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Abstract

The local stability of the EBT plasma is analyzed for the long
wavalength perturbations in the frequency regima, w < "1‘91 is “ion
cyclotron frequency). In addition to the low frequency interchange
instability, the plasma can be unstable to the compressional Alfven
wave. ontrary to the previously obtained quadratic dispersion relation
in w for the interchange mode, our dispersion relations for both types
of ingtabilities are cubic in . Wew stab.lity boundaries are found,
for the hot electron intercharge wmode, to relate to the enhanced
compraasibility of the cors plasma in the presence of hot electrons.
The comprassional A fvén instability is driven due to the coupling of
hot electron Tmagnetic drifts and diamagnetic drift with the
compressional Alfvén wave. The stability conditions of theses two types

of instabilities are opposite to eack other.
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I. INTRODUCTION

Stability of the plasma in the EIMO Bumpy Torus in the presence of the
hot elactrons has been studied for the low frequency interchange mode'™?
driven by the diamagnetic drift and magnatic drifts of the plasma. These
earlier works have confirmed that 1in order to obtain correct stability
condition, the hot electrons must be treated by kinetic thaory.z'd' Nclannz
and Van Dam and Lae3 have investigated the low frequency interchange mode by
rataining only the lowest order hot electron contribution in the
electromagnetic part of the disparsion relation, Dg,. They find that the hot
electrons can enhance tha compression of the cors plasma arnd influence the
gtability analysis. The enhancement of the compressibility of tae core plasma
is due to a near cancellation in Dg,. Thersfore, when the raxt order hot
electron contribution in Dem is inecluded, we will expsct quite diffarent
stability boundary. Since the core plagma ¢. nressional Alfvén frequency can
be comparable to the hot slectron magnetic drift fraguency, we also expect the
compresgional Alfven wave to be drivor; -ngtable by the hot electron magnetic
drifts. Therefore, a realistic determination of the stabilicy of EBT plasma
shm_xld include hoth the intarchange mode and the compressional ALfvén wave.
Bacause the driving mechanism for these modes is the interaction between
the magnetic (VB and curvature) drifts and diamagnetic drift of the hot
electrons and tha core plasma, the stability boundary is sensitive to the hot
electron distribution function. In this paper we will employ twe different
models of the hot electron distributlion function, &-function and Maxwellian,

to analytically study the stability of EBT plasma. The difference between our

theory and the previous works?’3 will be demonstrated.




-3-
II. FORMULATION

Consider a slab model?’3 with density and magnatic field inkomogenieties
in the x direction and an equilibrium magnetic field 8= nz(x)é + Bx(x)i where
B, << B,. We also assuna thers are no tamperaturs gradients. The plasma
equilibriur is composed of three gpecies — warm ions, warm electrons, and hot
alactrons. Then the equilibrium condition Vip + 32/8:) = f.98/d4x can be

written locally ams

1
RN TN NN IR VN 3y

where LB, l’..c, Ly Ly Le are the magnetic field gradient, magnetic field
curvature, hot electron density, warm lon density and warm electron density
acale lengths, respectively. B! = 81:“,'!‘,/32 for s = i, e, h, where N «notes
the density and T is the temperature. The gquasi-neutrality condition, Ny = N,

+ W, rclates these equilibrium density scale langths by
1/1’..i =1~ <5)/‘I-e + 6/Lh (2)
vhere & = Np/N; = (B, T;)/(B;Ty)-

We are interested 1in aelectromagnetic perturbations with zeroc parallel

wavenumber, kl = ¢, and long perpendicular wavelength k << 1, where Py is

1°1
the ion gyroradiua. We also restrict ourselves to local analysis and setr k,: -
0. Then the perturbations can be specified by the electrostatic potential ¢
and the x~component of the vector potential Ax’ The dispersion relation cau
be derived from the Vlasov equations and Maxwell's equations. In the limits

“’pi/gi > 1, wck << 1 and L"E-Qi’ where Wy Q; are the lon plaema and
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|§ cyclotron frequancy respectively, ¢ is the velocity of light, the dispersion

relation can be simplified to the form®

B
i 2
PegPen * (310 = 0 ¢ (3
where
( - {1 + - Q zb
D = Way Weg = Way Te) _ W Wy 1 i
€3 (0= w, M w = w, } w=w - 2 _ 2
di de al (w wdl) gi
Yrg " Dgq
- (R0 (arny) ¢+ ey - DS/,
de
T .n 2
W = W (w=w,)
Dm = 1+ By (m ~ mti)ﬁ + "12 =)
ai Zbi[(u - wg) - Ay 1

W W,
+ B (== Y+8cC, .
e ‘w Yie th
w = W Qz W~ W
1
- D = ( = L + 2Y(1 - &) + €6
T R L T " 3
o= gy 1
1/2 2 2 2
Weg T Aghy e (0 /B IR, By = lkypy) e py = T /MQ,
1/2
Wag ‘"Bs+wca’ mBs-ksbi rs(t’i/!‘smi ’
'Kb1/2(/1'4)0 = T /T 3=h, e 1
Veg a1 g Pyl T a’ "1’ PR

and Ks = 1 for ion and =1 for electron. for Maxwellian hot electrons, the

constants Cy, C, and C, are given by

c, = 272" - Way,) f: ax [° vy x ewp(- - ¥, (4(a))
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If we further make the approximation with ' = & = Wah in Eqs. 4(a) - 4{c) and
perform the integrations analytically, thsan this modifisd Maxwellian hot

electron model gives

C‘=C2-C3= (m-w‘h)/(w"wah) . (3]
This turns out to be a2 good approximation whenr we compare the numerical
solutions from both Egs. (4) and {5).5 1In the follewing we will employ BEg.
(5) for the analytical investigation. If a delta function is used for hot

electrons, then

Cp= 20, = ¢y = o~ w, )/ w=ug,) . (6)

Nota that the only difference between Egs. (5) and (6) ia in Cy and we will

write c2 = &2 (w - w,hl/(w - mdh) with ?:2 = 1 for the Maxwellian het electrons

a
and c2 = 1/2 for the §~function hot electrons.
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III. INTERCHANGE MCDE

Let us first consider the low frequency interchange instability with
ww i Swlgp,» wepe In this frequency regims, the three terms in the dispe:z

relation, Eq. (3), can be gimplified to yield

2
Pes =By * ["’*1 - ""di)[[1 + ",)”di/U + 8/w] .

as
= s Ve T Yan
r"em = Dem * cth( 2 ]u) !
“an
Dy = 1+ B + B, *+ czph""h/“’dh ’

and
) -+ - .
v f m*h/mah + (1 1:‘3)(11:\,ri wdi)/m

We note that Eg. (7} will give rise to tha usual guadratic dispersion rela
if we neglect the second term in Dapm which is of O(m/wdh)- However, the
electron contribution will give a near cancellation in Eem and result 4L
enhanced compression of tha core plaama.z'3 Therefore, we mst treat Be
be the same order as the second term in D, at marginal stability. From
{7) the dispersion relation can be written as a cublic in w:

3 2

W +A2w +Aw+A°-U,

1

where
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A = [G8 ],.,ml (1+17)+D 5+515(—m+1)] ( 4y
“’ah
(1 + 1 Mw,, = wy,)
e’ ey " Yy
a = [Dem Way *+ 2101+ T )Wy ~ uai)] s '
-w
dh
s‘cz"hf by .
‘*’ah

Without hot electrons (5 = B, = 0), By. (8) reduces to a quadratic in ¢ and
degcribes core plasma interchanga instability. With hot elactrons the

condition for stabhle interchange mode is that
93 + R2 <0 , ()

where
Q= (a, - A§/3)/3, R = (A, - /e -~ A23/27, and the fraquency at mavginal
stability is @ = =(R"? « a,/3). 1In Fig. 1 we plot the stability boundary
from -&1. {9) in the f; - B, space for ‘tha §=function hot electrons with the
fixed parameters: py/L, = pi/Li = -0.04, L/L, = 40, 7, = 103, o= 1 "’p.t/gi
= 25, mi/n‘le = 1837, and kypi = D.1. Within the closed stability boundary, the
interchange mode is stable. The solution from Zg. (3) ({denoted by exact) is
also shown for compariscn, and our cubic dispersion relation gives amazingly
good results.

We have also plotted in Fig. 1 the stability boundary from the quadratic
dispersion relation?’® by neglecting the 2nd term in Dgy in Bg. (7). . The
lower stability Doundary (core plasma interchange mode) is a good

approximation because it is mainly determined by D,, = 0. But the upper
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stability boundary (hot electron intsrchange mede;y unstable roughly when
Eem > 0) does not turn arcund at mmall B; which is due to the absence of the
O(w/wgqy )} term in Dym+ In general, the quadratic dispersion relation predicts
more optimistic results than our cubic disparsion relation. Beslow § = 1 line
ig the forbidden resgion with N, > .

For the Maxwsllian hot electrons, the stability boundary in ﬁi - Bh space
is shown in Fig. 2 for the same set of parameters as in Fig. 1. Our results
are very good in comparison with the solution from BEg. (3). Again stability
boundary from the quadratic dispersion relation is also shown for
comparison. The lower atubility is good, but the upper stability boundary ia
again over optimistic.

Figure 3 shows that the finite Larmor radius stabilization of the low
frequency interchange mode. With the same set of parameters as in Fig. 1, the
stability boundaries for two different values of kypj. (kypi = 0.1, 0.05) are
plotted in the g, - &, space. As kypy i reduced the stability boundary moves
toward larger B and does not intersect with the B, and B, axes. Therefors, if

f; is swall, no matter how large §, is there is no stability,

IV. COMPRESSIONAL ALFVEN WAVE

Now we consider the compressional Alfven wave with W~ kyVA ~ UWgp? but
wus, Wy for the warm species. since (kyVA)2 = (2by/By) Qizl kyvA can be of
the same order as Qi' Therefore, one might expect the compressiocnal Alfvén
wave to couple not only with the hot electreon magnetic drifts but also with
the ion cyclotron waves. In this fregquancy regime the three termg in the

dispersion relation, Bg. (3), can be simplified to yleld:
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and the dispersion relation bscomes

2 L] -w
W . 22 ¢80 *h,2
{92 [1+6(udh-w'h1/(w-wdh)] 5 (——-—-'—'u_udh 1
i
2b . W w
- Ef‘ (1 + 8, + 8, * cB ¢ .h-)]}/(mz - 012) = 0. (N

ll)'llldh

We see that the compregsional alfvén wave decouples from the ion cyclotron
waves even in the presence of hot electrons. We further note that in the
limits § = 0 and 8, = 0 (i.e., thera are no hot ulactrons), By. (11) recovers
the well known compressional ALfvén wave with of = kyszZH + By *+ By). The
compressional Alfvén wave mainly couples with and, hence, is destalilized by
the hot electron magnetic drifts and diagmagnetic drift. If we also assume

that

2 Y%nh " “en.2 w .2
§° ()" < w1, (0)7] (12)
w wdh in Qi

then By, (11) can be cast intoc a cubic form in o:

z3+azz+nz+a-u, (13)
2 1 o
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Since A,, Ay, and A, are independsnt of ky' the stability boundary ia
also independent of ky but the frequency w is linear in ky' from Bg. {9}, the

condition for stable solution 1s given by

Wit

(c—xuma2 + («1.c2 - 31\2) B ¢ ac3 20, (14}

where
w

*h
A'Czﬁh(1-3mdh)'2(1+ﬂi*3e).

c=1+5i+ge+c23h>0.

In general “"h/“’dh < 0 and it 1s possible to obtain unstable gelution cnly
- gy -
when (C-p) = 3(1+B, +B_ +C B —B) =3B <0 .We note that this is
i e 2 "h Wap em
opposite to the instability condition for hot electron interchange mode. On
the other hangd, Sem 3 is sufficient for stable solution. @nsidering LC/LB>>1

and $-function hot electrons with c2 = 1,2, we find

= mmai——
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e1 “h 3- I’J -1
(C-A)-J[1¢Bi+ﬂ.-(1ﬁgqtih—z:) .’ (16}

and the compressional AlPfvén wave is always stable for §&-function hot .
elactrons whan :.h/:.1 > 0 and :h/l:.. > 0. 'This has been confirwed v numerical
solutions.  If Sm <0, then in the limit @, B, << By, the stability

condition, Bg. (14}, can be approximately sxpresssd as

x+ (e "’1/2) . (17

(%)elsh-(' 3

where
- 2 - 2
2(1+c23h) -%(Cz(ﬂh-ﬁi - 2)
X o= >0
) B, L, B, L, '
1, ] -1
[t+8 * B~ 20,(1 4= = =) 1
i 2 Bhl'i Bh L.
and

s .3 LS P
y=4(1+ca81/{1+p +g-2._(1+——+—-
28h 1 By Ly W b

.‘h

]<o.

Nota that for the Maxwsllian hot electron model, c2 n» 1 and X and y ars weak
functions of @; and B, for f;, By < By § 1. However, for the §-function hot

b

electron model, &2 = 1/2 and x and y bescome inversely proportional to 8; and

Be+
The stability boundary in By = fy, space for the compressional Alfven wave
from By. {14) is shown in Pig. 3 for the Maxwellian hot alectron model with
the gsame parameters as in Fig. 1. The approximate solutions are vary good in
comparison with the exact numerical solutions of the dispersion relation Ig.
(3). The behavior of the stability boundary at small B; can be very well
explaine@ by By. (17). Now the stabllity window is enclosed by both the

interchange and the compressional Alfvén stability boundariesg. aAs lﬁ,pi

AR
-
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decrsases the stable region shrinks mainly due to the shift of ths interchange
stability boundary. The compressional Alfvén stability boundnfy is rather
insensitive to kypy for kyp:l. <« 1.

For §-function hot electren model, the compressional Alfvén nvo. ™My
hacome unstable only when I..h/!‘..i < 0 and :.h/l:.. < 0 and at somewhat highex By
and f, than the Maxwellian hot slectron model case. This has besn confirmed

by the numerical solutions of the full disp. rsion relation.
V. CONCLUSION

In this paper we have correctly analyzed the local solutions of the low
frequency interchange and the compressional Alfvén instabilities of tha EBT
plasma in the frequency regime w < Qi « The analytical solutions are then
compared to the numerical solutions of che full dispersion relation with good
agreement. These inntabilities are sainly detarmined by the magnetic drifes
and diamagnetic Arift of the hot electrons. Therafore the stability boundary
is very sensitives to the hot electron distribution function. Two different
models of hot electron distribution function, 5-.unction and isotropic
Maxwellian, -.e employed in ocur analysic and yield very different resuits.
Unlike the previcusly obtained quadratic dispersion relation in m,2'3 our
simplified dispersion relations are cubic in p for both types of the
instabilitiea. For the low fragquency interchange mode, our cubic dispersion

relation is due to an extra hot clectrun terxm of Olw/wy,! in the

electromagnetic part of the dispersion relation, D,,. This term is ignored in
the previocus quadratic dispersion relation, but is important because at

marginal stability the O(1) terms in D, nearly cancel with each other and
becoms the sama order as the O(w/uy,) term. The stability turns out to be

more passimistic than predicted in thée previcus theories.
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For the compressional Alfvén wave, our cubic dispersion relation is due
to the compressional term in D, 4and i3 obtained n the limit
8 g, = w12 /tw = wg ) <M T, (w/0)]. The stability boundary is
incepe .dant of kypi and the fraquency is linear in kypi. With L,/L; » 0 and
Ly/L, » 0, the compressional Alfvén wave is shown to be stable for §=-function
hot electrons and can be unstable for Maxwallian hot elactrons. Wwith !'h/t'!. <
0 and /L, < 0 the compressional Alfvén wave can be unstable for both models
of hot electron distribution function.

Then the stability window cf the EBT plasma is determinad by both the
interchange stability boundary and the coapressional Alfvén stabiliry
boundary. This somewhat pessimistic result for EBT stability may be improved
by a nonlocal calculation in a realistic geometry and with a proper

equilibrium including anisotropic hot elactron distribution and temperaturs

gradients.
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Figure Captions

Marginal interchange stability boundaries in 91 = B;, space for the &~
function hot electron model. The fixed parmseters are p /Ly = p;/In,
« =0.04, Lb/tl - 40, kypi = 0.1, ”bx’“x = 25, 1“/?1 - 103, '!’./'!'1 -1,
and ni/h. = 1837. Solutions of the gquadratic, cubic, and full
digpersion relations ars shown for comparison. The compressional

Alfvén wave is stable fOr the set of PaAraReters.

Marginal stability bheindaries in 81 = B, space for the Maxwellisn hot
electron modesl. The parameters are the same as in Fig. 1. Solutione
of the quadratis and cubic dispersion ralatiocns ars shown for
comparison. The stability window is enclosed Ly the interchange and

the compression..l Alfves stability boundaries.

Finite Larmor radius effects “‘ypi = 0.05, 0.1) on the marginal
stability boundaries in 8; - §;, space for the Maxwellian hot electxon
model. The compreasional Alfvén stability boundary is independent of

kypi. The other parameters are the samp as in Fig. 1.




#81T0130
I I I I

Quadratic

Unstable

4
<
=3
@
v
2 o

—

Unstable




e e

#*8ITOI3I

I I | [ {
Quadratic {Interchange)

Cubic { Inierchange)

g s -
-
) Unstable T
Stable
4 -
- Compressional ALFVEN -
2 -_ig’ -
. @ 8"" -
@ .
=2
0 [E—— L 7 1 =
0 0.1 0.2 0.3 0.4 0.5
B
Fig, 2

0.6




#681T0132

10 | T r | T ]
; B .
: Cubic (Interchonge)
. 8 __ —_
j
g LY 1
& Unstable _J 2
) 4 Compressional ALFVEN ?
2 _
/8=|
0 1 I_ | .
0 0.1 0.2 0.3 0.4 0.5 0.6



