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AB STRACT

This appendix provides detailed information regarding game
theory (strategic analysis) and its potential role in safeguards
to supplement the main body of this report. 1In particular,
it includes an extensive, though not comprehensive review of
literature on game theory and on other topics that relate to
the formulation of a game-theoretic model (e.g. the payoff func-
tions). The appendix describes the basic form and components
of game theory models, and the solvability of various models.
It then discusses three basic issues related to the use of strategic
analysis in material accounting: (1) its understandability;
(2) its viability in regulatory settings; and (3) difficulties
in the use of mixed strategies. Each of the components of a

game theoretic model are then discussed and related to the present
context.
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EXECUTIVE SUMMARY

The procedures for setting alarm thresholds based on inventory

differences (IDs) in the accounting of special nuclear

material have traditionally been based on concepts of statisti-
cal quality control and hypothesis testing. This approach has
come under some criticism because it is not specifically sensitive
to diversion by intelligent adversaries. The theory of games
provides a modeling framework which can explicityly identify
the "best" course of action against an intelligent adversary.

The NRC has previously under taken research to develop prel imin-
ary game theory models for the material accounting context.
These and other related efforts are used as points of reference
in the discussions here regarding the applicability of game
theory in this context, and the development of specific components
of the model.

The basic elements of a game theoretic model are:

o the players and their allowed relations,
o the players' strategy spaces, and
o the players' payoff functions.

The first element includes the number of players, and their
ability to communicate and collaborate. Strategy spaces refer
to the courses of action that are available to the players,
including probabilistic mixtures of strategies. Payoff functions
are the mathematical representation of the value that a player
receives based on the outcome of a game. These elements must
be supplemented by a solution concept. The most general solution
for noncooperative games is that of an equilibrium point--a
solution (action by each player) from which no player has any
incentive to deviate unilaterally, i.e. without arrangement
that another player will also deviate. Other solutions are
possible, depending on the form of the game., Basic game theory
can be extended in several ways to provide more realistic (but
often more difficult to solve) models, for example, stochastic
games in which players move from game to game, and repeated
games with incomplete information players may be playing any
one of several possible games but do not know for sure which
one.

Three specific issues have been raised regarding the applica-
bility of game theory in setting ID alarm thresholds:

o the understandability of game theory,
o the viability of game theory in regulatory settings,
and



o possible difficulties of using mixed strategies

in implementatation.

The first issues does not appear to be a problem for three reasons:
(1) Game theory has a long and successful history of popularization
for "lay" persons. (2) At a more technical level, game theory
is not regarded as son complex that its study need be deferred
to graduate school., (3) It is the responsibility of those engaged
in safeguards activities to provide needed technical expertise;
and given (1) and (2), this is not a costly requirement. Regarding
the x;gp;l;;y of game theory in regulatory settings, mathematical
models in general have been found to be acceptable in regulatory
settings, provided they are not unreasonable, arbitrary, and
capricious, and do not contradict relevant data or well-established
theory.

Mixed strategies-—-those in which various strategies are
selected with specified probabilities--have the advantage of
denying the adversary information regarding just what the player
will do under a specific set of circumstances. This can result
in higher payoffs to the player using a mixed strategy. On
the other hand, use of mixed strategies entails planning--with
its associated costs--for more possible actions, It may be
possible to develop "near-optimal" pure strategies that are
an acceptable compromise.

In addition to these practical issues, several technical
issues are also addressed. With respect to the number of players,
it is concluded that two players provide an adequate representation
of the context, particularly since games with more than two
players are more difficult to solve. The inclusion of multiple
sites and multiple accounting periods appears to be practical
in the specification of strategy spaces. A serious difficulty
arises in the specification of the payoff functions. While,
the zero sum assuption, in which the diverter's payoff functin
is assumed to be the negative of the defender's, seems to be
reasonable--though not necessarily uncontroversial--the development
of the payoff function is difficult. It must take into account
a wide range of motives for diversion as well as the potential
uses of any diverted material. This process involves both predicting
outcomes and attributing value to those outcomes. Analytic
methods, e.g. multiattribute utility theory, exist for developing
such function, but they involve subjective judgment which maybe
difficult to obtain or justify.




1.0 BACKGROUND AND OUTLINE

The safeguards program whose direction is vested in the
Nuclear Regulatory Commission (NRC) is a body of regulatory,
operational, and research activities aimed at protecting society
from the danger implicit in having sensitive nuclear material
fall into "the wrong hands."” It is common, and conceptually
rather natural, to regard the program as composed of three mutually
reinforcing but distinctive subprograms:

- Physical Security, involving (1) controls (checkpoints,
physical barriers, etc.) over access to and egress from
the material, (2) surveillance and alarm systems, and
(3) active responses to intrusions;

- Material Control, involving the governance of and respon-
sibility for current movements, locations, and status
of the material; and

- Materjal Accounting, involving the measurement and assay

of material quantities and the recording/analysis/reporting
of resultant information as a check against loss or diver-
sion.,

These "functional” subprograms and their integration require,
of course, a variety of supportive activities: managerial,
evaluative, analytical, regulation-promulgating, and the like,

Our focus in this document is on the third of these functional
subprograms, material accounting. Its after-the~fact nature,
and its preoccupation with data rather than explicitly with
people or with nuclear material, make its role less dramatic
or palpable than those of the other two subprograms. That this
role is nevertheles%.essential, is established in a careful
analysis [1l;Section 5]~ of the contributions of material accounting
to articulated objectives of the safeguards program,

Although the definition of material accounting might perhaps
be construed to include the analysis of data and records generated
in the normal management of a facility's operations (batch yields,
quality control figures, etc.), our main concern will be with
the evaluation of data from additional material balances, inven-
tories, and records provided specifically for "safeguards" purposes.
Thus, the characteristic situation to be considered involves
"striking a balance" in the customary accounting sense for a

particular m_;g;;gl_hglgngg_a;gg (MBA) at the end of a time
period; that is, checking the "balance" equation:

lNumbers in squared braces refer to the list of references.
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(current contents)=(prior contents)+(inputs)-(outflows) (1l.1)

where the left hand term represents the result of a current
physical inventory of the material within the MBA, the first
term on the right-hand side of the equation is the current estimate
of that material's quantity at the gtart of the time period,
and the second and third terms on the right are sums of recorded
measured values referring to movements of material into and
out of the MBA during the period.

The fact that actual physical measurement processes have
inherently limited precision, together with the possibility
of human error in any accounting/inventory effort, make it most
unlikely that equation 1.1 will hold exactly. Theinitial estimation
of the right-hand side, corresponding to the striking of a trial
balance in a double-entry set of accounts, may identify some
anomalies whose reconciliation leads to a revised right-hand
side, the book inventory. But it remains highly unlikely that
even this "improved" value will check perfectly with the physical
inventory figure on the left. The discrepancy is presently

termed the inventory difference (ID).

If an ID value is "sufficiently small™ (i.e., sufficiently
close to zero), it can plausibly be regarded as arising simply
from the inevitable imperfection of the measurement processes
involved. But a "sufficiently large" ID in one time period
or over several periods, suggests that the measurement and recording
system may have drifted below an acceptable quality of performance,
that some material "sinks" or process-loss modes have gone unrecog-
nized, that significant discrete errors may have occurred during
the time period, or even (if the ID has the appropriate sign)
that a theft or diversion of material has taken place. Such
possibilities in turn lead to vigorous and often expensive reac-
tions: an intensified scrutiny of measurement and bookkeeping
procedures and of security and control records, a search for
material possibly missed in the physical inventory (this can
require slowdown or even shutdown of the MBA's normal operations,
which in a "bottleneck™ case could paralyze much of the facility),
and possibly the notification or actual involvement of security
and external law-enforcement authorities.

The last paragraph's weasel words "sufficiently small"
and "sufficiently large" point up the underlying issue: how
and where to set the "alarm threshold" for ID values that separates
the satisfyingly-small values calling for no response (and providing
evidence for a "hoax" classification of some claimed diversion
of material) from the response-requiring larger values. A low
threshold may lead to disruptively frequent, unnecessary interrup-
tions of the plant's operations (a high false alarm rate or
"Type 1 error probability"), a high threshold, to excessive
risk (miss rate or "Type 2 error probability") of failing to
initiate a desirable corrective response. Thus, threshold-setting
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in the ID context presents, in its own distinctive way, the
risk-benefit trade off problem generic in modern regulatory
analysis.

The traditional and still-prevalent conceptual framework
that presently governs the setting of these alarm thresholds
is that of statistical quality control and hypothesis testing
[2]. Estimates are made of the probability distributions for
errors in the measurement processes whose results enters the
terms of equation 1.1, Appropriate mathematical operations
on these distributions yield an estimated probability distribution
for the difference of the equation's two sides, i.e., for the
ID., Confronting this distribution with the actual numerical
value calculated for the ID yields an estimate of the probability
that a value so different from zero could arise by sheer chance
if the measurement systems were operating as postulated and
no other sources of error were active, Should that probability
be high enough (the conventional level is 95%), then "sheer
chance" is accepted as an adequate explanation of the calculated
ID-value; if not, the presumption is that there are contributors
to the imbalance other than random measurement error. The alarm
threshold, then, is the "95th percentile level" of the estimated
probability distribution for ID.

This simple idea admits refinement and strengthening in
a variety of ways. Approaches. to estimating and tracking the
error probability distributions of measurement processes can
be improved. Distributions of errors from additional sources
(e.g., recordkeeping) might be estimated and incorporated in
the analysis. 1Initially neglected interactions between and
among error sources can be identified and then properly reflected
in the "appropriate mathematical operations" mentioned above.
The multi-time period nature of the situation being analyzed
might be better exploited (cf. [3;pp. VI 27-32]). A substantial
investment of analytical, managerial, and expository effort
and expertise has gone into elaborating this approach to attain
greater discriminatory power and realism (cf. [4] for one recent
example), and into making its application smooth-running and
well-understood. Furthermore, its use in the safeguards program
has the comforting advantage of ample precedent, by analogy
with its common use (for example) in industrial process control
and in comparison of scientific hypotheses with data.

A challenge to this well-established paradigm has arisen
in the past few years. On the c¢ritical side, the challenge
observes that although the safeguards program is fundamentally
concerned with the possibilities of diversion and theft--threats
posed by an intelligent adversary--the statistical methodology

2 por simplicity, we ignore distinctions between one-sided and
two-sided tests.
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has no feature specifically sensitizing it to such threats;
i.e., no conceptual element distinguishing contributions to
ID by "innocent chance" from the more serious possible ones
due to a malevolent act. Nor does it give explicit per _gse consider-
ation in setting the alarm threshold to the nature, effectiveness
and costs of the responses actuated by an "alarm"--though some
informal consideration of these points must be reflected in
the above-mentioned 95% figure, corresponding to a 5% false-
alarm rate. On the posjtive side, the challenge notes the existence
of a branch of applied mathematics targeted directly at identifying
"best" courses of action versus an intelligent adversary, namely
the theory of games ("strategic analysis"). 1In its most aggres-
sively-advanced form, then, the gist of the challenge is that
an appropriate game-theoreticanalysis shouldsupplant the previously
described approach as the basis for alarm—threshold setting.

Exploration of this alternative methodology required efforts
to develop an "appropriate game-theoretic analysis." NRC-supported
research with this aim reached a first milestone with the appearance
of Siri, et., al. [5] and its subsequent journal-paper version
[6] by Dresher and Moglewer. A further extension, in which
the alarm threshold is no longer assumed fixed prior to the
inventory (and hence is no longer knowable in advance by the
adversary), is formulated and analyzed in Siri, Ruderman, and
Dresher [7]. The work of Avenhaus and various collaborators
which is in the somewhat different (but clearly relevant) context
of safeguards issues faced by the International Atomic Energy
Agency, has appeared in a number of publications, of which we
note here only the monograph (8], the journal papers [9, 10],
and the course notes [1l1l]; other European literature includes
Beinhauer and Bierlein [12] and Hopfinger [13]. (It is profes-
sionally disturbing to see that neither of these two lines of
research show awareness of the other.)

The novelty of the game-theoretic approach, relative to
prior practice, led the NRC-related Material Control and Material
Accounting Task Force to conclude 3vol. 1, p. 5-33] that it
lacked time for a proper evaluation of this "significant area
of current technical assistance effort." The Task Force recommended
that the NRC undertake a peer review of this methodology by
a group of suitable government, academic and industrial profes-
sionals., A Peer Review Group, on which the present writer served,
was then formed; it was organized by J. H. Opelka (Argonne National
Laboratory) chaired by R. F. Lumb (NUSAC, Inc.), and included
major contributors to the statistical methodology described
above (C. A. Bennett and J. L. Jaech), noted safeguards experts
(W.A. Higginbotham and Lumb) and a distinguished academic game-
theorist (W. A. Lucas). The Group's consensus conclusions reported
in [14], along with detailed supporting discussions plus additional

3Bibliographic compl eteness has not been attempted.
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viewpoints of individual Group members, included the following
(this writer's paraphrase):

- Because of its direct consideration of the antiadversary
objective of the safeguards program, game theory is an
especially promising tool for use in that program, speci-
fically (but not exclusively) in material accounting
to develop a rationale for action in response to ID values.

- However, the particular game-theoretic formulation proposed
in [5-7] was not convincing as to validity and therefore
not recommended for application; the NRC was encouraged
to undertake research and development activities needed
to achieve a formulation satisfactory in both validity
and in actual workability.

- Issues of "workability" might include therelativeunfamiliar-
ity of the approach, its possible call for probabilistic
mixtures of responses, and its need for information (e.g.,
on response costs) and for judgments (e.g., on quantifying
society's concern with identification and estimation
of diversions) beyond the requirements of the current
methodology.

- A successful game-theory formulation, though achieving
a higher probability of "alarm when there should be"
on a cost-effective, diversion-sensitized basis, would
not replace the statistical methodology in the latter's
role of "quality control" assurance relative to NRC-
licensees' material accounting measurements and procedures.

In response to these recommendations, the NRC solicited
proposals for "Strategic Analysis of Safeguards Systems: A
Feasibility Study" to analyze further the potential practicability
of the game-theoretic approach in the proposed regulatory setting
and to assess the likely cost, value, and success chances associated
with further research into particular technical and implementation
issues. Embodied in the NRC's Request for Proposal No. RS-RES-
‘ 82-022 (July 12, 1982), the solicitation led to award of the
study to a project team assembled by the MAXIMA Corporation,
involving senior staff from that organization and from International
Energy Associates Limited (IEAL), as well as this writer.

The body of the document is organized as follows. The
following Section 2, in order to establish a common vocabulary
for the balance of the text, reviews some basic concepts of
game theory (and thus the basic ingredients of a game-theoretic
formulation of a decision situation). Section 3 takes up a
| question of both technical and practical nature: the possibility
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and difficulty, mathematically and computationally, of actually
"solving"™ a game-theoretic "model" to determine an "optimal"
course of action (e.g., setting an alarm-threshold or choosing
a response to a particular ID-value). At that point it is possible,
in Section 4, to address some issues of feasibility (for a game-
theoretic approach) which are relatively "generic" in that their
discussion can precede an analysis of the technical specifics
of applying game-theory to the particular class of situation
at hand.

The second part of the document addresses these technical
specifics one by one, in Section 5 through 8, respectively.
The NRC-sponsored models [5-7], those of Avenhaus and Frick
[9-10] and others from the literature, are used as points of
reference thoughout. But because our focus is on discussing
issues and ideas pertinent to developing an operational game-
theoretic model, and not on presenting a "literature review"
as such, each of these models appears in disjointed parts in
the text--for example, the "adversary's strategy spaces" for
all of them are described together in Section 7.1, in connection
with that particular element of a game-theoretic model. Our
discussions of modeling "the adversary," though based only on
modest library research rather than original thought or established
experience, go far beyond the efforts of [5-7].

Topics requiring treatment have ranged over a variety of
disciplines and subdisciplines, each with a substantial and
growing literature. Thus there was no hope, within the scope
of this study, of attaining bibliographic "completeness" for
the references. A distinct effort has been made, however, to
assist the reader or potential modeler in gaining a rapid foothold
in the literature of possible unfamiliar areas. One useful
tactic in the references for this purpose is to examine an entire
listed paper rather than just the particular passage or pages
cited, or anentire listed collection rather than just the particular
paper cited.




2.0 SOME BASIC CONCEPTS OF GAME THEORY

A number of branches of mathematics, for example, differential
calculus and linear programming, provide techniques useful in
maximizing or minimizing a mathematical function of one or several
variables, perhaps subject to more-or-less complicated constraints.
If we regard these variables or guantities as under the control
of some decisionmaker (who sets their numerical levels), the
constraints as defining the limits on this level-setter's freedom
of choice (due, e.g., to the scarcity of some resource), and
the function to be extremized as "scoring"™ the utility or cost
to the decisionmaker of each possible combination of numerical
values for the values; then the mathematical problem just described
can be interpreted as seeking a bhest course of action for the
decisionmaker. The general terms "mathematical optimization"”
and "mathematical programming” are often applied to such problems
and to the methods used to attack them.

The theory of games ("game theory") deals with a significantly
broader and more difficult class of situations: those in which
two or more decisionmakers ("players”) are involved, in which
each controls some of the variables concerned, and in which
the utility or cost experienced by each player depends at least
in part on what choices gother players make. Thus, the optimization
problems of the preceding paragraph might be viewed as degenerate
"merely single-player"” special cases of the multi-player situation.
If all the players' interests run parallel and they are free
to cooperate and coordinate their actions, then of course they
can, in principle, operate together as a single "big player,"”
and their decision problem can, in principle, be treated by
some mathematical optimization technique. Thus, the really
characteristic issues of game theory emerge only in the presence
of (at least partially) gonflicting interests, often accompanied
by impediments to whatever cooperation the conflict,might otherwise
permit. The desire to cglculate "optimal"™ or "rational" behavior
for a participant in such a scenario of conflictual inter-dependence
with others must first confront the conceptual problems of defining
"optimality™ or "rationality" in this setting.

Although preceded by mathematical analyses due to Borel
[15), Ville [16], and von Neumann [17], it was the celebrated
1944 treatise of von Neumann and Morgenstern [18] that brought
this body of problems and major steps toward their resolution
to the attention of both the relevant technical communities
and a broad intellectual public. The frivolous connotation
of the term "game" is distinctly deceptive, although "games"
in the ordinary sense are indeed among the situations to which
the theory applies. The title and preface of [18] reveal an
intense motivating concern with application to economics and
the behavorial sciences, disciplines whose enrichment by game
theory is now well recognized (cf. for example Shubik [19],
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Lucas, et al [20]). The obvious relevance of the field's subject-
matter for military analyses is reflected, for example, in the
long-term role of the RAND Corporation (then predominantly an
Air Force "think tank") as a major center of game-theoretic
research, much of it subsequently embodied in [21] and [22].
In short, the multi-player problems addressed by the theory
include profoundly serious and practically important situations,
Technical publications on game theory and its applications appear
in professional journals of the many disciplines impacted by
this versatile area (economics, polital science, psychology,
operations research, mathematics, and others (cf. [23] and [24]))
with many notable papers collected in several volumes (Numbers
24, 28, 39, 40, 52) of Princeton University's Annals of Mathematics
Studies series. Since 1972 the field has also enjoyed a dedicated

journal, the Ipternational Journal of Game Theory.

To establish a common vocabulary for what follows, we shall
next sketch some of the basic concepts of game theory, at least
of those parts to be employed later. These concepts yield the
elements of any formal game-theoretic "model"; for application,
appropriate entities in the real-world situation must be associated
with each of these formal elements and, the usefulness and validity
of the model will of course depend heavily on the skill and
care with which this match-up is performed. The concepts to
be discussed here are:

- the players and their allowed relations
- the players' "strategy spaces”
- the players' "payoff functions"

In addition, we will need to specify what is meant by a "solution”
of the model since this will correspond to the previous notion
of "rational" or "optimal" behavior by the players. It will
be convenient first to describe "strategies" and "payoffs" in
the context of what might be called a "one-move" picture of
the situation and only then to sketch a more dynamic picture
(the extensive form) which takes into account the sequential
aspect over time of the game's play.

2.1 The Players and their Relations

Obviously, the npnumber of players (decisionmakers) is one
of the data specifying any particular game-theoretic model.
In a purely formal setting one might as well identify a set
of "p" players with the integers {1,2,...,p}. But for application,
one would want to indicate the players' "identities" in a way
giving at least a rough initial idea of their respective objectives
and "degrees of freedom." 1If the number of players in an initial
formation is so large as to be unwieldy, one might hope to alleviate
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“this difficulty by aggregating players with sufficiently similar
interests (cf. Goldman and Shier [25] and Goldwan [26]).

By the "relations" among the players we mean in particular
their ability to communicate, collaborate, and coordinate their
actions. Impediments to such collaboration might be physical,
cultural (e.g., taboos), legal (where the effectiveness of the
legal sanction is not at question), etc. The cooperative theory
of games is very rich in phenomena to be considered (coalition
formulation, bargaining and threats, division of spoils among
coalition-partners, side payments, etc.); the solution concept
originally advanced for it by von Neumann and Morgenstern [18]
was shown nearly 25 years later (Lucas [27]) not to be universally
applicable (i.e., not every game has such a "solution") and
so the current literature presents a variety of possible "solution"
concepts with differing advantages and disadvantages. We will
evade the need for an exposition (necessarily somewhat lengthy
and technical) of these interesting but complicated matters
by quickly limiting the scope of the discussion:

The reasonableness of this restriction, for our particular
purposes, will be addressed in Section 5.

2.2 The Strategy Spaces

"Strategy space" is technical jargon for the set of courses
of action ("strategies"”) among .which a player can choose. 1In
a purely formal setting, the numbers of a strategy space of
size "m" can simply be referred to "by number," and so the space
can be identified with the set {1,2,...,m} of integers. For
applications, of course, strategies must be described in terms
that are meaningful for the situation being analyzed, which
means in turn that this situation must be described in terms
adequate for mathematical modeling; we shall have some criticism
on this point to make of [5-7] later. A strategy space can
be either finite (e.g., the possible mountain passes over which
the troops might be marched) or infinite; in the latter case
the "infinity" in question is usally the "continuum" type involved
in selecting real-number values for one or more continuous variables
from certain intervals (e.g., the adversary's target value for
diversion-quantity during a particular time period) rather than
the "discrete" variety illustrated by the choice of a positive
integer from the (infinite) set of all such intergers.

In many cases, the theory also requires consideration of
probabilistic mixtures of the strategies described above, e.g.,
"choose action A with probability 0.4 and action B with probability
0.6." This should not be surprising; for example, strong poker
players will not always behave the same way when holding the
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same hand, and will attempt to randomize among alternative responses
in order to avoid revealing a pattern (e.g., regularly alternating
between two behaviors) that could be observed and exploited
by an opponent. The term mixed strategy is applied to such
a mixture, with the original or "pure"™ strategies viewable as
a kind of degenerate special case., Note that choice of the
particular mixed strategy mentioned above is determinate insofar
as gpecific probability weights (0.4 and 0.6) are associated
with gpecific actions (here, A and B), yet exactly which action
will actually be undertaken remains indeterminate--hence unknowable
to opponents until the £final moment when the "wheel of fortune"
(or whatever random device has been set to incorporate the 40-
60 odds) is spun., If the strategy-space of the player in question
also included a third pure strategy C, then the preceding mixed-
strategy description would be formally rounded out by the redundant
addition "and action C with probability 0."

For an infinite pure-strategy space, the formulation of
mixed strategies requires a bit more in the way of mathematical
statistics apparatus, specifically, the notion of "cumulative
distribution function" and (when applicable) the accompanying
notion of "probability density (or frequency) function." (The
still more general notion of "probability measure" is not needed
for our purposes here,)

2.3 The Payoff Functions

Suppose each player has chosen a particular course of action
from the appropriate strategy space. With these decisions made,
the situation under study will evolve in a definite way (subject
to a proviso noted below), leading to a definite "outcome."
A player will, in general, not be indifferent as to which of
these potential outcomes actually occurs, preferring some over
others, perhaps even regarding some as extremely satisfactory
and some as disastrous. It is therefore assumed that each player
can give a numerical gcore to any potential outcome, a higher
score corresponding to greater desirability. ("Costs," or more
generally "disutilities," might be represented by negative-valued
scores.) Since the outcome depends on the strategy choices of
all players, this score is (in the mathematical sense) a function
of all these choices. For each player this function is v1v1dly
but crassly called the pgzgfﬁ_ﬁung;;gn of that player; its speci-
fication in a game-theoretic model is a representation in numerical
("cardinal") terms of that player's objectives.

Symbollcally, if p is the number of players, if Sy represents
the k-th player's strategy space and Sk is a generic member
of that space (where k=1,2,...,p), then the payoff function
for the k-th player can be written as fy(s; 15210048
emphasize agaln that the payoff to the k- th player is nog under
that player's sole control, but instead depends also on the

12




choices of the other players; formally, fk is not a function
of sy alone, but in general has all of (s],S3,...sSp) as arguments.
If p=2 and the two players' strategy spaces arg both finite,
then their payoff functions can be conveniently written as payoff
hmatrices, where the matrix for player k (k=1,2) contains, at
the intersection of its i-th row and j-th column, the score
player k would assign to the outcome resulting from player 1l's
choice of "his" i-th course of action from sy and player 2's
choice of the j-th course of action (strategy) from 57 . Such
games (p=2, finite strategy spaces) are therefore called bimatrix
games.

It was assumed above that definite choices of strategies
by the players would always lead to one and the same definite
outcome of the game situation and therefore to definite payoff
levels for the players. But this need not be true if the "playing
out"” of the chosen strategies involves some random elements;
for example, dice rolls or the random measurement errors arising
in the process of determining an ID value, Such randomness
will lead (with various probabilities) to different outcomes,
in general not all equally desirable to the players. Thus,
each player's actual payoff viewed in advance becomes a "random
variable" with a probability distribution of possible values.
To obtain a well-defined payoff function it is necessary to
find a single number which gyummarizes the overall desirability
or "utility"™ to the player, of this probabilistic situation.

One natural choice for this summarizing number is the expected
yvalue (or "means" or "average value") of the random payoff,
obtained by multiplying each possible payoff value by its probability
of occurrence and then summing the results (e.g., equally-likely
payoffs of 1 and 3 yield an expected value of 2). Thus, the
k-th player's payoff function £ (51¢827+++-15p) is now taken
to be the expected value of the desirability score attributed
by that player to the outcome of the partly random process that
follows the respective players' choices of strategies sy, s9,...,5p.
(If the random elements involve a continuum of possibilities
rather than a finite set, then these expected values are given
by integrals rather then finite sums, but this technical complication
is not a significant conceptual distinction.)

This selection of expected values as "summarizing numbers"”
turns out to simplify greatly the mathematics of the theory
and rests largely on an influential analysis given in the treatise
of von Neumann and Morgenstern [18; Appendix to Second Edition
(1947)1, which shows that expected values are the
summariz ing numbers if players' utilities satisfy certain plausible
axioms. Those axioms, however, embody the implicit assumption
that the players are or should be (in current parlance) risk-

r €.9., indifferent between a sure-thing payoff of 2
and a 50-50 gambl e between payoffs of sizes 1 and 3. That assumption
is somewhat questionable for many applications, including the
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ones of particular concern here. A major theme in modern decision
science and "economics of uncertainty" research (cf. [28]) is
the treatment of "risk-averse" decisionmakers with a well-known
early precedent supplied by Markowitz's monograph on portfolio
selection [29] in which a positive multiple of the variance
of the (random-variable) payoff is subtracted from the expected
value to obtain the "summarizing number."

The issue of "summarizing numbers" as payoff functions
arises in much the same way when the use of mixed strategies
is envisaged, with (deliberate) randomness now entering the
actual strategy choices of the players and thereby being injected
into the resultant outcome and thus into the payoffs to the
players. Again, the use of expected values is traditional (and
will be assumed later whenever nothing to the contrary is said),
supplying the same advantages and raising the same questions.
At a purely abstract level, this use is unnecessary; one can
speak of the overall desirability (to a player) of some probabilistic
distribution of possible game outcomes, note that this desirability
is a function of the players' mixed-strategy choices giving
rise to that distribution, assign a symbol to that (payoff)
function and operate conceptually with it, all without specifying
any concrete formula or calculation procedure for exactly how
this overall desirability is built-up from the desirabilities
and probabilities of the individual outcomes involved. But
for any application purpose, some specific build-up formula
(or algorithm) must in fact be specified--either the especially
simple linear formula representing the expected value notion,
or something else. It is of course much easier to criticize
the expected value formulation than to propose and justify some
particular alternative, and for many serious applications it
may be appropriate to formulate and compare use of expected
values with use of geveral alternatives (in terms of theoretical
rationale, ease of use, and plausibility of results in "test
cases") rather than making an initial a_priori commitment to
a single one.

There is a special class of games, defined by a particular
property of their payoff functions, which will be important
in the sequel and can naturally be introduced at this point.
Suppose that for every set s=(s;, sj3,...Sp) of strategies by

the players-s; chosen by player 1, s, by player 2, etc., the
resultant payogfs to the players total 0, i.e.:

£1(s) + fa(s) + ...+ fp(s) = 0. (2.1)
The interpretation is obvious: whatever some players win (positive-

valued payoffs) is at the expense of an equal total loss (negative-
valued payoffs) by other players. A game with this property
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(i.l) is called zero sum. In the case of just two players (p=2),
(2.1) implies that:

fa(s) = =-fa(s) (2.2)

so that the payoff function f5, of the player in a two-player
zero-sum game need not be specified separately; it is fully
determined by that of Player 1 (fy). Furthermore, if both players
have strategy spaces that are finite so that we have a "bimatrix
game" as defined a little earlier, then it follows that only
player 1's payoff matrix need be given (its negative gives player
2's payoffs). It is for this restrictive but common class of
games, with its total opposition of players' interests as expressed
in equation 2.2, that both theory and the availability of compu-
tational solution methods are in an especially satisfactory
state,

We close this subsection by noting a non-obvious assumption
hidden in equation 2.1 and its special case (2.2); that the
"scores" or "utilities" of the different players have somehow
been expressed on a common scale which makes their addition
meaningful. If only the payoffs to player 1, who hopes for
a set s of strategy choices that will make fy(s) "large", are
considered, then the function £f1(s) could just as well have
been 3f;(s) or fy(s) = 10. But such changes could change (2,1)
from true to false or yvice versa, so that the zero sum condition
requires some sort of prior consistent normalizing of player's
payoff functions.

2.4 Solution Concepts

With the notions of "strategy" and "payoff" now at hand,
we return to the effort to define "rational"™ or "optimal" play.
For simplicity, we begin with the two-player case (p=2). Consider
some pair (sy*, s,*) of strategies, the first for player 1 and
second for p}ayer 2. Imagine that the game is to be played
repeatedly (e.g., inventories are struck and "alarm-or-not?"
decisions made over a series of time periods). When would it
be reasonable for players 1 and 2 to retain strategies sy* and

Sf* as their respective choices throughout such a series of
plays?

It is easy to describe a scenario in which this would not
be reasonable. Namely, suppose player 1 has some strategy 2;,
(necessarily) different from Aj* for which

fl(AllAZ*) > £1(Ay*,Ax%). (2.3)

Furthermore, assume that in the course of the repeated plays,
player 1 is able to infer that player 2 is using the particular
strategy s,* or at any rate is using some strategy for which
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(2.3) or its analog holds. Since under our "noncooperative"
hypothesis (see the end of subsection 2.1) player 1 is unable
to communicate with player 2 over possible changes in the latter's
strategy, the natural working hypothesis for player 1 is that
player 2's behavior will persist. Hence, in view of (2.3) it
appears to player 1's advantage to change strategy from s;*
to s;; and it would appear unreasonable for player 1 to persist
in using s;* when such an advantage-promising change is available.
Similarly, if player 2 had some strategy s; necessarily different
from sy* for which

fa(s1*,82) > fa(s1%,82%)

then it would appear unreasonable for player 2 to persist in
using sp*,

Reversing the negatives in the last paragraph, we can say
that stable choice of the strategies (s;*,sp*) by the respective
players 1 and 2, is reasonable only if

4 f1(s1,82*)<f1(s1*,82*%) for all sj in S; (2.4a)
an
fZ(Sl*'s2) L fo(s1*,82*) for all sy in Sj. (2.4b)

These conditions assert that neither player has any incentive
to deviate unilaterally from his present strategy (s;* or sy*),
"unilaterally” meaning "without arrangement that the other player
would also deviate." (Under our "noncooperative" hypothesis,
the only deviations possible are such unilateral ones.,) Conditions
(2.4) define the pair (sj*,sy*) to be what is called a (Nash)
Equilibrium Point for the game (Nash [30]). The extension to
more than two players involves the same underlying ideas; thus
a set (sy*, sp*,...,8p*) of strategies for the respective plfyers
of a p-player game gs defined to be an equilibrium point®* if,
for each player i,

£i(sy*rocorsioa™ Sir Si41*re.ersp*) < fils1*..ursi1™,
sS: * S * s
i%r i+177---r5p

for all strategies s; in Sj.

This "equilibrium point" concept is essentially the only
solution notion available for geperal noncooperative games,.
On the positive side, it is clear (I hope) that the definition
of this concept embodies a "stability against deviations” requirement
which really does appear to be an essential criterion for a
"solution."™ Also on the positive side, it is known that all

4some readers may wish to note the conceptual relation and mathe-
matical similarity of the following conditions to those for
a Pareto Optimum in mathematical economics.
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games likely to be of applied interest do in fact have such
a "solution." More precisely (Nash [30]), any game in which
all player's spaces of (pure) strategies are finite does possess
at least one equilibrium point, though in general it may involve
mixed strategies. This result remains true for some but not
all games with infinite strategy spaces (e.g., Owen [31]).
Under a further hypothesis of "concavity" of the payoff function,
it can be strengthened to assure an equilibrium point using
only pure strategies (Rosen [32] Ponstein [33]). Infinite strategy
spaces arising in applications can typically be approximated
by finite strategy spaces (e.g., the real-number interval [0,1]
replaced by the finite set 0, 1/100, 2/100,...,99/100, 1), yielding
an "approximating game" whose equilibria are "approximate equilibrium
points®" for the original game.

Use of "equilibrium point"™ as a solution concept involves
some serious risks. First, a game may have more than one equilibrium
point, indeed many of them, and they may involve different payoffs
to the players. Without introducing a considerable body of
problematical assumptionsadditional totheoriginal game description
(e.g., concerning the dynamic course of repeated plays, the
"personalities" of the players, etc.), there is in general no
natural way to single out one among these alternative "solutions,"
Furthermore, suppose for example that p=2 and the (s *, sy%)
and (s;**, s,**) are two distinct equilibrium points. If we
pair of s;* with sy** rather then sy*, in general we will not
obtain an equilbrium point, and so we cannot speak of s;* simply
as "a rational strategy for player 1" without restricting it
to a combination with the specific choice s,*,. These inabilities
tend to assure (1) a meaningful specification for rational play
by individual players (rather than by the collective of all
players) and (2) a definite set of player payoffs arising from
play "according to the solution," are substantial drawbacks
for application of the theory, despite its helpfulness in focusing
attention on the set of equilibrium points.

Note, however, that in any particular application these
drawbacks might not arise. Suppose, for example, that our analysis
is intended to advise player 1 on a suitable course of action.
If that analysis shows the game-theoretic model to have only
a single equilibrium point, then the appropriate advice (insofar
as it is purely model-based) is relatively clear-cut. 1If there
are multiple equilibrium points, but they all happen to involve

50ne might prefer, however some equilibrium points to others
by virtue of possessing additional "stability" properties formulated,
for example, by Williams [34], Wu [35], Selteri [36], Meyerson
[37], and Okada [38]. The most concentrated effort to resolve
this ambiguity, though a "bargaining" context tangential to
our motivating applications, is the work of Harsanyi integrated
in [39].
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one and the same strategy s1* for player 1, then at least some
of the situation ambiguities are resolved. Similarly, if there
are multiple equilibrium points but they all happen to involve
the same payoff to player 1. Considerations like these can
provide criteria for selecting among otherwise plausible game-
theoretic models for an application; we will see later that
some of these felicitous coincidences have actually arisen in
the context of the present study.

No lucky chances are needed, however, if we restrict attention
to the zero sum 2-player case, which we recall requires the
relation f, = (-f;) between the player's payoff functions.
Here (2.4a,b) can be written

f1(s1,82%) < £1(s1*,82%) < £1(s1*,s3) for all s3 in Sj,
Sz in 32 (2.5)

From this relation, a number of desirable properties can be
deduced. Consider any two equilibrium points (A;*,Ar*) and
(A **,Ap**), First, (Aj*,Ap**) and (Aj**,Ar*) are also equilibrium
points; this interchangeability permits us to sSpeak of sy%,
(sp*) as being an "equilibrium strategy" for player 1 (player
2) without specifying a pairing with a particular strategy of
the other player. Second, the two equilibrium points yield
player 1 the same payoff (since f,=(-f;), the same is true for
player 2); this common payoff to player 1 from all equilibrium
points is called the value of the game. Third, this game-value
is the largest payvoff that player 1 can assure himself of (through
his choice of strategy) despite player 2's efforts; from this
conservative viewpoint, player 1's equilibrium strategies, which
do in fact assure this largest payoff, merit (and are given)
the term optimal. The analog of this last statement for player
2 also holds. (Aumann [40] has extended these results to a
class of games wider than zero sum, but apparently difficult
to recognize usefully early in their analysis.)

Thus, the theory of zero sum two-player games is very satisfac-
tory. There is a convincing notion of "optimal strategy" for
each player, and a "solution™"™ of such a game is given by such
a pair of optimal strategies, the corresponding payoff to player
1 (with its negative the payoff of player 2) then giving the
(unique) value of the game. (For a more complete analysis,
it might be desirable to determine all the optimal strategies
for one or both players.) The existence of such a solution
when strategy spaces are finite follows as a special case of
the more general theorem cited earlier (which -did not involve
the zero sum assumption). A number of more advanced "minimax"
theorems, assuring existence of a solution for many classes
of situations involving jnfinjite strategy spaces have appeared
in the technical literature (cf. Chapter 5 of Parthasarathy
and Raghavan [41]).
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As will be seen later, the practicality of actually calculating
a solution for such games is also rather high. Thus, there
are powerful incentives for modeling a given situation as a
zero sum two-person game rather than a more general game, _if
such a model gives an acceptable representation of reality.

2.5 T xtensiv orm

The descriptions and definitions given so far are not designed
to reflect the fact that a game-theoretic situation may well
unfold over an extended period of time, proceeding in stages,
and calling on players to make not just one but perhaps a seguence
of decisions based on varying levels of information about the
prior decisions of the other players. These aspects of the
situation are highlighted in the so-called extensive form, a
stylized representation of how the "rules” of a game structure
the evolution of its activities.

In the extensive-form model, the game is represented as
a tree-like network branching out progressively from a "root"
node. Any one "play" of the game in effect traces a unique
path in this network from the root to an outmost or "leaf" node;
the payoffs to the players depend on which leaf-node is the
terminus of the path that actually occurs.

Each non-leaf node "belongs" to a particular player whose
turn to "move"™ it will be when and if the growing path reaches
that node. The player's move consists of specifying one of
the alternative actions available at the node, i.e., which of
the edges branching from the node will be "pursued" by the player
and added to the growing path. However, the choosing player
may not know at exactly which of "his" nodes the play now stands,
since this might require unavailable knowledge of what branchings
("moves") had been previously chosen by other players. 1Instead,
the rules partition the nodes "belonging"” to each player into
certain "information sets." A player about to move will know
in which information set the play stands (i.e., in which the
tip of the growing path lies), but knows nothing further about
which one of the nodes in that information set actually marks
the current state of the play. The extensive form has certain
axioms enforcing this role in the information sets; for example
every node in the same information set must have the same number
of edges branching from it, since otherwise the player about
to move-—-and necessarily aware of the number of choices available--
could use that awareness to narrow his possible node-locations
to some proper subset of the information set involved. The
influence of chance events (e.g., random measurement errors
or the results of a dice-roll or card-shuffle) is represented
by letting certain nodes belong to the "chance player" an automaton
who must select from among the available alternatives (edges
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branching from the node) in accordance with a prescribed probabilit§
distribution associated with that node.

The rich formalism of the extensive form can be collapsed
to the "strategic form" described earlier by the following device:
define a strategy for a player to be a "complete contingency
plan” which specifies in advance for each of the player's information
sets (say, I) which numbered branch the player will choose if
the course of play should call for a move from some node in
I. Note that by the axiom described in the last paragraph,
all nodes in I have the same number (say 4) of edges branching
from them, hence all can have their branching edges labeled
by (say) the first four positive integers so a strategy clause
"if in I, choose branch 2" makes sense.

A choice by each player of a "strategy" as just defined
will~-apart from the effects of moves by the "chance player"
if present--collectively determine a definite course of play
and a definite play through the tree, hence definite payoff
values to the players. The chance player's moves may lead to
a probability distribution of payoff values rather than a definite
value and this distribution needs to be encapsulated by a single
"summarizing number" as explained earlier. With these under-
standings, any extensive form game is converted to a game of
the ("strategy”) form discussed in the preceeding sections.

A "mixed strategy" is, as before, a probabilistic mixture
of the ("pure") strategies defined in the next-to-last paragraphs.
The first of the two main results in the theory of extensive
form games says that mixed strategies are unnecessary whenever
the game is of "perfect information"--i.e., if the player whose
turn it is to move knows all prior moves by the other players
(including the chance player). The formal version of this condition,
by the way, is that each of the players' information sets consists
of just a single node. For such a game, assuming its tree network
is finite, the result assures the existence of at least one
equilibrium point involving pure strategies only (Chapter 15
of [18]; also Kuhn [42].)

For games of even moderate complexity, a strategy as a
complete contingency plan is likely to involve an unpleasantly
long list of instructions. For any one play of the game, most
of these instructions are likely to refer to contingencies not
actually encountered during that play (i.e., to information
sets not actually entered by the growing path describing the
progress or play). Mixed strategies, as probabilistic mixtures
of these cumbersome pure strategies, will be even more unwieldly
for any use beyond conceptual analysis. It would be much more
convenient if probabilistic behavior by a player could be described
by what are called behavior strategies. These specify for each
of the player's information sets the probability distribution
of his choices among the alternatives (branching edges) available
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when moving from a node in that set. Unfortunately, it is not
true that the effect of any mixed strategy can be duplicated
by some behavior strategy and so restricting the analysis of
a game to the more tractable behavior strategies might improperly
reduce the set of options open to the players. The gecond of
the two main results in extensive form game theory (Kuhn ([44])
identifies an important class of games for which this difficulty
does not arise and which can therefore safely be analyzed using
behavior strategies. These are the games of perfect recall
in which a player about to move knows all of his prior moves
in that play of the game. This assumption, a natural one for
many applications, rules out (for example) situations in which
a "player" consists of a team with imperfect communication,
as in bridge.

2.6 Stochastic and Repeated Games

Although the extensive~form structure is in principle capable
of accomodating most of the multi-time-period (briefly, "multi-
stage”) models we will encounter later, that accomodation can
be rather awkward for models with certain features. For example,
in some situations a player will receive a "spot" payoff at
each stage (e.g., an increment of diverted material), whereas
the extensive form associates payoffs only with the fipal stage
of play--i.e., the last node of the path traced through the
game~tree by the execution of the chosen strategies. If there
are more than a very few stages, the translation of intermediate
payoffs to the ends of the (numerous) paths can be laborious,
and perhaps destructive of insight about the game.

Another "awkward" class of multi-stage situations involves
repeated play of a game in which a player may not initially
be fully informed about the capabilities and values (i.e., payoff
functions) of the other players. Thus, at each stage, a player's
motivation for immediate payoff is confounded with a motivation
to act in ways that elicit more information about the opponents,
providing a better basis for decisions in later stages. (Reports
of boxing matches often note a process of "feeling out the opponent”
in the early rounds.) Although the "information sets" of the
extensive-form concept can presumably be set up in a way that
captures this feature of _incom te in rmation,6 doing so might
prove unnatural and unrewarding.

This explains why certain classes of multi-stage games
have been subjected to concentrated study in their own right.

Two of these--stochastic games and repeated games with incomplete

6"Incomplete" should not be confused with "imperfect", the
denial of "perfect"™ as defined in the next-to-last paragraph
of Section 2.5.
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information—-—-appear in the literature relevant to this report,
and in particular are noted in the Peer Review Group report
{14; pp. 30-33 and 42] as possibilities for multi-period ID
analysis. They are labelled "Advanced Techniques" [14; p.30],
a termwhich accurately reflects both the somewhat greater complexity
of the mathematics involved in their analysis, and their present
status as active research topics in contrast with many of the
"by now classified" subjects described earlier in Section 2.5.
Their greater recency also implies less experience with their
use as modeling tools, i.e. with learning what features of potential
applications lend themselves nicely (or badly) to modelling
by such games.

To flesh out the comments in [14], we shall provide brief
sketches of the main concepts of these two classes of games,
along with a sample of pertinent references. For simplicity,
we will confine attention to the two-player case with only finitely
many strategies at every stage of play.

Stochastic games, though mostly neglected until the 1970's,
are generally attributed to a 1953 paper by Shapley [45]. Also
called Markov games, they are multi-stage processes which, at
each stage, are in one of a finite set of gtates. With each
state is associated both a particular bimatrix game (in the
zero-sum case, a matrix game) and a set of transition probabilities.
At each stage the two players, knowing the current state and
its associated bimatrix game and transition probabilities, choose
their strategies in the current bimatrix game. This choice
determines both their immediate payoffs (from the payoff matrices)
and, from the transition probabilities, the probability distribution
governing the identity of the next state.

The sequence of stage-by-stage payoffs for a player can
be accumulated in either of two ways: as the limit over long
times of the average payoff per stage (the undiscounted case),
or as the sum of the discounted stream of payoffs (the discounted
case, where the solution in general depends on the discount
factor). The desired solution concept has been limited to the
rather natural class of stationary strategies, those in which
in a player's behavior at any stage depends only on the current
state and not on prior history.

For the discounted case, the existence of a solution was
proved by Shapley [45]. However, no finite exact solution algorithm
can exist, since (an analogous argument with more detail appears
in Section 3.4) it is possible for a problem with rational-number
data to have a solution involving irrational numbers (Parthasarathy
and Raghavan [46]). 1If, however, the transition probabilities
depend only on the strategy choices of gne of the two players
(the "controller"), then such an algorithm becomes possible
[46] . This remains true (Filar [47] and an analog of the material
in Vrieze et al [48]) if the "single controller" hypothesis
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is weakened to that of "switching control," in which the identity
of the controller may be Player 1 in some states, Player 2 in
others.

For the undiscounted case, progress is clouded by the knowledge
(Blackwell and Ferguson [49]) that exactly-optimal strategies
may fail to exist, although approximate ones will (Mertens and
Neyman [50]). When they do exist, they can be in principle
be calculated by solving an optimization problem formulated
by vVrieze ([51], building on the study of the discounted case
by Rothblum [52]; this problem has a linear objective function,
but quadratic constraints as well as some linear ones. An alter-
native "successive approximations" approach is given by Federgruen
[53]. Finite solution algorithms for the "single controller"
and "switching control" cases are given in [46] and [48] respective-
ly; other cases in which solutions are known to exist are given
by Gillette [55] and Hoffman and Karp [56].

Applications of stochastic—-game theory have been proposed
in the areas of military tactics and weapons development (Charnes
and Schroeder [51], Winston [58]), advertising (Albright and
Winston [59]), natural-resource management (Sobel [61l]) and
oligopoly analysis (Kirman and Sobel [62]), as well as inspection
(Filar [63]). We may note the remark of Sobel [64; p. 995]
that "the tendency to model phenomena as stochastic games has
been curbed by inadequate computational procedures"; however
specific applications or subcategories, like many of those cited
above, prove exceptions to this general observation; cf. also
Filar and Schultz [65].

If a "critical diverted quantity" concept is applicable
for the multi-stage ID-analysis problem, then modelling that
problem as a stochastic game encounters certain difficulties.
An adversary's situation at a certain stage should presumably
depend, in part, on how much has already been diverted. But
since in a stochastic game (with a stationary-strategy solution)
behavior is supposed to depend only on the current state, it
follows that the "diverted so far" quantity should be part of
the specification of a state. And since in such a game both
players are aware of the current state, this would require the
adversary's opponent to know the cumulative diversion, which
is unrealistic. Perhaps some modelling artifice can evade this
difficulty, but if offers at least an initial obstacle.

A currently active line of research in a cognate field
is suggestive here. A Markov Decision Process (MDP) is essentially
the one-player analog of a stochastic game; in the well-developed
"classical" theory of such problems (given major impetus by
Howard [66]; for modernity see, e.g. Ross [67]), the single
decision-maker is assumed at every stage to know the current
state. Recently, however, there has been increasing interest
in situations in which the current state is only "partially
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observable" by the decision-maker: the available informatién
permits him only to place (say, via Bayes Theorem from probability
theory) a probability distributionover thealternative possibilities
for that state. (An application, and a useful review of prior
literature, are given in the 1980 paper of Monahan [68]; basic
theory appears in Majumdar [69].) This development might well-
and probably will--be extended to the case of two (or more)
players, i.e. to "stochastic games with partially observable
states."

We turn now to repeated dgames of imcomplete information.
They are generally attributed to Harsanyi [70] and to Aumann
and Maschler [71-73]. The former is "notationally heavy"; an
expository sketch is given by Shubik [19; Section 9.3]. As
noted by Kohlberg [74], papers [72, 73] "were never published
and are hard to obtain," but their contents are described in
the secondary sources consulted.

The basic scenario involves a set of bimatrix games (matrix
games, in the zero sum case), only one which will actually be
played. This set is split into subsets in two different ways,
one relevant for player 1 and the other for player 2; these
split-ups are both known to both players, as is an initial proba-
bility distribution over the set of games. 1Initially the "chance
player" uses this distribution to determine which of the games
in the set will actually be played; player 1 is not told which
game this is, but only in which of the subsets of "his" split-up
the chosen game lies,’and similarly for player 2. (The sizes
of the various games' payoff matrices must be such as not to
"give away" any information about the identity of the "real
game.") The players then repeatedly play the game (not knowing
exactly which one it is), their payoffs accumulating but remaining
unknown to them until the whole process is done.

There is one other important but rather complicated apparatus
in the scenario. Associated with each of the possible games,
in addition to the players' payoff matrices, is a second pair
of matrices--the information matrices for each player, assumed
known by both of them. The (i,j) entry of player's information
matrix contains an information signal which is revealed to player
1 if and when the players choose respective pure strategies
at some stage; this signal might for example communicate to
player 1 some partial or precise knowledge of player 2's previous
strategy choice (j), or part of player 2's partial knowledge
about which game is being played, or both--this formalism is
very general and flexible. Player 2's information matrix is
similar. Thus in selecting a strategy at each stage of play,
a player must be concerned not only with the resultant payoff,

T1f player 1l's split-up is fine enough, this could in fact
determine the chosen game.
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but also with the long-~term effects of the resultant release

of information to the other player. (In the non-zero sum case,
these effects need not all be negative.)

Most of the literature on these models has been confined
to the zero sum case; one exception is Sorin [75]. It has been
mainly concerned with establishing the existence of solutions,
and the rate of convergence of the solutions finite-stage truncations
to a solution (in particular the value) of the infinite-stage
process; cf., for example, Kohlberg [74, 76], Mertens [77],
Zamir [78-80], Mertens and Zamir [81-84), Ponssard and Zamir
[85], Ponssard and Sorin {86, 87], Sorin [75, 88~9], Waternaux
[90] . Anticipating the type of concern to be emphasized in
Section 3, we note that none of these papers explicitly adddresses
computational issues, and the examples considered are extremely
small (2x2 payoff matrices, at most two possible games). It
appears to the writer that the computational aspects of these
models are rather unexplored, perhaps because they have appeared
intimidating; the only note which is encouraging (for reasons
detailed in Section 3.1) is the references in [86, 87] to linear
programming formulations.

From the viewpoint of model appropriateness for our intended
area of application, three aspects of these structures may create
difficulties. QOne is the notion that stage-by-stage payoffs
are kept concealed until the end of the multi-stage process;
however, total or partial information about such payoffs could
perhaps be transmitted yia the information matrices, and the
results of Megiddo [91] suggest that this restriction may not
be critical. Second, much of the analysis is for the infinite-stage
case3, so that some care would be needed in establishing proper
relations with the finite truncations arising in application.
Third--and apparently most serious--is the requirement that
the same game be played at every stage (though possibly with
changing levels of information available to the players). This
can make it hard to differentiate a stage at which an adversary
is just starting his pilferage, from one in which just one more
"good haul" could bring his total to a critical level., Again
some ingenious modelling trick might evade this problem, but
it appears that a naturally applicable theoretical framework
would involve a matipng of stochastic games (in which the "state"
or "current game" can vary from stage to stage), with repeated
games of incomplete information (in which the players have only
partial information at each stage about the current situation).
The reference at the end of Sorin's 1984 paper [89] to an emergent
confirms the writer's impression that the time is ripe for such
a research development, but that it has not yet occurred (cf.,

81n principle this is also true of some stochastic games,
but the latter can have "absorbing states" which in effect would
assure finite termination.
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however, [92]). 1Its genesis might well be stimulated by the
specific application context of safegquards problems, just as
the development of repeated games of incomplete information
was spurred [71-73] by the anticipated methodological needs
of nuclear test-ban treaty inspection. This suggestion goes
beyond the recommendation of [14; p. 42]. '
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3.0 SOLVABILITY OF GAME-THEORETIC MODELS

In Section 2, we described the class of situations to which
the theory of games is directed, and then proceeded to discuss
some basic aspects of game-theoretic models: the elements of
such a model and what might be meant by a "solution." Some
theoretical results assuring the existence of a solution were
cited. 1In keeping with our motivating application in the safeguards
program, attention was confined to non-cooperative games.

Here we turn to a more practical question: how (and with
what difficulty) can a game-theoretic model be solved? Thus,
our main concern is with computational processes for actually
determining a solution to a model given in numerical form.

Two other auxiliary subjects will also concern us, but
only briefly. (There is not too much to be said in general
terms about either of them.) QOne stems from the fact that the
data of a game-theoretic model (or any other serious decision-
aiding mathematical model) are unlikely to be perfectly accurate
or reliable. We will therefore want to consider the possibilities
for sensitivity or parametric analysis, i.e., for examining
how the solution varies with changes in the problem data ("para-
meters") and towhich of these parameteres the results are especially
sensitive. The hope, of course, is that such questions can
be explored by means more economical and insight-giving than
simply perturbing the data in various ways and solving each
of the revised problems "from scratch." The gsegcond "auxiliary
topic" is the non-numerical version of our main concern: 1logical-
symbolic processes for determining or facilitating a glosed-
form solution of a game-theoretic model in terms of its parameters
(the latter appearing as "literals" rather than with prescribed
numerical values).

3.1 Matrix Games

These are the two—-player zero sum games with only finitely
many (pure) strategies for each player, whose theory was described
in Section 2.4 as being in particularly satisfactory form,
We proceed to show why the same is true for the computational
treatment of such games.

Suppose the payoff matrix has entries a(i,j); that is,
if players 1 and 2 choose their i-th and j-th pure strategies,
respectively, then player 2 pays player 1 the amount a(i,j).
Suppose next that player 1 selected the mixed strategy "x" which
chooses his first course of action with probability x;y, his
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second course of action with probability x,,..., and his last
(m~th) course of action with probability x;. It follows that

X + X9+ ... + X = 1;
xl 2 0, X2 2 0,.--’ Xm_z 0- (3.1)

Against the j-th pure strategy of player 2, the mixed strategy
x will yield player 1 an expected payoff

a(l,i)xy + a(2,j)xy + ... + a(m,3)xp.

Thus, the greatest expected payoff player 1 can be assured of
while using x, no matter which pure strategy (j) player 2 chooses,
is the largest number v for which

a(l,j)x; + a(2,j)xp + ... + a(m,J)xy 2 V (3.2)

It is not hard to show that the very same number v remains achieve-
able by player 1 (using x) even if player 2 1is permitted to
use mixed strategies and is therefore the best player 1 (using
X) can do despite any effort by player 2. According to the
theoretical development sketched in Section 2.4 (and assuming
expected values of payoffs are appropriate objectives), player
1 should choose x so as to maximize v, i.e., should choose the
decision variables Xj,...,Xp SO0 as to maximize

v =1v + 0xy + 0xy + ... + Oxp (3.3)
subject to (3.1) and (3.2).

This last optimization is a special case of the following
more general problems: choose values for a finite set of decision
variables, so as to maximize some linear function of those variables
subject to a finite set of constraints each of which--like (3.1)
and (3.2)--is linear (equation or inequality). Such a problem
is called a linear program; the situation from player 2's viewpoint
also yields a linear program. Fortunately, linear programming
is an extremely well-developed field of mathematical optimization;
massive computer programs based on the "simplex method" of
G.B. Dantzig stand ready to solve rather enormous linear programs
with great rapidity. (This rapidity, known for decades as an
empirical fact--e.g., McCall [93]--has more recently received
intensive theoretical investigation and verification; as in
the prize-winning research of Borgwardt [94, 95].)

Thus, finding a numerical solution of a matrix game of
any reasonable size (i.e., the value, and an optimal value for
each of the two players) can be regarded as a "well-solved problem."
Finding all optimal strategies for one or both players is distinctly
more laborious, but a systematic finite procedure for doing
so is known (Shapley and Snow [92]). To be precise, if a player
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has more than one optimal strategy then these strategies can
be represented geometrically as a convex polyhedron, e.g., in
two dimensions, a polygon without "holes" or "dents,"™ and the
cited method finds the "extreme points" (or "corners" or "vertices")
of this polyhedron one by one, thereby implicitly determining
all the points in it.

We turn now to sensitivity and parametric analysis. Here
there are two distinct bodies of work to be cited. The first
of these, due to Mills [99], deals specifically with matrix
games, Suppose we have such a game, in which player 1 has m
pure strategies and player 2 has n, so that the game is described
by an m x n payoff matrix A, Let D be another m x n matrix;
then the matrix A + tD, for small real numbers t > 0, can be
regarded as the payoff matrix of a game obtained by "perturbing"
the original game A in the "direction" D. What [99] gives is
a recipe for finding the "directional derivative" (i.e., rate
of change) of the value of A with respect to such perturbations.
Specifically, this recipe is the value of the game which has
payoff matrix D, but has the players' mixed strategies restricted
to their optimal strategies in the original game A. The solution
of such a "restricted matrix game," like that of an ordinary
matrix game, can be carried out by translation to appropriate
linear programs; the main computational labor lies in determining
the coefficients of the associated "constraints," a task which
involves the finite calculation procedure mentioned at the end
of the last paragraph.

The second line of work on sensitivity (and parametric)
analysis for matrix games uses the fact that such games be translated
into linear programs as in (3.1) - (3.3) above. Like so many
other aspects of linear programming, its sensitivity analysis
techniques have received substantial and successful attention,
and such techniques typically accompany the "massive computer
programs" mentioned earlier. (Skipping the intervening years
we cite only the initiating work of Gass and Saaty [100-102]
and a fairly recent comprehensive monograph by Gal [103].)
Such techniques can indeed be used to analyze the sensitivity
of a matrix game's solution (especially its value) to systematic
change in a single entry of the payoff matrix, or even to broader
patterns of changes, mostly conveniently introduced "one row
at a time" or "one column at a time." Though practicable, they
are not quite as computationally efficient as might be desired,
essentially because their forte is dealing with changes either
in the coefficients of the "maximand" (like (3.3)) of a linear
program--cf. the titles of [100-102]--or like (3.1) or (3.2).
In matrix game analysis, however, they are called upon for the
harder job of treating changes in the coefficients of (3.2),
i.e., the payoff entries.

Most of the preceding remarks have stressed the use of
linear programming's "simplex method" to solve matrix games.
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There is a second solution approach that merits attention, that’
of fictitious play. It is an iterative procedure, beginning
with an arbitrary choice of pure strategies by each of the two
players. At any later stage, player 1 reviews the relative
frequencies with which player 2's various pure strategies have
been chosen in the past, regards these frequencies as the probabil-
ities of a mixed strategy for player 2, and selects a pure strategy
which best responds to (i.e., achieves largest expected payoff
against) that mixed strategy; player 2 behaves analogously.
This process, formulated by Brown [104] as a discrete analog
to a differential equations-based solution method formulation
by Brown and von Neumann [105], generates for each player an
infinite sequence of mixed strategies and expected payoffs. Those
sequences have been shown (Robinson [106]) to converge to the
game-value and (in an appropriate sense) to the players' sets
of optimal strategies. Convergence is reputed to be generally
slow (although at least one practitioner solving large military-
game models reported good results [107]), parametric analysis
is not possible, and since the iterative process must be terminated
at some finite stage with only an approximate solution, this
method is not usually competitive. But its ease of computer-
coding and its strong intuitive basis may at times be compensating
advantages.

As might be expected, a particularly elementary calculation
method is available for those special cases in which it is known
or suspected that the game has a solution using only pure strate-
gies. One determines the positions of the gsmallest entries
on each row of the payoff matrix and then tries to find among
these entries one which is also a largest entry in its column.
If an entry with this "saddlepoint" property exists, then its
value gives the value of the game, and the associated row and
column corresponds to optimal pure strategies for the two players.
If no such entry exists, then mixed strategies must be involved
to obtain a solution.

3.2 Other Two—~Person Zero Sum Games

These will be games in which one or both players have ipfinjte
spaces of pure strategies. The class most extensively studied
is that in which the strategy space of each of the two players
is a continuous, real-number interval which, by rescaling, can
be taken as [0,1]. Then the possible strategy-pairs (s;,s;)
fill out the "unit sgquare" in the (sy,sp)-plane, whence the

term game on the square.

Applications exist in which the payoff function f£f; (s 152)
to player l--whose negative gives the payoff to player 2--1is
not continuous throughout the square. This occurs, for example,
in "games of timing," e.g., models of duels in which payoffs
depend on "who fires first" in a way introducing discontinuities
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at those strategy-pairs representing simultaneous firing by
the opponents. But for applications of the type underlying
this report, it seems reasonable to expect continuous payoft
functions. ©Under that assumption, a game on the square jg
guaranteed to have a solution, though mixed strategies will
usually be involved. Also, an approximate solution of any specified
quality can be obtained by approximating the square with a suf-
ficiently fine, finite two-dimensional grid of its points, regarding
the values of F; at the grid-points as entries of a payoft matrix,
and then solving the resultant matrix game., While this is generally
the numerical method of choice, the method of fictitious play
can also validly be applied (indeed, it can be applied for a
much wider class--"compact metric squares"--of infinite strategy
spaces; Danskin [108]).

It is for special classes of continuous games on the square
that there was notable progress in obtaining "better~than-numerical”
solution methods, i.e., methods which approach the ideal of
yielding closed-form solutions in terms of the parameters in
the payoff functions. (I use "was" rather then "has been" because
the field has not been fashionable for some time; perhaps indicating
that further advances would be distinctly more difficult.)
This progress is embodied in theoretical analyses which both
provide detailed information on the mathematical form of a solution,
and provide and justify procedures for determining the gpecitics
of that form in any particular instance. The latter procedures
are, in general, numerical (though involving far less computation
than a purely numerical approach, unaided by information about
the solution's form). 1In especially "nice" cases, however,
they can be carried out in symbolic or "closed" fashion to yield
an entirely closed-form solution.

An extensive account of most of this work is collected
in Volume 2 of Karlin [21]. As a sampler, two of its subdomains
are sketched in the next three paragraphs.

One of these subdomains involves continuous games on the
square for which the payoff function, (ajraj), is "separable,”
i,e., built up from one-variable funcglons of the individual
strategies s; and s, in the manner given by the formula

fl(Sl,Sz) = l;o g aljgl(sl)hj(sz), (3-4)

with the functions g; and h; assumed continuous. Then the available
theory assures us, for ei%mple, that each player has at least
one optimal strategy which "mixes" only a finite number of pure
strategies (thus cumulative distribution functions are not needed),
in fact, a number not exceeding the smaller of M + 1 and N +
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1 where M and N are as in (3.4) and in further fact (a sharper
limit) not exceeding the "rank" of the matrix (ajs) of coefficients
appearing in (3.4). Considerably more speclflc results can
be given for the polynomial case of (3.4), i.e.,

M N
£1(s1,82) = .z% .z% aijtgi(sl)ihj(sz)j. (3.5)
1= J:

To introduce the second subdomain, we define a function to be
convex if it is never underestimated by linear interpolation
between two of its values, concave if it is never gverestimated
by linear interpolation. Consider a continuous game on the
square in which fy(sj,sp) for each sj, is a convex function
of s,. Then the theory tells us that player 2 has a pure optimal
strategy, while player 1 has at least one optimal strategy that
mixes at most two pure strategies. If also f;(s;,sj) is for
each s, a concave function of sj, then player 1 also has a pure
optimaf strategy. In addition, the theory prov1des information
that aids in actually determining the various pure strategies
just mentioned, as well as their "mixing weights" where appropriate.

The reader may recall from calculus that convexity and
concavity are characterized by the signs of the second derivative
of the function involved (" > 0 for convexity, " < 0" for concavity).
This suggests that the preceding result might be generalized
by stipulating the sign of some derivative of higher order than
the second. That turns out to be the case; the theory assures
us that if

oNg 7 3Nsy, > 0 for all (sy,sy) (3.6)

where the order N or the partial derivative obeys N > 2, then
player 2 has an optimal strategy which mixes at most N/2 pure
strategies (here the endpoints 0 and 1 of the pure-strategy
space count only 1/2 if they occur, while player 1 has an optimal
strategy which mixes at most N pure strategies.

We conclude this section by noting, by way of illustration,
a relevant class of games other than the continuous games on
the square. These are the "S-games" introduced by Blackwell
and Girschick [109], in which player 1 chooses an integer i
from the finite set {1, 2, . . .,n} while player 2 chooses a
point P in a given subset S of n-dimensional space; the i-th
coordinate of P is then the payoff to player 1 from player 2.
Perhaps surprisingly, this artificial-looking situation can
be used to model some interesting applications (cf. [109]).
Recently, Filar and Raghaven [110] have given an iterative solution
method for such games, under natural hypotheses ("closed and
bounded") on the set S. If the method terminates, it does so
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with a solution to the game; if not, then continuing it long
enough yields approximate estimates of the game-value and approxi-
mately-optimal strategies to any desired degree of approximation.
The method alternates between solving matrix games (which grow
in size at each iteration), and solving certain special nonlinear
optimization problems (whose difficulty depends largely on how
complicated the set S is).

3.3 Bimatrix Games

Recall that these are the games in which each of the two
players has only finitely many pure strategies, but the zero
sum assumption is dropped so that a separate payoff matrix for
each player is required.

An initial comment on solution methods for such games 1is
that fictitious play does pot in general work; this was shown
by Shapley [112; Section 5]. Nor does it appear that the powerful
computational methods of linear programming can be brought directly
to bear, as they can for matrix games.

In view of the last remark, it was regarded as somewhat
of a triumph when finite schemes? for finding a solution (i.e.,
an equilbrium point, generally involving mixed strategies) were
found. One such method, described by its authors as lying "within
the usual format of linear programming computations," was given
by Lembe and Howson [113]; its discovery had a major role on
originating an area of mathematical operations research ("linear
complementarity theory") which is now prospering on its own,
without particular reference to game theory. The results of
[113] also show that (apart from "degenerate cases"--which might,
however, be more likely to arise in the structured non-random
data of an application) the number of solutions is finite (in
fact, odd). Improvements to the method and an adaptation to
games in extensive form (Section 2.5) were proposed by Wilson
[114].

An alternative approach rests on the observation (Mills
f{115]) that finding a solution of a bimatrix game can be translated
into a guadratic programming problem: maximizing a quadratic
function subject to linear constraintsonthevariables. Mangasarian
and Stone [116], for example, have exploited this observation
by applying one of the (several) available numerical methods
for quadratic programming; some gaps in the associated theoretical
justification--still unfilled today, so far as I know--were
not reflected in any observed difficulties with the computational
experiments reported [116; p. 352, para. 3]. One favorable

9By "finite" we mean that the method obtains an exact solution
in finitely many steps.
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feature of this approach is that it might permit application
of known methods for sensitivity and parametric analysis of
quadratic and more general nonlinear optimization problems.
That body of techniques, though by no means as powerful and
complete as for linear programming, has seen considerable development
(cf. Mine et al [117], Fiacco and Hutzler [118], and the extensive
recent monograph by Bank et al [119] with coverage including
linear complementarity theory).

As noted earlier (Section 2.4), fixation on a single one
of a bimatrix game's (possibly) many solutions is, in general,
unacceptably arbitrary, so that it may well be necessary to
determine all such equilibrium points. There was some skepticism
and confusion about whether and how the method of [113] could
be extended to a finite technique for "finding all solutions"
in an appropriate explicit or implicit sense; cf. Aggarwal [120],
Todd [121], and especially p. 183 of Shapley [122]. Whatever
the resolution of this question, a somewhat different line of
development which does yield a finite solution method for the
"all equilibrium points problem™ has been given in successive
papers by Vorobiev [123], Kuhn [124], and Mangasarian [125]
with recent improvements by Winkels [127]. All known approaches
involve or are akin to finding all vertices of a polyhedron
(described by linear inequalities and equations) ina high-dimension-
al--a finite but potentially formidable computational task (Dyer
[128) . Thus the practicality of these methods for games of
application-interesting complexity must be regarded a_priori
with some suspicion, although ingenious exploitation of the
special mathematical features of a particular model is always
a possibility. It appears to the writer that these methods
might be extended further to yield (at high computational cost)
some minimal degree of parametric analysis capability for the
"all equilibrium points"™ problem; however, such extensions have
apparently not been pursued, perhaps because their cost-benefit
prognoses are so discouraging.

It is perhaps worth noting explicitly a main difficulty
in parametric analysis of a model which admits multiple "solutions."
Suppose one is for the moment concentrating on a particular
solution of some initial "base-line" version of the model, and
now asks how that solution varies as some parameter appearing
in the model changes from its base-line value. As this change
progresses, the solutions might split into two or more distinct
solutions ("bifurcation" or "multifurcation"); alternately,
some distinct solutions might coalesce into a sincle one. This
possibility obviously presents both conceptual and computational
hazards to any simplistic notion of "solution-tracking." 1If

10ye remind the reader again (cf. ftn 3) that completeness of
literature review could not be attempted within the scale of
this effort.
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one can somehow begin with a solution which is stable in the
sense of Jansen [129] or some of the authors cited in Section
2.4, then such phenomena would be ruled out for "sufficiently
small" excursiors of the parameter in question., For the application
content motivating this report, however, the need to analyze
a substantial range of model versions would probably make a
"small perturbation" limitation unacceptable.

The considerations of the last paragraph emphasize once
again the strong desirability, for applications, of a model
which yields a unigue solution, or at least whose solutions
are "equivalent" in the sense of yielding equal payoffs to the
player in whose interests the analysis is being conducted.
Bimatrix games with unique solutions have been studied, for
example, by Millham [130] and Heurer [131], but from the viewpoint--
absolutely perverse for our purposes--of taking as given the
strategy-pair which is to be the "unique equilibrium point of
the game," and then constructing a game for which this is true.
A more useful result, most naturally posed for two-player games
with infinite strategy spaces but also adaptable to their bimatrix-
game discretizations, is that of Rosen [32]. It uses the notion
of "concavity" of a function defined in Section 3.2 ("never
overestimated by linear interpolation") sharpened to "gtrict
concavity" by ruling out regions of "flatness," so that the
condition reads "always underestimated by linear interpolation."”
If, for each possible choice of player 2's strateg% Sy, player
1's payoff fy(sy,sp) is a strictly concave function 1 of player
l's strategy sy, and similarly with the two players reversed,
then (according %o [32]) the game has a unigue equilibrium point.

This is perhaps the best place to mention a promising further
concept described by Filar [132], that of a semi-antagonistic
equilibrium point (SAEP). We begin with a bimatrix game B,
with payoff functions f; and f, for the respective players;
and recall that B is in general not zero sum (i.e., £ + £y
# 0). With B can be associated two hypothetical matrix ence,
zero sum) games M; and My defined as follows: in M; the payoff
function for player 2 is f, so that (by the zero sum condition)
the payoff function £, rather than to maximize "his" own original
payoff function fy. similarly, in My the payoff function of
player 1 is f; so that the payoff function of player 2 is -fy;
i.e., player %'s objective has been shifted ?rom maximizing
f; (as in B) to "hurting" player 1 by minimizing fj. An equilbrium
point (sq*,sp*) of B is called an SAEP of B is s)* is an optimal
strategy for player 1 in the matrix game M;, and sy* is an optimal
strategy for player 2 in the matrix game M;. Not every bimatrix
game B possesses a SAEP, but when one exists it "represents

llIt is technically easy to extend the concept of "linear interpola-
tion" from functions of one variable to functions of several
variables (e.g., the entries of a mixed strategy).
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an equilibrium situation which is reasonable when the players
suspect each other of vindictiveness" [132]. Filar also (1)
gives a finite algorithm for determining a SAEP when one exists
(it could be extended to determine all of them) of else verifying
that none exists; (2) shows that any two SAEP's give the same
payoffs to the players; and (3) shows that SAEP's have the inter-
changeability property——if (sy*,s2*) and (s3**,spy**) are SAEP's
then so are +S2%*) and (s1**,s,*)--so that one can speak
of a strategy %or one player alone as being "SAEP." 1Issues
of parametric and sensitivity analysis are not addressed in
[132], but their possibilities appear more favorable for SAEP's
than for equilibrium points in general. 1In short, when SAEP's
do exist and when the situation being modeled has the features
of "mutual suspicion of vindictiveness" that make SAEP's especially
attractive as a "solution" concept, their use regains many of
the advantages typically lost in passing from matrix to bimatrix
games.

3.4 Multi-Plaver Games

One purpose here is to discuss the solvability of p-player
game models with p > 2. Before doing so, we pause to note that
the section headings of this chapter omit one class of games;
2-player non-zero sum games with infinite strategy spaces.
There is no general theory known that applies to broad classes
of these games, in the spirit of the results for zero sum games
described in Section 3.2. For purposes of numerical solution,
they can be approximated ("discretized") by suitable bimatrix
games, so that the content of Section 3.3 becomes relevant.

The preceding digression completed, we turn to the multi-
player case. For simplicity, we assume initially that the (pure)
strategy space of each of the p players (p > 2) is finite.

The first fact to be noted about such games is a depressing
one: no finite general algorithm for their (exact) solution
is known, and in fact pone can exist. To see how soO sweeping
an assertion can be justified, first recall the classification
of real numbers into those that are rational (i.e., expressible
as the ratio of two integers) and those that are not (the irrational
numbers, such as +/2). Notice that if we begin with two rational
numbers, then their sum, difference, product, and quotient are
also rational numbers. Thus, no finite algorithm using the
standard arithmetic operations (addition, subtraction, multipli-
cation, division), when applied to an initial set of rational-
number data, can possible lead to an irrational number.

Now suppose X is some irrational number and G is a 3-player
game whose data (the payoff values f;(sjy, sy, s3), fa(s1, s3,
s83), and f3(s1, s, s3) for all possible pure-strategy choices
(Slr s9r s3) by the three players) are all rational numbers.
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Furthermore suppose that G has a unjigue equilibrium point and
that the strategies of that equilibrium point (in general, mixed)
yield X as the payoff to one of the players. Since no finite
algorithm applied to the data of G can yield the payoff X correspond-
ing to the unique solution of G, it follows that no finite algorithm
can solve G, hence that no general finite algorithm for 3-person
games can exist. In 1979, Bubelis 1[133] showed that for any
irrational number X from a certain infinite class of irrational
numbers (the algebraic irrationals--those which, like v2 but
unlike [I or the base e of natural logarithms—--arise as a solution
of a polynomial equation with integer data), a 3-person game
G with the properties stated above can indeed be constructed,
and so the "no finite algorithm" conclusion follows.

The extension of the above argument, from three to more
than three players, turns out to be easy. A more serious question
arises if one permits, as single steps in a "finite algorithm"
not only the four standard arithmetic operations listed above,
but also the extraction of roots (square roots, cube roots,
etc.). Then taking X as V2 in the above argument would no longer
yield a contradiction to the existence of a finite solution
algorithm. But it is a classical mathematical result, due (1826)
to the tragically short-lived Abel (for background, cf. for
example, Chapter 10 of Tietze [134]) and generally referred
to as "unsolvability by radicals," that there are algebraic
numbers X which cannot be reached from rational data by any
finite algorithm even if root-taking is permitted. With X so
chosen, the argument remains in force.

A somewhat more cheerful note is the fact that the 1964
solution algorithm of Lemke and Howson [113] for the bimatrix
case (i.e., p=2), can be generalized to p-player games with
p > 2. Such generalizations were published back-to-back in
1971 by Rosenmuller [135) and Wilson [136]. Since the algorithm
of [65] is finite, this might appear to contradict the "no finite
algorithm" result cited above. Resolving this apparent paradox
requires a little more detail on the nature of the algorithm
in [113]). That algorithm can be viewed as having finitely many
"stages." At some of these stages a set of simultaneous linear
equations needs to be solved, but since that is a well-known
finite computational task, the overall labor is finite. When
the algorithm is generalized to games with more than two players,
it continues to have only finitely many stages; but now at some
of these stages, a set of simultaneous nonlinear equations of
a particular type ("multilinear") needs to be solved, a difficult
task which does not admit a finite exact solution method and
can only be done approximately. Wilson [136] initially remarks
that "presumably there are or will be numerical methods adequate
to this task" but later observes "this is by no means a trivial
presumption.”
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Further progress along these lines is reported by Garcia,
Lemke, and Lueth [138] and more recently by Vander Laan and
Talman [139]. The former includes results of computational
experiments with games of 3 and 4 players (7-140 sec. on an
IBM 360/50), the latter with games of 3 players; but since only
3 or 4 pure strategies per player were permitted, no extrapolition
can be made to games of more application-interesting size,
Colleagues have indicated that additional refinement of the
techniques in [139] is thought (no doubt not unanimously!) to
be the most promising direction for improved numerical solution
methods for general multi-player games. But the problem appears
intrinsically quite difficult, and the cited methods still find
only one out of a possible multiplicity of equilibrium-point
solutions, involving in general different payoffs and strategies.

A variety of particular multi-player game models have been
solved, sometimes in closed form, but typically by ad hoc ingenuity
so that no useful generalizations are apparent. One broader
class of nicely-solvable games, identified by Howson [140],
are the polymatrix games. These games are describable by a
set of p(p-1)/2 matrices Ajs, one for each ordered pair of distinct
players i and j. The entry Ajs(sj,s3) in the sj-th row and
the s;-th column of Aij' repreSents the contribution to the
total:bayoff of player i“due to that player's choice of strategy
8j and player j'g choice of strategy si. When p=3, for example,
tﬁe three players' payoff functions wo&ﬁd be

£y(s1s82,83) = RAja(s1,82) + Aj3(sy,s3),

f2(51,82,83) Ayy(sp,s1) + Aj3(sy,s3), and

£3(s1,82+83) = A31(s3,81) + A33(s3,872).

Such games have a natural modeling interpretation (payoffs arising
as sums of returns from 2-player interactions) and are shown
in [140] to admit a finite solution algorithm based on that
of [113] for bimatrix games., I suspect that the methods of
[123, 124, 127] can be extended from bimatrix games to find
all equilibrium points of polymatrix games but have not encountered
this in the literature.

In winding up this section, we now drop the restriction
of finiteness on the players' strategy-spaces. The resulting
class of models includes many of interest in the study of oligop-
olistic competition (cf. [19; pp. 370-374]). If each player's
payoff is a strictly concave function of that player's strategy
for each possible set of strategy choices by the other p-1 players,
then the previously cited result of Rosen [32] assures that
there is only one solution. So far as numerical techniques
are concerned, if the games (i.e., its payoff function and strategy
spaces) have no special mathematical structures then there seems
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nothing more to suggest than to pass to a discrete approximation
and employ the methods described earlier in this section.

A rather different approach, which does however require
some special properties of the payoff functions £y, £,,...
has been studied by mathematical economists, e.g., Arrow ang
Hurwicz [141]. Suppose, hypothetically, that the game is to
be played repeatedly, and let s;(t) denote the strategy chosen
by player i at the t-th play. As a "short-memory analog of
the fictitious- play concept described in Section 3.1, we might
imagine that player i's choice Si (t + 1) at trial t + 1 would
be such as to maximize

fi(Sl(t)’S2(t),ooo,Si_l(t)'Si(t+l)'5i+l(t) ...,Sp(t)) (3-7’

since in the absence of communication or cooperation, "he" has
no way of predicting how or whether the other players' choices
would change from the previous trial. A more cautious approach
would be to shift from s;(t) in the direction of the maximum
of (3.7), thus 1ncrea51ng ﬁlayer i's payoff it all other players
stand pat, but not moving all the way to the maximum. If the
time-parameter t is made continuous, one way of doing this is
to choose s;(t) as a function of t, to satisfy the gradient-

following condltlon
ds;(t)/dt = ci(afi/asi)(si(t),...,sp(t)) (3.8)

with each c¢; a positive constant, and with additional rules
to cover the cases where (3.8) would lead s; outside the strategy
space for player i. Rescaling each s; permits changing every
¢y to 1. Numerical solution of the p simultaneous difterential
equations (3.8) one equation per player, then yields a computational
procedure which might be hoped as time progresses (i.e., t— ),
to converge to an equilibrium point. Conditions under which
this hope is justified are presented and verified in [141].
Without repeating the specifics, we note that these conditions
involve strict concavity, or convexity, of various auxiliary
functions assembled from the payoff function £y, ...,
various partltlonlngs of the players into two groups- regardgble
as opposing aggregated players in a related two-player, zero
sum game.
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4.0 SOME GENERIC ISSUES OF FEASIBILITY

In the preceding two sections, we have given an overview
of the main ingredients of a game-theoretic model of a noncooperative
decision problem, including the principal "solution" concepts
involved. We have also reviewed what is known in general about
such "solutions"--their nature (i.e., typically involving mixed
strategies), existence, uniqueness or lack thereof, and the
ease or difficulty with which they can be calculated. With
this background developed, our aim in the present section is
to address several issues bearing on explicit questions posed
in the Nuclear Regulatory Commission's Request for Proposal
[142] that led to the present study.

These issues all pertain to the feasibility of utilizing
a game-theoretical model to aid the material accounting function
described in Section 1l; that of setting the "alarm thresholds,”
for values of inventory discrepancies in quantities of special
nuclear material, in a way that properly balances the costs
of over-frequent "false alarms" against the obvious risks of
an alarm policy that is too "relaxed." Furthermore, the issues
to be discussed below will be of a relatively generic nature:
they do not refer to some gpecific game-theoretic model or technical-
ly delimited class of such models, nor to the particulars of
the alarm threshold-setting problem within a spectrum of risk-
benefit analysis questions arising from the Commission's respon-
sibilities. Thus, the level of discussion here will be appropriate
to the level of generality ("feasible to apply (game theory)
in a regulatory framework?) suggested by A-1 and B-2 in [142;
p.21].

Concretely, the topics to be treated are:

- Understandability of game-theoretic techniques,
~ Viability of game-theoretic models in regulatory settings,
and

- Mixed strategies as a source of possible difficulties
in implementation.

The first of these topics is directly responsive to items A-
2 and B~2 of the RFP [142; p. 21], the third to Task la identified
there [142; p. 21]; while the second, as noted above, pertains
to items A-1 and B-1l. Our reactions to the first topic are
unequivocally reassuring. Those to the second topic are generally
positive, though necessarily more diffident (the writer is not
an expert in administrative law or protocols) and paying greater
attention to necessary provisos. As will be seen below, the
third topic raises some cost-benefit tradeoff questions of its
own that are susceptible to analytical treatment but, more impor tant-
ly, it can play an important, useful role in providing guidelines
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and criteria to assist the development of an operational game-
theoretic model for the "alarm threshold" problem.

4.1 Understandability of Game-Theoretic Technigues

This issue is raised in [142) with particular reference
to the feasibility of achieving "understandability by licensees."
It appears to express a concern that game theory, a subject
not typically part of the educational background of today's
senior engineers or managders, might be so very esoteric or
abstruse as to be beyond adequate comprehension (and, therefore,
informed acceptance) by suitable licensee personnel. Fortunately,
this is not the case. That conclusion will be supported by
three lines of reasoning.

First, the subject has enjoyed a long and successful history
of popularization for "lay" persons. J. McDonald integrated
his prior articles on the topic in Fortune into an acclaimed
"low~tech" introduction to the field [143] which, "by popular
demand, " has passed through a number of incarnations (e.gq.,
[144]1). A second well-received and reprinted early work of
the same genre, described in its preface as "a primer-for home
study," intended for "the intelligent layman who happens not
to have acguired a mathematical vocabulary," was that of Williams
[145] at the RAND Corporation., A more up-to-date but still
untechnical treatment is given by Davis [146], while a yet more
recent entry is that of Jones [147].

Second, even at a more technical level the topic is not
currently regarded as so complex that its study need be deferred
to graduate school or to the senior undergraduate years. Many
colleges and universities (my own included) offer introductory
courses or course-modules in the field, which do not impose
specialized mathematical prerequisites beyond the initial courses
common for most technical students. The Mathematical Association
of America and the Educational Development Center, typically
with funding from the National Science Foundation, had long-term
efforts during the 1970s to develop and disseminate modular
instructional material addressed to undergraduate students of
science, technology, and engineering; many of these modules
dealt with aspects of game theory. An extremely influential
mid-1950s freshman text (Kemeny et al [148]) devoted a chapter
to linear programming and the theory of games. By the usual
processes, parts of these materials have gradually seeped down
into the "enrichment matter” offered by some gecondary schools
to their more advanced students. Learning has generally been

12Though in fact it is now part of the curriculum in many leading
business schools (not necessarily as a separate course).
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facilitated by the extra motivation imparted by the intriguing
nature of the questions addressed in game theory.

It follows from the last two paragraphs that acquiring
an understanding of game-theoretic concepts and methods should
not prove beyond the competence of suitably educated and motivated
licensee personnel. 1Indeed, some junior staff members may already
have received education in the field. Statistics-trained employees
would already have a good grasp of many of the ideas involved.
I regard as most remote any necessity of developing as a training
aid, an application-oriented monograph like that for statistical
methodology [2], but the above material supports the practicality
of such a step as an unlikely fall-back.

This leads to my third reason for classifying "licensee
understanding of game-theoretic techniques" as a dismissable
issue. The licensees are engaged in an operation for which,
as a matter of settled policy, the possibility of deliberate
diversion is of serious concern (as evidenced by expensive and
intensive precautions). That is, they are engaged in an activity
whose considerations include intelligent reaction to the possible
presence of an "adversary." Since decision analysis in such
situations is precisely the subject of game theory, game theory
is one of the relevant technical disciplines for the operation.
If the NRC concurs, then--to be politely hard nosed about it--
it becomes the licensee's responsibility to hire or train personnel
to a suitable level of proficiency, just as it would be for
some relevant branch of nuclear engineering. Note that no consider-
able expense is involved--there is obviously no need for 24-
hour on-site coverage by "the game theorist."™ And as has been
indicated above, the necessary expertise is not so rare or arcane
as to make this requirement a really burdensome one.

4.2 yiability in Regulatory Settings

Here the term "viability" has been used as short-hand for
robustness against accusations of violating the constitutional
guarantee of procedural due process of law. Thus, the question
is whether a game-~theoretic model can be of such a nature, and
its use in aiding alarm threshold setting can be of such a mode,
as not to render this element of the regulatory process "unreason-
able, arbitrary, or capricious." Before offering some impressions
on this point, the writer must acknowledge his lack of expertise
in the areas of administrative law, and regqulatory practice,
plus awareness that even for experts the topic of "due process"
is by no means straightforward (cf. [149]).

It seems useful to begin, more generally, with the commissioning
and use of mathematical models by public agencies, especially
at the Federal level. This subject was extensively surveyed
in the early and mid-1970s; cf. Fromm et al [150] and Gass and
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Sisson [151]. The volume of such activities was found to be
very substantial (and spot—-checks at the time, by the present
writer, indicated it was probably considerably underestimated).
Actual utilization of the models was found to be relatively
high when model development had been carried out organizationally
close to (or in close contact with) the potential-user branch
of the sponsoring agency, but typically much less frequent and
successful in other cases. Further critical observations, focused
on the quality of documentation and verification (and corroborated
for military-oriented models by Brewer and Shubik [152], are
less relevant for present purposes. The titles and sources
(e.g., EPA, SEC) of many of these models clearly indicate their
intended use as analytical aids in regulatory procedures.

Unfortunately, these broad surveys of a decade ago have
not been repeated or updated, although excellent reviews in
a few narrower areas have been carried out (e.g., Friedman/OTA
[153]). Nevertheless, it seems safe to conclude--given the
continuing general trends toward "mathematical ization" and "computer-
ization"--that mathematical-model efforts related to regulatory
policies and practices remain substantial. The pages of the
Bell Journal of FEcopomics, for example, offer ample testimony
to this conclusion, though they normally do not specify the
degree and nature of actual adoption of the proposed models.
Another illustration is given by the large-scale modeling systems—--
more or less descendants of the Project Independence Energy
System (PIES)--developed and operated by the Department of Energy:
cf. for example Gass [154] and Gass et al [155]. Johnson [157]
describes operational application in fisheries regulation.
More generally, it seems clear that many quantitative issues
involved in a regulatory judgment--the effect on competition
of a proposed merger, the effect on regional pollution levels
of a proposed change in processing fuels or technology, the
adequacy of continuing current charges to provide a reasonable
rate of return for a public utility--involve complexities and
data-volumes that must be receiving formal mathematical treat-
ment., As noted in [153; pp. 7-8], "models--are often the method
of choice to meet the requirements of legislation,"™ and further
"in translating legislative requirements into management practices,
agencies often recommend procedures that depend on the use of
models." (Page 186 of [153] sketches a number of water-resource-
related model uses by the NRC in support of its regulatory activ-
ities.)

This is not to say, of course, that "any old mathematical
model" should or could prove viable in a regulatory setting.
Common sense, good professional modeling practice, and the obvious
spirit of "due process" all suggest, for example, that a suitable
model should do the following:
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a. not contradict reliable, relevant data and to the extent

possible should, in an appropriate way, be based on
such data, and consistent with Steele [158,p.23]

b. not contradict well-established, high consensus theory
(if such exists) in the clearly relevant discipline
(e.g., nuclear physics or economics) and to the extent
possible should, in an appropriate way, be based on
such a theory.

At (a), in one case where a model dealing in part with complex
hydraulic flows in plastic manufacturing plants produced flow
rates departing from those observed by a factor of 10, the court

(not surprisingly!) rejected the challenged regulation [153;
p. 62]. It is impossible to resist gquoting [157; p. 87] the
list of criticisms leveled by natural-gas industry experts,
and evidently supported to the satisfaction of the hearing examiner,
at the developers of an early econometric model offered by staff
of the Federal Power Commission: "false sophistication, non-
professional performance, faulty use of data, incorrect identifi-
cation of variables, statistical ineptitude, and conceptual
inconsistency.” (The examples of Finkelstein [159] are of related
interest.)

But these horror stories are quite atypical today; as subsequent
events showed in the latter instance, the rejection of a particular
model in no way _signaled rejection of modeling in general.
To the contrary,13 a relatively narrow standard has evolved
for judicial review of models used for agency rulemaking: that
the court, though conducting a searching and careful inquiry,
should not substitute its judgment for that of the agency; that
the agency's use of the model should be accorded a "presumption
of regularity"; that the model's documentation must provide
an adequate explanation of it's being a "rational choice" as
basis for the regqgulation without the court's then undertaking
to determine whether it was the "best possible approach." [153;
p. 62] also notes that the Federal courts have proved relatively
flexible in applying the "reasonable basis" test to disputed
regulations and have displayed a reluctance to involve themselves
in evaluating models per se. This exhibits gsensible recognition
of the point emphasized by Steele [158; p. 23]114 that "a reasonable
approach does not mean 'the correct' approach because there
is no way to define in detail 'the correct' (modeling) approach
toward the solution to a specific requlatory problem."

13rhe following passage is based on [153; pp. 61-62] which gives
the specific citations including some apparently relating to

56].
fiTo better match the present context, "econometric" was broadened
to "(modeling)" in the following extract.
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Chapters 6 through 8 of [154] deal specifically with model
roles and presentation strategies in the context of "procedural
due process." One piece of advice is to avoid the "oversell,"
of attempting to envelop the model in "an aura of verity."
Instead, model documentation and presentation should stress
the rationality and reasonableness both of the entire approach
and of the major choices made (necessarily on partly subjective
"best judgment" grounds) at key points in the model-development
process. A gecond implicit recommendation ([154], pp. 87-88)
is that the model should be capable of appropriate particular-
ization to the specific cases at hand (e.g., by setting parameters
to the relevant values) instead, for example, of being irrevocably
wedded to aggregate average data that might be demonstrably
significantly inapplicable to the particular instance. (This
reinforces our stress, in Section 3 above, on the possibilities
for sensitivity and parametric analysis of game-theoretic models.)
A third observation ([154], pp. 3, 74-75) is that the severity
of the "due process" criterion will naturally depend on the
salience of model-use in arriving at the regulatory decision
already substantially determined, to a maximum role in which
model outputs become the determinate guidelines for decisions.
Here it is useful and encouraging to note the variety of requlatory
instruments and modes available to the NRC (see Section 2.0
of the main report) in determining how best it might utilize
the game-theoretic approach.

Some distinctions among different possible functions of
a mathematical model should be raised here. (They are discussed
in a game~theoretic context by Wiberg [160].) A model may simply
provide a compact representation or encoding of some body of
observations (descriptive function). It might be viewed as
a theory of the phenomena in .question, giving intellectual insight
into why the observations turned out as they did (explanatory
function). If the description or theory is thought to have
validity extending beyond the observations or data already at
hand, it may be employed for the predictive function of forecasting
the nature of future occurrences of the phenomena, perhaps in
hypothetical alternative futures reflecting different possible
"states of nature," or different choices of policy or design
by one or more decisionmakers. (This predictive capability
is the most common motive for applied model-building.) Finally,
it may be explicitly intended to help recommend a "best" policy
or design (the optimization or normative function, arising for
example in linear programming and game theory). These distinctions
are useful despite the inevitable overlaps among their neat-
sounding categories; e.g., the predictive mode would be used
to generate tentative forecasts whose accuracy can be checked
to evaluate a model's success as an explanatory theory or a
predictive model (plus an explicit "scoring criterion") might
be used in lieu of formal optimization to decide which is the
best among a stipulated set of alternative decisions--which
need not, of course, happen to include "the best" one.
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Although most of the models alluded to in the preceding
references are of the predictive variety, the comments do encompass
normative models as well. For example, [153] with its positive
findings on "viability" explicitly includes this category ([106],
p. 155-157) . Examples of anagricultural type (e.g., pest management
and pesticide-use control) are given by Rovinsky and Shoemaker
[161] . Energy-related models like those cited above [154, 155]
often are (or have major submodels) of the optimization type.
Some members of the judicial branch may have acquired a sympathetic
familiarity with optimization concepts from past expositions
(e.g., Nagel with Neef [162], Nagel and Neef [163]) of those
concepts in the context of applicability to the legal process,
We note that gome checks for "reasonableness" available for
predictive models are no longer so clearly applicable to normative
models, since observations at variance with model outputs may
simply reflect non-optimal behavior, improvement on which may
have been the very motive for developing the model.

There seems no special reason to modify the preceding general
comments about "viability," when the focus is further narrowed
to game~theoretic models. But specific citable references have
proven (for the writer) hard to come by; lack of a bibliographic
survey of real (i.e., operational and accepted) applications
of game theory is a serious gap in the literature. At the conference
documented in [164], it was stated in connection with Shapley
[165) that the courts had showed "intelligent sympathetic interest"
in the use of game-theoretic constructs in judging the fairness
of voting and representation schemes, a topic whose mathematical
analysis was initiated largely within the legal profession itself
(e.g., Banzhaf [166-168]). Another regulatory-pertinent area
of application is to equitable allocation of costs (Lucas [169]);
here there is at least one documented operational use (Billera
et al [170]) as well as a substantial number of potential ones
whose status isless clear--towater management, urban-transportation
subsidies, airport landing fees, etc.--and to a case "which
has been argued in the U.S. courts,”™ concerning how to allocate
taxes for accounting purposes, and involving the U.S. Government
and the McDonnell Douglas Corporation. These developments,
however, unlike the models developed by Goldman and Pearl [171-
172] in the context of "weights and measures" inspections and
income-tax-return auditing, stem from the "cooperative game"
theory rather than the "noncooperative" branch most relevant
for the present study.

There are two additional points, plausibly assignable either
to this section or the next, which we choose to address here.
Both reflect the fact that a "solution™ to a game-theoretic
model may require a player to adopt a "mixed strategy," i.e.,
a probabilistic mixture of courses of action.

The first point is that achieving such a mixture obviously
requires a deliberate act of randomization. Might not the outcome
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of such a "dice-toss" be held to be intrinsically "arbitrary
or capricious,"” and therefore a failure of procedural due process?
In light of the previous comments concerning standards of judicial
review, this does not seem to the writer to be a serious threat,
so long as the randomization was carried out (as well as the
very use of randomization) systematically derived from a respected
relevant theory (here, game theory). A telling precedent appears
to be offered by the "random lottery" version of the Selective
Service Draft, which did not succumb to any legal challenge
of "arbitrary because random."

[Apropos the phrase "respected relevant theory" in the
last paragraph, it should be noted [14, Section IV] that the
(diverse) Peer Review Group had no qualms about the relevance
of game theory to the suggested application and to possible
related ones in the "safegquards" context., 1Its relevance for
other types of application, especially some which are predictive
rather than normative, might in particular cases prove arguable;
the possibilities for controversy are illustrated by two recent
lively~--but, the writer feels, minority view--papers by Kadane
and Larkey [173, 174].]

The second point, more hypothetical in a way, stems from
the nature of the optimal mixed strategy calculated in an illustra-
tive numerical exercise of the model proposed to the NRC in
[7]. One "component"™ of that mixture ([7; p. 40] to be employed
with probability 0.058--i.e., on the average, in about 1 out
of every 17 inventory periods--calls for setting the alarm threshold
at a slightly negative level so the "maybe a diversion!" signal
could sound even when the ID calculation indicated a (sufficiently
small) excess of nuclear material at hand. The Peer Review
Group {14, pp. 20-22] was suspicious of this result, which might
reflect an inappropriateness in the model or an error in obtaining
its solution, and which admits a quick (though intellectually
unsatisfactory) "fix" by denying negative levels to the strategy
space of the threshold-setting player. But if, after careful
consideration and analysis, such an apparently counter-intuitive
solution-component remained, would that in itself run afoul
of the "unreasonable, arbitrary, or capricious" criterion?

With some trepidation, the writer suggests that this would
probably not prove true. An action that would be unreasonable
if taken invariably (e.g., every inventory period), may quite
rationally be taken with some low frequency for purposes of
deterrence or deception. For example, scarce police resources
may be assigned to occasional extra random patrol, through low-
crime neighborhoods, as the best means of keeping them "low-
crime" and optimizing overall protection. 1Illustrations from
poker (the need for infrequent but persistent "bluffing" on
some weak hands, and "folding"” on some stronger ones) are part
of common folk-wisdom as well as verified consequences of game-
theoretic analyses. Such arguments, it is suggested, are likely
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to reverse an initial impression of absurdity for negative alarm
thresholds (as limited-probability components of an optimal
"mix") assuming, of course, that the underlying model otherwise
appeared reasonably-based. The equitability of how the costs
associated with such a policy are allocated might perhaps come
under judicial scrutiny. But that is a different question.

4.3 Possible Difficulties with Mixed Strategjes

At the end of the preceding section, we addressed two possible
threats to the acceptability of a mixed-strategy solution produced
by a game-theoretic model: that the randomization aspect of
a mixed strategy might be held "arbitrary and capricious," and
that objections might arise if the optimal mix contained--with
some small but positive probability that could conceivably lead
to its activation--a rather counter-intuitive pure strategy.
Reasons were given for expecting such threats to be surmountable
without undue difficulty.

There is, however, a further class of possible difficulties
associated with mixed strategies. Recall the source of such
a strategy's advantage: that the opponent, when if in touch
with a well-entrenched "mole," cannot exploit advance knowledge
of your course of action (pure strategy) because that course
is not actually determined until the random "device" implicit
in the mixed strategy is exercised to choose (with the appropriate
relative odds) among the menu of pure strategies involved.
The other side of the coin, of course, is that you cannot benefit,
either, from such advance knowledge.

Most of us presumably value, though to different degrees,
order and predictability in the important parts of our lives.
It is plausible that facility operators and managers, because
both of occupational traits and of the personal attributes leading
to their senior status, are especially likely to set high store
on controllability and predictability of the operations for
which they are professionally responsible, For such persons,
a "wait until the dice are rolled to determine the response"
dictum might be a particularly galling aggrevation of the normal
uncertainty inherent at the start of an ID determination.

These possible psychic costs have a more tangible counterpart.
Each possible response (except the "all clear-do nothing” one)
presumably involves a nontrivial sequence of activiities, where
timely and efficient execution upon demand may well require
prior development of plans, instruction sets, stocking of particular
equipment at particular points, practice drills, and the like.
Attaining and maintaining a "ready state" of preparedness for
each of a number of responses (those pure strategies which enter
the optimal mixed strategy with positive or "sufficiently positive"
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probability-weights), all perhaps associated with the very same
range of ID-values, will in general be distinctly more expensive
and strenuous than standing gemper paratus for only a single
course of action. (The optimal mixed strategy given for an
illustrative case in [7; p. 40] contains 11 pure strategies,
8 of them with probability-weights exceeding 0.05.)

The severity of this effect cannot be estimated without
a more concrete understanding of the various responses, and
of their associated preparation steps and costs. But if it
were so severe as to require alleviation, how might this be
done?

The most simple (and simplistic) approach would be to eschew
the use of mixed strategies, confining the "allowable"™ choices
to the class of pure strategies. How much of a sacrifice in
"protection” might this limitation involve, in particular for
a player representing NRC-like interests in the kind of anti-
diversion context motivating this study? 1In the absence of
a specific validated model, only crude and tentative answers
to such a question can be attempted. Such attempts, described
in the next few paragraphs offer conflicting evidence but on
balance indicate that the sacrifice may well prove acceptable.
In case it does not, we will then go on to sketch some more
sophisticated approaches.

Our initial rough-and-ready analysis of the "pure strategies
only" approach involves a zero sum two-player game, i.e. a matrix
game, in which the "NRC player" is the row-choosing player 1.
Such a game is described by some m-by-n payoff matrix A, whose
entry a(i,j) represents the payoff to player 1 if that player
chooses the course of action represented by row i, while the
opponent chooses the pure strategy symbolized by column j.
Adding a constant to every entry of A does not change the strategic
analysis of the game, and so without loss of generality we will
limit attention to the case in which all a(i,j) are posjtive.
If mixed strategies are permitted, then from player 1's viewpoint
the game can be solved by solving the linear program (3.1-3.3)
given in Section 3.1; the resulting optimal value, the "game-value"
in the sense defined in Section 2.4, will be denoted v, and
is the greatest (expected) payoff of which player 1 can %ssure
himself. On the other hand, if player 1 can only use pure strate-
gies, then his choice of any particular row i could result in
his receiving that row's gmallest entry as payoff, symbolically
the quantity min; {a(i,j)}, and so the best payoff of which
he can assure hlméelf is obtained by choosing i to make that
quantity as large as possible, i.e. to achieve at least the
payoff :

Vpure = maxj {minj {a(i,j)}}. (4.1)
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The ratio:

R = (V0pt = Vpure) / Vopt: (4.2)

which is bounded above by 1 and is positive unless the original
game happened to have a pure-strategy solution (in which case
R = 0), is then a reasonable normalized index of player 1's
sacrifice in protection by confining himself to pure strategies.

A computer program was writtenl3d to carry out a Monte Carlo
study of the magnitude of R. The entries of payoff matrix A
were chosen independently and at random from the interval [0,1].
Specifically, a small scale study generated 400 5x5 payoff matrices,
determined v for each by solving the associated linear program,
then determinga Voure and R from equations (4.1) and (4.2) respect-
ively. The resuftlng mean value of R was approximately 1/3,
i.e. on the average the restriction to pure strategies "cost"
player 1 roughly one-third of the "protection-value" level available
when mixed strategies were permitted. In roughly 1/5 of the
cases, half or more of the mixed-strategy value was lost when
only pure strategies were allowed.

These results appear quite discouraging for the advisability
of the "pure strategies only" approach. Moreover, there is
some reason to conjecture that the results would be significantly
worse if the random payoff matrices of the above Monte Carlo
experiment werereplaced by matricesmore specifically representative
of our anti-diversion situation. The critical point is that
R is small for games in which player 1 could make his choice
known in advance ("and do your worst, you villain!") at relatively
little cost, i.e. in which player 2 would not be materially
assisted by advance information about player 1's chosen course
of action. But our situation appears to lie at just the gpposite
extreme: expert opinion indicates that accurate intelligence
is regarded as "pivotal" (deLeon et al, [176; p. xii]) and uncertain-
ty about the security systems is "abhorrent" (Jenkins [177;
p. 7]) for adversaries, so that [176] "the deliberate creation
of uncertainty" would appear to present the greatest obstacle
to potential adversaries in planning and executing their acts."

A more careful conceptual analysis, however, reveals a
flaw in the preceding reasoning and leads to a more encouraging
prognosis. To explain the flaw, it is useful for concreteness

15I am grateful to my student E.S. Won for performing this
task.
16Though the language of the following citations and their
contexts could be narrowly construed as referring only to physical
security, I believe a broader interpretation accurately reflects
the writers' view; cf. the cited need (Bass et al, [175, p. 15]
for more than a "castle and moats" concept of "security."
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to turn to the simple but prototype scenario sketched in NUREG-
0290 [5; p. 18] and in [6]:

Move 1: Diverter removes x grams of SNM.

Move 2: Inventory-taking leads to a figure of u grams of
SNM as unaccounted for.

Move 3: Defender, knowing u, chooses one of the available
courses of action.

The preceding paragraph treated Move 3's "course of action"
as a (pure) "strategy" for the Defender (player 1), and noted
accurately that advance knowledge of this choice would be advanta-—
geous to the Diverter (player 2). But in fact the above scenario
describes a game jin extensjive form as defined in Section 2.5
(Move 1 "belongs"™ to the Diverter, Move 2 to the "chance player"
who generates the random measurement/recording error in the
reported ID-figure, and Move 3 belongs to the Defender). Thus
a "strategy" for the Defender ghould be defined, as in Section
2.5, as a "complete contingency plan"--not as a specific course
of action or response, but rather as a response rule (or decision
rule) which specifies, as a_ function of the observed ID-value
u, what action will be taken. Note that u might plausibly be
(and is, in the existing models) taken to be the sum of the
measurement error and the diversion amount: u = e + x. 1If
the measurement process is rather imprecise (e.g., if e has
large variance, then even if the Diverter knew the Defender's
response rule (i.e. strategy), he could not confidently predict
the Defender's actual response to any specific diversion-level
x, because that response would depend on u = e + x which would
be only poorly predictable from x. Thus the imprecision of
the measurement process, a drawback to the quality-control aspects
of safeguards activity, ironically offers some comfort to the
Defender intent on using a pure strategy: it creates uncertainty
for the Diverter even if the latter learns in advance of the
former's strategy. For clarity, we emphasize that what would
be "learned" is the Defender's response rule, not the specific
response to be made, which depe%ds on the random error e and
so is not determined in advance.

To what extend can the "pure strategies for the Defender
might not be so bad" agrument of the last paragraph overcome
the "restriction to pure strategies looks bad" arguments that
preceded it? To the writer's surprise, the answer appears rather
promising for a restriction to pure strategies. 1In the context
of the simple scenario given above, the argument runs as follows:

17In a more elaborate model, the Diverter might find it advan-
tageous to learn or infer the Defender's response as soon as
that response is determinable, i.e after the ID-determination.
But that goes beyond any of the cited models.

51



Let F denote the probability distribution of the random—-error
component, e, of the ID-quantity u. To avoid technical complications
assume for the moment that the possible diversion amounts x
are limited to a finite set, whose i-th member is denoted x;.
It is reasonable to assume that F is "atomless" or “absoluteiy
continuous", i.e. that is attributes gzero probability to exactly
attaining any particular numerical value for e. (In the cited
models, for example, F is generally taken to be the normal (Gaussian)
distribution typically used to represent measurement errors.)
Thus, if the Diverter chooses value x; for x, the probability
distribution of the ID u = e + x; will be a simple "translation
by x;" of F, say Fj, which will again be atomless. Finally,
still for technical simplicity, assume that the set of possible
response rules available to the Defender is finite. These circum-
stances satisfy the conditions of an old (1951) theorem by Dvoretsky
et al [178; Section 9], which assures that the Defender--but
not, in general, the Diverter~-will have an optimal "nonrandomized"”
(i.e., pure) strategy. Intuitively, the point of the "atomless"
assumption is that knowing x; does not permit the Diverter to
single out any single value or finite set of values of the ID
quantity u = e + X; as particularly likely, and therefore limits
the Diverter's abiiity to predict the Defender's response (to
u) even given knowledge of the latter's response rule. (Our
"u" is the "x" of [178].)

As just indicated, the "atomless" assumption is critical
to the above argument. The simplifying assumptions of finite
sets of diversion levels and of response rules for the Defender
turn out to be less critical; with a little care (see [178;
Section 4], and the recent papers of Radner and Rosenthal [179]
and of Aumann et al [180] extending this line of research),
it appears that they can be relaxed at the cost of weakening
an "optimal pure strategy" conclusion to one of "approximately-
optimal pure strategy®™ to any desired degree of approximation.
Although the cited results do not seem to apply explicitly to
more complicated scenarios for the "ID-alarm" problem, the writer
finds it likely that they cap be extended so as to apply in
many cases. The "bottom line" consequence is that in the context
of a future effort to develop an operational game-theoretic
model for this problem area, there are good grounds for believing
that the design goal and criterion

o the model should admit optimal or near—optimal pure strategies
for the Defender

is satisfiable (rather than merely desirable), and therefore
reasonably adoptable as an initial gquideline. (The weasel word
"initial” corresponds to the "in many cases" a few lines earlier.)
As relevant evidence, we note that [5, 6, 9] report pure-strategy
solutions for the Defender. An apparent exception, mentioned
earlier, is the "highly mixed" optimal Defender strategy of
{7, p. 40]. But as noted in [14; pp. 21-22, p. 38], the Peer
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Review Group was suspicious of the technical analysis leading
to that purported solution, and in the present context it is
especially pertinent to note that the suspected flaw lay in
treating the Defender's strategy (in part) as a response rather
than a response rule.

If the desired scenario for an operational model does turn
out to differ from the simple one above in ways that frustrate
the hope expressed in the last paragraph, one might seek to
limit the number of distinct pure strategies present in the
recommended mixed strategy. This can be done, for example,
by modifying the linear program (3.1-3.3) given in Section 3.1l.
Note that "x;", unlike its usage a few paragraphs ago, will
now stand for the probability-weight assigned by a player to
his i-th pure strategy. These continuous variables Xj,...xp,
plus the variable v must now be supplemented by discrete variables,
Say djse..sqms with the desired interpretation that

9; =1 if x5 > 0, gqj = 0 if x5 =0 (4.3)
so that q; + gy + ...+ gy counts the number of pure strategies
present in the mixed strategy represented by xj,...,xy). If

this number is to be at most (say) L, then we adjoin to the
linear program the additional linear constraint

ql + q2 + LI ) + qu L. (4.4)

To enforce (4.3), we also impose the conditions

0 < 9i < 1 (all i), and (4.6)
dj is an integer (all 1i). (4.7)

The new optimization problem involves the maximization (3.3)
subject to constraints (3.1), (3.2),(4.4), (4.5), (4.6)--s0
far, still a linear program—-and finally (4.7), which puts the
problem into the class of (mixed) integer linear programs ("mixed"
because both continuous and integer variables are present).
Finite solution methods for such problems (and implementing
computer codes) exist, but in general are distinctly more laborious
than for ordinary linear programs. The special way in which
the discrete variables q; figure in the constraints can probably
be exploited to yield a solution algorithm (perhaps of "lagrangian"
type) more efficient than those for the general run of such
problems. (One staple reference on integer programs and their
solution is the text by Garfinkel and Nemhauser [181] with its
rather unorthodox dedication ("To the knicks"); an update by
Nemhauser and L. Wolsey is forthcoming.)

Several variations on the last modeling theme are readily
possible. For example, one might not make substantial preparations
for the i-th course of action unless its probability-weight
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in the mixed strategy exceeded some threshold-level t;. This
can be handled simply by replacing (4.6) with

Xj - tj £ q4 (all i). (4.6)
Or, instead of placing an a_priorj limit on the allowed number
of pure strategies, one might want to let the optimization process
balance the costs of their use (say, ¢; for the i-th pure strategy)
against the benefits in achieving the game's objective versus
the opponent. This can be represented by dropping (4.4), but
replacing the simple objective (3.3) with

Unfortunately, these linear integer-program models fail
to capture an important aspect of the situation. Consider,
for example, the term cyqy + cpgy which is subtracted from v
in equation (4.8). It 1néicates a cost of ¢y if the chosen
mixed strategy "uses" pure strategy 1 but not pure strategy
2 (i.e.;, 93 =1 and g3 = 0), a cost of cp if the mixed strategy
uses pure strategy Zz%ut not pure strategy 1, and a cost of
c% + cp 1f pure strategies 1 and 2 are both used. But if pure
strategies 1 and 2 are both present in the chosen mixed strategy,
the correct associated cost might be either distinctly less
than C; + ¢co (e.g., if the advance planning and preparation
for the two pure strategies have significant overlap or economies
of joint performance), or distinctly more (e.g., if the two
sets of preparation are such as to interfere or to compete for
scarce resources). Thus the indicated terms in (4.8) should
really be replaced by cjqj; + cpqz - c12d192, where the "interaction
coefficient" ¢y, has the appropriate sign. Note that the cross-
product term qj;q, makes the optimization problem nonlinear;
still higher-oréer nonlinearities will arise, analogously, from
considering combinations of three or more pure strategies.

Nonlinear integer programs can be treated by increasingly
ingenious and efficient "linearization" techniques (e.g. Glover
and Wolsey [182], Glover [183]) or by direct algorthmic approaches
(cf. the survey by Cooper [184]; its restriction to "pure integer”
rather than "mixed" problems is not too important for our purposes).
These treatments do, of course, involve greater computational
effort than for the corresponding linear cases. What is more
chilling is the prospect of having to determine suitable interaction
coefficients, like cy, above, for each of the numerous relevant
combinations of mixed strategies. These considerations suggest
retaining both the expanded maxim and (4.8) augmented by suitable
nonl inear terms, and the limitation (4.4) with L chosen to keep
the number of nonlinearities within acceptable limits for purposes
of cost-estimation and computation. The trade-off issue between
the two terms of the augmented (4.8) is likely to prove acute,
because sets of pure strategies that admit substantial joint
preparation are by that very token prone to lack the "diversity
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of response" that provides good protection against the varied
options of the opponent.

Although the issues introduced in this Section's fourth
paragraph and treated in the Section's body appear significant
for applied game-theoretic modeling in general the writer cannot
recall seeing discussions of them in the previous technical
literature.
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5.0 THE PLAYERS

In this section we begin a more focussed discussion. of
the development of a game-theoretic model for the particular
class of situations motivating this study. The reader is reminded
that our study's objective is not the ambitious one of actually
developing such a model, but rather an analysis of the issues
bearing on the feasibility and preferable directions of such
a research effort.

The initial decision in creating a suitable model is, as
indicated in Section. 2.1, an identification of the number,
identities, and relations of the players in the "game." Possible
participants, with language sometimes chosen to "personify"
groups as if they were individuals, include

~ one or more potential "diverters" or their agents
- the NRC

- the facility operator

- one or more public-interest group

Several comments about this list are in order. First,
the reviews in Sections 2 and 3 show that games with three or
more players offer considerable difficulty, both theoretically
(as regards assurance of a conceptually compelling unique "solution")
and computationally (bearing in mind that sensitivity analysis
will require solution of the model for a number of sets of parameter-
values, not just one). Thus there are strong practical and
intellectual reasons for paring the above list down to just
two players--jif, of course, that can be accomplished without
distorting reality in a way vitiating the usefulness of the
model, This incentive for parsimony will color all that follows.
It is relevant to observe that the proposed modeli encountered
so far by the writer (e.g. [5-13], and also Avenhaus 8 [186-189],
Bierlein [190-191]) are all in fact limited to two players;
the sole exception is Bierlein [192], which has a somewhat different
viewpoint to be reviewed later. The same restriction (to 2
players) prevails in the substantial body of work (e.g. Dresher
{193], Anscombe et al [194], Aumann et al [195]) performed during
the 1960's on game-theoretical analyses of inspection problems
arising from possible arms-control agreements, a natural consequence
of the essentially bipolar nature of the international strategic-
weapons power balance then existing.

Second, even though public-interest groups (1) might well
play a role in discussing the appropriateness of current or
proposed regqulatory decision-aids such as a game-theory model
in the setting of alarm thresholds, and (b) might become involved

181 appreciate Prof. Avenhaus makingavailable a pre-publication
of his transparencies for the 1984 paper [189].
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pest_hoc in commenting on particular outcomes of such steps,
it is nevertheless hard (for the writer) to envisage a role
for them as separate "players" in the context of the model itself.
Assuming a suitable payoff function for the NRC player-—-an assumption
which in a sense begs the question--it seems reasonable to regard
that player's role as incorporating the relevant public-interest
concern.

Third, we consider the need for a separate "facility operator"
player. In the models proposed in the context of IAEA operations,
e.g. those in the cited papers of Avenhaus [8-11], 186-189] and
Bierlein [12, 190-192], the operator is explicitly or implicitly
identifiedwith the Diverter. Apart from innuendos [196] concerning
Israel's acquisition of certain SNM a number of years ago, the
writer knows of no suggestions that such an identification would
be appropriate for the installations under the NRC's responsibility.
It has been observed [175, p. 18] that some post-diversion scenarios
might provide "cover-up" incentives for the operator to have
common interest with the Diverter, and also (Willrich and Taylor,
[197; p. 116-7]) that management might 1like "to have some clandestine
material on hand simply as a convenient way to remove material
accountancy anomalies as they arise--an easy way to balance
the books." But given the purposes and priorities of developing
a game-theoretic model the NRC's ID-analysis problem, it seems
on balance (despite the considerations just noted) that such
a development effort can properly treat the facility operator
as belonging in the "anti-diversion" camp.

This does not mean, however, that the facility operator
.should be regarded as the essential persona of the Defender.
The injurious potentialities of a successful diversion or diversion-
hoax can extend far beyond the facility concerned, or even the
relevant industry. Furthermore, these extensions are by not
means of "second-order" importance relative to those effects
local to the facility and its management. Thus the societal
interests being protected go substantially beyond what would
naturally figure most prominently in an operator's payoff function.
On the other hand, because the operator's expenses for alarm-
induced activities and process interruptions will presumably,
for the most part, be passed along to the public in one form
or another (prices, taxes), it is plausible to incorporate those
expenses into the payoff function of the "NRC cum public" player
already described. This is not entirely satisfying: for example,
actual or potential unreliability in meeting supply schedules
involves facility disutilities that may be difficult to quantify
in terms commensurate with other contributions to the composite
player's payoff function (cf. the remarks of Edlow in [198;
p. 92].) But such modeling tradeoffs between detailed realism
and tractability are rarely entirely satisfactory; under the
present institutional arrangement, the indicated trade-off dges
seem advisable at least as the initial modeling strategy.
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5.1 More Than Two?

Our discussion so far as led to recommending use of a gingle
Defender player, identifiable mainly with the NRC, but with
a payoff function that also does justice to the legitimate concerns
of the facility operator. The next part of that discussion
will concern the analogous issue of aggregation for diverter
groups.

For readers who can entertain only with impatience the
notion of any diverter's presence as a serious possibility,
considering the presence of geveral such groups must seem downright
farcical. A partial rejoinder is that whatever particular features
(nature of material, vulnerability to penetration) might make
a facility or MBA an especially attractive target to gne diverter
group, could prove enticing to other groups as well.

Suppose for the moment that two such groups were "co-present"”
at a facility. 1If their efforts are collaborative or supportive,
then for a game-theoretic model that can probably be aggregated
into a single player. 1If their efforts in effect jinterfere
(e.g., their diversions trigger an alarm threshold that either
one alone would have dribbled under), then it is conservative
from the Defender's viewpoint to proceed with the analysis as
if only one of the two were at hand. While these rather simplistic
arguments should be replaced by a more careful treatment (to
which [25-26] might contribute useful theory), they indicate
in a rough way that for modeling purposes it is likely superfluous
to postulate more than one "diverter at a single site.

The situation for a multi-site model seems more problematical.
If such a situation could simply be treated as a collection
of independent single-site games, no particular difficulty would
arise. But there are two obstacles to such a decomposition.
One is that the Defender's reactions may be system-wide rather
than local--e.g., the response to an actual or perceived divertion
attempt at one site might not be confined to that site. The
other reason is that strictly speaking, diversion-seeking groups
at different sites should be regarded as belonging to the same
player only if they would pool their booty. It would be pointless
for the writer to speculate on the reliability of possible intel-
ligence on "who would pool with whom," and on whether that intel-
ligence would suggest that rigorous application of the last
sentence's criterion would yield just one Diverter, or more;
the range of potential adversaries listed in [175] seems too
diverse to permit an easy "just one" conclusion. It would of
course be conservative for the Defender to regard his adversaries
as all working together against him--and the resulting two-player
format provides a natural start for model development--but the
issue is one that should be flagged for further analysis (e.g..,
to quantify the "conservatism”" in some rough way, especially
in the light of a "threshold quantity" concept) when an operational
multi-site model is attempted.
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5.2 Less Than Two?

Our initial list of possible players has now dwindled to
a single Defender and (at least for a single-site model) a single
Diverter. There is no question about the Defender's inclusion
in the prospective game-theoretic model, especially since the
model is aimed at assisting "him." And since the threat of
the Diverter is a major rason d'etre for the safeguards system,
one might think that the inclusion of that player in the model
would also be accepted without question. But in fact, the appro-
priate nature of this inclusion proved a distinctly controversial
element in the deliberations of the Peer Review Group [14].
Because the points at question may prove important for the develop—
ment of an operational model, ye will review them here in the
light of reflective hindsight.l

The NRC-supported models [5-7] presented to the group for
review, as well as the European literature (Avenhaus, Bierlein)
cited earlier in this report, make the classical game-theoretic
assumption that both players are in fact "present" for the play
of the game--this is part of the normal meaning of "player."
Most members of the Peer Review Group regarded the assumption
of an always~present Diverter as "overly conservative," especially
given the "lack of hard evidence" that there had ever been a
diversion [14; p.20]. The evidentiary basis for this evaluation
is marred by the "Wilmington incident" (hurriedly appended as
a footnote to [14; p.20]), and quite possibly by the larger-
scale rumored "Apollo diversion" [196] as well, but the assumption
of an ever-ready Diverter might still appear extreme: the term
"paranoid" was in fact suggested. A proposed counter-argument
(not by the present writer) was that it would be prudent to
lock one's door against burglars each night, even if it were
paranoid to believe that your door was in fact tried by a burglar
every single night. Exceptions to the majority view are stated
in [14; pp. B-2 and B-6].

There are two matters of terminology which may obscure
the fundamental issue, and can therefore usefully be cleared
out of the way in advance. One of them pertains to language
like "always present"; those who criticize a model's attributing
this behavior to the Diverter are not asserting that the Diverter
is jiptermjttently present, but rather that this presence is
less than certain, i.e. that the probability of presence is
less than unity. An uncritical "frequency" interpretation of
the probabilities usuvally does no harm in applications, but

1%91n what follow, material not explicitly keyed to the Peer
Review Group's report [l14] is largely based on the writer's
files noting the informal exchanges of information and views
within the Group. Enough time has passed since the Group's
activities (in 1978-9) to permit further reflection, but the
reflections of other Group members may of course have developed
along quite different lines,
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here may prove misleading. The second linguistic point is that
opponents of the "certainly present" model assumption do not
really think that proponents of the assumption regard the presence
of a Diverter at every facility as certain. Instead, the issue
is whether modeling as jif this were the case, given the underlying
concerns of the safeqguards program, should be viewed as "appro-
priately prudent" or as "overly conservative.,"

A fairly natural idea, in this setting, would be to seek
to develop a model which included as a parameter a quantity
p(D) denoting the probability of the Diverter's presence. (If
p =.0.5, for example, one might figuratively speak of the game
as having "1.5 players.") Such a model could then be analyzed
for its sensitivity to the value of p(D). One would need to
develop two payoff matrices for the (row-choosing) Defender--
one of them (say Aj)to serve in the presence of the Diverter,
the other (A,, constant across each row) applying in the Diverter's
absence. Tﬁen one approach would regard p(D) A; + (1 - p(D)A
as the Defender's effective payoff matrix; a more sophisticatea
one, suggested in [14, p. 32], would take the probabilities
p(D) and 1 - p(D), and the payoff matrices A; and A,, as the
ingredients of a repeated game of incomplete information as
defined in Section 2.6.

Although such as approach has considerable appeal and merits
exploration, the writer is suspicious of it. One reason is
that p(D) might really be a derived strategic variable rather
than a (constant) parameter of the model--e.g., the probability
of the Diverter's presence at a site might reflect the intensity
of efforts to penetrate that site, which might reflect the attrac-
tiveness of that site as a target, which might reflect the alarm-
threshold in force there. A more important reason, perhaps,
is the p(D) is a "soft" parameter that might too readily be
manipulated to coax model outputs into a desired region. Consider,
for example, the process by which a value or a "reasonable"
value-range for p(D) would be estimated. If that process rested
heavily on the "hard evidence of diversion" criterion mentioned
above, then low values of p(D) would presumably emerge. But
suppose the criterion were reversed, to require "hard evidence
of non—-diversions,” or at least "non-diversion beyond a reasonable
doubt." It is dubious [199] that most past investigations of
"triggering"” ID-levels, with their honest motivation for identifying
possible non-malignant loss mechanisms as "explanations" so
that normal operation might resume, could nearly satisfy the
latter criterion. That it is much harder to satisfy, does not
automatically imply it should not be used; after all, absence
of after-the-fact "hard evidence" of competent clandestine activity
might by the same token be too eagy to satisfy. So the question
of where the "burden of proof" should lie, not really a technical
question and certainly not an easy one, could heavily impact
the estimation of the ostensibly "objective quantity p(D)."
(Issues in the nature and decision-theoretic use of subjective
probabilities are indicated, e.g., by Kyburg [200].)
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Retrospectively, the writer has been led to speculate that
the Peer Review Group's majority-objection to the "certainly
present Diverter" scenario marked an objection to a still more
extreme assumption hidden in the reviewed models ([5-7]. 1In
these models, a pure strategy for the Diverter is the selection
of an amount to divert., The implicit assumption is that having

chosen such an amount, the Diverter can in fact successfully
abduct that guantjty. We might call this the assumption of

the "certainly present and perfectly capable" Diverter. My
conjecture is that the presumption of a "perfect capability,"
disregarding as it does the effectiveness of safeguards elements
other then material accounting, is what really stuck in the
throats of the reviewers, but that because this source of irritation
was less readily identified, their wrath was displaced onto
the more visible "certainly present" attribute. An implicit
assumption of this type--that a chosen decision can and will
be executed accurately--is an unrealistic imperfection in many
decision-aiding mathematical models; it might well be called
the "Ko-Ko fallacy" after the characters's excuse in Act II

of The Mikado:

"It's like this: when Your Majesty says 'Let a thing
be done,' it's as good as done--particularly, it is
done, because Your Majesty's will is law--so why not
say no?"

This suggests that efforts to develop an operational game-
theoretical model for our problem might well accept the "certainly
present" convention as appropriately prudential, and instead
concentrate on properly crediting other safequards elements
by modifying the "perfectly capable Diverter” assumption. Speci-
fically, the effectiveness of those elements might be represented
through the parameters of a conditional probability distribution
describing how much (possibly zero) material would actually
be diverted if the Diverter sets x as his "target"™ amount.
Although such parameters would inevitably share to some degree
the "softness” of which p(D) was accused above, it is anticipated
that this degree could be substantially lessened because of
the considerable body of analysis to which the other elements
have presumably been subjected. That analysis is hoped to be
realistic and knowledge-based in its treatment both of equipment
reliability and of human fallibility, e.g. in vigilance, and
in the design, fabrication, installation, operation and maintenance
of equipment; cf. Marshall [201), Green [202; pp, 312-313].

We have arrived at a recommendation for a two-player model
(Defender and Diverter), except for the possibility of more
than one (non-cooperating) Diverters in a multi-site analysis.
The general nature of the Defender's interests is implicit in
the preceding description of that player as corresponding roughly
to the NRC acting in the public behalf, with due sensitivity
to the needs of facility operators. We need not for the moment
elaborate on the Diverter's interests (there will be more about
this in Section 7), beyond the extent to which they are explicit
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in his role-title. It seems clear that the two players' interest
are broadly antithetical, and that communication or coordination
between them would not be natural in our materials accounting
setting of alarm-setting and responses--it would be natural
in a scenario of negotiation over return of diverted material,
or over a threat based on claimed possession of such material.
This "cool and distant" relationship provides the justification
for the earlier decision, at the end of Section 2.1, to confine

discussion to non-cooperative games.
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6.0 THE STRATEGY SPACES

Our purpose here includes a review of the pure strategies
regarded as available to the players in the various models cited
earlier. This plus additional discussion, will indicate some
of the possibilities in developing an operational model for
the application at hand.

Before turning to "strategies" proper, however, it is necessary
to note the different possible gsettings in which these strategies
would be chosen, utilized, and would interact. By the term
"setting" we mean the spatial and temporal extents of the model,
i.e.

- single-site or multi-site
- single (accounting) period or multi-period.

A multi-period model defines what in Section 2.5 was called
a "game in extensive form"; as indicated in that Section's mention
of "information sets," care will be necessary in specifying
what information will be accessible to the player at different
points in time. This specification, also, can be properly regarded
as part of the "setting."™ Analogous issues include (i) the
choice of total time-span for a multi-period model and (ii)
the timeliness and accuracy with which player—-agents at different
sites can share information and coordinate efforts.

Models of the single-site single-period type are the natural
starting point for a "less to more complex" progression in model
development, and are likely to be building-blocks in later more
sophisticated constructs. For brevity, we shall refer to such

models as gimple.

6.1 The Diverter's Strategijes

The models developed for the NRC (Siri et al [5,7], Dresher
and Moglewer [6]) are all "simple" in the sense just defined.
In each of them, a pure strategy for the Diverter is a number
x, the amount to be diverted, which is selected from a specified
interval [0,K]. The upper limit K was interpreted [7; p. 17]
as the smaller of the site's stock-level and a "credible threat
amount." One Peer Group member suggested that K might depend
on the physical and chemical properties of the materials at
the site in a way representing the time and effort necessary
to produce a clandestine fissile explosive. As noted in Section
5.0, the models also assume the Diverter to be "perfectly capable"
of achieving his desired diversion-level x, but since that is
not a necessary assumption in connection with this strategy-
space, it is irrelevant for us here.
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This choice of strategy-space is not unreasonable, but
it does raise some questions. If K is "small," it may be implausible
to model the diverter as unable or unmotivated to seek no more
material than K; if K is "large," it may be unrealistic to conceive
the diverter as believing himself able to make off with so much
at a single site during a single time-period. Other elements
of the model may compensate for the second criticism; i.e.,
optimal play might forbid the Diverter from choosing excessive
diversion-levels despite their formal availability in his strategy
space.

The restriction to a single time-period, implying inability
to represent the important possibility of "dribble" (i,e., a
little at a time) diversion, is very dubious for an operational
model. This was recognized in [7; p. 48], and indeed the Peer
Review Group [l14, p. 42] explicitly recommended development
of a multi-period model. Ignoring for the moment other possible
dimensions of diverter-action, let us ask how the preceding
strategy-space would generalize to a multi-period model.

Such a generalization would presumably replace the single
target diversion-level x by a sequence (X3, X3,...%p), where
X+ denotes the Diverter's target-level in the t-th time period.
Tﬁis is the approach taken by Avenhaus and Frick [9, 10]}. The
upper bound K has an analog in their model, namely a constant
appearing in a condition

Xy + X9 + ... xp = K (6.1)

that delimits the Diverter's strategy-space. (Our x¢, T K
correspond respectively to the M;, n, M of [9, 10].) clea}ly
K here represents a "critical total quantity” which the Diverter
is committed to secure at any costs receiving no "extra credit"
for gains beyond this level. The "perfect capability" assumption
for the Diverter is obviously present, as is the implicit presumption
that he can retain and cumulate his stash, period by period,
despite the Defender's recovery efforts and other possible loss
processes,

The existence of a quantity K, playing the role indicated
by equation (6.1) and assumed known by both players, is somewhat
discomforting., It turns out however that under this assumption
the model of [9, 10] has a unique solution in pure strategies,
in which the Defender's strategy (the one of main interest for
our purposes) is in fact independent of K, so that apparently
the Defender need not know K. Less comforting is the explicit
remark [9; p. 123] that the model admits negative x¢-value ("anti-
diversions”) in equation 6.l1; the test includes no assertion
that these anomalies are absent from the model's unique solution,
which might therefore exhibit bizarre credibility-damaging Diverter
behavior. The noting of various limitations, in this paragraph
and the last one, is not intended as disparagement of a pioneering
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research contribution, but their alleviation does suggest specific
technical direction for further efforts to achieve an operational
model.

The diverter-strategies described so far are of quantitative
nature: how much to steal (or aim at stealing)? In contrast,
other related models postulate what we will call dichotomous
strategies for the Diverter: at each time-period, a binary
decision as to whether or not to undertake a diversion, presumably
of some unspecified "canonical" amount. In these multi-period
models, a pure strategy for the Diverter is a selection of which
time periods to be active in. For the relevant Models II and
IIT of Bierlein [190], the total number of diversions is fixed
in advance, yielding an analog of condition 6.1 if the strategy
variables xi are confined to two values (0,1) corresponding
respectively to non-diversion and to diversion in period t,
(The notation of [190] uses "r" rather than "k," and "illegal
action" rather than "diversion.") Model II differs from Model
IIT in that the latter requires the periods of active diversion
to be co utive; the text notes explicitly Model II's assumption
that during the intervals between diversion, past depredations
cannot be detected by the Defender. The Diverter's strategy
is chosen once-and-for-all at the start of play, and as before
the Diverter is assumed "perfectly capable" (this last assumption
will no longer be explicitly mentioned since it is ubiquitous
in the cited literature). We note in passing the relatively
"simple"” models due to Borch [203, 204], in which the Insured
decides whether or not actually to invest in loss-reducing measure
promised to secure a reduced insurance premium.

The models in Bierlein [191], Beinhauer and Bierlein ([12],
and Bierlein [192] are rather different. For one thing, they
do not all fix the number of time-periods for action (still
dichotomous) by the Diverter. They involve a critical detection-
time t; the Diverter "succeeds" of some diversion goes undetected
for t time-periods. (Footnote 1 in [191] interprets t as the
time required to fashion a weapon from diverted material.)
The diverter is assumed to know the "given” limit on the number
or mean frequency of the Defender's inspections. In the model
of Part I of [12], a pure strategy for the Diverter is the choice
of a single time period in which to divert (or, a decision not
to divert at all); this choice is made at the start of play.
The scenario is more interesting in the other references just
cited and in Hopfinger [13]; a pure strategy for the Diverter
consists (roughly speaking) of a decision at each time-period,
knowing the timing of all prior inspections, as to whether or
not to divert during the current period. (The term in [13]
is "aggression" rather than diversion.")

Having considered models for the multi-period single-site
case, we turn next to the single-period multi-site case, beginning
with those models in which the Diverter's strategies are dicho-
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tomous. These are the models of Goldman and Pearl {170, 171].
In their context of intended application, it is most natural
(though not necessary) to equate the diverters with facility-
operators; the results of [25] justify aggregating these into
a single Diverter player, for whom a pure strategy is a subset
of the sites chosen as the scenes of "cheating" (i.e., diversion).
The expressive limitations of dichotomous strategies ("divert
or not") are mitigated by differentiating the sites as to their
rewards from a diversion. Pages 192-3 of [170] note possible
directions for model extension, one of them addressed in the
later [171], but generalization to a multi-period model is not
mentioned. Rumball [205] has suggested applying these models
to the patrolling of New Zealand's .territorial waters against
illicit fishing operations.

At this point we introduce a second possible mode of behavior
by the Diverter, noted in [7; p. 48] but especially relevant
in the "operator as diverter" contexts empha51zed by Avenhaus

in [206, 185-8]. This behavior is the fa n
or measurement data, a play which, if successful, could 31gn1f1cantly
ease the subsequent removal of material. Such a theme is the

game-theoretic (i.e., adversary-conscious) analog of an important
principle in control-system designs, the need to make special
provision assuring that stressful incidents at a plant will
not damage the sensors and displays providing the very status
information whose integrity is vital for managing the incident
(Young [207; pp. 7-11]). 1In the models of [186], for example, -
the Diverter seeks a given total amount (analogous to the K
of (6.1)), must decide how to partition his effort between data
falsification and immediate removal of material (doing exclusively
the former is asserted to be optimal [186, p. 30320) and then
how to apportion the former among the various sites.

There have been only a few treatments of the combined compli-
cations of multiple period and multiple sites. Recently Avenhaus
has reported [189] a multi-period extension of the model of
[186] mentioned just above. For models with dichotomous Diverter-
strategies, Model I of Bierlein [190] requires the Diverter
to allocate a prescribed number of diversion-acts among the
available (site, time) combinations in advance of play, whereas
Model III of Bierlein [192] appears to permit the Diverter--
knowing the times of prior inspections at all sites--to choose
both the time and the set of sites for an act (if any) of simulta-
neous diversion. A broad set of Diverter strategies is admitted
in the prototype "Travelling Inspector Model" of Filar [63]:
in each time period, the Diverter, knowing where the Defender

20ye have been somewhat cavalier in classifying this work
as multi-site, since its actual wording refers to various classes
and batches of material at a single site. But the mathematics
appears to admit multi-site interpretation,
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(the single "inspector”) spent the previous period, must decide
for each site among a finite set of possible levels (perhaps
null) for diversion. This model is a single-controller stochastic
game in the sense defined in Section 2.6, the "state" corresponding
to the Inspector's location.

In winding up this review of proposed strategy-spaces for
the Diverter, some final remarks are appropriate. Qpe is that
the work of Dresher [193] and some of the papers in [194] (e.g.
Anscombe [208], Kuhn [209], Davis [210], Maschler [211,212])
are relevant, but do not appear to add significantly to the
ideas about modeling Diverter behavior given in the papers already
cited. Another concerns themulti-period case: from theliterature
consulted during this study, it appears that an adversary with
sufficient "insider" status to attempt covert diversion would
by the same token be able to gain knowledge of some past actions
by the Defender. Some of the previously described strategy
spaces seem unrealistic in this respect, requiring the Diverter
to hew to a preplanned schedule even though adaptations to the
course of events would be advantageous. Thus, this point should
be kept in mind in designing an operational model. A third
observation is that dichotomous strategies (i.e., "steal or
no-steal" decisions without regard to guantity), though possible
springboards for useful generalizations, do not themselves appear
an appropriate modeling construct in our context of material
accounting. A possible exception, related to Section 5's criticism
of the "perfectly capable Diverter" scenario, would be a submodel
in which the strengths and weaknesses of other safequard elements
would be reflected in a probability distribution used to translate
a "decision to divert" into a particular quantity diverted.
The writer lacks the "feel," for the concrete particulars of
a diversion opportunity and activity needed to assess the promise
of this possibility.

A concluding idea, probably "wild" but recorded for complete-
ness is that the Diverter could leave some of the diverted material
in an easily-found position suggestive of accidental misplacement
or overlook, thereby reducing suspicion and promoting premature
termination of recovery/search efforts.

6.2 efender'’ t ie

Because some subgroups of the cited models treat Defender
strategies in ways unlikely to be useful for our particular
purposes, we can dismiss these treatments with relatively brief
mention. One such group consists of the previously mentioned
IAEA-related models analyzed by Avenhaus et al [206, 186-189]
in the context of a Diverter who can indulge in measurement-
data falsification as well as in material-removal affecting
the data. In these scenarios (e.g. [187; p. 318]), during an
inspection shut-down the Defender can make independent measurement
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to check some of the data reported by the facility operator
(the potential Diverter). The defender's "strategy" decision
includes how to allocate his (limited) sampling effort, and
what mathematical combination of the discrepancies between the
Defender-measured and operator-reported values should serve
as a "best statistic" to be compared against a threshold level.

For the NRC setting, with the presumption (cf. Section
5.0) that the facility-operator is Defender-oriented rather
than Diverter-oriented2l, the notion of regular remeasurement
by the Defender does not seem to the writer to fit very natural-
ly. (This could change if future incidents or intelligence
heightened concern about data-tampering as a Diverter tactic.)
Where the cited analyses could more likely prove useful in the
present context, is for the submodeling of reinventory aspects
of the Defender's response to an "alarm" situation. With that
suggestion we drop the "remeasurement" theme, referring the
reader to [186, 187] for references (e.g. by Avenhaus, Frick,
Jaech, Stewart) additional to those already listed.

A second group of Defender strategy-spaces requiring only
brief description are those involving dichotomous decisions
"inspect or not," translated in our situation to "alarm or not,"
which are unrelated to any indicator of possible diversion (e.qg.,
an ID-level) but instead are based on distributing limited inspection
effort to achieve optimal "risk coverage." The"distribution”
takes place over the possible time-periods (if the model is
multi-period) and/or sites (if the model is multi-site). The
"limit" might reflect criteria of inspection-resources or in-
trusiveness-constraints; it might fix the actual number of inspec-
tions (Dresher [193], Bierlein [190]), Beinhauer and Bierlein
[12]), or bound the probabilistic-average number or cost of
these inspections (Bierlein [192]) or the average interval between
successive inspections (Bierlien [191]). In Hopfinger [13],
the number of inspections is randomly chosen at the start of
play from a probability distribution known to both players,
but the chosen number is revealed only to the Defender. Most
of these models assume that inspection is sure to detect a diversion,
but non-unit probabilities of detection (assumed known) are
considered for example in Beinhauer and Bierlein [12; Section
3.3], Goldman and Pearl [170-171; cf. p. 192 of the former},
and Anscombe [208]. Note that whenever the limited stock of
"allowed inspections" suffers a draw-down the situation can
be regarded as having entered a "new state," a consideration
reinforcing Section 2.6's suggestion that "repeated games of

2lphis could also be the case in those IAEA settings where
the principal diversion threat is attributed not to the "host"
government but to foreign or political-faction or subnational
separatist groups; cf. Willrich and Taylor [197; pp. 117-8],
Lovett [213; p. 210], Taylor [215], Dunn [216].
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incomplete information" need to be extended to multiple-site
scenarios in order to be naturally applicable.

In the multi-period multi-site Travelling Inspector Model
of Filar [63], inspection is non-dichotomous~-i.e., it can take
place at any of a finite set of levels of intensity. This choice,
however, does not depend on any prior indicator of suspiciousness
like an ID-determination. The model's rather general payoff
function could permit the probability of an inspection's detecting
a diversion (and the accuracy of estimating that diversion)
to depend both on the intensity of inspection and on the level
of diversion, but no such submodel or interpretation is made
explicit.

We turn now to models in which the Defender's decisions
are based (in whole or part) on ID-levels or something analogous
to them., A first example is the formulation by Kuhn [209] of
a multi-period situation; the number of inspections is fixed,
and each inspection has the same (known) probability of detecting
a "violation" if one has occurred. At each stage, the Defender
receives a signal indicating either "no violation" or "violation"
or "doubtful"; if the third case arises, an "inspect or not"
decision must be made. An actual diversion would have produced
the "doubtful" signal (rather than the "violation" one) with
a known probability, and similarly for an actual "no diversion."
(The "signals” here are based on seismic data, with "no diversion”
corresponding to a natural earthquake, "diversion" to a nuclear
test.) We might regard this as a three-level discretization
of the possible ID-values, with the boundaries separating the
three regions fixed in advance, rather than subject to optimization
by the Defender. A similar structure is studied by Schleicher
[217] in the context of income-tax evasion, with the further
feature that some "doubtful” casesmay lie in a designated "uninspect-
able" class (corresponding, e.g., to Swiss bank accounts).
Other game-theoretic analyses related to income-tax evasion
and auditing include Hoffman et al [218] and the recent paper
of Greenberg [219].

The highly pertinent multi-period model of Avenhaus and
Frick [9,10] raises two points of particular interest here.
One, which brings us back to the basic equation 1.1 early in
Section 1.0, is how the "prior contents" term in that equation
should be estimated when past time-periods have left non-zero
(though non-alarmable) discrepancies between "book" and "physical"
inventory figures. The particular approach adopted in [9,10]
is to employ a particular variance-weighted average of the book
and inventory figures; this gives a minimum-variance unbiased
estimate of "prior contents,"™ a desirable feature from a statistical
viewpoint, and also substantially simplifies the game-theoretic
model by leading to ID-values for the different time periods
that are uncorrelated. It is disconcerting, however, to find
in [9; p. 120] the acknowledgement that this estimate "is not
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necessarily the best one from the point of view of detecting
missing material." That illustrates the fact, also emphasized
for example by Klein et al, [220], that "statistically optimal"
estimates of quantities will in general not be the optimal ones
for decision-problem uses.

The second especially interesting aspect of the Avenhaus-
Frick model is its treatment of the theme of limited resources
or intrusiveness for the Defender, a theme which reduces this
player's strategy space to a subset of what it would be without
such limits. That treatment in [9, 10] is to assume a
over-all false-alarm rate (FAR), i.e. a fixed probability that
in the absence of diversion, the random measurement errors in
ID would trigger the alarm in at least one time period. The
Defender-chosen alarm thresholds and their corresponding false-
alarm probabilities can (and do) vary from period to period,
so long as their multi-period composition yields the stipulated
over-all FAR value.

This approach has considerable appeal. Along with the
model's other assumptions, it yields substantial benefits of
analytical tractability, leading to a provably unique solution
and to a fairly simple iterative numerical solution procedure.
It encapsulates the "cost" element of the problem's "risk-cost"
tradeoff quite neatly in a single parameter, the FAR level.
One apparent difficulty is the need to know (or have a good
estimate of) the probability distribution of ID in the absence
of diversion22; this need, however, seems common to all efforts
to improve the modeling aspects of material accounting (whether
game-theoretic or purely statistical), and so should not be
held against a particular model or methodology. (It would be
important to study--via sensitivity analysis--how critical these
accuracy-needs are for different approaches.)

Some other difficulties may be more serious. For example,
it might be thought more natural to fix the overall migss rate
(probability of not detecting a diversion effort-- an "acceptable
risk" concept. Notice, furthermore, that under a fixed FAR
value a less precise measurement system would lead to higher
alarm thresholds, i.e. (roughly speaking) to greater inhibitions
again sounding the alarm. It is questionable to the writer
that a model with this property built-in would properly capture
the public-interest concerns we have attributed (in Section
5.0) to the Defender. A natural rejoinder is that the "fixed"
FAR-value is intended to be constant relative to the player's
decisions, but not with respect to changes in other model parameters
such as (say) thevariance of a normal measurement-error distribution

220ne reason this is a "difficulty" is lack of certainty
that the data used in reaching such an estimate really did come
from diversion-free environments.
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representing the precision of ID-determination. This illustrates
the underlying weakness: in being silent on how the "fixed
FAR value” should be chosen or determined (in [221; p. 630]
the same authors term this choice "subjective"), the approach
"cops out™ on addressing the balancing of risk and cost, the
very purpose of model development. One might hope to remedy
this by coupling with an auxiliarly submodel relating cost (of
"alarming") to FAR, but the second sentence of this paragraph
indicates that such a submodel would need to address risk considera-
tions as well as cost.

On balance, the writer's inclination is for a model that
more directly and explicitly tackles the intrinsic difficulty
of representing the risk-cost tradeoff in its payoff structure.
But the clever research tactic of the "fixed FAR" concept shoulad
be kept in mind as a fallback position. Similar comments apply
to other model's restriction of "inspection effort" to some
externally determined limit.

In working towards an operational game-theoretic model,
it is important that players' strategies be conceptualized in
sufficiently concrete terms to guide empirical and analytical
efforts to quantify how payoffs depend on these strategies.
With some possible partial exceptions (e.g. (170, 171, 203,
204, 218), this level of specificity has not been attempted
in the cited literature. In particular, the abstract encoding
of Defender options as "inspect or not" or "alarm or not" does
not in itself describe the consequent search and recovery procedures
in a way aiding the guantitative representation of these measures'
costs and effectiveness. The same is true of the different
"levels of effort" that can be exerted by Filar's Travelling
Inspector [63]. These abstract encodings should not prove incom-
patible with later efforts to make them "operational" through
more detailed application-specific modeling, but they do not
provide any initial hints or steps to assist such further efforts.

We will return to this point at the end of the present
section, but want first to conclude our review of published
"Defender strategy spaces" with the models [5-7] developed for
the NRC. They are praiseworthy in achieving a higher (though
still not high enough, in the writer's opinion) degree of explicit-
ness in describing the Defender's responses. Recall from Section
4.3 that in these single-period single-site models, the Diverter
first chooses and achieves a diversion-level of x units of SNM.
Then the measurement processes involved in ID-determination
introduce a random error e, so that an ID-level of u = x + e
is reported to the Defender. The Defender compares u with an
alarm threshold, z. If u is greater than 2z, the Defender sets
a quantity y, as the target level for an intensive "alarm conditions"
search and recovery operation; if u is less than or egual to

z, a target level y,, (Possibly zero) is set for presumably
less intensive "no alarm" search and recovery actions., From
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the payoff functions (described later) for these models, it
is apparent that y; and y, are to be construed literally as
recovery target-levels and not just as indices of search-effort.
For example, the expression min(x,y)--where y is yj or yj--is
used to designate the quantity of material recovered by a successful
search, (Thus a multi-period extension of this model would
have to modify the Diverter's period-by-period accretion of
material to allow for recoveries.)

The greater explicitness of these models lies in their
introduction of the auxiliary quantities y; and y,; to provide
a somewhat more concrete picture of the Defender's responses.
In the model of [5, 6], the alarm threshold z is fixed and is
known to both players, so that a pure strategy for the Defender
consists in selecting the pair (yj,yy). 1In the further model
introduced in [7], the alarm threshold is also regarded as part
of the Defender's strategy (z,yj,yz), and therefore as unknown
to the Diverter. This change proves (in a numerical example)
to alter the game-~value very significantly in the Defender's
favor [7; p. 39]. While skeptical of the validity of the particular
payoff functions employed, the writer would like to emphasize
the gualitative point illustrated here: the importance of infor-
mation to the adversary of a safequards system, and the particular
suitability of game-theoretic models for representing alternative
"information scenarios" and quantifying the effects of their
differences.

As described above, the Defender's choice of (yj, yj;) or
(z,¥1,y2) can be made after the ID-value u is reported to him,
Thus a %efender strategy should describe how these choices would
be made in response to any particular value of u, i.e. it should
in general be a response rule specifying functions of u, (yj(u),
Yo(u)) or (z(u), yj(u),yz(u)) rather than specific numerical
responses (yj,yp) or (z,y],y2) which could in principle be chosen
before the inventory is taken. The availability of response
rules to the Defender is explicitly recognized in both [5; pp. A~
2,3] and 7; p. 17], but then the analyses of the models go on
to treat (yj,yp) or (z,y1;,y2) as numbers rather than functions
of u. It is suggested in [g; p.A-4] that this restriction is
made to match the operational nature of an "alarm" concept,
which implies a response sensitive to the distinction between
"above-threshold" and "below-threshold" ID values, On the other
hand, the restriction is introduced in [7; pp. 17-18] with an
"explanation" which seems a non sequjtur to the writer, and
which assesses that this limitation is not damaging to the Defender--
an assertion, repeated verbally to the Peer Review Group, which
the writer believes erroneous, an impression shared by the Group
[14; pp. 22, 38] as noted in Section 4.3.

Before the extension of this strategy-space concept to
multi-period and/or multi-site games is attempted, its improvement
for the "simple" case should be considered. We refer in particular
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‘to the Peer Review Group's recommendation [14; p. 41] that "multiple
action criteria for varying amounts of ID should be incorporated.”

One step in that direction would be to re-analyze the models
of [5-7] without the restriction noted in the next-to-last para-
graph. It would be interesting to learn whether this alone
(i.e., without changes in the payoff function) would correct
some of the counter-intuitive model outputs criticized by the
Peer Review Group [l14]. At any rate, the separation of all
possible ID-levels into just two classes (by a sipngle alarm
threshold) seems too coarse a classification to afford the Defender
a full exercise of his safequarding capabilities. Models with
more than one alarm-level should be considered; it is hoped
that their formulation could be linked with a natural hierarchy
of increasingly urgent responses (in terms of degree of extent
of shut-down, involvement of external agencies, etc.). Alternative-
ly, one can imagine dispensing altogether with the concept of
a discrete set of alarm levels: Jif for example the intensity
of a Defender response could be adequately expressed--for purposes
of payoff modeling--in terms of a single quantity y (e.g., the
target-level of a search~recovery effort), then a pure strategy
for the Defender could be described simply as a response rule
function y(u) expressing how response-intensity (y) would vary
with ID-level (u). But perhaps high-intensity and low-intensity
responses would have such qualitatively different features as
to preclude unified representation through a single quantity
Y. Indeed, the variety of responses appropriate for inclusion
in an operational model may not lend itself to a merely uni-
dimensional depiction along a scale of "intensity" or whatever.

We have spoken above of "search and recovery" operations,
with an implication that their effectiveness would be judged
by success in regaining or uncovering missing material. But
for extension to a multi-period model, it would also be important
to take into account the extent to which different Defender
responses in one time period might inhibit the Diverter's opportuni-
ties in later periods, perhaps by identifying and apprehending
"him," or by imposing stricter practices that could close off
some diversion loophole. Somerecovery-orientedsteps, by destroying
the authentic environment in which a possible diversion took
place, might hamper identification of a culprit.

This brings us back to a point mentioned earlier: the
need to describe Defender responses concretely enough that mathe-
matical expressions for their cost and effectiveness could be
developed for payoff-function use. At the outset of the present
study, the writer expected to encounter documents that would
greatly aid subsequent modeling in this regard, documents that
would set out "standard operating procedures" (SOP's) for post-
alarm situations much more specifically than such brief generalities
as "one would do A and B, and in extreme cases even C." (For
example, the "which might include" of [l14; p. 22, 24] falls
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short of the "specific investigative action" of the same document's
pP.22.)

That expectation has not been realized. There are several
possible explanations for this. One is that inadequate interrogatory
zeal and persistence and document-persual efforts were applied.
A second is that well-articulated plans and procedures do indeed
exist, but the present study's "need to know" was deemed insufficient
to warrant access to information of such potential value to
an adversary. (Such considerations are noted, for example,
by Willrich and Taylor [197; p. 126, also pp. 152, 89]; the
analogous inhibition for studies of terrorism is observed by
Wardlaw [222; pp. ix-x].) If this is the case, it should be
taken into account in setting up the "logistics" (here, security
arrangement) for an effort to develop an operational game-theoretic
model.

However, the explanation just mentioned was not in fact
offered to the writer, who therefore remains unable to eliminate
a third possible explanation: that generic SOP's at the NRC
level have not been formulated. Perhaps individual licensees
have detailed contingency plans which have been presented to
the NRC in advance for approval; perhaps procedures are improvised
for individual incidents, and presented to the NRC for approval
before or after their execution; quite likely, precedures are
in part built up incrementally by precedent and experience with
past (presumed) false-alarm situations. But the writer is not
aware of a systematic analytical basis adopted by the NRC for
consistent evaluation of possible operator-proposed response
plans, or for suggesting alternatives or improvements to such
proposals. (pp. VI-4 through VI-19 of [3] may be relevant.)

Such a situation is consistent with the one described by
Avenhaus [187; p. 322] as applying to the international scene--
following an alarm, a "second action level"™ should come into
play, but for this "there are not precise procedures, at least
for the case of nuclear material safegquards." And it also matches
well an observation recurring in the recent literature on "techno-
logical accidents" and their management: that after so much
in the way of resources and dedication have been devoted to
the prevention of such accidents (here, "diversions"), too little
may be mustered for carefully planning and preparing the responses
in case the unhappy event does occur. (See, e.g., Fischer [224;
pp. 11-12}, Lathrop [226; pp. 8-9]. Such advanced planning
(and practice, and maintenance of readiness) is regarded as
particularly important in the "so many unexpected things can
go wrong" situations when responses may need to be made in atmos-
pheres of uncertainty and stress, where special issues of communi-
cation with the public media may arise, and where coordination
is required among organizations with unclear demarcations of
authority and responsibility. (Cf. Fischer [227], Lathrop [228],
Marrett [230], and many of the other papers in [223, 225] and
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Moss and Sills [229]; related concerns and recommendations appeatr
in Jenkins [232; pp. 17, 22], Macnair [233; p. 274], Bass et al
[234, pp. 10-11], Sloan [235].) These exacerbating conditions
might well apply to a serious ID-alarm incident.

The representation and modeling of Defender strategies
might perhaps be able to benefit from the fairly well-advanced
field of Optimal Search Theory. The early "classics" of that
field have been conveniently collected and revised (Koopman
[236]); other references include a prize-winning 1978 monograph
by Stone [237} and a recent survey paper by the same author
[238]. Complications arising from target movements may not
prove relevant for the desired applications: cf. Chapter 2
of Gal [239]. "Search and Surveillance" is now an indexing
term for Operations Research/Management Science purposes.
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7.0 THE DIVERTER'S PAYOFF FUNCTION

A player's payoff function, in a game-theoretic model,
should provide a mathematical expression of how the various
possible strategy-choices would affect the degree of satisfaction
of that player's preferences and objectives. It is therefore
useful, in beginning this Section, to attempt in broad qualitative
terms to list plausible gepneral objectives for the Diverter,
We take these to be the following:

- To divert material--either as much as possible, or
some critical quantity.

- To avoid detection or alarm-sounding.

- To leave some basis for a later "hoax" claim--
of a successful or "large" diversion when in fact
none or a much smaller one occurred.

The threat associated with the third member of the list,
"hoaxing" is frequently mentioned in connection with diversion
and material accounting. Examples include Messinger [1; pp. ix,
14], NUREG-0450 [3, v.2; P, IV-13], Mengel [240; pp. 218-220],
Willrich and Taylor [197; p. 123}, Bass et al [175; pp. 2, 8],
Jenkins [241; p. 10]. Nevertheless, none of the cited modeling
papers addresses this objective explicitly. While it could
conceivably be left for attention in a higher-level "threat-
negotiation game" (cf. for example Jenkins [242], Selten [244]),
this seems a sorry passing of the buck, since aid in "hoax-proof ing"
is regarded as an important function of material accounting.
The Defender could calculate, from the golutions of some of
the cited models, a corresponding miss rate (probability of
failure to detect or "alarm at" a diversion), or an "expected
value" for material diverted without an alarm, and could then
point out in reply to a diversion-claim how low these quantities
are, Those solutions would come from a game innocent per ge
of the third objective, but since that is the game the hoaxster
is pretending to have played, perhaps this is good enough.
Perhaps not, so that expressing this criterion really would
require changing the Diverter's strategy space and/or payoff
function. The writer has not succeeded in thinking this point
through to a conclusion, and therefore "flags"™ it as possibly
needing attention in an effort to form an operational game-theoretic
model. From here on, we will generally ignore the third objective.

The second objective, as stated, lumps together three possible
Diverter motives which can in principle be teased apart. One
is to avoid detection because it may lead to losing back (to
the Defender) some or all of the diverted material. Another
is to avoid alarm or detection because it reduces chances for
diversion in later time periods. The third is to avoid detection
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of the diversion because it may lead to "getting caught," with
unpleasant consequences.

The first of the listed objectives seems relatively self-
explanatory. 1Its mention of a "critical quantity" illustrates
a more general possibility: that the Diverter's value ("utility
function") for diverted material might well vary nonlinearly
with the quantity diverted. Some scenarios might impose "time
pressure” on the Diverter, assigning greater utility to diversion
in an early period than to diversion of the same amount in a
later time-period--none of the cited models have this particular
feature, though those imposing a fixed or minimum diversion
quantity implicitly introduce as a deadline the over-all time
horizon of the multi-period analysis, raising the question of
how this horizon should be chosen. (Such "end effects" issues
are common in multi-stage decision models.)

7.1 Review of Literature

The roles of the first two listed objectives will be readily
recognized as we review the Diverter payoff-functions proposed
in the cited models. 1In the models [190, 191, 12] of Bierlein
and of Beinhauer and Bierlein, as well as Hopfinger [13] and
Model I of Bierlein [192], the Diverter's payoffs are based
on a structure

A I I I
I -c I 0 |
I | I
- I I |
A : d { 0 : (7.1)

where ¢ is greater than 0 (usually), and d is greater than 0.
Thus "no diversion™ (D) for the Diverter leads to zero payoff.
A successful diversion (diversion (D) together with too-late
alarmer no alarm (A)) yields payoff d, while a detected attempt
leads to the (usually) negative payoff (-c). (Some of the cited
papers use different symbols, and we have here identified "inspect™"
with "alarm" and "detect"; modifications to the interpretations
of ¢ and 4 can accommodate inspections with imperfect detection
probabilities.) It is not hard to see that the strategic analysis
of such games, though not their absolute payoffs, depends on
the data (c,d) only through their ration c¢/d--one can think
of measuring payoffs with "d" as revised payoff-unit--thus reducing
the number of parameters in the model. (Choosing the normal ization
c + d = 1 often appears convenient for the particular algebra
involved.
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The papers just cited all propose zero-sum games. This
might raise an objection: since display 7.l1's second column
does not "credit" the Diverter for causing a false alarm, the
zero—-sum formulation will not "penalize" the Defender for false
alarms., However, the Defender is kept from excessive "alarming"
or inspecting by explicit limitations on his strategy space;
see Section 6.2.

A technical interjection is convenient at this point.
Let M denote the Defender's migss rate, i.e. the probability
of a violation (diversion) going undetected or unalarmed. (We
have a success—failure dichotomy in mind; depending on the specific
scenario, possibly multi~-period and/or multi-site, "a violation"
might read "at least one violation" or "every violation.")
Thus M depends on the strategies chosen by the two players,
i.e. M = M(s +S2) . Under the assumption 7.1, the expected payoff
to Player 2 (the Diverter), if diverting, is

Md+ (1 -M (-c) = (d+ c)M - c. (7.2)

Since ¢ and 4 are constants, if d + ¢ is greater than 0 then
maximizing the above expression is equivalent to maximizing
M, i.e., replacing the Diverter's payoff function by M yields
a game "strategically equivalent" to the "if diverting"” subgame
of the original one. And if the model is zero-sum, a similar
replacement can be made for the Defender. This could make it
unnecessary to arrive at values for ¢ and d, much simplifying
the modeling task. More generally, the Diverter would have
to compare the value of 7.2 using the maximized M, with the
payoff 0 of his "don't divert" strategy; cf. the Lemma of [190;
p. 60].

Dresher's zero-sum repeated game [193] also employs the
structure 7.1, but (up to its Section 8) with the further assumption
¢c = d = 1., The generalization by Kuhn [209] passes directly
to the use of miss-rate M(sj,s)) as the Diverter's payoff, as
do those of Anscombe [208] and Schleicher [217]; these models
are also zero-sum, Avenhaus and Frick [9, 10] pass from 7.1
to the use of miss-rate.

In the models of Goldman and Pearl [170, 171] and the multi-
site Models II and III of Bierlein [192], a payoff structure
like 7.1 is assumed at each site (with site-specific values
of ¢ and d), and the total payoff to the Diverter is obtained
by summing these "local payoff functions" over the sites. Here
the replacement of the payoff function by a single "miss rate"
probability is no longer valid. Model I of [170], and those
of [171, 192], are zero sum,
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A more general payoff structure than 7.1 is given by

D D
A | I |
] -c | -f [
| I I
- | | I
A Il 4 I| 0 { (7.3)

where ¢ is greater than or equal to f is greater than 0. Here
involvement in a false alarm occasions a negative payoff (-f)
to the Diverter; this is suggestive of the second broad Diverter's
objective listed at the start of Section 7.0 The format (7.3)
is employed, for example, by Avenhaus [187] with ¢ greater than
f; it also applies to the models of Maschler [211, 212] with
the further condition c = £, after a mathematical operation
(subtracting a common constant from each matrix entry) which
yields a strategically equivalent game. The models just cited
are not zero sum; the same is true of the "insurance-cheating"
models of Borch [203,204], which fall under (7.1) rather than
(7.2).

The models [5-7] developed for the NRC are all zero sum.
Thus their (common) payoff function for the Diverter is simply
the negative of that for the Defender, which will be described
in Section 8, It is considerably more concrete than those described
above, but that very specificity has opened it to more detailed
criticism [14; p. 34].

7.2 The Zero Sum Assumption: Alternatives
Imagine for the moment that the field of "stochastic games
with incomplete information," wished-for at the end of Section

2.6, had already achieved a satisfactory conceptual, theoretical,
and computational status. Besides that pipe-dream about the
state of the art, imagine further (now on the empirical side)
that we had a reliable inventory of possible "adversary types,"
could estimate the probability with which each of these types
gave a proper classifiction of the Diverter, and understood
each type well enough to be able to delineate a strategy space
and a reasonable payoff function for it as potential Diverter.
Then we would have at hand both methodology and information
sufficient for the relatively easy development of a relatively
non-arguable treatment of the Diverter in an operational game-
theoretic model.
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Obviously, the real situation falls far short of that ideal--
this is to be expected in almost any serious decision problem
with a significant behavioral aspect. 1Inparticular, the development
of a payoff function for the Diverter will involve considerably
more in the way of approximation and arguability than was true
for the rosy picture painted above. For reasons to be discussed
below, the writer believes that the best approach to these difficul-
ties is to

- Adopt a zero sum model; concentrate on developing a "good"
payoff function for the Defender (that for the Diverter
will be taken as its negative).

The fundamental arguments supporting this model-development
tactic are that (a) efforts to do significantly better appear
likely to be futile, while (b) in its own right, this approach
has much to recommend it. The models developed for the NRC
[5-7] adopt this tactic without much ado, and that choice was
not criticized by the Peer Review Group [14], but the writer
nevertheless thought it important to explore this issue more
extensively.

To begin the "futility" arguments, we may note that one
element of the "dream scenario” sketched earlier comes close
to actuality: existence of a plausible inventory of "adversary
types." Such typologies appear implicitly or explicitly for
example, in Lovett [213] and in Willrich and Taylor [197; Chapter
6]. Perhaps the most extensive analyses are those performed
by the RAND Corporation for the Sandia National Laboratories,
and drawing on related RAND research dating back to 1972. The
relevant documents include delLeon et al [176], Bass et al [175,
244-246] and Jenkins [177]; they deal with attributes (i.e.,
capabilities), motivations and possible actions of potential
adversaries of U.S. nuclear facilities and programs, of course
including diversion among the "possible actions."™ A principal
and persistent conclusion [245; p. v] is that:

"Nuclear defenders must anticipate a surprisingly wide
range of threats from an equally wide array of potential
adversaries, who may be animated by ideological, economic,
or personal motivations, or some combination of these."

The existence of this "surprisingly wide array of potential
adversaries" supports the conclusion that it would be futile
(or at least inadvisable, as an initial tactic, to seek to develop
a correspondingly wide array of Diverter payoff functions in
formulating an operational game-theoretic model. A single mathe-
matical form for such a payoff function, with different adversary
types representable by different settings of the function's
parameters, would of course be desirable but seems only a "long
shot" possibility in view of the diversity of motivations involved.
Specifically, the categories of adversaries explicitly associated
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with diversion in [245; pp. 72-73] and reiterated in the later
[246, p. 56], as identified by motivation, are

- hostile (i.e., disgruntled) employees

- psychotics

— individuals acting for idiosyncratic reasons

- mercenaries or foreign agents

~ occasional or novice criminals or opportunists.

However, the distinction between "diversion" and "theft by stealth"
in these documents (see, e.g. [175, p. 7] and [245; bottom of
final fold-out]) limits the former to efforts involving attempts
to alter records; this limitation, signalled only in the indicated
"fine print™ of the documents, is too restrictive for our purposes.
Making the necessary correction adds the further categories

~ political terrorists

- antinuclear extremists

- philosophical or religious extremists
- professional criminals.

We will not attempt here to summarize the documents' extensive
discussions of these adversary types and the probable appeal
to them of various actions (emphatically including hoaxes and
"faked diversions™). But it is worthwhile to record some explicit
implications of those discussions (see all Reinstedt and Westbury
[247]):

- Very few possibilities can be confidently ruled out (e.qg.,
[246; p. 46], though some useful judgments of likelihood
can be made. Most of them have already occurred [245;
p. 76].

Despite initial and follow-up personnel clearance procedures,
"insiders" can fall (or, over time, come to fall) in
any of the nine categories above.

- Non-hostile employees may be coerced into acting on behalf
of terrorists or professional criminals (the corresponding
payoff function should then reflect the interests of
the coercer).

- Professional criminals might act "on commission" for
foreign agents or terrorists.

These observations further confirm the inadvisability (except
as a last resort following failure of other approaches) of setting
out to formulate a whole array of Diverter payoff functions
for the different adversary types.
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An alternative is to find a good reason for singling out
some one of the adversary types, and to attempt to develop a
well-based payoff function for that type. It seems to the writer
that the strongest motivations underlying the safeguards program
reflect particular concern that misappropriated SNM (or its
pretension) would be used to engender "terror" of nuclear destruction
as a basis for some threat or extortion. (Passage of such material
through a "foreign agent" to his government is also a heavy
concern, but might often reflect fear that the recipient nation
would utilize it to support covert "terrorist™ activities as
surrogates for traditional military confrontations, cf. Dror
[248], Jenkins [249-251].) So it seems reasonable to single
out, among the various adversary types listed, "the terrorist"
as object of payoff-function construction.

There is no lack of literature bearing at least peripherally
on such an effort. During the present study, the writer was
dismayed to discover the extent to which "terroristics" has

become a "growth industry,"™ with its own journal (Terrorism:
An International Journal) since 1977, no dearth of monographs

and specialized conferences (e.g. Jenkins [231)]), Crenshaw [252]),
and even discussions of data-base duplications and inconsistencies
(Fowler [253]), of agendas for quantitative research (e.g. Fowler
[254]), and of the use of artificial-intelligence "expert systems”
(Waterman and Jenkins [255]). One indicator of this fashionability
is the appearance (possible more than once) of Brian M. Jenkins--
head of the RAND Corporation's research in this area--on Michael
Jackson's nationwide radio-interview program. And the students
of my own University have selected Terrorism as the topic for
the next of our Milton S. Eisenhower Symposium lecture series,
a local "major event."

Exploring the literature shows quickly that specializing
from a "general" Diverter to a "terrorist" does not resolve
all questions of identification. Problems of definition (what
is the range of behaviors that should be labeled "terrorism"?)
appear genuinely sticky and can become wvalue-laden—--for example
(cf. Schelling [256; 49-50]) why does the superpowers' use of
the nuclear-deterrence threat fail to qualify? These problems
are worried at length by many authors (e.g. Dror ([257], Wardlaw
[222] , Wilkinson [258), Paust [260], Jenkins [261], Devine and
Rafalko [263], Taylor and Vanden [264]), with varied results
and with (it appeared) different mixes of dutiful exasperation
and intellectual pleasure. The purposes of many of these authors
and of others (e.g. Shultz [265], Barres [266; pp. 88-92]) leads
them further, to taxonomies of terrorist groups. The different
"cells" of these classification schemes (six of them in [266])
for example in turn suggest need for different payoff functions,
whose "bridgeability" by a common mathematical form (through
use of different parameter-values) might prove a difficult,
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and conceivably unsolvable, modeling challenge.23 So narrowing
the Diverters to "terrorists™ is still not enough to present
a clearly-defined adversary type for payoff-function synthesis.

Suppose however that we could arrive at such a type. Recall
that in a game-theory model, the players are assumed to be rational
payoff-maximizers., Now, Wilkinson [258; p. 127] notes the roles
of "hatreds and fanaticisms", sometimes deliberately fostered,
in encouraging terrorist violence. May [267] identifies the
"ecstatic element" of emotional satisfaction derived by some
perpetrators of terrorist acts. Jenkins [268; p.l10] mentions
a "lunatic fringe" but is skeptical of its effectiveness; however
his colleagues Ronfeldt and Sater, in a fascinating study [269]
of the "dynamite terrorism"™ of the late nineteenth century as
as a plausible analog for possible nuclear terrorism today,
note the theme of millenial redemption through apocalyptic destruc-
tion. And Jenkins elsewhere (e.g. [270; p. 4]) describes terrorists
as living in a "fantasy world" and waging "fantasy wars," while
Fried [271; p. 120] pictures many of them as "functioning on
a psychotic level, as attested by delusional thinking and cognitive
malfunctioning.”

All this may not appear too compatible with game theory's
"rational optimizer" picture. But we are reminded that the
greatest extremes may not by typical of the more capable terrorist
groups which are of primary concern (e.g. [271; pp. 120-21]),
and that apparently bizarre statements and behavior may in fact
be well-suited to terrorists' need to capture public attention
(e.g., Jenkins' often-quoted "terrorism is theater" [272; p.3],
Alexander [273}1). More important is the general point (Norton
and Greenberg [274; pp. 6-7]) that "rationality" is properly
defined only relative to a particular set of values and perceptions,
so that it is inappropriate (and risky) to regard terrorists
as necessarily "mindless" (Jenkins [275; p. 3]), as consisting
of "the less intelligent or less able" (Wilkinson [258; p. 132]);
or as lacking in dedication, ability for careful planning and
operations, possible technical sophistication (including use
of computer simulations), and all-around ingenuity ([175; pg,
16-18], Hutchinson [276; p. 158], Mengel [240; p. 192]). 4

23In speaking of representation by a "common mathematical
form," we mean something more useful than the "cheap trick"
that reproduces any two functions F(x) and G(x) from the formula
(1-t) F(x) + tG(x) by setting the parameter t at 0 and 1 respective-
ly.
247ne opposite extreme, namely the combination in a single
adversary of high levels of all the "dangerous" capabilities,
was viewed in 1978 by deLeon et al [175; pp. 50-53], as "unlikely,"
but with cautions to the reader.
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Assume then that the terrorist-Diverter can be viewed as
"rational" relative to a framework of rationality--a "mind-set
quite different from yours or mine or the Defender's. There
remains the question of whether that framework can be fathomed
well enough to provide the basis for a well-grounded Diverter
payoff function. It is interesting to observe the rather rapid
transition from Jenkins' 1978 characterization [277] of the
terrorist mindset as an "area of ignorance" to the "Satisfied
that we can depict the full range of motives and possible actions"
of 1980 [174; p. 5], though this contrast reflects an imperfect
matching of contexts. It is certain that research on the topic
has been intensive, and has significantly increased the factual
information available and the level of theoretical analysis
possible; see for example Kellen [278], Sundberg [279], Jenkins
[231; pp. 12-15, 52-69] as well as [269]. Related studies in
the criminological field may prove helpful (cf. Carrol [281]),
though the preponderance of crimes do not seem appropriate analogs.

Thus the opinion quoted by Norton and Greenberg [274; p. 13],
that "there is no way of studying terrorist ideology in any
meaningful way," appears too pessimistic. There is distinct
progress towards answering some of the questions listed by Barres
[266; pp. 11-13], though the dryly critical literature-review
in Section 1 of [277] should be a corrective to premature confi-
dence. The present level and nature of insights in this area
might, in the hands of an imaginative modeler, prove useful
in suggesting possible general structures for a Diverter payoff
function, and could very probably be of value in conceptual
testing of a proposed payoff function. More concrete utilization,
for constructing such a function, at least using the kind of
methodology envisaged in Volume I of this report, would involve
estimating a multiattribute utility function; a "classic" mid-
1970's vintage account of the relevant theory and procedures,
along with selected applications and a major case study, is
given by Keeney and Raiffa [282], with some more recent material
appearing in the special journal-issue [283). A critical part
of this technique requires ascertaining the preferences of "terrorist
decision-makers" between a number of pairs of "pure" alternatives
and probabilistic mixtures of alternatives. It seems unlikely
(to the writer) that sufficient information of this kind could
be inferred from the available writings of these persons and
from what is known of their past choices. 1Indeed, the modeler's
frequent procedure in such an analysis involves subjecting the
relevant decision-makers to interviews andguestionnaires especially
designed to elicit the information.

This last notion is not quite so totally ridiculous as
it may initially appear. Terrorists and ex-terrorists have
granted extensive interviews, and in some cases written their

memoirs, so that accessibility might conceivably be achieved.
But the issues of veracjity and validity do not seem satisfactorily

resolvable., It is hard to see why active terrorists would choose
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to assist such a study with "honest" answers, and a safegquards
model significantly dependent on responses even from "reformed"
terrorists--cf. our earlier citations of terms like "fantasyé"
"psychotic,"” "delusional"--might not inspire much confidence. 5
The sample of informants would be small; apprehendees and recusants
might be distinctly unrepresentative of the wider "population"
in question, and in many cases might not have belonged to the
decision-making "opinion leaders" elite.

7.3 The Zero Sum Assumption: Pros and Cons

The preceding section contained a rather extended discussion
of the feasibility of developing "genuine" Diverter's payoff
functions. The writer's conclusion from that discussion is
that chances for success, relative for example to the "viability"
criteria formulated in Section 4.2, are too dubious for this
to be the approach of (initial) choice in setting out to construct
an operational game-theoretic model. That is especially true
in the presence of a much more attractive alternative, namely
the zero sum approach mentioned above. We now proceed to offer
reasons for regarding this approach as attractive in its own
right, while also noting some provisos and limitations.

First and foremost among the affirmative reasons is the
notion that, even though the interests of Defender and Diverter
will not be "precisely opposite” in the mathematical sense expressed
by the zero sum condition (e.g., as in the "I win, you lose"
setting of many recreational games), nevertheless the fundamental
relation of the two players is one of opposition. Thus the
zero sum assumption, in capturing the "essential nature" of
the underlying situation, cannot go wrong too badly. This reflects
the natural "get the first-order effects right" priority-philosophy
of most applied mathematical modeling. Such talk of "fundamental"
and "essential" is nonrigorous and subjective; the writer hopes,
however, that others would concur with the point just made.

A second reason is the prudential nature of the zero sum
approach., By conducting its analysis versus a hypothetical
"maximally inimical" adversary, it protects the Defender from
the consequences of possibly guessing wrong about the extent
and the particular way in which the actual Diverter's interests
might not be totally opposed to his own. (The preceding discussion
of adversary types does not encourage expectations of "guessing
right.") Such conservatism may well be the appropriate stance
in a regulatory setting, especially in view of the preceding

25This sentence may fail to do justice to therole of sensitivity
analysis, and to the precautions presumably developed by practi-
tioners of multiattribute utility analysis for dealing with
potentially hostile or unreliable respondents.
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paragraph's suggestion that not too much bias would be introduced.
(We reiterate that the Peer Review Group [14], though explicitly
sensitive to symptoms of possible over-conservatism in the models
[5-7] developed for the NRC, made no criticism of those models'
being zero sum.) To avoid misunderstanding, it should be noted
that the characterization of zero sum analysis as "worst case"
is correct only insofar as the Diverter's payoff function is
concerned; it does not involve any "conservative" expansion
of the Diverter's supposed capabilities (i.e., strategy space).

Nor is it true that this conservatism is of a kind automatically
leading to a solution in which alarms are more frequent than
they would otherwise be. Suppose for example that the Diverter's
"true" payoff function were given by the previous matrix 7.1.
Suppose further that the Defender's payoffs are given by the
matrix

D D

A | | |
| c'-a | -a |
] | |
- | | |
A { -da! ; 0 ! (7.4)

where ¢' is the Defender's analog of ¢ in (7.1), i.e. the value
placed by the Defender on the occurrence of a detected diversion,
while 4d' is the Defender's analog of d, i.e. the loss suffered
by the Defender from an undetected diversion. The quantity
a represents the cost to the Defender of executing the responses
to an alarm; we will assume that a is less than c¢'+ d4', a non-
restrictive condition which is satisfied if merely a successful
diversion is more costly to the Defender than is a false alarm.
Note that the differences in structure between (7.1) and the
negative of (7.4)--the payoff matrix attributed to the Diverter
by the zero sum assumption--simply reflects the idea that the
Diverter is "really" indifferent to the costs imposed by "alarming"
on the Defender, a fairly plausible idea unless the adversar%
is an anti-nuclear extremist out to bankrupt the facility.2

Under these circumstances, the "true" non-zero sum game turns

26pone could imagine an adversary whose aim was not so much
diversion, as the damaging of U.S. weapons programs (or long-
term economic health, or energy-independence) through interruption
(or cost escalation) of nuclear-material operations. But that
is a rather different scenario from those under consideration
here.
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out to have a unique equilibrium-point solution, in which the
mean relative frequency of alarms is 1/(1 + c¢/d). For the zero
sum version, this frequency becomes 1/(1 + c'/d') in the unique
optimal strategy for the Defender. (The value of a affects
the strategies for the Diverter in the solutions of both games,
but not those of the Defender.) Thus the zero sum approach
could either increase or decrease the frequency of alarms, depending
on the relative sizes of c¢/d and c¢'/d'. These results for a
very simple model may not be indicative of those for more realistic
cases, but at least warn against accepting apparent "consequences"
of zero sum modeling without explicit analysis.

A third reason favoring the zero sum approach is its immense
easing of conceptual and computational burdens: as is implied
by the material in Sections 2 and 3, adopting this approach
leads to a highly convincing "solution" concept, unique solution
payoffs, and access to a far superior body of algorithms for
numerical solution and sensitivity analysis.

Fourth, the approach has whatever virtues inherent in prece-
dent: it yields the "classical" and most familiar type of game-
theoretic model, and has been adopted in a number of the safeguards-
related analyses cited earlier.

Fifth, most of the above-mentioned difficulties in fashioning
a "genuine" payoff function for the Diverter become much more
manageable when attention is shifted to the Defender. Thus
the prospects for a well-grounded Defender's payoff function
are (relatively) good; since in the zero sum approach the assumed
payoff function for the Diverter is directly based on (specifically,
is the negative of) that for the Defender, and is obtained from
the latter by a process with a substantial rationale involving
the four reasons already given, it would "inherit" the latter's
"well-groundedness" in a way consistent with the viability criteria
noted in Section 4.2,

There are of course arguments agaipst the zero sum approach,
additional to those intimated in the course of the previous
discussion. One is the existence of countervailing precedent:
as already noted, several of the models in the literature are
not zero sum. Second, there is the intellectual discomfort
(and argumentative disadvantage) in imposing a strong hypothesis--
that of a "zero sum adversary"--which is not believed or expected
to be litrally true. This objection, however, may unduly depreciate
the natural roles of approximation and tractability in applied
mathematical modeling. Third, the literature contains some
explicit rejections of this approach. For example, we find
in Kupperman [284; p. 411] "The ‘game' between terrorists and
government is not zero sum"--but that passage in fact refers
to the "threat-and-negotiation" situations mentioned near the
start of Section 7.0, rather than to our "ID analysis" context.
Avenhaus [221; p. 320] observes "this does not lead necessarily
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to a zero sum game," but after noting difficulties, quickly
goes on to a zero sum model., He cites the possible nonequality
of what we called d and d4' in matrices (7.1) and (7.4) above,
and with Frick in [285; p. 630] points out differences in the
two players' evaluations of false alarms as a flaw in zero sum
treatment. The objections by (Joint Committee on Atomic Energy
member) Hosmer [286; p. 7-8] are not so clear to this writer,
but their gist seems to be that the zero sume equating (in effect)
of d' with 4 may be "very dangerous in the real world populated
by very fallible people, some of whom are very certain to be
just no good."

On balance, it seems to the writer that "the Ayes have
it" concerning the adoption of the zero sum approach. The premises
for that judgment have been laid out in a way which, it is hoped,
will facilitate tracing out reasons for agreeing or disagree-
ing.
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8.0 THE DEFENDER'S PAYOFF FUNCTION

A central problem in any game-theoretic application is
the formulation of payoff functions which achieve an "appropriate"
compromise between detailed realism and analytical tractability.
See for example27 Shepard [288; pp. 378, 383-4], or the remark
of Fain and Phillips [289; p. 370]:

"The trick then is to get the most in realism compatible
with obtainable, understandable answers. It is necessary
that one restrict the factors to the most essential. This
trade-off is easy to understand but hard to make."

Such generalities of course pertain to any kind of applied mathe-
matical modeling. What makes them especially acute for our
situation is that the referent "reality" involves preferences
and value-schemes--judgmental and behavioral elements--in addition
to more tangible elements (e.g., yields, direct costs) of kinds
more readily based on "hard" technical data. The quantitative
treatment of the former elements by the behavioral and decision
sciences strikes many observers as less advanced and reliable
than available treatments of the latter elements b% the physical
sciences and their related engineering disciplines. 8

This is not to denigrate the acceptance and usefulness
of analyses with such orientations in many fields; e.g. economic
policy, market research, and the regulatory contexts cited in
Section 4.2 But it does re-emphasize, in the present setting,
the particular challenge of developing suitable payoff functions.
If the zero sum approach recommended in Section 7.2 and 7.3
is adopted, then this challenge becomes focussed on the Defender's
payoff function. Interms of both priority and intrinsic difficulty,
addressing this challenge should precede detailed work on compu-
tational solution methods, in a "staged" approach to developing
an operational game-theoretic model.

8.1 Review of ILiterature

A number of the cited models are zero sum, with their Diverter's
payoff function already specified in Section 7.1. Thus their

27rhese citations from the older literature, though still
germane, do not reflect the last two decades of progress in
Game Egeory.

This wording is intended to bypass the interdisciplinary
and intradisciplinary disputes about whether the behavioral
sciences can in principle attain, and should properly aim at,
the same kinds of "success" achieved by some areas of the physical
sciences.
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Defender's payoff function need not be spelled out here. These
models include those of Beinhauer and Bierlein [12], Bierlein
[189-191], Hopfinger [13], Dresher [193], Kuhn [209], Anscombe
[208], Schleicher [217], Avenhaus and Frick [9, 10], and Goldman
and Pearl ([171] and Model 1 of [170]). Typically these payoffs
are either of an "abstract" (i.e., relatively uninterpreted)
nature, or represent the negative of the Defender's miss rate;
those of [170, 171] are the negatives of more concretely-described
Diverter payoffs.

As noted earlier, many of the models limit the Defender's
strategy-space in a way representing a bound on his resources
or permitted intrusiveness. This bound then appears as a parameter
in the game-theoretic model. Bierlein [190, etc.] and Hopfinger
[13] are principally concerned with optimal sizing of an inspection
system, in the following specific sense: finding the lowest
value of the bound on Defender (i.e., Inspector ) resources
under which the only optimal strategy for the Diverter in the
resulting game is that of "no diversion." Note that this does
not involve a balancing by the Defender of of risk and cost:
the "acceptable risk" is set at zero, and the lowest cost for
attaining it is sought. It is conceivable that the above problem
could somehow be solved without solving the game-theoretic model
explicitly; this is in fact essentially what is done by Hopfinger,
who noted [13; p. 9] that his game-theoretic model proved too
difficult for explicit solution.

In the non-zero sum model of Avenhaus [187], the Defender's
payoffs are assumed given by a matrix of the form

D D

A | | I
I -b' | -a |
| | |
- | | |
A I| -d! { 0 I (8.1)

where notation has been changed to better match the previous
matrix 7.4. It is assumed that b' is less than d', which coincides
with the weak restriction a is less than c¢' + d' made above
in (7.4). After subtraction of a common constant from all entries,
the same is true of the models of Borch [203, 204], where the
entries have fairly concrete interpretations in terms of insurance
premium reductions, cost of loss-reduction measures by the insuree
to justify the reduction, etc. The model of Maschler [211,
211] fall into the same class, but with a = 0. The non-zero
sum Model 2 of Goldman [170] adopts as Defender's payoff function
the negative of the Diverter's gains from undetected "violations";
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this corresponds to setting a = b' = 0 and d' = d in (7.4) at
each site. Unique equilibrium—-point solutions exist for [187,
203, 213], and apparently for Maschler's model [211; p. 25].
Model 2 of [170] has a multiplicity of equilibrium points, but
the Diverter has the same payoff (though different strategies)
in all of them; the payoffs to the Defender also remain the
same except under a special "degeneracy" of the model's data.

Model 3 of Goldman [170] deviates from the usual game-theoretic
format to study the following scenario: the Defender chooses
a strategy (mixed, in general) that will maximize his payoff,
under the assumption that the Diverter learns of that strategy
and reacts so as to maximize his payoff. Maschler [211, 212]
also employs this concept, which apparently arose in economics
in studying price competition by a duopoly; hence the "Price
Leadership" in the title of [211]. Such "leader-follower" or
"Stackelberg" games (von Stackelberg [290]) have received consider-
able study in recent years; Basar and Oldser [291] is a current
treatise containing a substantial treatment.

We turn finally to the most explicit and ambitious effort
to develop a Defender's payoff function, that in the zero sum
models [5-7] formulated for the NRC. It uses the following
notation, previously introduced in Section 6.2:
= quantity taken by Diverter,
= random error in estimating ID
e + x = ID-value reported to Defender,

= alarm level

KON o 0 X
1

= target level of search-recovery efforts by Defender

(y = y13 if u is less than or equal to z, y = yp if
u is greater than z).

Thus the Diverter's strategy is given by x. The Defender's
strategy consists in choosing the values of y; and y;, and in
the second model of [7], choosing z as well. It is convenient
to designate the two possible scenarios--"no alarm" corresponding
to u is less than or equal to z and to y = Y1, and "alarm" corre-
sponding to u is greater than z and to y = yy~-by an index k
taking the values 1 and 2 for these respective scenarios. The
Defender's payoff, under scenario k, is taken as the negative
of the cost-function

Mp (x,yk) = B(k-1) + cgyk + x - bk min(x,yk) + exlykx - xkl. (8.2)

Here B is the fixed cost of a "clean-out inventory," incurred
regardless of the target level of the search; note from (8.2)
that it is incurred only in case of an alarm (k=2). The term
CkYk represents the variable part of the cost of the search,
with cy determinable [7; p. A3] "by engineering estimates of
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labor and materials involved." Thus the first two terms in
(8.2) are to represent the cost of the search effort. Without
a more concrete submodel of the search process (the need for
which was noted in Section 6.2), it is unclear that the linearity
of the second term--and its independence of x--are appropriate.
In general, these terms seem a very narrow construal of the
disutilities (interruptions, relations with outside authorities,
effects on confidence, etc.) associatedwith some "alarm"” responses.

Under the given scenario, a fully successful search would
recover the amount min(x, *)-—this explanation partly explicates
the intended role of the "target level" in delimiting a search
effort--leaving the amount x - min(x,yy) unrecovered. This
expression resembles the third and fourth terms in (8.2). The
coefficient by may then represent a "search quality measure"
indicative of how far from "ideal" the search capabilities are.
The authors describe by [7; p. A3] as involving "the value to
the Defender--of recovering thematerial diverted and the probability
of recovering it," and note that it depends on "societal values";
it is unclear why the third term, x, should not also be modified
in light of those values. One would probably want to replace
these two terms by a function of x and yg, say D(U(x,yk)), where
U(x,Yk) is the expected guantity of diverted SNM left unrecovered
by the search process, and D(u) 1s a function--probably nonlinear—-
expressing the disutility to society of the loss of the quantity
U. If "recovery" has some value in itself other than reducing
the loss, that too should be articulated in the model in a clearly-
explained way. Note that if the first and second terms appear
naturally in "cost" units, then some means of unit-conversion
with what replaces the third and fourth terms is required.

The fifth term on the right-hand side of equation 8.2 is
described as the "error penalty" for a wrong estimate by the
Defender. This is the first indication that y is meant to serve
as an estimate of x, not merely as a target level for the search.
It is not obvious that the two should coincide; for example
a "target level" might well include a "safety allowance" over
and above the Defender's "estimate" of x. At any rate, the
Peer Review Group [14; p. 25] found the conceptual basis for
this term especially unsatisfying.

In view of the "no-alarm, alarm" interpretation of the
two scenarios, the Defender's expected (i.e., mean) cost is
taken in [5-7] to be

My (x,y1) Prob (u is less than or equal to z) +
My (x,y2) Prob (u is greater than z). (8.3)

The probabilities in question are determined using the relation
u = e+ x and the assumption that e has an unbiased (i.e., zero-
mean) normal distribution. Thus the frequency function (i.e.,
probability density) of u depends in an explicit way on x; denote
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it by p(x,u). For reasons detailed in Section 4.3 and 6.2, relating
to the interpretation of a Defender's strategy as a response-
rule to ID-values rather than specific responses--and hence
as involving a pair of functions y;(U) and y3(U) rather than
numbers y; and yy--it appears to t%e writer that (8.3) might
be better replaced by

[+
/;ZMl(x,yl(u)) p(x,u)du + '/;Mz(x,yz(unp(x,u)du. (8.4)

The preceding discussion by no means exhausts the criticisms
which can be, and have been [14], levelled at the payoff function
based on equation 8.2. Such specific criticisms were posgible
only because the authors of [5-7] went further than others in
basing their formulation as a "semi-explicit" picture of the
Defender's responses, and are extremely yaluable in providing
insights for the development of improved payoff functions even
in the "simple" case (one time period, one site). Having examined
the "competing™ models in the literature to an extent not possible
during his participation in the work of the Peer Review Group,
the writer now wishes that besides concurring (as he did) with
the stated criticisms, he had also associated himself with the
gracious observation of Higinbotham [14; p. B-5] that the authors
of the NRC-supported models [5-7] "deserve considerable credit
for their initiative."

8.2 Further Discussion

On grounds of professional experience and expertise, the
writer would certainly defer to other members of the project
team as regards procedures and pitfalls in developing a Defender's
payoff function. This understood, it may nevertheless be worthwhile
to offer a few general and elementary remarks on the topic,
with a particular view to disentangling some of the issues involved.
Such "structuring" also has implications for the organization
of a model-development effort.

Given any particular strategy-choices by Diverter and Defender,
the assignment of an associated payoff-value involves two concep-
tually distinct operations:

(a) estimating the outcome or result of the interaction
of those strategies, and

(b) attributing a yaluye {(utility or disutility), on behalf
of the Defender, to that outcome.

Operation (a) deals with a "what would happen?" question, and
s0 essentially seeks a prediction, at an appropriate level of
detail, accuracy and reliability. Operation (b), in contrast,
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is essentially evaluative, focussing on the Defender's preferences
and value-scheme. The boundaries between the two may not be
as easy to fix as the above language suggests; for example,
"how much SNM would the Diverter finally get away with?" is
a question29 that clearly belongs to (a), but though "what would
the Diverter do with a particular amount of SNM?" is also a
"what would happen?" question, the writer suspects that in the
present context it might be better treated in conjunction with
(b).

This over-simplified but useful separation into (a) and
(b)--prediction and evaluation--is illustrated by the expression
D(U(x,Yg)) suggested in Section 8.1 Here the formulation of
the "unrecovered portion" function U(x,y) is an instance of
(a), while constructing the function D(U) is a case of (b).
The way in which the former appears "nested within" the latter
is also typical for the sequential logic of the situation.
(An example of such a separation, in the context of selecting
bullet types for police handguns, is given in Hammond and Adelman
[293].)

The type (a) work will probably requiremore explicit submodels,
of the mechanisms of diversion and response, than the writer
has so far encountered; the need for these has already been
noted in previous Sections. Quite likely such work will also
need informed judgments about some aspects of "what would happen";
for systematizing the gathering and synthesis of such expert
opinions, use of the "Delphi Method” (cf. for example Linstone
and Turoff [294], Sackman [295]) may merit consideration.

Some of the type (b) work may yield to relatively straight-
forward "costing out" applied to the submodels mentioned in
the last paragraph. But the greater and most difficult part
of it, involving the "weighing" of various consequences relative
to each other and to tangible costs, is expected to require
the estimation of a multiattribute utility function using the
specialized techniques of interview and questionnaire alluded
to in Section 7.2, (Again we note [282, 283] as samples of
a wider literature; Keeney [296] is very readable.) The combination
of these steps and approaches--drawing as available on "hard"
data, on techniques employed in other applications and having
considerable theoretical basis, and on consultation with and
solicitation of judgment from a broad spectrum of informed and
concerned individuals--provides the best chance (cf. [14; pp. 35,
41]) for satisfying the viability conditions of Section 4.2.

The term "multiattribute" employed above suggests a different
useful "cut" in discussing and developing a Defender payoff
function. It goes back to the fundamental issue of the underlying

29Perhaps to be answered only in a probabilistic sense.
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regulatory problem, namely balancing the "macro" attributes
of risk and cost. If players 1 and 2 (Defender and Diverter)
choose strategies s; and s, respectively, then it is plausible
that the associated payoff %o the Defender is the negative of
a "total disutility" roughly decomposable as:

C(sy1,s2) + R(s],S3) (8.5)

where the first term represents the cost of the Defender's responses
(alarm, interruption, search, etc.) while the second term measures
the disutility to him of the risks associated with the successful
abduction of material. For example, the sum of the first two
terms in equation 8.2 would correspond to the first summand
above, while the sum of the third and fourth terms (or its suggested
replacement D(U(x,yk)) would illustrate the second summand in
the last display. Some means of expressing the two summands
on a common scale, so that they can sensibly be added, is also
implicit in equation 8.5

The task of deriving a Defender's payoff function can now
be crudely regarded as splittable into deriving expressions
for each of the two summands. Operations of prediction and
evaluation--types "(a)" and "(b)" above--will enter into both
of these subtasks, but the relative role of (b) seems likely
to be much heavier for R than for C.

The topics of risk assessment and of risk-cost and risk-
benefit analysis have accumulated a voluminous literature of
their own, involving both prescription and research. (A journal
Risk Analysis was initiated in 198l1.) One particularly valuable
feature of these and related writings is their identification
of pitfalls that non-experts might easily overlook and succumb
to in the brisk pace of an applied study. For example, given
the Defender's responsibility (Section 5.0) to represent the
interests and concerns of various elements of the public, there
is useful "sensitization"™ for the modeler in being reminded
of how such elements may differ in their rankings of various
attributes (Rokeach [297]), so that one's own values should
not unthinkingly be inputed to--or adopted on behalf of--the
general public. A related comment by Wynne [298; p. 28] concerns
overhasty dismissal by "technical experts" of what they regard
as extraneous arguments reflecting "selfish, irrational, ignorant
or malevolent" behavior. Einhorn [300] points out how inaccurate
judgments can bias experience in ways inhibiting correction
of the flaws. In the context of flood-disaster insurance, Kunreuther
[301] offers startling empirical findings on the under-regard
of low-probability high-impact risks. Chapter 2 of Fischhoff
et al [302], synthesizing numerous papers by the same authors,
discusses in some detail "five generic complexities” in risk-
related decision analysis; see also, for example, Salem et al
[303]. 1Issues concerning the elicitation and use of numerical
probabilities in such analyses are noted in [304; pp. 41-3]
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and explored in Solomon et al [305]. Divergences between actual
and perceived risks (Covello et al [306]) became the topic of
the first annual meeting of the Society for Risk Analysis.

In view of the notion (Section 7.2) that terrorists may
warrant special concern as an "adversary type," the likelihood
and possible consequences of terrorists' "going nuclear" command
special interest. The matter of likelihood appears controversial.
The jolly-titled [307; p. 89] suggested in 1978 that necessary
skills, to date, were "beyond the capabilities of contemporary
terrorist organizations." Others have been far less sanguine;
earlier, Jenkins [275; pp. 9-10] had opined that "the requisite
technical knowledge--will spread," noted the "extreme difficulty"
[308; p.3] of assessing this threat, and declared himself [269;
p. 8] a "prudent agnostic," stating:

"I don't know whether terrorists will go nuclear, but the
consequences if they were to do so may be so serious that
society cannot afford to take a chance."

The writer's sense is that the more recent literature, though
morbid, grows increasingly pessimistic on this tOpiC3d, noting
greater technological sophistication on the part of terrorist
groups, and suggesting that the tactical and ideological constraints
inhibiting their pursuit of mass destruction may be eroding
under conditions of frustration and generational change (e.g.,
[231; pp. 63-8), [278; pp. 169-70], [270; pp. 6-8], [250; pp. 1-
2], [284; p. 501, [310; pp. 227-8] and the implications of [269]).
This leads us to the matter of "consequences," where unclassified
references to such "nightmare possibilities"™ (Wilkinson [258;
p. 135]) include the deliberately dramatic introduction to Rosenbaum
[311] and the paper Kupperman [312]. A particularly systematic
discussion is given by Jenkins [314], who lists (among other
possibilities) increased security at all facilities, crackdown
on political dissidents, intensified disarmament and anti-nuclear
energy debates, and of course the destabilizing symbolism of
a first post-Nagusaki nuclear detonation., It also seems worthwhile
to note the appraisal by Willrich and Taylor [197; p. 107] that
"the damage which might result from a nuclear theft is potentially
much greater than the damage that could result from the maximum
credible accident in the operation of a nuclear power reactor.
Yet another observation, not seen in the consulted literature
(perhaps because of its indelicacy), is that the disutility
to the Defender of a terrorists' diversion could in principle
depend on the identity of the terrorists' likely target--but
of course we cannot count on having a Diverter who is "an enemy
of our enemy."

30Heavy rel iance on numerous and easily-accessibl e RAND documents
may have biased this impression.
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The general tenor of the preceding paragraph is perhaps
somewhat alarmist, consistent with the "prudential™ attitude
suggested in Section 7.3. As partial antidote, we note Jenkins'
concern [308; p. 2] over exaggerated "threatmongering." It
is also true that exaggerated concern and response can be construed
as ayielding towards what several authors describe as a "general ized
objective" of many terrorist groups: to incite actions by the
authorities which indirectly undermine the latter by causing
loss of public support and confidence. (Cf. for example Crenshaw
[315], Wilkinson [258; pp. 137-8], Wardlaw [222; pp. 66-9];
in the present context the "undermining™” might be more military-
economic than political.)

This concludes our discussion of preliminary ideas concerning
the development of a Defender's payoff function. It seems important
to point out that such a development effort would not be valuable
only to (and thus should not be regarded as "chargeable" only
to) the construction of an operational game-theoretical model,
It would also contribute directly to providing an improved basis
for practically any broad-scope analytical attempt at evaluating,
balancing and enhancing the material accounting function, and
quite likely (by analog and extension) other safeguards functions
as well. Such a contribution would represent further progress
in the direction exemplified by Bennett et al [316].

We began Section 8.0 with the remark that determining suitable
payoff functions was a central problem in applied game-theoretic
modeling. We close it, by describing a methodological novelty
which has been suggested for evading this problem (at a price!)
when it appears insurmountable. This device is mentioned only
for "just in case" purposes; recourse to it would be made as
a "last resort"™ and is not expected to be necessary.

The fundamental idea is that if it proves too difficult
to assign numerical values to the outcomes of various pure-strategy
choices by the two players, it should at least be possible to
assign from the Defender's viewpoint a preference ranking—-perhaps
with ties--to those outcomes. Assume that both players have
just finitely many pure strategies (a matter of discretization,
if not true at the outset); then analogous to the payoff matrix
of Section 2.3, the Defender is confronted with an "outcomes
matrix®™ which his preference ranking can convert into a "preference-
ranks" matrix., For any particular probability-level p, say
0.90, the Defender might then ask "What is the highest mean
outcome-rank I can assure myself of obtaining no matter what
the Diverter does, and how can I do this?"

This approach's reliance on ranks gives it a purely "ordinal"
rather than "cardinal™ nature, easing its application but sacrificing
much of the information present in even a "fuzzy" payoff matrix.
While ordinal considerations had entered game theory in various
other contexts (Goldman ([317], Shapley [112], Goldberg, Goldman
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and Newman [318], Dresher [319]) including solvability in pure
strategies and eliminability of some pure strategies as "dominated"
by others, the determined effort to create a fully ordinal theory
based on the guestion posed above was made by J. Walsh (with
G. Kelleher also contributing), in a series of papers [320-327]
concentrated in the period 1969-1972 following Walsh's presidency
of the Operations Research Society of America.

Surprisingly, these ideas have gone neglected during the
intervening years with the single exception of devries [328].
Possible reasons include the tremendous prestige and elegance
of the "classical" cardinal-value theory, and the location of
[320-327] in journals not followed as "mainstream"™ by much of
the U.S. and European research committees. Another likely reason
is the algorithmic unattractiveness of the (finite) solution
method as presented in these papers. The writer's doctoral
student Won [329]), in a dissertation currently being completed
(deo volens), has applied recent algorithmic developments to
obtain more efficient means of calculating the Defender's optimal
strategy--in general, mixed--in such a "percentile" game ("median"
games are the special case p= 0.50), and has modified the underlying
model so as to control the probability of a very "bad" outcome.
Thus ordinal game theory can be kept in mind as a fallback position
if the cardinal approach flounders on the determination of a
Defender's payoff function.
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