t i o n  e f f i c i e n c y  of t h e  f l u i d i z e d  bed f i l t e r  showed a large increase 

immediately a f t e r  t h e  g a s  v e l o c i t y  exceeded t h e  minimum f l u i d i z a t i o n  v e l o c i t y  

CFigure 21);  t h i s  i nd ica t ed  t h a t  f l u i d i z a t i o n  causes t h e  d i e l e c t r i c  p l a s t i c  

g r a n u l e s  t o  acqu i r e  e l e c t r o s t a t i c  charges  by con tac t  o r  f r i c t i o n a l  e l e c t r i f i -  

c a t i o n ,  a phenomenon known a s  t r i b o e l e c t r i f i c a t i o n .  Fur ther  i n c r e a s e s  i n  gas  

v e l o c i t y  above minimum f l u i d i z a t i o n  cause  a  decrease  i n  e f f i c i e n c y  due t o  

bubbles  formed i n  t h e  bed and t h e  bypassing of d u s t  v i a  t h e  bubble phase. 

The l a r g e  i n c r e a s e  i n  e f f i c i e n c y  observed i n  t h e  f l u i d i z e d  bed was no t  found 

i n  a  packed bed of sand granules  r u n  a t  t h e  same ope ra t ing  cond i t i ons  (Figure 

21).  Anderson and silverman' noted t h e  importance of t r i b o e l e c t r i f i c a t i o n  i n  

f l u i d i z e d  bed f i l t e r s  a s  e a r l y  a s  1958, and found t h a t  e l e c t r i c  charge i s  

genera ted  w i t h i n  a  f l u i d i z e d  bed because of con tac t s  of t h e  f l u i d i z e d  media 

wl th  conducring s u r f a c e s  i n t e r s p e r s e d  throughout t h e  media; i n  one s e r i e s  of 

t e s t s  they  noted a  12-fold i n c r e a s e  i n  c o l l e c t i o n  e f f i c i e n c y  due t o  t h e  use  

of e l e c t r o s t a t i c a l l y  charged f i l t e r  media. Recent ly Figueroa and L ich t  
13! 

obta ined  v e r y  h igh  c o l l e c t i o n  e f f i c i e n c i e s  (299%) by us ing  r e l a t i v e l y  

sha l low (59 cm) f l u i d i z e d  beds of p l a s t i c  beads f o r  f i l t e r i n g  a e r o s o l s  i n  t h e  

0 .5  t o  2.0-um s i z e  ranges;  they  a t t r i b u t e d  t h i s  t o  t h e  t r i b o e l e c t r i f i c a t i o n  

process .  Higher c o l l e c t i o n  e f f i c i e n c i e s  due t o  t r i b o e l e c t r i f i c a t i o n  have 
2 

a l s o  been r epor t ed  f o r  a  spouted bed fj1.te.r. 

V. CONCLUSIONS 

Granular  bed f i l t e r s  provide h igh  f i l t r a t i o n  e f f i c i e n c i e s  f o r  f i l t e r i n g  

f i n e  d u s t  o r  m i s t  i n  t h e  p a r t i c l e  s i z e  range  around 1 pm. Compared wi th  more 
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convent iona l  p a r t i c u l a t e  removal equipment f o r  t h i s  d u s t  s i z e  range  

( e l e c t r o s t a t i c  p r e c i p i t a t o r s ,  bag f i l t e r s ,  Ventur i  s c rubbe r s ) ,  they  a r e  

a t t r a c t i v e  where process  cond i t i ons  r e q u i r e  (1) use  of an i n e r t  c o l l e c t o r  

capable  of withstanding e l eva t ed  temperatures  as i n  combustion processes ,  

c o a l  g a s i f i c a t i o n ,  e t c . ,  o r  ( 2 )  simultaneous a i r  p o l l u t a n t  abso rp t ion  and 

p a r t i c u l a r  f i l t r a t i o n ,  e .g . ,  t o  remove H S  and a l k a l i  fume from a  coa l  
2 

g a s i f i e r .  With f i x e d  beds t h e  need t o  c l e a n  o r  r e g e n e r a t e  t h e  c o l l e c t o r  

g r a n u l e s  r e q u i r e s  c y c l i c a l  ope ra t ion  o r  t h e  use  of a  moving bed through 

which t h e  c o l l e c t o r  g ranu le s  c i r c u l a t e  slowly. F lu id ized  beds o f f e r  t h e  

p o s s i b i l i t y  of cont inuous ope ra t ion ,  low p res su re  drop,  and increased  

c o l l e c t i o n  e f f i c i e n c i e s  due t o  t h e  t r i b o e l e c t r i f i c a t i o n  e f f e c t  bu t  cannot be 

opera ted  a t  v e l o c i t i e s  much h igher  than  minimum f l u i d i z a t i o n  because bubbling 

beds have lower c o l l e c t i o n  e f f i c i e n c i e s  due t o  bypassing of dus t  p a r t i c l e s  

i n  t h e  bubble phase. This  s eve re ly  limits t h e  use  of f l u i d i z e d  beds a s  

commercial f i l t e r s  because of t h e  excess ive  bed a r e a  t h a t  would be requi red .  

The r o t a t i n g  f l u i d i z e d  bed p r e s e n t s  a  novel means of overcoming t h i s  

l i m i t a t i o n  s i n c e  t h e  minimum f l u i d i z a t i o n  v e l o c i t y  can be increased  t o  many 

t imes  t h a t  of a  convent iona l  f l u i d i z e d  bed simply by inc reas ing  the  r o t a -  

t i o n a l  speed of t h e  bed. Furthermore, ope ra t ion  of a  r o t a t i n g  f l u i d i z e d  

bed a t  a  minimum f l u i d i z a t i o n  v e l o c i t y  of 400 cm/sec, say ,  compared wi th  

20 t o  30  cm/sec i n  a ' conven t iona l  f l u i d i z e d  bed w i l l  s h i f t  t h e  minimum 

f i l t r a t i o n  e f f i c i e n c y  of t h e  bed t o  a  smal le r  s i zed  d u s t  p a r t i c l e  and w i l l  

a l s o  t a k e  advantage of t h e  h igher  c o l l e c t i o n  e f f i c i e n c i e s  obtained f o r  high 

than  f o r  low Reynolds number f low (see F igure  18). Running a t  a  substan-  

t i a l l y  h ighe r  v e l o c i t y  w i l l  i n c r e a s e  t h e  p re s su re  drop ac ros s  t h e  bed, bu t  

t h i s  i s  t r u e  f o r  any type of g ranu la r  bed f i l t e r  inc luding  packed and moving 

bed f i l t e r s .  

Since t h e  only experimental  da t a4  f o r  r o t a t i n g  f l u i d i z e d  bed f i l t e r s  

a r e  inconclus ive ,  i t  i s  no t  known whether t h e  h igh  gas  v e l o c i t i e s  through 

r h e  bed and t h e  t a n g e n t i a l  v e l o c i t i e s  produced by rhe  r o r a r l o n  of t h e  

d i s t r i b u t o r  w i l l  tend t o  cause reentrainment  of dus t  p a r t i c l e s  a l r eady  

c o l l e c t e d  by t h e  g ranu le s  and thus  lower t h e  expected o v e r a l l  f i l t r a t i o n  

e f f i c i e n c i e s .  The answer t o  t h i s  important ques t ion  can b e  obtained only  

by c a r e f u l l y  designed experiments.  



One of t h e  problepls a s soc i a t ed  with f l u i d i z e d  bed f i l t e r s  i s  t h e  
+ 

p o s s i b i l i t y  of c logging t h e  d i s t r i b u t o r  when f i l t e r i n g  gases  conta in ing  d u s t  

of wide s i z e  d i s t r i b u t i o n ,  inc luding  l a r g e  a s  w e l l  a s  smal l  p a r t i c l e s .  For 

such a p p l i c a t i o n s  i t  might be necessary  t o  remove t h e  l a r g e  p a r t i c l e s  i n  a  

cyclone o r  o t h e r  device  be fo re  sending t h e  dus ty  gas  t o  t h e  f l u i d i z e d  bed 

f i l t e r .  Since a cyclone i s  e f f i c i e n t  only f o r  f i l t e r i n g  d u s t  p a r t i c l e s  of 

s i z e  215 VIU, and t h e  smal le r  p a r t i c l e s  l eave  wi th  t h e  e x i t  gas  i n  t h e  

cyc lone ' s  o u t l e t  t ubes ,  i t  seems l o g i c a l  t o  combine t h e  l a r g e - p a r t i c l e  

f i l t e r i n g  c a p a b i l i t y  of t h e  cyclone w i t h  t h e  sma l l -pa r t i c l e  f i l t e r i n g  

c a p a b i l i t y  of t h e  r o t a t i n g  f l u i d i z e d  bed and thus  produce a  h i g h l y  e f f i c i e n t  

f i l t e r  f o r  a l a r g e  spectrum of p a r t i c l e  s i z e s  a s  w e l l  a s  avoid problems of 

c logging of t h e  d i s t r i b u t o r  i n  t h e  r o t a t i n g  f l u i d i z e d  bed. One such device  

designed by P f e f f e r  and Tardos, (Figure 22)  has  t h e  r o t a t i n g  f l u i d i z e d  bed 

simply f i t t e d  i n  t h e  c y l i n d r i c a l  e x i t  tube of a  convent ional  cyclone. 

D i r t y  granules  a r e  cont inuously removed from t h e  bottom of t h e  r o t a t i n g  

f l u i d i z e d  bed toge the r  w i th  t h e  l a r g e  d u s t  p a r t i c l e s  c o l l e c t e d  by t h e  cyclone. 
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Figure 22.  Combined cyclone separator and rotating 
f luidized bed f i l t e r .  



Clean g ranu le s  a r e  added t o  t h e  r o t a t i n g  bed from a hopper a t  t h e  top.  Since 

t h e  r o t a t i n g  f l u i d i z e d  bed can be  run  a t  v e l o c i t i e s  much h ighe r  t han  t h o s e  i n  

a convent iona l  f l u i d i z e d  bed, and s i n c e  t h e  h e i g h t  of t h e  bed can a l s o  be  

v a r i e d ,  i t  t u r n s  o u t  t h a t  t h e  e n t i r e  f i l t e r  can be  opera ted  a t  t h e  recommended 

i n l e t  v e l o c i t y  of a  s tandard  cyclone. ~ u r t h e r  des ign  s t u d i e s  and experiments 

are necessary  t o  determine whether such a  device  i s  indeed f e a s i b l e  a s  a  

h i g h  e f f i c i e n c y  d u s t  f i l t e r .  

NOMENCLATURE ( I N  CGS UNITS) 

a r a d i u s  of g ranu le s ,  cm 
2. 

a c e n t r i p e t a l  a c c e l e r a t i o n ,  cm/sec r 
b d i s t a n c e  of l i m i t i n g  t r a j e c t o r y ,  cm 

C Cunningham c o r r e c t i o n  f a c t o r ,  dimensionless ,  def ined  by E q .  (19) 

D 
2 

d i f f u s i o n  c o e f f i c i e n t  of d u s t  p a r t i c l e s ,  cm / s e c ,  de f ined  by E q .  (18) 

d diameter  of g ranu le ,  cm 
g 

E s i n g l e - p a r t i c l e  c o l l e c t i o n  e f f i c i e n c y ,  dimensionless  

E~ s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  d i f f u s i o n ,  dimensionless  

E~ 
F" 

e x t  

s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  i n e r t i a l  impaction, dimensionless  

s i n g l e - p a r t i c l e  e f f i c i e n c y  due t o  i n t e r c e p t i o n ,  dimensionless  

t o t a l  s i n g l e - p a r t i c l e  c o l l e c t i o n  e f f i c i e n c y ,  dimensionless  

e x t e r n a l  f o r c e  a c t i n g  on a  dust.  p a r t i c l e ,  dynes 

a c c e l e r a t i o n  of g r a v i t y ,  cm/sec2 

a c c e l e r a t i o n  of g r a v i t y  showing d i r e c t i o n ,  cm/sec 
2 

f u n c t i o n  of voidage,  dimensionless ,  used i n  E q .  (16a) 

G a l i l e o  number, dimensionless ,  def ined  by E q .  (6)  
," 

G a l i l e o  number, dimensionaless  

he igh t  of r o t a t i n g  f l u i d i z e d  bed, cm 

J d u s t  p a r t i c l e  f low r a t e ,  p a r t i c l e s l s e c  

K Boltzmann cons t an t ,  1.38~10-I ' ergs/"h 

K 
C 

c o r r e c t i o n  f a c t o r ,  dimensionless ,  def ined  by E q .  (27c) 

L t h i c k n e s s  of f l u i d i z e d  bed, cm 

m mass of dus t  p a r t i c l e ,  g  
P 2 AP p r e s s u r e  drop a c r o s s  f l u i d i z e d  bed, cm water/cm bed o r  dynes/cm 



Pec le t  number, dimensionless ,  def ined  by Eq.  (17) 
3  volumetr ic  f low , r a t e  of gas ,  . cm /sec  

r a d i a l  d i s t a n c e  from a x i s  of r o t a t i o n ,  o r  r a d i a l  coord ina te  i n  x , y  

plane ,  cm 

inner  r a d i u s  of r o t a t i n g  f l u i d i z e d  bed, cm 

o u t e r  r a d i u s  of r o t a t i n g  f l u i d i z e d  bed, cm 

r a d i u s  of d u s t  p a r t i c l e ,  cm 

i n t e r c e p t i o n  parameter,  r p / a ,  dimensionless  

' g r a i n  Reynolds. number, dimensionless  

Reynolds number a t  minimum f l u i d i z a t i o n ,  dimensionless ,  def ined  by 

Eq. (7) 

Sherwood number, dimensionless  

Stokes number, dimensionless ,  def ined  by Eq.  ( 2 2 )  

Dimensionless t ime,  a s  used i n  Eq. ( 2 3 )  
0 abso lu t e  temperature,  K 

v e l o c i t y  a t  minimum f l u i d i z a t i o n ,  cm/sec 

s u p e r f i c i a l  v e l o c i t y  through a bed of p a r t i c l e s ,  cm/sec 

te rmina l  s e t t l i n g  v e l o c i t y  of a d u s t  p a r t i c l e ,  cm/sec 

t a n g e n t i a l  v e l o c i t y ,  cm/sec 

v e l o c i t y  of gas  i n  t h e  0 d i r e c t i o n ,  cm/sec 

coord ina tes  i n  t h e  x,y  plane,  dimensionless ,  def ined by Eqs. ( 2 3 )  and 

( 2 4 )  

void f r a c t i o n ,  dimensionless  

void f r a c t i o n  a t  minimum f l u i d i z a t i o n ,  dimensionless  

o v e r a l l  f i l t r a t i o n  e f f i c i e n c y  f o r  a g ranu la r  bed, dimensionless  

v i s c o s i t y  of a i r ,  g/cm-sec 
2  

kinematic v i s c o s i t y  of t h e  a i r ,  cm / sec  

s p h e r i c i t y  of g ranu le s ,  dimensionless  

d e n s i t y  of a i r ,  g/cm 
3 

d e n s i t y  of g ranu le s ,  g/cm 
3 

d e n s i t y  0% d u s t  p a r t i c l e s ,  g/cm 
3 

po la r  coord ina te  i n  t h e  x , y  p lane ,  r a d i a n s  

r o t a t i o n a l  speed of d i s t r i b u t o r ,  r ad / sec  
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