
SANDIA. REPORT
SAND87 — 0043 • UC-37 
Unlimited Release 
Printed August 1987

A Tutorial on Rogowski Coil 
Theory and Operation

Charles R. McClenahan

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550 
for the United States Department of Energy 
under Contract DE-AC04-76DP00789

DISTRIBUTION OF Th'IS DOCUMENT IS UNLIMITEB

SF2900Q(8-81)



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Issued by Sandia National Laboratories, operated for the United States 
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Govern­
ment nor any agency thereof, nor any of their employees, nor any of their 
contractors, subcontractors, or their employees, makes any warranty, express 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or pro­
cess disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring 
by the United States Government, any agency thereof or any of their 
contractors or subcontractors. The views and opinions expressed herein do 
not necessarily state or reflect those of the United States Government, any 
agency thereof or any of their contractors or subcontractors.

Printed in the United States of America 
Available from
National Technical information Service 
U.S. Department of Commerce 
5285 Port Royal Road 
Springfield, VA 22161

NTIS price codes 
Printed copy: AOS 
Microfiche copy: A01



SAND—87-0043
DE88 000006

A Tutorial on Rogowski Coil Theory and Operation

Charles R. McClenahan

Simulation Applications Division, 1233 
Sandia National Laboratories 

P. 0. Box 5800 
Albuquerque, NM 87185

ABSTRACT

New staff members in our division often have little background in 
pulsed power diagnostics. Nevertheless, they must learn the techniques 
for measuring the electrical parameters of high voltage, pulsed power 
generators. This memorandum addresses this need by providing an 
elementary introduction to the technique of measuring current with 
Rogowski coils.

Without rigorously deriving all the equations that describe 
Rogowski coils, this memorandum describes how Rogowski coils work and 
why a Rogowski coil detects the charge passing through its toroidal 
opening yet remains insensitive to the details of the charge 
distribution.

Rogowski coils sense the time derivative of the current (dl/dt), 
and produce a proportional output. Nevertheless, an experimenter, 
usually, wants to measure the current. Often, a passive integrator used 
with a Rogowski coil can provide an output signal proportional to the 
current passing through the toroidal opening in the Rogowski coil.

In order to illustrate the use of Rogowski coils and integrators, 
this memorandum derives the equation for calculating the sensitivity of 
a Rogowski coil, and it compares the calculated and measured 
sensitivities of an actual Rogowski coil: The calculated sensitivity of 
84 + 13 mV-ms/kA agrees well with the measured sensitivity of 
81+2 mV-ms/kA. The integrator constructed for and used with the 
Rogowski coil described here has a measured time constant of 102 + 4 ms. 
Therefore, to determine the current passing through the toroidal opening 
in the Rogowski coil, the experimenter multiplies the voltage at the 
output of the integrator by 1.26 ± 0.06 kA/mV.

One can design Rogowski coils by calculating the sensitivity. 
Nevertheless, the wise experimenter measures the sensitivities of his 
Rogowski coils whenever possible.
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INTRODUCTION

At Sandia, Rogowski coils often measure the large dl/dt's
2produced by modern pulsed power generators. For example, Rogowski

coils on the SPEED and HYDRAMITE accelerators have measured dl/dt's in 
13excess of 1*10 A/s. Recently, Jim Ramsey of the Naval Support Weapons 

Center/Crane passed along a request to measure a current that consists 
of a train of 60 Hz, 10 kA pulses. A welder, used to weld submarine 
hulls, generates these pulses, and quality control concerns the Navy.
The high current and relatively long duration of each pulse make any 
current viewing resistor (CVR) impractical. Moreover, the large charge 
transfer on each pulse would saturate the magnetic core of a typical 
current viewing transformer (CVT), such as a Pearson model 301X. A 
Rogowski coil, which has no saturable magnetic core might solve this 
problem. Although I had never before used a Rogowski coil to measure 
such low frequency currents, I designed and constructed a Rogowski coil 
to satisfy this request.

While building and documenting the Rogowski coil to satisfy the 
Navy's request, I concluded that new staff members at Sandia have no 
convenient reference on measuring current with Rogowski coils; 
therefore, I wrote this memorandum as an elementary introduction to 
Rogowski coils. I do not derive all the equations that describe the 
remarkable properties of a Rogowski coil; nevertheless, I do describe 
how a Rogowski coil works and why it senses the total current passing 
through it without sensing the details of the current. These details 
include current distribution and location. After discussing Rogowski 
coil theory, I calculate and measure the sensitivity of the Rogowski 
coil that I built to satisfy the Navy's request. An experimenter often 
passively integrates the output from a Rogowski coil. I derive the 
equations describing a passive, resistor-capacitor (RC) integrator and 
measure the time constant of the integrator that I constructed to 
accompany the Rogowski coil for the Navy.
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THEORY

In this section I discuss the theory of Rogowski coils.
Nevertheless, I do not rigorously derive the theory. I take what might
be called a "hand waving" approach. The interested reader may refer to
the original paper by Rogowski and Steinhaus^ or to Huddlestone and 

3Leonard for a more rigorous derivation of Rogowski coil theory.
A Rogowski coil consists of a conductor wrapped around the surface 

of a torus. Furthermore, one end of the conductor connects to a 
conductor which runs along the circumference of the circle defined by 
the major diameter of the torus. The free ends of the outer conductor 
and the central conductor comprise the output terminals. Typically, the 
center conductor of a coaxial cable forms the central conductor and a 
wire wound on the dielectric core of the cable after the outer jacket 
and shield have been removed from the outer conductor. Figure 1 depicts 
a Rogowski coil.

Figure 1. Schematic diagram of a Rogowski coil.

Any magnetic flux cutting the plane of the major diameter of the 
torus will induce voltages in both the central conductor and the 
toroidal turns. However, the two induced voltages will oppose each 
other, and if the torus has a small minor diameter compared to the major
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diameter, the induced voltages will have very nearly the same magnitude. 
Therefore, any axial flux will generate comparatively small voltages in 
the Rogowski coil.

A radial flux will not induce any voltage in the central conductor. 
In principle, the toroidal windings present a very small area for radial 
flux to cut; nevertheless, spiral windings with a quite large pitch 
frequently comprise the toroidal turns, and radial flux can induce a 
significant voltage in a helical turn. However, any radial flux must 
cut these turns in both the positive and negative sense, and the induced 
voltages very nearly cancel. Therefore, any radial flux will generate 
comparatively small voltages in a Rogowski coil.

Only azimuthal flux induces significant voltages in a Rogowski 
coil. Consider the flux generated by the current in a wire parallel to 
the major axis of the torus. Furthermore, suppose this wire lies 
entirely outside the torus. The flux cuts the turns nearest the wire in 
one sense, and those on the opposite side of the Rogowski coil in the 
opposite sense. Moreover, the field generated by the current decreases 
inversely with the distance from the wire, but the number of turns the 
flux cuts increases linearly with the distance. Therefore the voltages 
induced in the turns of the Rogowski coil by a current outside the torus 
cancel.

Consider a current contained in a wire running through the torus. 
The azimuthal magnetic field cuts all of the turns in the same sense. 
Therefore, the Rogowski coil senses the current in the wire. If the 
wire and its current would move toward one side of the torus, the 
voltage induced in the nearest turns would increase, but the voltage 
induced in the further turns would decrease. Similarly to the situation 
where the wire lies outside the torus, the 1/r field dependence and r 
dependence of the number of turns involved result in the total induced 
voltage remaining nearly constant.

Therefore, a Rogowski coil senses primarily those currents flowing 
through the opening in the torus. Moreover, a Rogowski coil does not 
sense the location of the current within the torus.
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OPERATIONAL CONSIDERATIONS

As with all diagnostic probes, a Rogowski coil must satisfy 
requirements peculiar to the application. A Rogowski coil that works 
well in one application may not work at all in another. For example, an 
insensitive Rogowski coil designed for high energy pulsed power 
applications may produce a few microvolts in another application. In 
addition to the sensitivity, an experimenter must consider the frequency 
response when he chooses a Rogowski coil.

Too large or too small an output signal greatly magnifies the 
difficulty in recording the experimental data. Moreover, an 
inappropriate signal level can make the measurement impossible. For 
example in a pulsed power device, electromagnetic noise can swamp a 
too-small output. Furthermore, with too large a signal, transmission 
line components such as cables, connectors, and attenuators can fail. 
Such failures result in distortion or loss of the signal. In order to 
choose the appropriate Rogowski coil, the experimenter must determine 
two things: the anticipated driver (dl/dt) and the coil sensitivity.
In the next section, I discuss how to calculate the sensitivity of a 
Rogowski coil. The experimenter, of course, must determine the 
anticipated dl/dt.

A Rogowski coil's frequency response can distort the signal.
Suppose an experimenter wants to measure a 100 MHz current. Further 
suppose that the Rogowski coil has an intrinsic inductance of 1 yH and 
must drive a 50 S load. Therefore, the Rogowski coil has an inherent 
L/R rise time of 20 ns, but the signal has a period of only 10 ns. The 
inductance of the Rogowski coil distorts the signal beyond 
recognizability and makes the Rogowski coil unsuitable for this 
application.

Having cautioned the reader on the danger of a high inductance
Rogowski coil, I will make two further points about the inductance.
First, a high inductance rarely becomes a problem: typically the signal
level becomes too high long before the inductance does. Second, a large
inductance and a built-in shunt resistor can make the Rogowski coil 

4 5self-integrating. ’ Some experimenters use self-integrating

-7-



Rogowski coils, and I shall briefly discuss them in the section on 
integrating the Rogowski coil output.

While the inductance of a Rogowski coil rarely creates frequency 
response problems, the physical length of a Rogowski coil can. Suppose 
a Rogowski coil that encircles a current has a major diameter of 1 m. 
Then the length of the coil exceeds 3 m, and the 10 ns required for a 
signal to travel around the circumference twice (once in the coils and 
once in the center conductor) determines the lower limit for the 
observable rise time. Any signal with a shorter rise time becomes 
seriously distorted. Large, fast pulsed power accelerators, such as 
SPEED, often present this difficulty, and an experimenter must design 
his Rogowski coils accordingly.

Figure 2 depicts an insidious trap that can befall the unwary 
experimenter. The figure displays the outputs from two Rogowski coils 
observing the same current. I made the Rogowski coil that produced the 
lower wave form by winding copper wire on the core of a length of 
RG-58C/U coaxial cable, but I wound the Rogowski coil that produced the 
upper wave form on a length of small diameter Microdot cable. Small 
diameter coaxial cables typically have copper-coated-steel center 
conductors. The peculiar wave form results from magnetization of the 
steel center conductor. Clearly, an experimenter would not want to use 
such a Rogowski coil, and he must take care when selecting the cable for 
a small diameter Rogowski coil.
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Figure 2. Two Rogowski coils observing the same 
current. A Rogowski coil wound on a small diameter 
coaxial cable with a steel center conductor produced 
the upper trace. A Rogowski coil wound on RG-58C/U 
cable produced the lower trace.

-9-



CALCULATION OF THE SENSITIVITY

In order to illustrate the technique for calculating the 
sensitivity of a Rogowski coil, in this section I calculate the 
sensitivity for a coil that I made. First, let me define the 
sensitivity: The ratio of the voltage output from the Rogowski coil to 
the time rate of change of the current (dl/dt) flowing through the 
opening of the Rogowski coil defines the sensitivity, s.

I made a Rogowski coil consisting of 22 gauge, enameled, solid 
copper wire wound tightly and closely on the dielectric core of a length 
of RG-214/U coaxial cable. I stripped approximately 20 cm of the shield 
conductor from one end of the cable and soldered the 22 gauge wire to 
the end of the shield. I wound the wire onto the cable until I reached 
the end of the stripped section of the coaxial cable. Then I soldered 
the other end of the wire to the center conductor of the cable. Finally 
I covered the turns with heat shrinkable, plastic tubing and bent the 
coil into an approximate circle. Using the 0.80 ± 0.04 cm average of 
the inner and outer diameters for the diameter of the turns and the 
measured, average turn density of 13.3 ± 0.7 cm \ I calculated the 

sensitivity of the Rogowski coil. What follows describes that 
calculation.

According to Ampere's Law,^ a current, I, carried by a long, 

straight wire generates an azimuthal magnetic field at a distance R from 
the wire:

U0 I 
2 It R

where p0 = 4 n • 10 Consider a single, small, circular loop of wire 
with radius r that lies in a plane that also contains the long, straight 
wire. The center of this loop lies at a distance R from the straight 
wire. I define "small" to mean r << R. The magnetic field lines 
generated by the current in the straight wire intersect the area bounded 
by the circular loop normally. Since r << R, the magnetic field changes
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negligibly over the area of the loop, and the the current generates a 
magnetic flux within the circular loop:

$ = Up I 
2 R

2r

Therefore, neglecting the sign, a time varying current, I, generates a 
time varying magnetic flux, #, which induces a voltage in the circular 
wire:

V = * =
T 2Up I r 

2 R

Now, consider a circuit consisting of N circular loops, all with 
the same radius r, all at the same distance R from the straight wire, 
and all coplanar with the wire. Furthermore, the centers of these turns 
all lie in a plane perpendicular to the straight wire. Therefore, these 
turns lie on the surface of a torus, which encircles the long, straight 
wire. By connecting these loops in series, the induced voltages add to 
give a net voltage of,

V =
Po N I r2 

2 R
V0 uni 2r

In this equation, I replaced the linear turn density, N / (2 n R), by 
n. Using the definition of the sensitivity,

s V

i
Pp n n r2
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Since I performed this derivation using MKS units, substituting
_•} 3 -1r = 4.0-10 m and n = 1.33-10 m results in

s 8.4-10 8 V-s/A.

In order to assess the significance of this calculation, I now 
estimate the uncertainty of the sensitivity calculation. Using the 
definition of the turn density, I estimate the uncertainty in the 
sensitivity:

6s = s r 6n ' 2 + 4 f 6r ' 2 ’
, n , , r .

Moreover, using the definition of the turn density, I can calculate the 
uncertainty of the sensitivity:

6s 6R V.

R J + 4 6r
r

1/2

If R varies around the circumference of the coil, its effects on the
sensitivity will cancel to some extent, and the above equation
overstates the uncertainty somewhat. Nevertheless, in order to provide 
some indication of the uncertainty, I use the above equation.

I estimate these three uncertainties:

* . .05 ,
N

-^=0.1 , and
R
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= 0.05Sr
r

Therefore,

s = 8.4 + 1.3 10 8 V-s/A
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ROGOWSKI COIL CALIBRATION

An experimenter can use a calculation similar to the one performed 
above to estimate the magnitude of the output he can expect from a 
Rogowski coil. Nevertheless, several factors contribute to make this 
calculation somewhat uncertain. Four examples come readily to mind: 
First, a real Rogowski coil, especially a small diameter one often devi­
ates significantly from a circle. Second, precisely and uniformly 
winding the turns poses difficulties. Third, a small Rogowski coil may 
violate the condition r << R, and the magnetic field may vary signifi­
cantly with position in each loop. Fourth, for very fast signals, skin 
depth effects can change the effective area of the individual turns.
For these reasons, the above calculation can only guide the user. The 
wise experimenter will directly measure the sensitivity of the Rogowski 
coil. Moreover, he will measure the sensitivity with a signa.: whose 
frequency closely matches the frequency at which he intends to use the 
Rogowski coil. In this section I describe the measurement of the 
Rogowski coil's sensitivity that I calculated above.

As the first step in measuring the sensitivity, I used the 
Tektronix model R7844, dual-beam oscilloscope's internal 1 kHz square 
wave output to determine the vertical sensitivity and the sweep speed 
for both channel A and channel B. (See Figures 3 and 4.)

For both beams, I found the sweep speed accurate to within an 
uncertainty of 0.5 percent. For channel A, I corrected the vertical 
deflection by multiplying the result by 0.988 ± 0.007. For channel B, I 
calculated a vertical correction factor of 1.00 ± 0.03. The high gain 
of channel B, necessary to make the measurement, introduced more noise 
relative to the signal level and resulted in a larger uncertainty for 
channel B. As an alternative to calculating the correction factors, I 
could have adjusted the gain on the vertical amplifiers. Either 
approach satisfies the need for accuracy; although, the latter 
alternative would have simplified the computations, slightly. In either 
case, the uncertainties remain the same.
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Figure 3. The calibration of channel A resulted in a 
vertical deflection correction factor of 0.988 ± 0.007 
and a sweep speed correction factor of 1.000 ± 0.005.

Figure 4. The calibration of channel B resulted in a 
vertical deflection correction factor of 1.00 ± 0.03 
and a sweep speed correction factor of 1.000 ± 0.005.
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Since I designed this Rogowski coil to detect 60 Hz signals, I 
needed a high-current, 60 Hz source in order to measure the sensitivity. 
I replaced the tip of a soldering gun with a 2-foot-length, insulated, 
heavy wire—the center conductor from RG-214/U coaxial cable. Thus 
modified, the soldering gun would generate an approximately sinusoidal 
current with a peak-to-peak difference of more than 150 amperes. I 
routed the length of center conductor through the Rogowski coil and a 
Pearson model 301X current transformer. I displayed the outputs from 
the current transformer and Rogowski coil on the oscilloscope calibrated 
above and recorded the display on film. Figure 5 depicts the resulting 
oscillogram. The upper trace displays the current transformer output, 
and the lower trace displays the Rogowski coil output.

Figure 5. The Pearson model 301X current transformer 
output and the Rogowski coil output. With a gauge 
factor of 100 A/V, the vertical deflection corresponds 
to about 50 A/Div for the current transformer output. 
The vertical deflection of the Rogowski coil output 
corresponds to 2 mV/Div.

Using a Tektronix 4956 graphics tablet and a Tektronix 4052 
graphics computer, I digitized and analyzed the oscilloscope traces.
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Figures 6 and 7 depict the digitized output from the computer. Figure 6 
depicts the current waveform from the Pearson current transformer, and 
Figure 7 depicts the output from the Rogowski coil. The symbols each 
represent one digitized point, and the straight line connecting the

CURRENT TRANSFORMER

Tine (sec) 10 *-

Figure 6. Digitized output waveform from the Pearson 
model 301X current transformer.
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LOW FREQUENCY ROGOWSKI COIL

Figure 7. Digitized output waveform from the 
Rogowski coil.

symbols represents a linear interpolation between the points. Since the 
oscillograms have no baseline, the digitizing process arbitrarily 
determines the zero level. However, the fitting routine determines the 
correct baseline, and the arbitrary baselines cause no difficulty.
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Suppose the functions R(t) and I(t) respectively describe the 
output voltage of the Rogowski coil and the current flowing through the 
opening in the coil at the time t. Then, the gauge factor, g = 1/s, 
relates the Rogowski coil output and the current through the following 
equation:

Kt) =
0

In principle, one can simply perform a least squares fit to determine g. 
Nevertheless, when one digitizes the two data waveforms, several 
complications occur: (1) shifting of the reference baselines used for 
digitizing relative to the true baselines, (2) rotation of the reference 
baselines relative to the true baselines, and (3) inconsistent choice of 
zero times. Therefore, the resultant, integrated Rogowski coil output 
probably contains an additive, quadratic error and incorrect limits on 
the integral. Consequently, in order to determine the Rogowski coil 
sensitivity, I numerically integrated the digitized Rogowski coil output 
and assumed a model of the following form:

pt 10
R(C) dCJ0

Finally, the fitting procedure consists of finding that combination of 
the five parameters (a0, aj, a2, g, and t0) that minimizes the least 
squares difference between the model (h(t)) and the current (I(t)) as 
determined from the current transformer. With a nonlinear model, such 
as this one, one commonly uses Gauss linearization to estimate the 
parameters.^ In addition to using the Tektronix 4052 graphics 

computer to digitize the data, I used it to perform the iterative 
process and find the best estimates of the parameters.
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Figure 8 depicts the fit. Of all the parameters only the gauge 
factor, g, has any physical significance. Arbitrary choices made while 
digitizing the oscillograms determine the other parameters. I digitized 
the two traces several times and determined the best value for the gauge 
factor: g = 1.23 ± 0.03 • lO^A/V-s. This uncertainty results from 

several uncertainties: the uncertainty in the fit, the uncertainty in 
the current transformer calibration, and the uncertainties in the 
oscilloscope calibrations. Therefore, I determined the best estimate 
for the Rogowski coil sensitivity:

s = _L = 8.1 ± 0.2 • 10"8 V-s/A 
g

The prediction and the measurement agree remarkably well. 
Nevertheless, the construction process may lead to large uncertainties 
in the sensitivity calculation. If an experimenter uses a Rogowski coil 
for precise current measurements, he cannot rely on a calculation of the 
sensitivity. He must measure the sensitivity. Nevertheless, a 
sensitivity calculation can provide a useful design guide.
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LOW FREQUENCY ROGOWSKI COIL

-0.3

-0. £
XiMe (sec)

Figure 8.
output fit 
results in 
g = 12.3 ±

Numerically integrated Rogowski coil 
to the current transformer output. The fit 
an estimated gauge factor of 
0.3 kA/V-ms.
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INTEGRATING THE ROGOWSKI COIL OUTPUT

While a Rogowski coil generates a signal proportional to dl/dt, an 
experimenter usually wants to measure the current; therefore, he must 
integrate the Rogowski coil output. For many uses, particularly when 
the signal falls entirely within a limited time interval, numerical 
integration of the Rogowski coil output satisfies the experimental 
requirements. However, sometimes the experimenter must record the 
integrated signal directly. Often, a passive, resistor-capacitor (RC) 
integrator provides the solution. In this section I derive the 
equations for an RC integrator and illustrate a method for precisely 
determining the time constant for such an integrator.

Figure 9 illustrates an RC integrator schematically. Applying the 
input signal to the free end of the resistor, the experimenter records 
the output signal present at the common junction of the resistor and the 
capacitor. In what follows, I derive the equation that describes the 
behavior of the circuit depicted in Figure 9.

R
INPUT □UTPUT

C

Figure 9. Schematic diagram of a passive, RC 
integrator.

With the capacitor uncharged at some time, t = 0, I apply a 
sinusoidal voltage to the input: V(t) = Vssin(wt). With a charge, Q, 
on the capacitor, C, and a current, Q, in the resistor, R, the following
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inhomogeneous differential equation describes the behavior of this 
circuit:

R Q + 1 Q = V sin(u>t) 
C S

I will use the standard technique to solve this differential
11equation

Substituting T = RC, I solve the homogeneous equation:

This derivation will later yield the value of the presently undetermined 
constant A. Because of the sinusoidal character of the inhomogeneous 
part of the equation, I try a particular solution with the undetermined 
coefficients B and T:

I find B and F by first differentiating and substituting into the 
inhomogeneous equation. After collecting the terms,

Ve note that

- - R « r 
C

= Vs , and
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Solving for B and T, and adding Q and gives,

Q = Q + Q. P n
V C s

1 + ( T W )‘

^ sin(wt) - x w cos(«t) j + A -t/

Finally using the condition Q(0) = 0, I have the solution to the 
differential equation:

0
V C s

1 + ( T to )2
[ sin(wt) + T w cos(wt)

I define the time period of interest:

° < t <
2 it 

0)

Assuming that t << t, then

T 0) >> 2 It , and

Q = _£— ( 1 - cos(wO ]
T W

Therefore the following equation approximates the output voltage:



sin(a)C) dCJ0

If the input voltage, V^(t), consists of more than one frequency 
component, all the frequency components integrate independently. 
Therefore, so long as T >> t,

T JU

for any arbitrary waveform.
This derivation assumes two conditions: T = RC >> t and 

Q(t=0) = 0. Typically, by choosing RC > 10 • t, an experimenter 
satisfies the former condition. However, he often overlooks the second. 
If the voltage at the integrator's input remains zero for much longer 
than the RC time constant, and the Rogowski coil output arrives during a 
short time interval, then the experiment usually satisfies the second 
condition. Most pulsed power applications generate this type of signal, 
and therefore, satisfy the second condition. On the other hand, a 
continuous output signal from the Rogowski coil often violates the 
second condition, and the integrator will give erroneous results. The 
user must take care to satisfy the condition that Q(t=0) = 0.

I have so far failed to mention one more, implicit condition on the 
integrator: The recording instrument, typically an oscilloscope, must 
have a much larger input impedance than the resistor in the integrator. 
Otherwise, the resistor and the instrument input impedance will act as 
a voltage divider. A typical oscilloscope has an input impedance of 
1 MR, and this condition requires the integrator to have a resistor of 
less than about 100 kS. Obviously, one should avoid using this type of 
integrator with oscilloscopes having 50 2 input impedances.

At this point I shall digress briefly to mention an alternate 
integrator design. This alternate design uses three components 
connected in a "T" network: two identical resistors and a capacitor, 
with one lead from each of the three components connected to a common
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point. (See Figure 10.) The free end of either resistor forms the 
input, and the free end of the other resistor forms the output. 
Furthermore, the resistance of each resistor equals the impedance of the 
signal cable, normally 50 Q. When an experimenter uses this type of 
integrator, he must terminate the signal cable at the recording 
instrument input. If the recording instrument has a high input 
impedance compared to the cable impedance, the experimenter can use a 
terminator to provide the impedance match.

R
INPUT

R
□UTPUT

C

Figure 10. Schematic diagram of a "T"-network, 
passive, RC integrator.

This type of integrator has three major advantages: First, one can 
use a high frequency oscilloscope, which typically has a 50 Q input 
impedance. Second, because this type of integrator looks like a 
terminator for the times of interest, one may place it anywhere in the 
cable. Third, this symmetric integrator performs equally well when 
connected in either orientation. On the other hand, this type of 
integrator has two major disadvantages: First, the output resistor 
reduces the output signal by half. Second, requiring the resistance to 
equal the cable impedance limits the choice of capacitance. An 
experimenter would most often uses this type of integrator with very 
fast events. I simply mention this design for the sake of completeness, 
and I shall not discuss it further.
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The integrator I built consists of a 24 kS input resistor and four 
1 pF capacitors in parallel comprising the integrating capacitor. 
Therefore, I expect a time constant of x e 0.1 s. I placed these 
components inside a small aluminum box measuring approximately one inch 
square by two inches long and having two BNC connectors for the input 
and output signals. For convenience, I installed a 50 Q resistor 
between the input and ground. This resistor terminates the input cable, 
but it does not alter the integrator's operation.

To measure the integrator's time constant, I pulsed it with a 
single, square pulse from a Tektronix model PG 502 pulse generator.
Using the integrator equation, and substituting,

V. (t) = V. = constanti i

then

X
V.l

Vo (t-t0)

(t-t0)

Since integrating a constant voltage results in a ramp voltage, dividing 
the input voltage by the output slope results in the time constant:

x
V.i
dVo
dt

The oscillogram depicted in Figure 11 shows the input and output pulses. 
Using the calibration factors I measured for the oscilloscope, I 
calculate the time constant:

x = 0.102 ± 0.004 s
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Figure 11. Calibrating an RC integrator using a 
square pulse input to the integrator and the ramp 
output.

Finally, I know everything I need to know in order to use the 
Rogowski coil and integrator to measure currents. The following 
equation relates the current flowing through the opening in the Rogowski 
coil to the integrator output signal:

I 1.26 + 0.06 • 106 V
o

In an earlier section, I mentioned the existence of self- 
integrating Rogowski coils. A self-integrating Rogowski coil differs 
from a normal Rogowski coil in that a small-value resistor shunts the 
output signal to ground. Figure 12 depicts a self-integrating Rogowski 
coil, schematically. Compare Figure 12 with Figure 9. By replacing R 
with L, C with 1/R, and Q with I in the equation which follows Figure 9,
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L
□UTPUT

Figure 12. Schematic diagram of a self-integrating 
Rogowski coil.

I have the equation which describes the circuit depicted in Figure 12:

L I + R I = V sin(wt) s

I solve this equation in the same way as before:

V (t) = R I o

The corresopnding conditions become, L/R >> t and l(t=0) = 0. Moreover, 
the signal cable, or recording instrument, must have a much larger input 
impedance than the shunt resistance.
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CONCLUSION

I have used Rogowski coils to measure dl/dt's approaching 
141*10 A/s. In this paper, I describe a Rogowski coil that can measure 

dl/dt's as low as 3-10 A/s. Clearly, one can use Rogowski coils to 
measure a wide range of dl/dt's. The design of Rogowski coils makes 
them insensitive to the exact current distribution. Therefore, when an 
experimenter does not know the exact current distribution, Rogowski 
coils offer a distinct advantage over other magnetic probes, such as B 
loops.

One can calculate the sensitivity of a Rogowski coil, but it 
should be directly measured whenever possible. The following equation 
relates the output of the Rogowski coil to the current flowing through 
the opening in the Rogowski coil:

dl
dt

1
s
Vo

Moreover, the following equation defines the sensitivity, s, for an 
ideal Rogowski coil in terms of the turn density (the number of turns 
per meter around the circumference of the Rogowski coil), n, and the 
radius of the turns, r:

s V 2_ = p0 rt n r
I

y

where y0 = 4 n • 10”^.

By using a passive RC integrator, an experimenter can directly 
record a current waveform, rather than a dl/dt waveform. In order to 
use a passive, RC integrator, the experimenter must ensure that the 
circuit satisfies three conditions: a long time constant relative to 
the times of interest (RC = t >> t), no charge on the capacitor in the 
integrator at the beginning of the time interval under observation
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(Q(0) = 0), and a small resistance in the integrator compared to the 
input impedance of the recording instrument (R << Z^).

One can calibrate passive, RC integrators by using a single square 
pulse and recording the input voltage and the output slope. The ratio 
of the input voltage to the output slope yields the time constant. The 
Rogowski coil sensitivity, s, and the integrator time constant, T = RC, 
relate the output signal from the integrator to the current flowing 
through the toroidal opening

I

in the Rogowski coil:
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