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CHAOTIC ITERATION AND PARALLEL DIVERGENCE
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Applied Theoretical Physics Division
Los Alamos National Laboratory
Los Alamos, N.M. 87545

R. E. Hiromoto
Computing and Communications Division
Los Alamos National Laboratory
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Parallelization of standard multigroup methods used to solve the linear
(Boltzmann ) transport equation in the discrete ordinates (S, ) represen-
tation, coupled chaotic iteration achemes, and convergence are the focus
of this analysis. On the Denelcor HEP, we investigate the parallel
extension of two serial steration achemes, categorize speeavp, and per-
Jorm some numerical ezperiments in chaotic steration.

1. INTRODUCTION

Solutions to the linvar tranngort equation for neutral and charged particles occupy a significant
portion of computational efforts.}'® We have parallelized two iterative multigroup techniques used to
solve the transport equation in th: discrete ordinates representation (S,) and performed some numerical
experiments with chaotic iteration. The multigroup S, picture consists of a step disccetization of angu-
lar and cnergy operators and forms the backbon% 21 iterative solution algorithms in many applications.
Calculations are performed on the Denelcor HEP'", incorporated into the Los Alamos Integrated Com-
puting Network (ICN) for research purposes. The HEP is a 64-bit MIMD machine consisting of up to 16
process execution modules (PEMs), each capable of executing 64 processes concurrently. Some results of
the study are briely communicated in the following.

2. PHENOMENOLOGY

The multigroup, discrete ordinates equation can be written
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as 3 compact representation of the transport equation with o the particle flux, ¢ the time, @ the exter-
nal source, v the velocity, o the transport cross section, and f3 a unit vector in the direction of particle
travel. The indices g and m are the discretization indices on the energy and angular domains, respec-
tively,

1S$9SG (eneryy)
1<m <M (angle)

The subscript g denotes appropriate group aversged quantities iz Eq. (1). The multigroup angular
fluxes are functions of particle position, direction, energy, and time satisfying the relationship
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with r the position coordinate (one dimensional slab, cylindrical, or spherical geometry), ¢ the energy
and w, Gaussian quadrature weights for 1, which integrate the azimuthally symmetric angular flux.
The two quantities with superscripts in Eq. (1) are defined in a Legendre expansion
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with p the cosine of the angle between the position vector r and the direction of particle travel 2 in the
appropriate geometry.

Equation (1) is an integro-differential cxpression that ?fglvcd by successive iteration of the angu-
lar Bux occurring in the first term of the right hand side.””"" Iterations on Eq. (1) with h=g are the
within-group, or inner iterations, while iterations for h p£ g represent outer iterations. It is convenient
to rewrite the transport equation in compact operator form, where @ is the flux

L+E)@=(S+U+D)®+Q, (5)

and L, £, 8, U, D and Q are the streaming, collision, self-scatter, upscatter, downscatter, and external
source operators, respectively. Upscatter or downscatter underscore encrgy transfers between higher or
lower energy groups, while self-scatter implies no energy transfer. Upscatter and downscatter couple
different energy groups (outer), while self-scatter only couples within-group fluxes (inner).

The actual speedup gained by parallel procesring an iteration algoritkm depends upon a number of
factors such as number of processes created, degree to which the algorithm supports parallelization, pro-
cess communication, and synchronization. Denoting the numbear of processes as p, the degree to which
the algorithm supperts parallel implementation 13 v, and process instruction and communication over-
bead as v, the theorctical speedup S is given byl

1

-7+ +v’ (6)
For a completely parallelized algorithm (7 == 1), the speedup is less thaa the number of processes when
v > 0, that is, S == p/(1 + pu). and overall gain is limited by process overhead. Under optimal condi-
tions, we expect speedup near the number of processes assigned to the iteration task, but the actual
speedup can be markedly suppressed for the ahove reasons. Efficiency, E, is the ratio of speedup to
numbers of processes. Our actual speedup is computed by dividing the serial execution time by the
parallel execution time. Lfliciency is then actual speedup per unit process.

We consider two parallel iteration achemes.m termed TPMG (multigroup), and TPCC (chaotic
convergence), that take the operational forms (respectively) recalling Eq. (5)

(L + E)0HH w80+ 4+ (D + U + Q. (7)

S(v.p.v) ==

(L + T)@+1+1 = 8@ 4 (1 - €D + U)®' + €D + U)o+ + Q. (8)

The indices s and j denote the outer and inner iteration cycles in th. the nested scheme used to evalu-
ate Eq. (5). The scheme TPMG is Jacobian-like while TPCC mrre closely approximates the Gauss-
Seidel technique, since the outer source, (D + U)®'t computed using flux iterates from currently
active energy groups, is updated on each inner pass in TPCC, while (D + U)®', employing flux iterates
from the previous cycle, is updated on each outer pass in TP11G. Depoting the number f euergy
groups as (7 and processes p, as before, the chaoticity, §, of a nun-ordered parallel algorithm is simply
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with 1 € p € G. Chaoticity of TPCC thus ranges from non-chaotic to fully chaotic as £ ranges from 0
to 1, while the scheme TPMG remains ordered, as in the serial case. Figure 1 schematizes the parallel
flow of TPMG and TPCC, with single sychronization barrier at the inner convergence test.
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3. PARALLEL PERFORMANCE

A representative 16-group, absorber-scatterer, boundasy source problem was chosea for study. All
groups are coupled and the scatteiing ratio 0,/0,40,, with 0, suc o, the scattering and absorption cross
sections, varies between 0.66 and 0.88. The scattering (iteration) ma‘six is thus full, and the spectral
radius is bounded by 0.88 (approximately). The test problem was run serially and in parallel. Table 1
contrasts execution time, relative speedup over eerial processiag time, and iteration count for both
schemes. Execution times for TPCC are lower than TPMG for any number of processes assigned to the
inner loop, except in the case of 8 or 9 processes for which execution times are roughly the same. Both
iteration schemes exhibit their optimal performance with 16 processes. The overall parallel gain with
increasing numbers of processes is a 1r0notonic curve for both achemes. Although TPCC is faster than
TPMG overall, the relative speedup over tingle process execution time is greater for the ordered scheme.
Both schemes show dramatic relative specedun for 16 processes, and notable execution time minima.

Figure 1. Parallel Flow And Sichronization Of TPMG And TPCC



Table 1. Parallel Performance Of TPMG And TPCC

TPMG TPMG TPMG TPCC TPCC TPCC
rocesses | time (sec) | speedup | iterations | time (sec) | speedup | iierations
1 3235 1.00 312 2054 1.00 198
2 1610 1.91 312 1321 1.56 244
3 1203 2.69 312 1021 2.01 271
4 889 3.04 312 731 2.81 256
5 748 4.33 312 591 3.47 256
6 664 4.87 312 6n8 3.38 301
7 608 5.32 312 502 4.9 276
8 471 6.86 312 446 4.61 277
9 475 6.81 312 447 4.60 304
10 483 6.70 312 406 5.06 279
11 475 6.81 312 386 5.33 274
12 470 6.80 312 324 6.73 259
13 486 6.45 312 330 6.23 57
14 477 6.78 312 334 6.20 249
15 492 6.58 312 332 6.10 249
16 358 9.07 312 197 10.41 153

While the speedup and efficiency discussed above are useful quantities for desciibing the relative
serial-to-parallel performance of a method, another measure of efficiency, the computation rate
(itcrationa per second per process), quantifies the eflects of various overheads in a multiprocessing stra-
tegy. For p == 16, TPMG attains rates of 0.093 and 0.055, while TPCC attains rates of 0.098 and 0.046
for serial and parallel computations. Both strategies suffer a reduction in computation rate due to com-
munication overhead, data conflict, and process straggling in the pipeline. In the preseat case, TPMG
sees a drop of 44% while TPCC suffers a 53% loss in computation rate. Most of this rate reduction can
be attributed to architectural limitation on the speedup for 16 processes. The 8 instruction execution
pipeline of a single PIEM frequently requires only 10 to 12 processes to keep the pipeline operating at its
maximum. Analysis of the TPMG and TPCC serinl-to-parallel specdups suggests effective pipelines of 0
and 10.4, respectively. The relatively longer pipeline lepgth of TPCC indicates the presence of greater
memory traffic limiting efficiency. Should contention be eliminated or minimized, there exists potential
for even greater improvement in the TPCC strategy.

4. CONVERGENCE AND ERROR

Relative convergence rates of iterative solution sequences to Eqs. (7) and (8) depend ou the magni-
tude of the spectral radius, x, with the fastest convergence rates supported by smallest values of the
spectral radius and vice-versa. Numerical accuracy depends on the iteration-cutoff convergence parame-
ter, 4, the sbsolute error, @, and the spectral radius, x, of the iteration operator in coupled (ashion
Equation (5) can be rewritten,

O=KO®+R , (10)
with K= (L+ Z)Y (3 + D+ U)and Ras (L + £)'Q. Defining the absolute error after n itestions,
e" = (@ - @"), with @ the exact solution to Eq. (6), we have,

" wmKe"' m i (.A-l_.k) ,
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The relative convergence criteria, 6, applied to Eq. (6) requires,
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Denoting the spectral radius of K as x, and iterating the middle term of Eq. (12) j times yields,

I.H -¢ | < % (13)
for &° the initial flux guess, and 0 < x < 1. Therefore, since § = $%%* from Eqs. (12) and (13),
0
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Relative convergence criteria of 0.001 produce less than 1% error ior spectral radii less than 0.9.

5. DIVERGENCE

Although we have had surprisingly good success ~ith the performance of our chaotic itcntitig
scheme, the prediciability of general convergence is not straight forward. While it has been shown
that a necessary and sufficient condition for chaotic convergence require. a spectral radius less than 1, it
is difficult to guarantee that a chaotic updating procedure will have sufficient access to the influx of new
iterates required to insure optimum ccnvergence, or, for that matter, convergence at all. In fact it is
quite possible for the development of a fixed pathological memory acces: pzttern whose primary results
would be to set up oscillations sbout the required point of convergence. This divergent behavior has
been observed in one particular set of numerical experiments for which the corresponding serial iteration
scheme converged. To achieve (faster) convergence of a chaotic iteration scheme, we require then some
means of providing each individual iteration process with ample access to at least the j** most recent
iterated values. Clearly the accessidbility to chaotically updated iterates is affected by a superposition of
an asynchronous paralle) processing system {characterized by such factors as synchronization overhead,
memory access and latency times, machine cycle time, and average memory conflict resolution time)
onto a particular chaotic algorithm whose parallel computational granularity also affects the rate at
which new iterates are produced and consumed. The complexity of analysis for optimum chaotic algo-
rithms may therefore seem enormous.

Fortunately the natural inner-outer iteration strategy, present in our algorithm, avoids the possi-
bility of divergence. By barriering at the outer loop to test fur global convergence, we essentially
guarantee that cach subsequent inner itsration is no more than j iterates behind. This scheme does not
address the question of optimum convergence, but it does provide a pathway for the most current
iterates to achieve convergence. Further analysis of information flow, group ordering, and outer source
dominance (exhibited, for instance, by the group scattering matrix) will help to answer questions of
optimum convergence,

6. SUMMARY

The simulations described herein demonstrate successful application of chaotic jteration methods
for solving the multigroup equations with scattering and avsorption. Parallel extensions of Jaccbi and
Gauss-Seidel iteration techniques follow easily in the granular multigroup picture, with nominal recoding
effort. It scems clear that the art .1 choosing and implementing chaotic iteration schemes will require
greater knowledge and intuition of both parallel machine architecture and chaotic algorithm under con-
sideration. Although complexities may seem unbounded, the introduction of tested chaotic procedures
ma (xpose more parallelism than would bave been extracted using more traditioual parallel decomposi-
t on techniques.

7. REFERENCES

(1) LJL. Carter and ED. Cashwell, Particle Transport Simulation With The Monte Carlo Method,
(ERDA Critical Review Series, Oak Ridge, 1975).



(@)

3)
(4)
(8)
(6)
(7)
8)
(9)

B.G. Carlson and K.D. Lathrop, Computiag Methods In Reactor Physics, (Gordon and Breach,
New York, 1968).

HEP Fortran Users Guide, (Dénelcor, Inc., Aurora, 1982).

H.F. Jordan, Proc. IEEE 72 (1984), 113.

B.R. Wienke, J. Quant. Spect. Rad. Trans. 28 (1982), 311.

G.1. Bell and S. Glasstone, Nuclear Reactor Theory, (Van Nostrand Reinhold, New York, 1970).
B.G. Carl. .o, Nuc. Sci. Eng. 61 (1976), 408.

R.E. Alcouffe, E.W. Larsen, W.F. Miller and B.R. Wienke, Nuc. Sci. Eng. 71 (1979), 111.

W 1. Reed, Nuc. Sci. Eng. 45 (1971), 245.

(10) K.D. Lathrop, J. Comp. Phys. 4 (1969), 475.

(11) B.L. Buzbee, Los Alamos Science, 9 (1983), 71.

(12) B.R. Wienke and R.E. Hiromoto, Nuc. Sci. Eng. 90 (1985), 116,
(13) P. Chazan and W. Miranker, Lin. Alg. Appl. 2 (1969), 190.



