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CHAOTIC ITERATION AND PARALLEL DIVERGENCE
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R. E. Hiromoto
Computing and Communicatiooa Division
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Paralleli:ation oj utandard multigwup methods used to $olve the linear
(J301tzmann) transport equation in the diamte ordinatea (SJ repremm-
tation, coupled chaotic itmation achemee, and convergence are the focw
of this analy~ia. On the Denelcor HEP, we investigate rt,e parallel
eztcn.~ion of two otwul iteration ochcmes, categorize epeeu~p, and per-
form uome numerical erperimento in chaotic iteration.

1. INTRODUCTION

Solutions to the Iinvar tran~ ort equation for neutral ●nd charged particles occupy a signitlcant
1‘~ We have parallelized two iterative multigroup tecbniquea used toportion of computational elJort8.

solve the transport equation in th: discrete ordinates repreaentatiom (SS) and performed some numerical
experiments with chaotic iteration, The multigroup S@picture consists of a step diacretiz8tiorr of artgu-
Iar and energy operators and forms the backbon ‘~~f ~teratlve aolu:ion algorithms in many ●pplications,
Calculations are performed on the Denclcor HEP ‘ , incorporated mto the Loa Alamoa In&grated Com-
puting Network (ICN) for research purposes. The HEP is a 64-bit MJMDmachine consisting of up to 16
process ●xecut ion modules (PEMsJ, each capable of executing 64 proceaaes concurrently. Some results of
lbe study are briefly communicated in the following,

2. PHENOMENOLOGY

The muitigroup, discrete ordinates equation can be writtcns’6

89 G M-1

-1* + n’vp,m + a,P,m
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(1)

aa a compact representation of the transport tquatiori with P the particle flux, t the time, Q the exter-
nal source, v the velocity, u the transport cross section, and fl a unit vector in the direction of particle
travel, Tbe indices g ●nd m are the discrethation indices ODthe energy and ●ngular domains, reapec=
tively,

1 s g s c (mtiuu)

1 ~ m ~M (an~le).

The subscript g denotee appropriate group averaged quantities iu Eq. (1). Tbe multigroup
fluxes are functions of particle position, direction, ener~, and time satiafyiag the relationship

angular
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with r the position coordinate (one dimensional slab, cylindrical, or opherical geometry), c the energy
and WmGaussian quadrature weights for fl~ which integrate the azimuthally symmetric ●ngular fIux.
The two quantities with superscripts in Eq. (1) are detlned in a Legendre expansion

with p the cosine of the angle between the
appropriate geometry.

(3)

position vector F and the direction of particle travel fl in the

expression that ~ y,@ed by successive iteration of the angu-Equation (1) is an integro-ditlcrential
Iar flux occurring in the first term of the right hand side.’-lu Iterations on Eq. (1) with h==g are the
with in-group, m irancr iterations, while iterations for h # g represent outer iterations. It is convenient
to rewrite the transport equation in compact operator form, where ● is the flux

(L+ X)O==(S+U+D)O+Q, (5)

and L, Z, St U, D and Q are the stretiming, collision, self-scattm, upscatter, downscatter, and external
80Urce operators, rmpectively. Upscatter or downscatter underscore ●nrrgy transfers between higher or
lower energy groups, while self-scatter implies no energy transfer, Upscatter and downscatter couple
diflerent energy groups (outer), while self-scatter only couples within-group fluxes (innrr).

Tbe actual speedup gained by parakl procesbhg an iteration ●lgorithm depertde upon a number of
factors such as number of processes created, degree to which the algorithm supports parallelization, pro-
cess communication, and synchronization, Denoting the numbw of processes as p, the degree to which
the atgorithm supports parallel implementation

lY ?, ●nd prmees instruction and communication Ovtr.
head as v, the theorcticaf spwdup S is given by

S(7,P!V) - (, - ~) :7/p+t) “ (6)

For a completely parallelized algorithm (~ I- 1), tbe sp?edup is less than the numb?r of processes when
v >0, that is, S == P4 i + PV), and overall gain is limited by process overhead. Under optimal condi-
tions, we expect speed up near the number of processes assigned to the iteration task, but the ●ctual
speedup can be mark?dly suppressed for the above reasons, Wliciency, f?, is the ratio of speedup to
aumbws of processes, Our actual speedup is computed by dividing the serial execution time by the
parallel execution tim~. Miicicrw is then actual specdup per unit process.

We consider
convergence), that

(L

two parallrl iteration ech~mes, 12 termed TPMG (multigroup), and TPCC (rhaotic
take the operational forms (respectively) recnlling Eq, (5)

(L+ E)@i+’I’+’ -SO’+”+ (D + U)W + Q , (7)

+ z)*’+1,’+1 _ fj*’+11~+ (1 - ()(D + U)O’ + @ + U)O’+l’~ + Q , (8)

j denote the outer and inner iteration cycles in tb(’ the nested scheme ueed to evalu-‘1’h?indic~a i and .
ate Eq. (6). The scheme TPMG ia Jacobian-!ik~ while TPCC mrre closely ●pproximatea the ~nuss-
Seidei techniqu~, since the outer source, (D + U)9’+’0~, computed ueirtg Oux iterates from currently
active energy groups, Is updated on each Inner pass in TPCC, while (D + U)*’, employing flux iterates
from the previous cycle, is updat?d on ●Mb outw pass in TPI 4G, Denoting the number ~f ettergy
groups as G ●nd process?a p, as before, the chaoticity, (, of ● non-ordered parallel ●lgorithm is elmply



definedby

(9)

with 1 < p < G. Cbaoticity of TPCC thus rangez from non-chaotic to falty chaotic as t rangez from O
to 1, while tbe ecbeme TPNfG remains ordered, m in tbe serial c*. Figure 1 scbematizea the parallel
flaw of TPMG and TPCC, with single synchronization bher at the inner convergencetest.

Figure 1. ParallelFlow And SL$chroaizatioaOf TPMG And TPCC
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A representative 16=group, ●bborb?r-ecstterer, bounda{y source problem wm cboaen for study. All
groups are coupled ●nd the mstlel ins ratio U,b,+ec, with u, ●h? U8the ocstteriog and ●bsorption crom
eections, vari- between 0.66 ●nd 0.88. The ecatttring (iteratioti) ma’dx b thus full, and the cpectral
radius la bounded by 0,88 (approximatdy). Tbe teat problem wu rtm wialty and in parallel, 7 ●bk 1
contraat~ execution time, relative speedup over oerial procewdag time, and Iteration count for botb
scbemee, Execution times for TPCC ●re lower than TPMQ for my hamber of proeewe MS@d to tbe
inner loop, except in tbe ceae of 8 or 9 proceacee for which execution Wnet are roughly tbe same, Botk

iteration .cbemes exhibit their optimal performance wltb 16 proeeaaes. Tbe overall paralkl gain with
incre~iag aumbera of proceeaesie ● Monotdc curve for botb acbemes, Altbougb TPCC k fsa~r than
TPMG ovmall, tbe rdative speedup over tingle proceeoexecutioo time h greater for tbe ordered ~beme,
Both schemes show dramstic relative spcedup for 16 proceaaea,and notsble execution time minima,



Table 1. Parallel Pcrformaace Of TPMG Aod TPCC

[ I TPMG

1 3 I 1203

i 6 I 664

s7 608

8 471

9 475

10 483
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2.69 ! 3

&
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UG TPCC TPCC TPCC
time time [aec) Ilpeedup iterations
:2 2054 1.(U) 198
,2 1321 1.56 244
,2 1021 !!.01 271
12 731 2.81 256
,2 591 3.47 256
12 608 3.38 301
,2 502 4.09 276
12 446 4.61 277

12 447 4.60 304
12 406 MO 279
12 386 5,33 274
12 324 6.73 259
12 330 6.23 257

12 334 6,20 249
1~ 332 6.10 249
12 197 10.41 153 A

While the rpeedup aod efficiency discubsed above are useful quaotitiea for desciibhig the relative

serial-to-parallel performance of a method, another meaaure of efflcimrcy, the computation rate
(itcrwtion~ prr ~eccvrd perprocess), quarrtilles the ●fleets of various overheads io a multiprocessing stra-
ttgy. For p = 16, TPMG attains rates of 0.093 and 0.0SS, while TPCC attain~ rates of 0,098 and 0.040
for serial and paral!el computations. Both strategies wrfler ● reduction in computation rate due to com-
munication overhead, data conflict, and process straggling io the pipelioe. In the preseot case, TPMC
Bees a drop of 44T0 while TPCC euffm a 5370 lone in computation rate, Most of this rate r~duction can
be attributed to architectural limitation on the 8peedup for 16 processes. The 8 ioetruction ●xecution
pipeline of a gingle PIN frequmtly rcquir?s only 10 to 12 processes to keep the pipeline operating at ita

maximum, Annlygimof the TPMG and TPCC emicd-t~parallel mpeedupesuggemtaefiective pipelines of 9
and 10.4, reepmtivclyt The relatively longer pipeline Ieogth of TPCC indicatee the presence of greater
memory trafiic limiting dilciency. Should contention be eliminated or mioimizcd, there rxiets potential
for eveo greater improvement io the TPCC strategy.

4. CONVERGENCE AND ERROR

Rdative convmgerwe ratm of iterative nolution mqucnca to Eqs, (7) and (8) depend otr the magni-
tude of the spettral radiun, ~, with the faatest convergence rates nrpported by emallcst values of the
cipectral radiue and vice-vrraa, Num?rJcal accuracy dcpende on the iterntioo-cutoff convergcoce parame-
ter, & the ●bsolute error, ., and the spectral radius, x, of the iteratioo operator io coupled faahioo
Equation (5) can be rewritteo,

● -K, +R, (lo)

with K _ (L + E)’ ‘(S + D + U) and R - (L + Z)-lQ, Ddlnhrg the abnolute wror ufter n itrmtionn,
●n n (~ .- o“), with ● tbe exact solution to U, (6), Webav~,

The relative convergence criteria, 6, applied to Eq (6) requires,



I+’-@’-’l-e’l~6-e’l~6 (12)

Denoting the spectral radius OfK aSIC,anditerating the middle term of Eq. (12) j times yieldq

l~-’-+”t’t (13)

for 4° the initial flux guess, and O < ~ <1. Therefore,since 6 SY@°K”fromEqA (12) and (13),

le’lsk:+:o.’-(l+~+~++)+~t~t (14)

Relative convergence criteria of 0.001 produce leas than 1% error Iorepectralradii less than 0,9.

6. DIVERGENCE

Although we have had surprisingly good success with the performance of our chaotic itcrati
e+cheme,the predictability of general convergence is not straight forward. While it has been shown!8

that a necessary and sufficient condition for chaotic convergence rquireil a spectral radius leas than 1, it
is difficult to guarantee that a chaotic updating procedure will have sufh~ient access to the inllux of new
iterates required to insure optimum convergence, or, for that matter, co nve?gence at all. In fact it is
quite possible for the development of a ilxed pathological memory acces: ?:ttern whose primary results
would be to set up oscillations ●bout the “quired point of convergence. This divergent behavior has
been observed in one particular set of numerical experiments for which the corresponding serial iteration
scheme converged, To achieve (faster] convergence of a chaotic iteration scheme, we require then some
means of providing each individual iteration process with ample access to at Ieaat the J’* most recent
iterated valuea. Clearly the accessibility to chaotically updated iterates is aflected by a superposition of
an asynchronous parallel processing system (characterized by such factors as synchronization overhead,
memory access and latency times, machine cycle time, ●nd average memory conflict resolution time)
onto a particular chaotic algorithm whose parallel computational granularity also ●ffects the rate at
which new iterates are produced and consumed, The complexity of analysis for optimum chaotic algo-
rithms may therefore oeem ●normous.

Fortunately the natural inner-outer iteration strategy, present in our algorithm, avoids the possi-
bility of divergence, Bj barriering at tbe outer loop to test for global convergence, we essentially
guarantee that each oubsequeht inner iteration is no more than j it<rates behind. Tbia scheme does not
address the question of optimum convergmce, but it does proh~de a pathway for the most current
iterates to achieve converl~ence. Further ●nalysis of information flow, group ordering, and outer source
dominance (exhibited, for instance, by tbe group scattering matrix) will help to answer questions of
optimum convergence,

e. smhww
Tb~ aimulat ionn described herein democmtrate successful ●pplication of chaotic iteration metbode

far solving the multigroup equations with scattering and arxmrption. Parallel extensions of Jacobi and
Gaum-Seidel iteration techniques follow wily in the granular multigroup pictur?, with nominal recoding
effort, It seems clear that the art .-l chooeing ●nd implementing chaotic iteration echemee will rquire
greater knowledge and intuition of both parallel machine architecture and chaotic ●lgorithm under con=
sideration, Although complexities may seem unbounded, tbe introduction of tested chaotic procedures
m~’ ~xpone more parallelism than would have been extracted using mor~ traditio~al parallel decompoei=
t Jn techniques.
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