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ABSTRACT

In this paper, we report recent results on automatic classification of free text
documents into a given number of categories. Our method uses multiple
sensors to derive informative clues about patterns of interest in the input
text, and fuses this information using a neural network. Encouraging
preliminary results were obtained by applying this approach to a set of free
text documents from the Associated Press (AP) news wire. New free text
documents have been made available by the Reuters news agency. The
advantages of this collection compared to the AP data are that the Reuters
stories were already manually classified, and included sufficiently high
numbers of stories per category. The results indicate the usefulness of our
new method: after the network is fully trained, if data belonging to only one
category are used for testing, correctness is about 90%, representing nearly
15% over the best results for the AP data. Based on the performance of our
method with the AP and the Reuters collections we now have conclusive
evidence that the approach is viable and practical. More work remains to be
done for handling data belonging to the multiple categories.




1 Introduction

The goal of this project is to automatically classify free text documents into a given num-
ber of categories. The approach itself was motivated in part by the Gene Recognition and
Analysis Internet Link (GRAIL) system developed at the Oak Ridge National Laboratory,
because of the similarity in problem characteristics. GRAIL is a pattern recognition system
for identifying rarely occurring protein-encoding segments of DNA sequence in higher eu-
karyotes, which may span tens to hundreds of “sparse” kilobases [Uberbacher and Mural, 91]
[Xu, et al., 94]. A multi-layer feed-forward neural network receives inputs from several sen-
sors that measure different characteristics of the signals or data sets to be analyzed. The
net acts as a classifier and assigns the input pattern to a given number of classes. The net is
trained using a set of known data patterns that are representative of thé application domain.

Similarly, in the problem of classifying large amounts of text, not any single clue gives
enough confidence for proper classification, and when using multiple clues, it is not known
how these should be integrated into a decision. There has been some work in information
retrieval (IR) on how to best combine information from different algorithms. Multiple al-
gorithms can be combined in at least two possible ways: (i) combining multiple (aspects
of) representation of the same input into a pattern-matching system (often called informa-
tion/sensor fusion; in the IR literature, this method is often called query combination, and
(ii) combining results from multiple pattern matchers (often called decision fusion; in the IR
literature the term data combination/fusion is often used) [Belkin, et al., 94] [Dumais, 96]
[Towell, et al., 95]. For this study, we have used neural nets as parameterized mappings that
allow for fusion of higher level clues extracted from free text. (This is like query combination,
except that we perform classification, rather than retrieval.)

In our past work [Dasigi and Mann, 95], we tested our method using stories from the
Associated Press (AP) news wire [Harman, 93]. We used multiple sensors, the primary
sensor based on Latent Semantic Indexing (LSI) [Deerwester, et al., 90], to derive informative
clues about patterns of interest in the input text, and fused this information using a neural
network. A term-document matrix represents the information contained in a collection of
documents as a matrix of term frequency vs. document. In LSI, this large and sparse term-
document matrix is reduced into three smaller matrices (one of which is simply a diagonal
matrix) by singular value decomposition (SVD). The diagonal matrix yields the singular
values from which the dominant ones are selected. Thus, instead of representing documents
by thousands of possible terms, LSI allows for a document to be represented by a substantially

smaller number of “factors” that are supposed to capture the “significant” term-document

associations. This is done by linear transformations of the much longer term vector, using the




constituent matrices that result from the SVD of a reference matriz [Dasigi and Mann, 96].

A reference matrix is the term-document matrix of a reference library / collection of
documents. A reference library is the collection of documents that “adequately” represents
all concepts of interest. The SVD computations are performed on such a reference library
only once, and the transformations mentioned above essentially project any new document
into the “concept space” represented by the reference library.

Section 2 describes the general approach. We re-checked and expanded our previous
experiments perfoemd with the AP data; these results are presented in Section 3. Although
the results were encouraging, a careful analysis indicates, however, that additional work was
required to ensure the proper training of the fusion network. In order to provide further
training, we turned to a new collection of data, made available by the Reuters news agency.
The advantage of this collection, as compared to the AP data, comes from the fact that
the Reuters stories were already manually classified, and included sufficiently high numbers
of stories per category. Another major difference between the new and old data is that
the Reuters stories have anywhere between zero to five categories assigned to each of them,
while the AP documents were assigned to one and only one category each. Details of the
Reuters data are presented in detail in Section 4. The programs developed to support.
experimentation with the new data are described in Section 5.

Since there were too many categories for the Reuters data, we combined several of them
into single higher level categories, as suggested by the data developers. Experiments were
conducted with the data (described in Section 6), and the results were consistent with the
results for the AP data and expectations based on our previous analyses. There have been

a few interesting surprises, which are discussed in Section 7.

2 Background: A Multi-Sensor Neural Net Approach

We started from the assumption that a GRAIL-like system [Uberbacher and Mural, 91]
[Xu, et al., 94] would be very effective in classifying and filtering of English text documents.
Namely, it is hypothesized that the eventual system, being neural network-based, would be
capable of integrating in a systematic way existing and new approaches as required by the
application. The GRAIL-type system can integrate different kinds of sensors, e.g., statisti-
cal and syntactic sensors as well as simple keyword sensors, and other standard techniques
already in use.

Specifically we focused on two main goals. The first goal was to create input to a neural
network that is LSI-based, so that the size of the neural net could be kept reasonably small,

and the net therefore could be trained without much difficulty. The second goal was to assess




the impact of additional sensors that can be added easily to the neural net input, to improve
the overall performance. '

Actually, the developers of LSI indicate- that a query may be viewed as a pseudo-
document and may be represented by a vector of a chosen number of factors, so it may be
placed in the same vector space as regular document vectors [Deerwester, et al., 90]. This
is done as follows. First a reference term-document sparse matrix X is derived from the
library of documents that are of interest. This matrix is split into three matrices by SVD
[Forsythe, et al., 77], so that

X=T.S5D

Here, X is a tXd matrix, where t is the numbers of distinct terms (word roots) and d is
the number of documents in the referenc’e collection. The order of T is tXk, that of S, which
is a diagonal matrix, is kXk, and that of D is dXk, where k is the chosen number of factors.
(LSI research indicates that a choice of k around a hundred is very effective.) Now, the
pseudo-document vector Dg corresponding to a 1Xt query vector Q may be derived simply
as:

Do =Q.T.5?

In this work, we use this same idea to squash any 1Xt document vector into a 1Xk vector
that serves as input to the neural network. The only care that must be ezercised is to
make sure that the reference term-document mairiz that is used as the starting point is one
that “adequately” represents all concepts of interest. Note that this requirement is no more
stringent than would be required in the standard LSI approach. Some more details can be
found in [Dasigi and Mann, 95).

3 Experiments and Results with AP Data

As mentioned befoi'e, LSI is the primary sensor used in our work, but its utility is limited
by the reference library of documents. Thus, to enlarge the domain of applicability, there
is an important need to complement or at least supplement this sensor. Information from
the different sensors is integrated into a decision by a neural network. The LSI-based sensor
is used to achieve the necessary dimensionality reduction and thereby render the approach
feasible. The additional sensors should be sensitive to new words and patterns in the input
or otherwise relate to the output categories.

The purpose of the second logical sensor currently used in this work is to allow for simple
keyword profiles to be considered in the classification. Each category profile is simply a set of
keywords characterizing that particular category. There is one input to the neural network

from this logical sensor, corresponding to each category. Each such input simply represents
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what fraction of the terms in the given document match the category profile. Inclusion

of more sophisticated algorithms is the subject of ongoing research, but as it stands, the -
information supplied by this second sensor is, to a degree, different from and independent of

that from the first LSI-based sensor.

We focused on a number of AP news wire stories from the standard TIPSTER collec-
tion [Harman, 93]. The collection contains AP news wire stories for two full years, tens
to hundreds of stories per day. The purpose of the multi-sensor neural net is to classify
the news stories into one of ten ad hoc categories: accidents and natural disasters, crime,
terrorism, politics and government, business and finance, science and technology, culture,
weather, obituary, and a catch-all general / miscellaneous category. For the documents used
for training and testing purposes, the categories of the news story documents were manually

| determined, because category information is not encoded in the TIPSTER collection. This
turned out to be a bottleneck.

Our experiments involved a comparison of performance among five approaches, one in-
volving the classic LSI and four based on neural network training. The first approach uses
the original LSI algorithm, modified to perform classification by first identifying the docu-
ment from the reference library that best matches the input document, and then looking up
the category of the reference document. Of the neural network methods, two involve just a :
single sensor and two involve two sensors each. The first single-sensor method (version la)
uses an LSI-based dimensionality reduction, which also constitutes one of the two sensors .
in both the two-sensor methods. The second single-sensor method (1b) employs the simple
category profiles, as already explained. The two-sensor methods also use a second sensor
based on category profiles. The two methods differ in that in one of them the category pro-
files are directly used (2a), while in the other,. we use the results of SVD from the category
profiles (2b).

The goal in comparing the last two approaches was to see whether the results would be
substantially different. The initial expectation was that there should not be any substantial
difference, but we wondered whether LSI would be able to capture any hidden associations
between the category profiles and the documents. This was expected because the case with
category profiles is somewhat similar to that of terms in documents. In general, both the
term-document matrix and the profile-document matrix have multiple non-zero entries in
any given row or column.

Out of the nearly five hundred documents used for training, about three-quarters con-
stituted the “reference library” for all LSI/SVD operations. The number of SVD “factors”
used in this work was 112. We used simple feedforward nets with back propagation, with

the delta rule for learning and the tanh transfer function. The classification systems were
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tested in different configurations: two single-sensor versions and two two-sensor versions.
One single-sensor version (la) employed the LSI-based term frequency sensor comprising
112 input units and 9 hidden units. The other single-sensor version (1b) used the simple
category profile sensor, with 10 input units (one corresponding to each category profile) and
5 hidden units. Both two-sensor versions used the LSI-based term frequency sensor as the
first sensor (corresponding to 112 input units), and a second sensor based on the category
profiles (corresponding to 10 more input units). The first two-sensor version (2a) employed
a sensor identical to that of version 1b for its second sensor, and 10 hidden units. The other
two-sensor version (2b) used an SVD-based version of the sensor in version 1b as the second
sensor, and also used 10 hidden units. All configurations used 10 output units, one for each

category.

3.1 Analysis of the Results with AP Data

When implemented alone, the LSI method yielded somewhat surprising results. Indeed,
although the performance of LSI in classifying the known reference library documents was a
perfect 100%, the percentage of correct results dropped to 54% when new documents (that
is, those outside the reference library) were used. For this method, there was just a single
experiment, because there was no training involved and, consequently, there was only one
non-trivial test set, that of the documents outside the reference library.

For the four neural network experiments, the percentages of correct results as cited rep-
- resent the peak performance that did not get any better with more iterations. Since there
were only a limited number of inputs, several different experiments were constructed by cross
validation. We cross validated the available data by generating a dozen pairs of files, each
pair containing a training file (90% of data) and a test file (10% of data). The same pairs
of data sets were used to test all four neural net configurations, and are referred to by the
same data set numbers across the different experiments.

Tables 1 and 2 summarize the main results of the neural network experiments, which are
discussed below.

Single-sensor neural nets: Twelve sets of data were used in each experiment. With
each training set, to achieve best performance, the neural net was trained for a number
of iterations varying between 16,000 and 128,000 for version la, and between 64,000 and
256,000 for version 1b. On the test set, the correctness percentage ranged from a minimum

of 58% to a maximum of 72% for version la and from 6% to 78% for version 1b. When the

training set itself was used as a data set, the performance was between 76.05% to 80.7%

correct for version la and between 7.44% to 64.4% for version 1b (contrasted to 100% in the




Single-Sensor Neural Network Classifiers

Data Term LSI Sensor Category Profile Sensor

Set No. of | Correct on | Correct on No. of | Correct on | Correct on
No. || Iterations | Test Data | Training Data || Iterations | Test Data | Training Data
1 48K 58% 80.93% 224K 70% 64.19%
2 48K 68% 78.14% 256K 66% 64.42%
3 64K 2% 77.21% 128K 12% 8.60%
4 16K 62% 76.74% 64K 30% 24.19%
5 96K 70% 77.44% 64K 34% 23.72%
6 48K 62% 78.14% 64K 22% 26.28%
7 128K 62% 80.23% 160K 36% 28.84%
8 64K 58% 77.91% 64K 14% 10.00%
9 32K 66% 721% 64K 20% 25.35%
10 32K 60% 76.98% 128K 6% 7.44%
11 48K 62% 78.37% 64K 22% 28.60%
12 48K 68% 76.51% 160K 8% 62.09%

Table 1: Results of classification using neural nets with an LSI-based term frequency sensor

input and a simple category profile sensor input

LSI-only method). That very large standard deviation is associated with version 1b is not
surprising if we take into account the overall performance of this sensor which is rather poor
(around 30% on the average, with more iterations in general).

Two-sensor neural nets: Again, with each training set, to get the peak performance,
the neural net was trained for between 32,000 and 128,000 iterations for version 2a and
between 48,000 and 144,000 iterations for version 2b. When the category profiles were
directly used for the second sensor (version 2a), the correctness percentage on the test sets
ranged from a minimum of 58% to a maximum of 76%. When the training set itself was
used as a data set, the performance was between 80.47% to 85.11% correct.

When the results of SVD from the category profiles were used for the second sensor
(version 2b), the correctness percentage ranged between 56% and 72% on the test sets and
between 82.33% and 85.81% for the training sets. Comparing these results, we notice that
the first fusion method (2a) yielded a slight improvement in performance over version la (7-
8% on the average), while the second fusion method (2b) yielded practically no improvement,

although it typically required more iterations than the first fusion method (2a).
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Two-Sensor Neural Network Classifiers

Data Fusion Version 2a Fusion Version 2b

Set No. of | Correct on | Correct on No. of | Correct on | Correct on

No. || Iterations | Test Data | Training Data || Iterations | Test Data | Training Data
1 64K 58% 85.12% 144K 56% 84.42%
2 32K 70% 83.26% 80K 70% 83.26%
3 80K 76% 84.65% 80K 2% 84.19%
4 64K 66% 84.19% 48K 62% 83.95%
5 80K 0% 84.19% 64K 62% 84.42%
6 64K 68% 82.33% 64K 64% 82.33%
7 32K 68% 85.12% 80K 64% 83.49%
8 32K 68% 83.72% 80K 62% 85.81%
9 128K 2% 85.35% 80K 66% 82.33%
10 80K 64% 86.05% 128K 60% 83.95%
11 32K 68% 82.09% 64K 68% 83.02%
12 64K 4% 84.19% 48K 66% 83.26%

Table 2: Results of classification using two-sensor neural nets, the first with a simple category

profile second sensor and the second with an LSI-based category profile sensor

The modest improvement in the first case is due to the fact that the.second sensor
is not very powerful to begin with. We expect that if the two sensors have comparable
individual performances and provide relatively independent information, their fusion should
- in general - yield more substantial improvements. However, we also expect a saturation or
even decrease in performance to set in, if both sensors have extreme (too high or too low)
individual performance. v

The lack of improvement in the second case may be related to the number of iterations,
the size of the test sets, etc. However, we believe that the main cause for this behavior is the
fact that by applying a SVD to the results of the second sensor, one makes it “too parallel”
to the first one, thereby stripping an already poor classifier of its discriminating power. A
substantially different reason could also contribute to this behavior: the SVD algorithms
used in this case might not have been best suited for the case where one dimension of the

matrix is only 10.1

1The size of the term-document matrix for the reference library was 10025X380, but the size of the

category profile-document matrix was only 10X380.




4 The Reuters Data

The Reuters-22173 text categorization collection is copyrighted by Reuters, Ltd., and is
distributed freely for research purposes only. Copyright for additional annotations and a
number of auxiliary files resides with David D. Lewis and the Information Retrieval Labo-
ratory at University of Massachusetts.? The size of the corpus is about 25 MB, representing
22,173 Reuters news wire stories. The stories are pre-classified and pre-analyzed. Thus, in
addition to the 25 MB of raw text, many additional files are provided, that contain informa-
tion such as, what categories, if any, have been assigned to each document, what words are
present in each document (story) with what frequency, what multi-word noun-phrases occur
in each document with what frequency, etc. Many details about the collection can be found
in [Lewis, 92], and also in the README file associated with the collection.

The collection contains 22,791 different words and 29,496 different phrases indexed to the
documents. These numbers are rather high, and part of the reason is “words” corresponding
to the different numeric values that occur in the documents, special symbols, etc. have all
been treated as genuine words. It is up to the system that processes this information to use
them appropriately. The documents come with preassigned classification, with about 135
topic categories and another 539 other kinds of categories. The 135 categories may further
be grouped into 8 higher level categories, which we use in this work. The categories and their
statistical distribution are shown in Table 3. Table 4 shows the distribution of documents
with different numbers of category assignments.

The files most important for the purposes of this work are described here, along with their

formats. The corpus directory contains files with names of the form initial.frmt0000012345,

where 12345 is replaced by the number of the first document in the file. There are 45 such
files, all of which except the very last one containing 500 documents each, with the last one
containing just 173 documents. Each document has a header followed by the actual text,
with the header including, together with some irrelevant information, the date, time and
category codes.

The file cd1/churchtiw2/n.kixf contains single words and word identifiers (ids) and
other related information. This file would not be needed unless the actual word strings
themselves are of interest, because most information is encoded in terms of the unique
numeric word ids. Each line corresponds to one word, and has six fields. Only the second
and third fields are of interest for our purposes, since they represent the unique numeric word
id and the word string itself, respectively. The file cd1/churchtiw2/df2nsb/n.ixf simply

2The authors thank the providers of the Reuters-22173 collection for making it available. It can be
obtained at URL ftp://ciir-flp.cs.umass.edu/pub/reutersy.
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No. Category Name Category Code | Documents in | Documents only
this Category | in this Category

1 | Money/Foreign Exchange | MONEY-FX 827 323

2 | Shipping SHIP 308 163

3 | Interest Rates INTEREST 530 293

4 | Economic Indicators ECON 1,312 1,136

5 | Currency CURR 306 26

6 | Corporate CORP 6,961 6,466

7 | Commodity COMM 1,941 1,769

8 | Energy ENERGY 796 638

Table 3: Document distribution among the various categories -

Number of documents with 0 category assignments | 10,509

Number of documents with 1 category assignment | 10,814

Number of documents with 2 category assignments 788
Number of documents with 3 category assignments 57
Number of documents with 4 category assignments 5

Table 4: Document distribution according to the number of assigned categories

lists each of the 22,791 unique word ids, where each line has two fields: the first field may
be ignored and the second field is the unique word id. These ids appear in increasing order.

The phrase files have so far not been used in this project, but might be valuable. The
file cd1/churchpipi/n.kixf contains multi-word phrases, most of which are noun phrases,
along with their ids. The format is similar to that of cdl/churchtiw2/n.kixf. The file
cd1i/churchpipl/df2tk2/n. ixf lists each of the 19, 496 phrases, along with their ids, with
the ids appearing in increasing order as is the case with word ids.

The file cd2/churchtiw2-docs/df2nsb-all/wdf . trn lists word-document associations.
Each line contains a word id, followed by a document id, followed by an integer representing
the number of occurrences of the specified word in the specified document. The word ids are
listed in increasing order and for any given word id, the document ids appéar in increasing
order. The file cd2/churchpipi-docs/df2tk2-all/wdf.trn lists phrase-document associ-
ations, with a couple of fields extraneous for our purpose. The second field in each line is
the phrase id, the fourth field the document id and the last (fifth) field is a floating point

9




number representing the frequency. The lines ordered first by the phrase id and next by the
document id.

The file cd1/rcat/n.ixf specifies the numeric ids for each category name. The first
field may be ignored. The second field is the unique category id. The third field has two
parts separated by a colon (:), the left part is the broad category id (TOPICS, PLACES,
PEOPLE, ORGANIZATIONS and EXCHANGES), and the right part the actual category
name (e.g., DLR, GNP, LEAD, OAT, etc.). Our work focuses only on the TOPIC categories
- 135 of them broadly regrouped into 8 higher level categories. These TOPIC category ids are
listed one per line, following an extraneous field value, in the file cd1/rcat/topics/n.ixf.
Finally, the file necessary for supervised learning and verification is the file that contains
document category associations: cd2/rcat-docs/all-all/rc-sorted.trn. Each line of
this file contains three fields: the first field is ignored; the second field is the unique id of a
category (could be any category, not necessarily a TOPIC category), and the last field is a
document id.. The file is sorted by the category ids first and within each category id, by the

document ids.

5 The Preprocessing Programs

Programs have been written to work with the new format of Reuters data. For use by
the SVD routines, described in [Dasigi and Mann, 95], a Rmatrix input file is needed to be
created in the compressed column storage format. The ccs program creates the file, but it
also does other things, much like the convert program described in [Dasigi and Mann, 95).
It generates two executable files, Rneural’ and RLSIcat, the executable logic of which is
expected to be specified in the files Rneural.cand RLSIcat.c. The temporary files %@+3.c
and %0+4.c are created respectively from these files by adding some data definitions corre-
sponding to the ids of the words that occur in the reference library documents. (The original
.c files are left unchanged.) These temporary files are compiled, the executable generated,
and the temporary files deleted.

The purpose of Rneural is to generate a training or test input for the neural network,
into a file called RNEU.nna, where the suffix nna is required by the NeuralWorks package.
Information on the documents on which this neural net data is based is already in the
file cd2/churchtiw2-docs/df2nsb-all/wdf.trn. The program asks for the number of the
first (sn) and last (en) document to be classified (actually it always starts with the first

3Most programs written to deal with the Reuters data start with the prefix letter R, which refers to -
Reuters. This convention distinguishes them from the programs that had been written to work with AP

data. Most of them have same or similar names, except for the single-letter prefix.
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document and processes en-sn+1 documents), and also for the number of desired factors.
This latter input value corresponds to the number of singular values (and vectors) used
in computations, and is required for predictable control. This is necessitated by the fact
that the SVD programs supplied in SVDPACKC do not give the user precise control on the
number of singular values computed. The specified number of the more significant values are
used from the file RT.SINV, which should have been created by the modified SVDPACKC
package as described in [Dasigi and Mann, 95]. This program also assumes the availability
of a categories file?, which is used to create the training output (or reference output for
testing). The program also repeatedly generates and later deletes a temporary file named
%043,

RLSIcat can be used to classify a sequence of input document files using an LSI-based
method, for comparison against the performance of the multi-sensor neural network. The
LSI approach, as described in [Deerwester, et al., 90], was originally intended for document
retrieval, rather than classification. To perform classification, we modified it as follows.
First, the document from the reference library that matches an input document best is
identified. Next, the category of the reference document is looked up in the categories file
and is reported as the category for the input document in question. '

As with Rneural, information on the documents which need to be classified using LSI is
already in the file cd2/churchtiw2-docs/df2nsb-all/wdf.trn. RLSIcat also asks for the
numbers of the first and last document to be classified, and also for the desired number of
“factors”. It uses the two files RT.S and Rlav2 in computing the best matching reference
document. Further, the program asks for the name of the “document magnitudes” file, that
must already have been created by the Rmags program. This program repeatedly generates
and later deletes a temporary file named ¥%Q+4.

The program Rgensensor2.c creates a program that generates a second input vector
(viewed as a second sensor) for the neural network. It assumes the existence of the file
Rsensor2.c, which represents the executable portion of the second logical sensor for the
neural net (to be described shortly). It asks for the number of categories, and also assumes
the existence of as many category profile files as the number of categories. These files are

supposed to contain a number of keywords which constitute a profile for the respective

4This file is to specify the categories for each of the document files, in the format of the document number
(ignored), followed by a tab, followed by an 8-bit binary-coded decimal value corresponding to the category
numbers assigned to the document number, followed by a tab-separated list of the actual category numbers
themselves. Since there are 8 categories, an 8-bit encoding would do. For example, the encoding 17 specifies
that the document belongs to categories 5 and 1. This list must be immediately preceded by a line starting
with a hyphen.
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category. These files are assumed to have the names cat#.basic, where # stands for the
category number. It also creates a temporary file (%@+5.c by adding data corresponding to
the category profiles to the logic of the sensor2.c file, compiles it to create the executable
sensor2 and then deletes the temporary file. It uses the cd1/churchtiw2/n.kixf file to
relate the unique word ids to their word strings.

The program sensor2 asks for the starting and ending file numbers, which define the
range of the input document file numbers. he file cd2/churchtiw2-docs/df2nsb-all/wdf.trn
is used to identify all the words that occur in a document. It creates an output file named
RNEU.S2, in which each line is simply a vector (corresponding to an input document ), whose
size equals the number of categories. The components of the vector represent what fraction
of the terms in the document correspond to the words in the profile. The match for the
“general” category is negatively related to the best match for any of the other categories.

The program Rneural3.c creates a combined neural net input vector from RNEU. nna and
the RNEU.S2 files. Recall, from the preceding description of the Rneural progfarn, that the
RNEU . nna file contains LSI-based input vector and training output (or test reference) values.
It actually asks for the two input file names and the desired name for the combined file. The
latter file is created as the output.

Other utility programs have been written, as well. The program Rresults interprets
the neural net output for multiple category documents. It has four command line inputs
for specifying the number of categories, the names for the input and oﬁtput files and the
threshold to be used in interpreting the results. Any value at or above the threshold is
treated as a value of 1 and smaller values taken to be 0. The program results, as described
in [Dasigi and Mann, 95], interprets neural net output with single category documents. The
program sepsingle writes all those records of documents that belong to exactly one cat-
egory from the input file to the output file. The file names are specified as command line
input parameters. A frequency distribution of the categories (in terms of single category

documents) is written out to a file named sepsingle.out.

6 Experiments and Results with Reuters Data

A “reference library” of the first 1,500 documents was chosen for the LSI implementation.
The distribution of these documents is shown in Table 5. The SVD computations were
performed using the same techniques discussed in [Dasigi and Mann, 95]. Since documents
could be assigned to anywhere between 0 and 4 categories, all experiments were first con-
ducted by focusing on single category documents, that is those documents with one and only

one category assigned to them, and then on the entire document set.
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Number of documents with no category assignment | 611
Number of documents assigned to category 1 46
Number of documents assigned to category 2 16
Number of documents assigned to category 3 65
Number of documents assigned to category 4 5
Number of documents assigned to category 5 20
Number of documents assigned to category 6 550
Number of documents assigned to category 7 146
Number of documents assigned to category 8 27

Table 5: Distribution of the 1,500 reference library documents

First, classification was performed using LSI alone, with no learning. This was done by
identifying the document that best matches the document given to be classified, and then
declaring its category or categories as the “answer”. If any of these categories matches any
of the categories assigned to the document in question or if both documents have no category
assigned to them, the answer is declared correct. When documents assigned to exactly one
category are used, both these sets are of size 1, so in a certain sense the problem is easier
when multiple categories are involved, although one would normally expect the multiple

category cases to be harder. This “anomaly” is reflected in Table 6.

Parameter Single Category | Multiple Category

Case Case
Total documents 10,814 22,173
Documents in Reference Library 837 1,500
Percent correct on reference library 100.00% ' 100.00%
Percent correct outside reference library 65.86% 67.87%
Percent correct overall 68.50% 70.04%

Table 6: LSI classification results for documents with exactly a single category assignment

and those with multiple category assignments

As with AP data, neural net experiments were conducted with both a single sensor and
two sensors on the Reuters data, as well. Experiments were conducted with the entire

data set, as well as the single category data set. Because of the availability of a large
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number of documents, no cross-validation was deemed necessary. Further, with thousands
of documents in the training and the test sets, the experimentation took time comparable
to cross-validation with multiple sets in the case of the AP datal

Once again, the same reference library was used as above, namely, the first 1,500 docu-
ments from the data. Also, the largest 112 factors were used in the computations. In both
categories of experiments (single category and multiple category data sets), the first 4,000
documents were used for training and the remaining documents were used for testing. This
means that in experiments with the single category documents, 6,814 documents comprised
the test cases, and with the entire data set, 18,173 documents were used for testing. Both
single-sensor and two-sensor experiments were conducted, with the second sensor the same
as before, namely, one based on simple category profiles. _

When data with multiple category assignments are considered, the question of interpret-
ing the output of the neural net arises. This is a more complex situation than the previous
one, because in this latter case, the category corresponding to the largest output is declared
to be the desired classification. In the multiple category ca,se,’a threshold has to be chosen.
This threshold was chosen to maximize the performance on the training set output, and then
used to interpret the test data output. If the category (-ies) assigned after the interpretation
match(es) any of the correct categories, the classification is considered to be correct. All the
results related to these experiments are tabulated in Table 7.

Parameter Single Category Case Multiple Category Case
Single-Sensor | Two-Sensor || Single-Sensor | Two-Sensor

Training Documents 4,000 4,000 4,000 4,000
Test Documents 6,814 6,814 18,173 18,173
Input Units 112 120 112 120
Hidden Units 9 10 9 9
Output Units It 8 8 8 8
Iterations 48K 112K 144K 80K
Threshold N.A. N.A. -0.338 -0.213
Correct with Training Data 91.13% 92.70% 83.48% 84.13%
Correct with Test Data 89.90% 90.84% 72.51% 72.93%

Table 7: Summary of neural net experiments on single category and multiple category data,

with single- and two-sensor networks
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7 Analysis of Results and Further Work

In comparing the results of Table 6, that is classification results on the Reuters data using
LSI alone, with those for the AP data, one observes that those in Table 6 are clearly better,
by almost 15% over the best results for test data. This better performance is perhaps
attributable to a larger, and consequently more likely to be representative, reference library.

A quick comparison between Tables 6 and 7 reveals that for both the single category
data and multiple category data, the results with learning are consistently better than those
without learning (that is when LSI was used by itself). In the case of the single category
data, the results improved substantially, that is from about 68.5% up to about 90%. There is
practically no difference in the performance of the net with training and test data. Somewhat
disappointing is the result that the addition of the second sensor results in only a marginal
1-2% improvement in the performance. '

For multiple category data, the details are a bit different. Learning does improve the
results, but only marginally, that is from about 70% to about 72-73% on the test data. On
the training data, there is more improvement, but this fact is not really of any practical
utility. The disparity between the performance on the training and test data is striking. It
has been observed that very marginal improvements (about 0.1% for every 16K or so) in
performance were possible with more still iterations through the backpropagation algorithm,
which is not of much practical use. As in the single category case, the second sensor seems
to have resulted in only a very marginal improvement (0.5-1%).

These experiments enable us to make some conclusive remarks for the single category
data. As expected, more training data yields significant improvements. Yet, if one of the
sensors has extreme performance (in this case, about 90% correctness), the second sensor,
especially a relatively poor one, such as the one used here, does not seem to add much value.
This result is, again, consistent with our initial expeétations.

We cannot compare the results of the multiple category data with prior experience since
the AP data did not have multiple category assignments. Initially, it was expected that
multiple category data would be hard to deal with. That, indeed, turned out to be the case;
yet, the results seem to point in the right direction.

Plans for future work include:

o More systemalic experimentation to analyze the impact of uneven distribution of cate-
gories among the documents: An uneven distribution of categories in the training data
tends to bias the network. The categories occurring more often influence the weights in
the network more, resulting in a bias that favors them (minimizing false negatives for

. those categories). One possible consequence of this bias is that documents belonging
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to other less frequent categories might get incorrectly classified into one of the frequent

categories (false positives).

Interpretation of the results of multiple category data in terms of precision and recall
for each class: Precision and recall are measures of false positives and false negatives,
respectively. While correctness percentage is an adequate measure for data that are
known to belong to single categories, for multiple category data precision and recall

could provide valuable additional information.

Evaluation of the impact of the training set size: Comparison of our results with the
Reuters data against the results with the AP data reveals that a larger training set
can positively influence the performance of the neural net. It would be interesting to

find out a threshold, if any, beyond which the improvement is negligible.

Evaluation of the impact of the reference library size: The more concepts the reference
library covers, the more effective the LSI-based sensor would be. Thus, the size of the
reference library is another important factor, like the training set size, that can improve
the overall performance of the system. One interesting issue is that of identifying an
optimum combination of these parameters. A larger reference library would have a
term-document matrix that is larger in both dimensions, and therefore, increases the

time for the SVD computations.

Evaluation of the impact of the number of factors used in LSI computations: Intuitively,
the LSI factors are ordered in terms of their decreasing ability to capture siginificant
associations. Since the last few [ several / many factors are the smaller and less
significant values, it is expected that the usefulness of the factors would be limited
after a certain number. An optimum combination of the number of factors and the
reference library size would be useful to identify. It is worth noting that the SVD

computations take a longer time as the number of factors goes up.

Automatic synthesis of category profiles: Zhou and Dapkus came up with a method
to identify the significant terms for given predefined topics [Zhou and Dapkus, 95]. If
the categories are thought of as predefined topics, their method could be turned into

a method to synthesize the profiles automatically.

Other sensors: Other sensors could be based on n-grams, phrases, clustering, natural
language analyses, etc. Reuters data already has support for another kind of “sensor”,

namely, noun phrases in the documents. It should be kept in mind that a sensor that
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performs comparable to LSI would be needed in order to expect significant improve-

ment.

e Data combination (Decision fusion) from different networks using single sensor each:
Other IR researchers have worked on data combination methods that fuse the results
from different approaches [Towell, et al., 95]. It would be worth comparing the effec-

tiveness of query combination (sensor fusion) and data combination (decision fusion).

o Other possible interpretations of the raw results for the multiple category data: In
our experiments, the raw results from the neural networks have been interpreted by
choosing a threshold that maximized the performance on training data (and using
the same threshold to interpret the raw results with the test data, as well). Other
interpretations and other ways of handling the information are possible and warrant

further study.
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