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Abstract

The effect of small scale density fluctuations on the propagation of electro-

magnetic waves in an inhomogeneous magnetized plasma in the presence of a

cutoff is investigated. It is shown that, provided the fluctuation scale length is

greater than the free space wavelength of an incident plane wave, the scattered

field is strongly enhanced from fluctuations near the turning point. Numeric,ai

results for _ve propagation in a tokamak plasma demonstrate the feasibility of

refiectometry for the localized measurement of density fluctuations in the range

k±pi << 1.
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1. Introduction

The causes of anomalous transport in tokamak plasmas are still unknown.

A popular conjecture, which finds limited support in theory and experiments, is

that the thermal and particle transport is enhanced by the existence of fine scale

turbulence. Indeed, theory predicts a large _riety of plasma _ves which are

driven unstable by density and temperature gradients, by dissipative effects and

by magnetically trapped particles (Kadomtsev and Pogutse. 1971; Tang, 1978:

Horton, 1984). Experimentally, observations with microwave (Mazzucato, 1976)

and laser (Surko and Slu_her, 1976) scattering have revealed the e.xistence of a

small scale turbulence in rough agreement with theoretical predictions.

Present obserx_tions show that the level of density fluctuation K increases

as the perpendicu!ar wave number k± decreases, as predicted by the mlzdng

length criterion Ft/n _ 1/k±Ln [where L_--(dlnn/dr) -_ is the densiD" scale

length]. This makes the interpretation of experimental data very difficult as most
m

scattering techniques detect long wavelength fluctuations with only poor spatial

resolution. On the other hand, very long wavelength modes, i.e., modes with 0

small poloidal and toroidal mode nmnbers, do not show correspondingly large

fluctuation levels. This implies that the turbulence spectrum must turn over at

some _ue of km where present obserx_tions lack spatial resolution. This is of

considerable importance since turbulent fluctuations with amplitudes below the

mixing length level and wavelengths much longer than the ion Larmor radius

pi could theoretically account for the obsern,ed plasma tramport in tokamak

(Liewer, 1985; Haas and Thyagaraja, 1986). Clearly the measurement of long

_velength fluctuations with improved spatial resolution over e.x.isting scattering

techmques is needed.

One tech_que _-ith the potentiM for prox4ding spatial])" localized measure- '4

merits of long wavelength density fluctuations is micro_ve reflectomet_,. In

• fact, the first experimental evidence for the existence of a fine scale turbulence in '

tokamaks was obtained using microwave reflectomet_; on the adiabatic toroidal
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compressor (ATC) tokamak (Mazzucato, 1975). This method, widely employed

in atmospheric studies, measures the reflection of electromagnetic _ves from

the plasma cutoff to obtain the electron density profile in inhomogeneous plas-
0

mas. The system ca2abe considered a special kind of interferometer where the

phase of the received _ve is determined by the refractive index along the _ve

trajectory, and also by changes in the position of the reflecting l_er.

Enhanced scattering from fluctuations at the cutoff in isotropic plasmas

_as first addressed by Pitte_y (1958) in reference to radio wave propagation

in the ionosphere. In this paper, we address the issue of wave propagation in

anisotropic plasmas and assess the relative capabilities of O-mode and X-mode

reflectometry for the local measurement of density fluctuations in tokamaks.

The paper is orga.n_izedas follows: the basic equations for the scattered field

in the Born approximation are derived in _ 2 for both the ordinary and the

ex-traordinax3 r mode of propagation. Some numericM examples are presented irt

,_ § 3 which simulate the case of a large tol_mak plasma. Finally, our conclusions

are presented in § 4.

2. Basic Equations

In this section, we derive the equations for the electromagnetic field scattered

by small density fluctuations in a magnetized plasma.

A plane electromagnetic wave E = No ex_pi(a20t- k0. r) is launched into

a plasma with a magnetic field B which, in Cartesian orthogonal coordinates

(x', y', z'), is aligned in the y' direction and is only a function of z'. The plasma

occupies the region z' > 0 with the electron density distribution given by

= + :'.t), (1)

i.e., where a plane stratified plasma equilibrium is perturbed by weak (1_ [ <<

° fi_) irregularities which are uniform along magnetic field lines. While we asstmm

that the free space _avelength A0 is comparable to the spatial scale length A of
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plasma, fluctuations, we assume the _ve frequent3 ' aJ0 to be much greater thaxl

the bandwidth of density fluctuations so that the time dependence of Eq. (1) can

be ignored.. Finally, we assume k0.B = 0. This geometry reproduces the typical
0

reflectometer comq.guration used in the investigation of density fluctuations in

tokmzlaks (Mazzucato, 1975; Cripwell et al., 1989), the major simplification being

the omission of the magnetic shear in the description of the wave propagation

which is justified by its smallness in this type of magnetic configuration.

, Under these assumptions, the electromagnetic field may be separated into

two independent modes of propagation, each described by a scalar differentiali
l

[ equation in the two _riables x / and z' (Budden, 1961). The dependent _riable
is the y' component of the electric field E for the ordinary, wave, and the 5/

component of the magnetic field H for the extraordinax3 __ve. Using standard

notations and introducing the change of coordinates (x, y, z) = (kox', _y', 'ko:'),

the equation for E is

V2E + eoE = 0 , (2) ,4

" while the equation for H is

1 61
V2H - -- VH. Vel + i-- iy. VH x Ve2 + elH = 0 (3)

61 62

where i_ is the unit vector along the y-axe, and

= x x (u - x) - (u- -
--_, 61 : U(U-X)_],-2' E2 -- ._" ' (4)

and v << a., a small effective collision _equenQ" which takes into accolmt weak

wave damping. W_hen t_ = 0, eo = 0 for X = 1 and el = e2 = 0 for X = 1 + ]'.

Using Eq. (1)we may put Eq. (4) in the form
I,
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where le'il<< I. We shall assume that dgi(z)/dz _ 0 at z - zc, and that, the

thickness of the evanescent region behind the cutoff is iIlally free space wave-

lengths such that tunnelling effects may be ignored. Then, we may proceed by,
$

making the Ansatz, to be verified a posteriori, that

" E = Eo + Z En,
n>O

=

where IEol_ O(I) axldIEn>ol_ O(%n). Prom thetwo lowestordertermsofEq.

(2)we obtainfortheordinarymode
I

I V_Eo+_o(=)Eo=o, (6)i
mad

V2E_ + _o(z)E_ = -_o(X, z)Eo(z) • (7)

Similarly, by assuming for the extraordinary mode

• H=Ho+EH_ ,
n>O

" with II-Iol_ O(1)and IHn>o _ O(71=), we obtain

•g]

V2H° e1-1rHo. Vgl + z-_iy, rHo x Vg2 + g_Ho - 0 , (8)

and

1 _7H1. Vgl+ igl
,i V2H1 gl g-_iy. VH1 x V_2 + glH1 -

]• -- -- i--ly • _'7'H 0 X _"-- "Jr- -- _'7292 -- _lHo .
gl ez e2 e2 ro gl

Let us first consider the case of the ordinao' mode with a_ incident plane

,,_tve which in ,._cuum takes the form ex'p[i(wot- aoX- 2oz)l, with/3o = (1-

" a2o)1/2 so as to satis_, the w_ve equation for free space propagation. Taking

• solutions of Eq. (6) in the form

ii Eo=Eo(z)exp(--ic_ox),5



we obtain
d2Eo

+ [_o(z) - a2o]Eo - 0. (10)dz 2

Assuming a linear density distribution near the turning point and introducing

the change of variable _ = IdZ:o/dzll/3(zo - z), with _o(zo) = C_o,we may write

Eq. (10) as (Ginzburg, 1961)

d2Eo _-<Eo=o. (11)d¢2

Two independent solutions are the Airy fun(_ions Ai(_) and Bi(_) with asymp-

totic forms

1 (2_3/2 71").4i(_)_.v_<_/_sin _ + 7 ,
1 (12)

for { > > 1, and

Ai(_) _2v/_(__)1/4 e.xp -8(-_) 3/2 , (_3)

Bi(_) _2v/_(-_-_)l/4 exp (-i)- " ,

for _ < < -1. Since

2_.3/2 2 id_o ii/2 _Zo
- = - -- (_o- _)_/__ (_o(_')- _)_/_d__', (_4)
3 3 dz _=_o

the as)znptotic expansions tend towards the approximation of geometrical optics.

In the vacmu_m regionthis gives

t( /oEo(z) : ex"p(-i/3oz) + exp i _oz + 2 (e0(z') -aS)l/2dz ' + -_ .

This expression forms the basis for reflectometry measurements of the average

density distribution in nonuniform plasmas (Doane et M., 1981).

We now consider perturbations of the type

_o(_,_)= _0(_)_-p(-_p_),

6
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and solutions of Eq. (7) of the form

E_=E_(z)_W(-_ _),
i

where c_1 - Cio+ p. The equation for the scattered field is then

" d2El [_0(_)- _]E_= -_o(_)E0(_), (15)dz 2

which may be solved using the method of Variation of Parameters (Jeffreys and

Jeffreys, 1972). Let z -- Zl be the point where eo(zl)= c_1, and functions A(z),

B(z) are two independent solutions of the corresponding homogeneous equation

having asymptotic ex_pansions similar to Eqs. (12) and (13) _ith z0 replaced

by z] and c_o replaced by ¢11. Near the turning point z = zl, these functions

are approximated by the Airy functions, while away from the turning point the

independent solutions are given by the WKB approximations (Heading, 1962).

.Mternatively, the solutions of the homogeneous equation may be ex_uated nu-

" merically.

According to the method of "Vhriation of Parameters, the solution of Eq.

(15) nlay be cast in the form

I:I" W Eo(v)dv, (16)

where the functions yl (z) and y2(z) are two independent solutions of the ho-

mogeneous equation, and I_" is the W'ronskian which in this case is a constant.

The functions yl and 9'2 are expressible as linear combinations of A(z) and S(z)

which satisfy the radiation conditions at z = -f-ex_. Thus, since E1 (z) --+0 as

z ---_oc, then y2(z) = A(z), and since E1 (z)-+ex-p[i(1 --Ol12)1/2Z] as Z ---+--OC, then

Yl (z) = B(z) + iA(z) so the solution of Eq. (15) takes the form

_r-_) f _E, (z) - L W _o(v)[B(v) + iA(v)]Eo(v)dv
• _ (17)

+ [B(_)+_A(.-)]f_ ]W _o(v)A(v)Eo(v)dv .
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In the vacuum region, apart from a constant phase, we obtain

El(z) t3_ 1 exp(i_lz) "_o(v)Go(v)dv , (18)

.! with,

i Go(v)= -A(v)Eo(v), (_9) "
I
:, where/31 = (1- cr_l)1/2, and the functions A(z) and B(z) are normalized to a

unit amplitude in the vacuum region. Equation (17) agrees with the result of

Pitteway (1958) derived using an alternative approach.

The case of the extraordinary mode may be solved using a similar procedure.

Again, given an incident plane wave of the form exp[i(wt-aox-_oz)] emd taking

solutions of Eq. (8) of the form

Ho=Ho(:)e_v(-_o_),

we obtain

d2Ho ld_ldHo [ ' _id_2]dz 2 _1 dz dz F (_l - _2o) - ao _ dz H0=0. (20) ..

The cutoff at Z=Zc, where _1 -- _'2 : 0 and dgl/dz = dg2/dz 7£ O, is a regular

singular point. The behavior of the field near. this point can be determined using

the Method oi Frobenius (Ince, 1956). Since the two solutions of the _dicia/

Equation are 0 and 2, in ascending powers of _ = z- z_, one solution of Eq. (20)

is

f_({)=_:(1+¢1_+c2__+... (21)

while a second solution may be cast in the form

f2(_) = K f_ (_) ln_ + 1 + di( + d3_ 3 +..., (22) ,

where a substitution -into Eq. (20) gives ,,

K=O, di -- -o_0 . (23)

8
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lt is interesting to note that in the case of an isotropic (B =--0) plasma, K ¢ 0

when ao # 0, resulting in absolute ,,'alues of the reflection coefficient lower than

unity (Denisov, 1957). This phenomenon disappears for B -¢-0.t.

For perturbations of the form

z)= ::
e_(x, z) = _'2(z) exp(-ipx),

and solutions of Eel. (9) of the form

H: = H:(z)ex-p(-ic_:x),

where c_:= c_0+ p, the equation for the scattered field becomes

d2H: l d::dH1 [ ::dg2]dz2 :: dz dz + (::-a_) -c_::_dz H:

:2 1_:2:: :-2::: (::
,ks in the case for the ordinary mode, the solution of F_xt. (24) may be cast in
the form

Hi (z) -S _ooYl (v)p2(z)w(v)S(v)dv + S °° y: _ '(z)Y2(V)S(v)dv , (.o)°"

where S(z)is tile r.h.s, of Eq. (24), and y: (z) and _(z) are two indepe:.dent

solutions of the corresponding homogeneous equation with Wronskian W(z) =

IV(0):: (z). Similarly, in the vacuum region the scattered field is given by

e: (v) dv , (26)

" where Z: = (1 -OZ21) 1/2 and A(z) is the solution of the homogeneous equation

which in the vacuum region is of unit amplitude and i_ the evanescent region

|



converges toward the subdorninant WKB solution. The function A(z) may read-

ily be obtained from a numerical integration along the real z-axis with a small

but finite value of v (Freidberg eta/., 1972). The integration must proceed from

the evanescent region with initial conditions given by the WKB solution.

Finally, an integration by parts and use of Eq. (20) transfolTn Eq. (26) into

H1 (z) -/3 -1 exp(i/31 z) "gl(v)G1 (v) + "_2(v)G2(v) dv (27)1 .

where
1 dA(v) dHo(v)

1 dHo(v) _C_Ho dA(v) (28)

Near the cutoff, where gl _ _ and _'1 _ gr2,the integrand of Eq. (27) may be

approximated by the form

"{1[dH_o!v) IdA(v) '
_L dv + ct0H0(v)] _ oqA('v)]

which is of the order of _71since by Eq. (23) the two terms in square brackets are

oftheorde_of_. ThusEq. (27)co=tit_te__ wenb_ha_ed(i._.,_on-_m_=)
solution of Eq. (24) in the vacuum region, z < 0.

The flow of scattered energy across the plasma boundary at z = 0 is

5'0 -- _ , (29)

for the ordinary mode, and

__ C /oo 12

for the extraordinar3 r mode. We now consider plasma irregularities of the form

_(z)= gi(z)E_(z) , i =0,1,2 (31)

10



expressed as the product of a slowly varying function gi(z) and a rapidly oscillat-

ing function -di(z). By assuming without loss of generality that -di(z) is spatially

bounded and sufficiently smooth, we introduce the Fourier expansion

• e'_(z) = gi(z) "ei(q) exp(-iqz)dq, (32)O0

" where -di(q) is taken as the Fourier transform of -di(z). By inserting Eq. (32) into

Eqs. (18)and (27)we obtain

El(z) =/9{-1 exp(i/31z) Lo(q)dq,
O0

]oLo(q) = -dO(q)go(v)Go(v) exp(-iqv)dv ,

for the ordinary wave, and

Hl(z) =Jr i exp(i_ z) _ Ll(q)dq, (34)
LI(q)= [_(q)ga(_)a_(_)+ _2(q)_(_)C,2(v)]e_(-iqv)dv ,

for the extraordinary wave. These expressions indicate that the major contribu-

tion to the scattered field originates from the Fourier components of -d_(z) which

match those of the product gi(z)Gi(z).

By inserting Eqs. (33) and (34) into Eqs. (29) and (30) we obtain

Si = 8-_ Li(q)dq , (35)

for the two modes of propagation.

For a random mediv,:n which satisfies the conditions

" < _-_(_)>=< _(q)>= 0,

4 and

< _//(q)% (q') >:< e7 (q)_j (q) > 6(q - q') , _. ',

11



where the angle brackets represent ensemble averages, we obtain

< Si >-- -- < ]Li(q) > dq. (36)
87r

This completes the set of equations describing the scattered field within the Born
W

approximation.

3. Numerical Examples

In the follow_,g, we present some numerical results which illustrate the local-

ization properties of fluctuation measurements using reflectometI'y in tokamaks.

For the numerical silmflation, we assume the electron density profile in our slab

geometry to be similar to the electron density distribution (Fig. 1) on the equa-

torial plane of a typical TFTR tokamak discharge in the enhanced confinement

regkne (Strachan et a/., 1987). Similarly, we assume the magnetic field profile

is equal to the equatorial profile of the toroidal magnetic field iii TFTR. Under

these conditions, Fig. 2 indicates the variation of wr, wuc -- [_dc2V (0.j c227_ZUp/2) i/2]/2, "

and 0_uh= (wr2+ w2)1/2. The first is the cutoff frequency for the ordinary mode
,¢

and the other two are the upper cutoff and the upper hybrid resonance fre-

: quency of the extraordinary mode, respectively. Figure 2 shows that apart from

a narrow region around the pla_sma boundary, the location of the upper cutoff

for a given frequency is separated from that of the upper resonance by several

free space wavelengths. This makes the upper hybrid resonance inaccessible to

• ex'traordinary waves propagating from the low-field side, as we have assumed in

§2.

To investigate the localization properties of fluctuations measurements using

micro_ave reflectometry in tokma_ks, we take a density perturbation of the form

= - - + (37)
IP

corresponding to a Gaussian wave packet with _idth A and _velength A. The

scattered field in the vacuum region is obtained by inserting Eq. (37) into Eqs.

12
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(18) and (27). We shall consider two quite distinct cases in order to demonstrate

the _ve number dependence of the localization of measurement to the cutoff.

In the first case, we choose li >> A. The normalized electric field EI/EO ate

z = 0 is shown in Figs. 3 and 4 lo: the two modes of propagation as a function

, of the w'ave packet center z = zc for n/ne = 1 x 10 -3, A = 2 cre, A = 0.5 an,

and ¢ = a0 = al = 0. The wave frequencies are 6 x 10l° Hz for the ordinary

mode (Fig. 3) and 1.4 x 10:1 Hz for the extraordinary, mode (Fig. 4). For these

_ve frequencies the two modes of propagation have the same cutoff locat, iom

however, the central location of the plasma wave packet z_ which mmximizes the

| scattered field is quite different in the two cases. In fact. for the extraordinary

mode the scattered field is strongly weighted tc,_rds density fluctuation near

the cutoff, while for the ordinary mode the scattered field is largest when the

density perturbation is located well a_y from the cutoff. Since the scattered

field originates from a region where the spatial variation of the lcwest order wave

pattern matches that of the density perturbation, the major difference betweenJ

the two cases is in the different ratios of A/A0. For A <_ Ao, the matching

, occurs a_y from the turning point, while for A >> Ao matching occurs only near

the turning point..ks a rule, the latter case requires that A k 2.5A0. Thus,

assmning a power law dependence for plasma fluctuations at high wavemzmbex_,

ii the extraordina_, mode should dramaticalh; decrease the contribution to the
_, •

;'] scattered power from fluctuations away from the cutoff.
]
i] In the second case, we choose A < A_.The normalized electric field E1/Eo

I at z = 0 is sho_m in Figs. 5 mid 6 as a function of z_. for the extraordinarhj

ii mode with a frequenQ, of 1.4 x 1011 Hz and for =5 = '2 crn, :_ = 10, and

a'0 = al = 0. The results of Fig. 5 were obtained with ¢ = 0 (s}znrnetric

perturbation) while those of Fig. 6 were obtained _'ith ¢ = -7r/2 (antis}znmetric

" perturbation). In both cases, the value of _ in ECl. (37) was adjusted such that

rnax(_) = 1 x 10-3fie. Although in both cases the scattered field is largest

! " when the plasma perturbation is near the cutoff, the anti%yrmnetric case (Yg.
!
] 6) sho_ greater relative localization near the catoff than for t.he s)zxnnetric ca.s_

13



(Fig. 5). _r_s result is readily understood in the geometric optics approxiro_tion

where the phase of the scattered field is proportional to a line "integral through

the perturbation up to the reflecting layer. Moreover, away from the cutoff, the
t

phase perturbation of the reflexed wave varies like ko 1_, while at the cutofl, for

a given displacement of the reflecting laver 6r, the phase varies like ko6r. Thus, ,

the relative contribution to the total phase variation from the cutoff region s_cales

like k_ so that the extraordinary mode has superior localization properties even

for large siz; plasma fluctuations.

4. Conclusion

In conclusion, we have derived within the Born approximation the equations

for' the electromagnetic field scattered by density fluctuations in an inhomoge-

neous magIletized plasma in the presence of a cutoff. Numerical results for both

the ordinary, and the extraordinary mode show that the scattered field is strongly

enhanced near the turning point when the spatial scale length of density fluc-
I

tuations is greater than the free space wavelength of the probing beam. q?hese

results irldicate that microwave reflectometry may be used for obtairfing local-

ized information on the distribution of fine scale density fluctuations in the range

k±pi << 1 in tokamaks, provided k± << _. The latter condition suggests the

use of the extraordJnar3' mode since it requires higher _x_e frequencies than the

ordinary mode.

The results however are qualified by the nature of our appro.'xirnations, where

a linearized treatment of the scattered field is used. Ek-tension of this anal3_is

to strong scattering from plasma fluctuation requires an alternative approach,

however the localization of the scattered field to the caltoff for long _velength

fluctuations is expected to hold in general.
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Figure Captions

Fig. 1. Electron density distribution on tile equatorial plane for a TFTR discharge.
q

Fig. 2. Profile of upper cutoff f_c frequency (soLid line), upper hybrid frequency fuh

(dot line) and plasma frequency fp (dash line) for aTFTR discharge _dth the

density profile of Fig. 1 and a magnetic field of 50 kG.

Fig. 3. Normalized scattered field E1/Eo (solid line) at z = 0 for the ordinar3" mode

as a flmction of the position of a density wave packet which is shown by the

dashed line centered at the cutoff point; H/_ = 1 x 10 -3, w/27r -- 60 GHz,

Ct 0 -- 0_ 1 -- O.

Fig. 4. Same as for Fig. 3 for the extraordinary mode with w/27r = 140 GHz and

C_0 -- O_1 -- 0.

Fig. 5. NormaLized scattered field E1/Eo (solid line) at z = 0 for the ex_raordJna_ T

mode as a flmction of the position of a s3_Lm.etric density perturbation which

, is shown by the dashed line centered at the cutoff point; n/fie = 1 x 10-3,

w/2rr = 140 GHz and c_o = c_1 = O.

Fig. 6 Same as for Fig. 5 for an azltisymmetric density perturbation.
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