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Abstract 

The local stability of th* SET plasma is analyzed for the long 

wavelength perturbations in the frequency regime, to < 0. (C2. is ' ion 
~ i i 

cyclotron frequency). In addition to the low frequency interchange 

instability, the plasma can be unstable to the compressional Alfvnn 

wave. Contrary to the previously obtained quadratic dispersion relation 

in ti) for the interchange mode, our dispersion relations for both types 

of instabilities are cubic in u. New stab.lity boundaries are found, 

for the hot electron interchange mode, to relate to the enhanced 

compressibility of the core plasma in the presence of hot electrons. 

The compressional Alfven instability is driven due to the coupling of 

hot electron magnetic drifts and diamagnetic drift with the 

compressional Alfven wave. The stability conditions of these two types 

of instabilities are opposite to each other. 
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I. INTRODUCTION 

Stability of the plaanw in the SZMO Bumpy Tenia in the pretence of the 

hot electrons has been studied for the low frequency interchange node 

driven by the diamagnetic drift and magnetic drift* of the plasma. These 

earlier works have confirmed that in order to obtain correct stability 

condition, the hot electrons must ba treated by kinetic theory. Nelson 

and Van Dam and Lee have investigated the low frequency interchange mode by 

retaining only the lowest order hot electron contribution in the 

electromagnetic part of the dispersion relation, D 0 m . They find that the hot 

electrons can enhance the compression of the core plasma and influence the 

stability analysis. The enhancement of the compressibility of the core plasma 

is Aia to a near cancellation in D _. Therefore, when the next order hot 

electron contribution in D _ is included, we will expect quite different 

stability boundary. Since the core plasma t> rtreasional Alfven frequency can 

be comparable to the hot electron magnetic drift frequency, wo also expect the 

congressional Alfven wave to be driven -nstable by the hot electron magnetic 

drifts. Therefore, a realistic determination of the stability of EBT plasma 

should include both the interchange mode and the congressional Alfven wave. 

Because the driving mechanism for these modes is the interaction between 

the magnetic (7B and curvature) drifts and diamagnetic drift of the hot 

electrons and tha core plasma, the stability boundary is sensitive to the hot 

electron distribution function. In this paper we will employ two different 

models of the hot electron distribution function, 6-function and Maxwellian, 

to analytically study the stability of EBT plasma. The difference between our 
2 3 

theory and the previous works ' will be demonstrated. 



-3-

II. FORMULATION 

Oonsider a slab model ' with density and magnetic field inhonogenietiaa 
» A 

in the x direction and an equilibrium magnetic field a • B (x)Z + B (x)X where 
2 X 

B x < f B z * w * * l s o asaone there are no temperature grad ient s . The plasma 

equilibrium i s composed of three spec ie s — warn i o n s , warn e l e c t r o n s , and hot 

e l e c t r o n s . Then the equilibrium condit ion 7<p + BV8*) • S.7B/4n can be 

written l o c a l l y as 

where Lg, t , , l^ , ! « , l>. are the magnetic f i e l d gradient , magnetic f i e l d 

curvature, hot e lec tron dens i ty , warm ion dens i ty and war» e lec tron dens i ty 

s c a l e lengths , r e s p e c t i v e l y , p - 3nH T./B for a - i , e, h, where K •'•motes 

the density and T i s the temperature. The q u a s i - n e u t r a l i t y condi t ion , HJ - N 

+ tl r e l a t e s these equilibrium densi ty scale lengths by 

1/L. - M - <5)/L + 6/L. (2) 
i e n 

where S » » „ / % =* ( 0 n

T i ) ' / t B i T h ) -

He are interested in electromagnetic perturbations with zero parallel 

wavenumber, k - 0, and long perpendicular wavelength k p << 1, where p, is 

the ion gyroradius. He also restrict ourselves to local analysis and set X„ -

0. Then the perturbations can be specified by the electrostatic potential t-

and the x-component of the vector potential A . The dispersion relation can 

be derived from the Vlasov equations and Maxwell's equations. In the limits 

%j/Q..£ >> 1, av'ck << 1 and di £ Q. , where dUi, 0^ are the ion plasma and 



cyclotron frequency respectively, c Is the velocity of light, the dispersion 

relation can be simplified to the form 

"i 2 D D + (~)D f - 0 , (3) es era 2 c t 

where 

D _ " d i ( t l > » l " M d l , ( 1 * T e) f

M " "*!. °±\ 
es * ( « - W a l ) ( M - W a - ) " L - u>&J ( B . B ^ , a . ^ 2 

f— — ) (6 /T ) + (c, - I H V t ) , 
aft 

» i 2 

(0 - l l ) „ . I l l ] - < • ) . . » 
D« - ' * Pi f i ^ r f 1 + —rt ,2 Q 2 J 

di 2b . [ (u - u d i ) - Q^ I 

UJ - uu 

e u " »de ^ 2 

(1) - ( 0 . . Q. a) - i o t 

c t <-u - UJ., ' . .2 2 k u - w . _ M ' 3 
di (a) - oj..) - Q^ ae 

"*« * V , l 1 / 2 V ' » i / V 0 i ' b i " ( I C y P i ) 2 ' f3!2 " T i / m i Q i 2 ' 

1/2 u . =» 11L + &) , u)_ ~ X b . x_(o . /L )Q. , ds Bs cs Bs s i s i B i 

1/2 
"cs ~ "s" i V ' W " ! ' L9 " ~ s ' * i ' 

and \ g » 1 for ion and -1 for electron. For Maxwallian hot electrons, the 

constants C^, Cj and Cj are given by 

C, - (2/ir1/2)(o> - u„ ) /" dx /" dy x exp(- x 2- y2)/u)' , <4(a)) 
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C - ( T / n V 2 ) ( « - u ) | dxdy x 5 exp<- x 2 - y 2 ) / u ' , U<fc>) 

and 

where 

c 3 - < 2 / * 1 / 2 H o » - <a„hl J «*fly x 3 **P <- x 2 - S 2 )A*' , W O > 

2 2 

If we further make the approximation with « * * « « - w^j, in Eqa. 4(a) - 4(c) and 

perforra the integrations analytically, than this modified Haxwelllan hot 

electron model gives 

C - C - C,» (u - lô,. )/t<i) - <i>„ ) • (5) 
\ 2 3 *n ah 

This turns out to be a good approximation when we compare the nimerlcal 

solutions from both Gqs. (4) and <5). In the following we will employ Eq. 

(5) for the analytical investigation. If a delta function is used for hot 

electrons, then 

:i " 2 C 2 " c 3 " ( u " «V / (" " "W • (6) 

Note that the only difference between Dqs. (5) and (6) is in C, and ws will 

write c_ • C_ (w - O L ^ ) / ( U - ri>,.) with c. • 1 for the Maxwellian hot electrons 2 2 wn an 2 
and c - 1/2 for the 6-function hot electrons. 
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III. INTERCHANGS MODE 

Let us first consider the low frequency interchange instability with 

(I>*J <u<WfiL. t (d*n* £n this frequency regime, the three terms in the dispel 

relation, Eq. (3), can be simplified to yield 

D es * b i + ("»l _ "diM1 + T >di / u * + & / ^ ' 

- ,"»h " "dh, 
D e m

 3 Dem + ° 2 M 2 lu ' 
"ah 

and 

ct ' *h dh e *i di 

we note that Eq. (7) will give rise to the usual quadratic dispersion rela 

if we neglect the second term in D e m which is of O ( M/W^J, ) • However, the 
electron contribution will give a near cancellation in D and result ii 

em 
2 3 ~ 

enhanced compression of the core plasma. ' Therefore, we must treat D 
be the same order as the second term in D at marginal stability. From 
(7) the dispersion relation can be written as a cubic In. <o: 

3 2 w + A,w + A.w + A » 0 , 

where 
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aft &\ 

A o • ̂ d i + ( F 1 ( 1 + V<u«i " "di'l V ^ i 

"ah 

without hot electrons (5 » p n - 0), 8q. (8) reduces to a quadratic in u and 

describes core plasma interchange instability. With hot electrons the 

condition for stable interchange mode is that 

0 3 + R 2 < 0 , (9) 

where 

Q « (A1 - A_/3)/3, R » t^Aj - 3A 0)/6 - k^/27, and the frequency at marginal 

stability is y - -(R 1 /' 3 + A 2 / 3 ) . m Fig. 1 we plot the stability boundary 

from Eq. (9> in the Bj_ ~ Ph s P a c e f o r t h a 6-function hot electrons with the 

fixed parameters: pj/Ljj » pj/I^ • -0.04, Lj/I^ " 40, x h - ID 3, T e • 1, to-i/G^ 

" 25, nij/me " 1837, and k p. » 0.1. Within the closed stability boundary, the 

interchange mode is stable. The solution from 3q. (3) (denoted by exact) is 

also shown for comparison, and our cubic dispersion relation gives amazingly 

good results. 

We have also plotted in Fig. 1 the stability boundary from the quadratic 

dispersion relation 2' 3 by neglecting the 2nd term in D^ in Eq. (7), The 

lower stability boundary (core plasma interchange mode) is a good 

approximation because it is mainly determined by D f t 3 - 0. But the upper 
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stability boundary (hot electron interchange node; unstable roughly when 

5 > 0) does not turn around at small EL which is due to the absence of the 
en ~ i 

Odii/uujj,) term in D a m . In general, the quadratic dispersion relation predicts 

more optimistic results than our cubic dispersion relation. Below 6 - 1 H a * 

is the forbidden region with t^ > N^. 

For the naxwellian hot electrons, the stability boundary in Si - @ h apace 

is shown in Fig. 2 for the same set of parameters as in Fig* 1. Our results 

are very good in comparison with the solution from Dq. (3). Again stability 

bo'undary from the quadratic dispersion relation is also shown for 

comparison. Wie lower stability is good, but the upper stability boundary is 

again over optimistic. 

Figure 3 shows that the finite Larmor radius stabilization of the low 

frequency interchange mode, with the same set of parameters as in Pig. 1, the 

stability boundaries for two different values of k„p, CtyPi • 0* 1, 0.05) are 

plotted in the f]j - ^ space. As k v p i is reduced the stability boundary moves 

toward larger fL and does not intersect with the 8^ and p R axes. Tharefore,if 

Si is small, no matter how large (3,, is there is no stability. 

IV. 00MPRESSIONAL ALFVEH WAVE 

Now we consider the congressional Alfven wave with u ~ ky vA ~ udh' ' > u t 

2 2 

u>usti (Oj for the warm species. Since (k„V A) » iZb^/p^) Q^ , ft„VA can be of 

the same order as Q,. ttierefor'e, one might expect the congressional Alfven 

wave to couple not only with the hot electron magnetic drifts but also with 

the ion cyclotron waves- In this frequency regime the three terms in the 

dispersion relation, Eq. (3), can be simplified to yield: 

' I * . H 

i < • . 
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\ 2 

°es " b i - 5 2 ' 
flj - <o 

Pi z «* " Vm, 
em ^1 p e 2b. , 2 „ 2, 2T» lai - u « ' 

1 (w - Dj ) an 
Q i " ~ u * h 

u - O. dh 

And the dispers ion r e l a t i o n becomes 

2 /"ah »«h^ f ^ [7 + o ( U a h - ^ ) / ( « - W d h >] - o 2 1 ^ = - * ) 
a, dn 

- ~ (1 + ^ + g e + c2eh< —)]}Aoi2 - Q*) - o. cm) 

we see that the congressional Alfven wave decouples from the ion cyclotron 

waves even in the presence of hot electrons. He further note that in the 

limits 5 - 0 and {^ «• 0 (i.e./ there are no hot ulactrons), aj. (11) recovers 

the well known congressional Alfven wave with i>2 » ky 2V A
2(1 + p± + p a ) . Ttie 

compressional Alfven wave mainly couples with and, hence, 13 destabilized by 

the hob electron raagtwtic drifts and diagnuignetic drift. If we also assume 

that 

3 fdh - <**h)2 < f £. 2j (, 2 ) 

^u - «,, ' in L Q. J 

then Eq. (11) can be cast into a cubic form in 

Z 3 * A,Z + A„Z + A. » 0, C13) 
£. I O 
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Z - (o / Iy^) , 

A 2 ~ ~ ^ d h A y p i Q i ) ' 

\ " 2['1 * \ + B e

, U <lh + VhNl'VA 1 " 

since A Q, A.|, and Aj are independent of k v, the stability boundary is 

also independent of k but the frequency to is linear in k . From Eq. (9), the 

condition for stable solution is given by 

| ( C - A ) B 2 + <4C 2 - 3 A 2 ) B + 8 C 3 > 0 , ( 14 ) 

where 

A • C A ( 1 - 3 ^ r > - 2 1 1 + "i + (V -
an 

~ y p i " i 

c - i + e. + p e * c 2 e h > o. 

In general o ^ / w ^ < 0 and it is possible to obtain unstable solution only 
u*h when (C-A) » 3fl + 8. + S + C, S. ) - 3 5 < 0 .We note that this is 1 ri "a 2 ra iii_ ' em dn 

opposite to the instability condition for hot electron interchange mode. On 

the other hand, D > is sufficient for stable solution. Considering I^/LB>>1 

and 6-functlon hot electrons with C, =* 1/2, we find 
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( c - A , . 3 [ i * B i • B. - (i * ̂  f + T* ^ r 1
 I <«> 

and tha compressions! Alfvan wave i t always stable for 5-function hot 

electrons whan 1 ,̂/L, » 0 and I_/I>t > 0. This ha* b*en confined by numerical 

solutions. If D < 0 , than in tha limit pj_, p,̂  << 0^, tha s tabi l i ty 

condition, Bq. (14), can be approximately expressed aa 

(^fW < r - ' f -* > V 2) (17) 

where 

and 

2(1 • C 2P h> 2 - 1 ( C 2 O h - 6) - J ) 2 

y . 4 (1 + C 2 0 h) 3/[1 • P t + 6. - 2C2(1 + ̂  ^ + jft Jl)- 1] < 0. 

Note that for the Maxwallian hot electron modal, C, •» 1 and x and y are weak 

functions of p^ and p e for p i r 0 O < pj, £ 1. However, for tha 6-function hot 

electron model, C - 1/2 and x and y become inversely proportional to J, and 

Tha stability boundary i t l f*i ~ flh •P* c" f o r t h * compresstonal Mfven tave 

from Bq. (14) is shown in Pig. 3 for tha Maxwellian hot alectron modal with 

the same parameters aa in Fig. 1. The approximate solutions are very good in 

comparison with the exact numerical solutions of the dispersion relation 2q. 

(3). The behavior of the stability boundary at small p, can be very well 

explained by Bq. (17). How the stability window is enclosed by both the 

interchange and the congressional Alfven stability boundaries. Aa kyP^ 
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decreaaes the stable region shrinks mainly due to the ahift of the interchange 

atability boundary. The compressions! Alfven stability boundary is rather 

insensitive to k p^ for kyp.̂  « 1. 

For S-function hot electron model, the compressions! Alfven wave may 

become unstable only when Lj/In < 0 and LJ/II, < 0 *nd »t somewhat higher p 4 

and f̂  than the Haxwellian hot electron model case, this has been confirmed 

by the numerical solutions of the full dlsp. rpien relation. 

V. CONCLUSION 

In this paper we have correctly analyzed the local solutions of the low 

frequency interchange and the compreasional Alfven instabilities of the EOT 

plasma in the frequency regime u £ 0. . The analytical solutions are then 

compared to the numerical solutions of the full dispersion relation with good 

agreement. These instabilities are mainly determined by the magnetic drifts 

and diamagnetic fV-ift of the hot electrons. Therefore the stability boundary 

is very sensitive to the hot electron distribution function. Two different 

models of hot electron distribution function, 6-Junction and isotropic 

Maxwellian, ^« employed in our analysis and yield very different results. 

Unlike the previously obtained quadratic dispersion relation in w,2' our 

simplified dispersion relations are cubic in u for both types of the 

instabilities. For the low frequency interchange mode, our cubic dispersion 

relation is due to an extra hot electron term of 0(<j/ti>an> in the 

electromagnetic part of the dispersion relation, D e m . This term is ignored in 

the previous quadratic dispersion relation, but is important because at 

marginal stability the 0(1) terms in D nearly cancel with each other and 

become the same order *n the (Kcu/ugj,) term. The stability turns out to be 

more pessimistic than predicted in the previous theories. 
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Fcr tha compreasional Ufven wave, our cubic dlaparaion relation ia due 

to tha compressions! tarn in D < m and is obtained '.n tha limit 

^•"dh " <**i,)2/t* ~ Wah'2 * "in 1 1' { , a / Q i ) 2 ] ' * • stability boundary is 

independent of *y0± * n d t h * frequency is linear In K,.p̂ > With Ifr/̂ i > 0 and 

L̂ /Iî  > 0, tha compresiional AlrVan wave is shown to be stabla for 6-function 

hot electrons and can be unstable for Maxvellian hot electrons. With L ^ A M < 

0 and 'r<h/lia < 0 tha congressional Alfven wave can be unstable for both models 

of hot electron distribution function. 

Then the stability window of tha EST plasma ia determined by both the 

interchange stability boundary and the coaprassional Alfven stability 

boundary. This somewhat pessimistic raault for BBT stability may be improved 

by a nonlocal calculation in a realistic geometry and with a propar 

equilibrium including anisotropic hot electron distribution and temperature 

gradients. 
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Figura Captiona 

Pig. 1 Marginal Interchange stability boundaries in p. - ^ space for tha fi-" 

funetion hot electron sodel. The fixad parawetera ara PJ/LJ^ - Pt^h. 

- -0.04, I^/t^ - 40, JCyPi - 0.1, u^/Gi - 25, T^/l^ - 103, T,/^ - 1, 

and »i/n>a " 1837. Solutions of tha quadratic, cubic, and full 

dispersion ralationa ara shown for coeparlson. Tha compression*?. 

Alfven wave i« atabla for tha aat of parameters. 

Fig. 2 Marginal atability bo Jvdarlaa in B t - 8„ apaca tor tha Maxwalllan hot 

electron modal, The par ana ten ara tha same as in Fig. 1. Solutions 

of the quadratic and cubic diaparslon ralationa ara shown for 

conparlaon. The atability window is enclosad i,y the interchange and 

the compression,.1 Alfvei stability boundariaa. 

Fig. 3 Finite Larmor radius affaeta (*vp± • 0.05, 0.1) on tha marginal 

stability boundariaa in p^ - p^ apaca for tha Maxwallian hot electron 

model. The cocpreasional Alfvan atability boundary is independent of 

k p.. The other parameters ara the aamm as in Fig. 1. 
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